[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005329353A - Plasma treatment method and apparatus - Google Patents

Plasma treatment method and apparatus Download PDF

Info

Publication number
JP2005329353A
JP2005329353A JP2004151651A JP2004151651A JP2005329353A JP 2005329353 A JP2005329353 A JP 2005329353A JP 2004151651 A JP2004151651 A JP 2004151651A JP 2004151651 A JP2004151651 A JP 2004151651A JP 2005329353 A JP2005329353 A JP 2005329353A
Authority
JP
Japan
Prior art keywords
gas
chamber
electrodes
magazine
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004151651A
Other languages
Japanese (ja)
Other versions
JP4549735B2 (en
Inventor
Susumu Saito
進 斎藤
Akinori Shibata
秋徳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisa Corp
Original Assignee
Fisa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fisa Corp filed Critical Fisa Corp
Priority to JP2004151651A priority Critical patent/JP4549735B2/en
Publication of JP2005329353A publication Critical patent/JP2005329353A/en
Application granted granted Critical
Publication of JP4549735B2 publication Critical patent/JP4549735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8501Cleaning, e.g. oxide removal step, desmearing
    • H01L2224/85013Plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Cleaning In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of an electrode having a high plasma generation efficiency and a means (manner) for voltage application to the electrode. <P>SOLUTION: A plurality of objects to be treated are arranged at intervals in a magazine and installed in a chamber; paired electrodes to which high-frequency electric power in different frequency bands is applied are arranged on the opposite to each other in both side faces of the magazine in the chamber; further gas supply ports for supplying a gas toward the electrodes are formed in at least two parts outside of both electrodes in the chamber; gas discharge adjustment ports are formed in at least two parts in two approximately center directions of the chamber; the gas gotten in plasma state by the electrodes is supplied to the objects to be treated from both side faces; and gas currents are generated toward the both side face directions from the gas supply direction to carry out plasma treatment under uniform gas flow in both of the front and the rear faces of the objects to be treated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体リードフレーム基板、BGA或いはCSPなどのサブストレート基板、各種電子パーツ、燃料電池用被処理物などの洗浄、表面改質、接着性向上、酸化膜除去など、後記特許文献1〜8などが処理対象とする各種被処理物の処理を行なうのに利用されるプラズマ処理方法及び装置に関する。更に詳しくは、上記した半導体リードフレーム基板などの被処理物(以下、単に被処理物という)を気密なチャンバ内に載置し、減圧雰囲気のチャンバ内にプロセスガスを供給すると共にプラズマ電極に高周波電力を印加することにより、プロセスガスをプラズマ化し、このプラズマを利用して洗浄、表面改質などの処理を行なうプラズマ処理方法及び装置に関する。   The present invention relates to semiconductor lead frame substrates, substrate substrates such as BGA or CSP, various electronic parts, fuel cell objects to be processed, surface modification, adhesion improvement, oxide film removal, etc. The present invention relates to a plasma processing method and apparatus used to process various objects to be processed. More specifically, an object to be processed (hereinafter simply referred to as an object to be processed) such as the above-described semiconductor lead frame substrate is placed in an airtight chamber, a process gas is supplied into the chamber in a reduced pressure atmosphere, and a high frequency is applied to the plasma electrode. The present invention relates to a plasma processing method and apparatus for converting a process gas into plasma by applying electric power and performing processing such as cleaning and surface modification using the plasma.

また、本発明は、半導体製造工程の後工程として行われるチップマウント、ワイヤボンディング、モールディングなどの前処理として行うプラズマ処理にも適用される。   The present invention is also applied to plasma processing performed as pre-processing such as chip mounting, wire bonding, and molding performed as a post-process of the semiconductor manufacturing process.

プラズマ処理は、減圧されたチャンバにプロセスガスが供給された状態で、電極に高周波電力を印加して放電を行って、電子、イオン及びラジカル等のような反応種を発生させて、エッチング、成膜、洗浄などの各種処理を行う技術であり、半導体装置の製造プロセスなどで実施されている。   In the plasma treatment, in a state where the process gas is supplied to the depressurized chamber, high-frequency power is applied to the electrodes to perform discharge to generate reactive species such as electrons, ions, radicals, etc., and etching, It is a technique for performing various processes such as filming and cleaning, and is carried out in a semiconductor device manufacturing process.

本発明に係る装置と比較すべき参考例を図14に従って説明する。
チャンバは、基本的に密封構造に構成されており、図示しない扉の開閉により被処理物の配設・搬出が行なわれる。電極A・Bは対構造であり、プラズマ処理すべき被処理物を挟んだ対向位置に配設されており、プラズマ処理すべき被処理物は、第3の電極Cが接続される基板の上に1個ずつ載置される構造である。被処理物の配設が完了して扉が閉鎖されると、図示しない真空ポンプが作動されてチャンバ内のガスが排出され、次いで、プロセスガスの供給が行なわれ、電極A・B・Cに高周波電力が印加されると、電極からの放電によりプラズマ化されたプロセスガスが被処理物の表面に接触することでプラズマ処理が行われることになる。
A reference example to be compared with the apparatus according to the present invention will be described with reference to FIG.
The chamber basically has a sealed structure, and an object to be processed is placed and unloaded by opening and closing a door (not shown). The electrodes A and B have a pair structure and are disposed at opposing positions sandwiching the workpiece to be plasma-treated, and the workpiece to be plasma-treated is above the substrate to which the third electrode C is connected. Are mounted one by one. When the arrangement of the objects to be processed is completed and the door is closed, a vacuum pump (not shown) is operated to discharge the gas in the chamber, and then the process gas is supplied to the electrodes A, B, and C. When the high frequency power is applied, the plasma treatment is performed by the process gas that has been turned into plasma by the discharge from the electrode coming into contact with the surface of the workpiece.

上記した装置において特徴となる構成は、プロセスガスの供給・排出がINからOUTに向かう単純な1方向であること、電極A・Bが板材で形成されていること、異なる周波数帯域の電源が利用されているが、電極Aには40KHzの如き特定の高周波電力のみの印加、電極Bには、13.56MHzの如き他の特定の高周波電力のみの印加である。   The characteristic features of the above-mentioned apparatus are that the process gas is supplied and discharged in a simple direction from IN to OUT, electrodes A and B are formed of a plate material, and power supplies in different frequency bands are used. However, only a specific high frequency power such as 40 KHz is applied to the electrode A, and only another specific high frequency power such as 13.56 MHz is applied to the electrode B.

一方、プラズマ処理装置において、複数の放電電極に対して、周波数を異にする2以上の電力を印加する構成は、下記するように、各種のものが知られている。   On the other hand, in the plasma processing apparatus, various configurations are known in which two or more electric powers having different frequencies are applied to a plurality of discharge electrodes as described below.

特許文献1には、真空容器内に対向し合って配置された上下の電極とRF電源との間に、電源に接続される一次側コイルとこれに絶縁されかつ上下の電極に接続される二次側コイルを有するトランスを設けることにより、それぞれの電極に同電圧で相互に位相を180°ずらして電源を供給するようにした構成が開示されている。   In Patent Document 1, a primary coil connected to a power source and an insulating coil connected to the upper and lower electrodes are connected between the upper and lower electrodes disposed opposite to each other in the vacuum vessel and the RF power source. A configuration is disclosed in which a transformer having a secondary coil is provided so that power is supplied to each electrode with the same voltage and with a phase shifted by 180 °.

特許文献2には、二次側コイルにタップを設けて、対向し合う電極に、位相が180°ずれると共に相互に異なる電圧を供給するようにした構成が開示されている。   Patent Document 2 discloses a configuration in which a tap is provided on a secondary coil so that different voltages are supplied to opposing electrodes while being 180 degrees out of phase.

特許文献3には、第1電源に接続される一次側コイルと両端がそれぞれ前記第1および第2電極に接続される二次側コイルとを有し相互に180°位相をずらして前記第1電源を前記第1及び第2電極に給電するトランスと、第1電源から給電される電力とは周波数が相違した電力を第1電極と第2電極との少なくともいずれか一方に重合して給電する第2電源とを有する構成が示されており、この第1電極には40.6MHz程度の周波数の電力を供給され、第2電極には13.56MHz程度の周波数の電力を供給する旨が開示されている。   In Patent Document 3, the primary side coil connected to the first power source and the secondary side coils connected at both ends to the first and second electrodes respectively have a phase difference of 180 ° from each other. A transformer that feeds power to the first and second electrodes and power that has a frequency different from that of the power fed from the first power supply are superposed on and fed to at least one of the first electrode and the second electrode. A configuration having a second power supply is shown, and it is disclosed that power having a frequency of about 40.6 MHz is supplied to the first electrode and power having a frequency of about 13.56 MHz is supplied to the second electrode. Has been.

特許文献4には、RF電源に接続される一次側コイルと上部電極及び下部電極に接続される二次側コイルとを有し、相互に180°位相をずらしてRF電源の電力がスプリッタトランスを介して両方の電極に給電され、このRF電源からはそれぞれの電極に350〜450kHz程度の周波数の電力が供給され、RF電源から給電される電力として、周波数が相違した電力が高周波電源から上部電極と下部電極との少なくともいずれか一方に重合して給電され、高周波電源からは上部電極に40.6MHz程度の周波数の電力が供給され、下部電極に13.56MHz程度の周波数の電力が供給される構成、が開示されている。   Patent Document 4 has a primary side coil connected to an RF power source and a secondary side coil connected to an upper electrode and a lower electrode. Power is supplied to both electrodes through the RF power source, and power of a frequency of about 350 to 450 kHz is supplied to each electrode from the RF power source. As power supplied from the RF power source, power having different frequencies is supplied from the high frequency power source to the upper electrode. The high frequency power supply supplies power with a frequency of about 40.6 MHz to the upper electrode, and power with a frequency of about 13.56 MHz to the lower electrode. A configuration is disclosed.

特許文献5には、真空排気可能な処理容器と、前記処理容器内に配置され、処理対象ウエハを載置するための載置面を有するウエハ載置台と、前記載置面に対向し、前記載置面に対してほぼ平行な平面に沿い、多重の渦巻構造を形成する複数のガス流路と、前記ガス流路の前記載置面に対向する面にガス流路毎にガス流路に沿って形成された複数のガス噴出孔とを含む気相処理装置が開示されており、前記複数のガス流路を導電性材料で形成し、更に、前記複数のガス流路に高周波電力を供給するための少なくとも1つの高周波電源を設ける構成、前記複数のガス流路を相互に電気的に絶縁し、前記高周波電源を前記複数のガス流路毎に設ける構成、前記複数の高周波電源のうち、少なくとも1つから、少なくとも2種類の周波数の高周波が重畳された高周波電力を所望の電力比で供給する構成、前記複数のガス流路の前記載置面に対向する面を、前記載置面に平行な平坦面とする構成、前記第1及び第2気相処理工程のうち、一方の工程で、又は前記第1及び第2気相処理工程の双方で、前記複数のガス流路に高周波電力を供給し、前記処理容器内に高周波プラズマを発生して気相処理を行う構成、前記第1及び第2気相処理工程のうち、一方の工程で、少なくとも2種類の周波数の高周波が重畳された高周波電力を供給する構成、が開示されている。   In Patent Document 5, a processing container that can be evacuated, a wafer mounting table that is disposed in the processing container and has a mounting surface for mounting a wafer to be processed, and a mounting surface that faces the above-described mounting surface, A plurality of gas flow paths forming a multiple spiral structure along a plane substantially parallel to the writing surface, and a gas flow path for each gas flow path on the surface of the gas flow channel facing the mounting surface. A gas-phase processing apparatus including a plurality of gas ejection holes formed along the same is disclosed. The plurality of gas flow paths are formed of a conductive material, and further, high-frequency power is supplied to the plurality of gas flow paths. A configuration in which at least one high-frequency power source is provided, the plurality of gas flow paths are electrically insulated from each other, and the high-frequency power supply is provided for each of the plurality of gas flow paths. High frequency of at least two frequencies from at least one A configuration for supplying the folded high-frequency power at a desired power ratio, a configuration in which a surface facing the mounting surface of the plurality of gas flow paths is a flat surface parallel to the mounting surface, the first and first In one of the two gas phase processing steps, or in both the first and second gas phase processing steps, high frequency power is supplied to the plurality of gas flow paths to generate high frequency plasma in the processing vessel. And a configuration for supplying high-frequency power on which at least two types of frequencies are superimposed in one of the first and second vapor-phase processing steps is disclosed. .

特許文献6には、真空チャンバ内において,電極に周波数がfHIGHである高周波電力成分(相対的に周波数の高いRF電力)と周波数がfLOWである低周波電力成分(相対的に周波数の低いRF電力)を重畳して印加することにより処理ガスをプラズマ化し、該プラズマにより電極に載置された被処理体に対して所定の処理を施すプラズマ処理方法において、周波数fLOWは,プラズマ中のイオンがチャンバ中の電界の変化に追従できない程度の周波数に制御される構成、が開示されている。   In Patent Document 6, a high frequency power component (RF power having a relatively high frequency) having a frequency of fHIGH and a low frequency power component having a frequency of fLOW (RF power having a relatively low frequency) are applied to an electrode in a vacuum chamber. ) Is applied in a plasma, and the processing gas is converted to plasma, and the object to be processed placed on the electrode is subjected to predetermined processing by the plasma. A configuration is disclosed in which the frequency is controlled so as not to follow a change in the electric field therein.

上記特許文献6の構成において、(1)低周波電力成分の周波数fLOWを、プラズマ中のイオンであって、イオンアシストプラズマ処理の主体となるイオンのイオンプラズマ周波数よりも相対的に高い周波数、好ましくは、周波数fLOWを2MHz以上10MHz以下、さらに好ましくは,周波数fLOWを3MHz以上10MHz以下、さらに好ましくは、周波数fLOWを3MHzに設定すれば、高密度プラズマにおいても電界の変化に追従することによって生じるイオンのエネルギを確実に低くすることができること、(2)上記周波数の電力を採用すれば、電極上に高い自己バイアス電圧を生じさせることができるため、イオンを所望の状態に加速することができること、(3)イオンが加速される期間が長くなるので、例えば被処理体にエッチング処理を施す場合には、エッチングレートが低下することなく、均一な処理を確実に施すことができることが述べられている。そして、(4)高周波電力成分の周波数fHIGHを、10MHz以上に設定すれば,チャンバ内に導入された処理ガスを確実に解離させることができるので,高密度のプラズマを生成することができ、被処理体に対する微細加工を迅速かつ均一に行うことができ、最大周波数fHIGHは、200MHz、好ましくは100MHzである、と述べられている。   In the configuration of Patent Document 6, (1) the frequency fLOW of the low-frequency power component is a frequency that is relatively higher than the ion plasma frequency of ions that are ions in the plasma and that are the main component of the ion-assisted plasma treatment, preferably Ions generated by following a change in electric field even in high-density plasma if the frequency fLOW is set to 3 MHz to 10 MHz, more preferably, the frequency fLOW is set to 3 MHz. (2) If a power of the above frequency is used, a high self-bias voltage can be generated on the electrode, so that ions can be accelerated to a desired state. (3) Since the period during which ions are accelerated becomes longer, for example When the processing member is subjected to an etching treatment, without etching rate decreases, it is stated that it is possible to perform uniform processing reliably. (4) If the frequency fHIGH of the high-frequency power component is set to 10 MHz or more, the processing gas introduced into the chamber can be reliably dissociated, so that high-density plasma can be generated, It is stated that microfabrication can be performed rapidly and uniformly on the processing body, and the maximum frequency fHIGH is 200 MHz, preferably 100 MHz.

特許文献7には、CVD(chemical vapor deposition)装置、特に、マイクロ波プラズマ及び高周波(RF)プラズマを用いてウエハ等に成膜する機能に加えて、成膜時に反応室の内壁面などに生成した堆積物を除去するクリーニング機能を有している高密度プラズマCVD装置として、互いに電気的に絶縁された上チャンバ、中チャンバ、下チャンバを有する反応室と、上記反応室内に配置され、処理対象物が配置される基板電極と、上記反応室内にマイクロ波を導入するマイクロ波導入部と、処理対象物への成膜時に反応室内へ成膜用ガスを導入し、堆積膜のクリーニング時に反応室内へエッチングガスを導入するガス導入部と、反応室からのガス排出を行う排出部と、基板電極に接続された第1の高周波電源と、中チャンバに接続された第2の高周波電源とを備える構成のプラズマCVD装置の堆積膜クリーニング方法において、上記プラズマCVD装置の反応室を、互いに電気的に絶縁された上チャンバ、中チャンバ、下チャンバに分割し、上記上チャンバ及び下チャンバをアースし、ガス導入部により上記反応室内にエッチングガスを導入し、高周波電源から高周波電圧を、上記中チャンバに印加して、上記反応室内に堆積する薄膜材料の堆積膜をクリーニングする構成、が開示されている。   In Patent Document 7, a CVD (chemical vapor deposition) apparatus, in particular, a function of forming a film on a wafer or the like using microwave plasma and radio frequency (RF) plasma is generated on the inner wall surface of the reaction chamber at the time of film formation. As a high-density plasma CVD apparatus having a cleaning function for removing deposited deposits, a reaction chamber having an upper chamber, a middle chamber, and a lower chamber that are electrically insulated from each other, and a reaction chamber disposed in the reaction chamber, A substrate electrode on which an object is disposed, a microwave introduction part for introducing microwaves into the reaction chamber, and a film forming gas is introduced into the reaction chamber during film formation on the object to be processed, and the reaction chamber is disposed during cleaning of the deposited film A gas introduction part for introducing an etching gas into the gas, a discharge part for discharging the gas from the reaction chamber, and a first high-frequency power source connected to the substrate electrode And a deposited film cleaning method for a plasma CVD apparatus configured to include a second high-frequency power source connected to the middle chamber, wherein the reaction chamber of the plasma CVD apparatus is electrically insulated from each other, an upper chamber, a middle chamber, Divided into lower chambers, the upper and lower chambers are grounded, an etching gas is introduced into the reaction chamber by a gas introduction unit, and a high frequency voltage is applied from the high frequency power source to the middle chamber and deposited in the reaction chamber. A configuration for cleaning a deposited film of a thin film material is disclosed.

特許文献8には、プラズマにより生じたラジカル種や、エッチングにより生じた反応性生成物などが真空反応室の内壁に付着する問題を解決する手段を有するRIE(Reactive Ion Etching)等のプラズマを用いたプラズマ処理装置として、プラズマ処理を行うところの処理容器と、処理容器内に設けられ、プラズマ処理が施される被処理基体を載置し、且つ2つ以上の周波数を有する高周波電力が印加される電極と、処理容器内にプラズマとなるガスを導入するガス導入手段と、2つ以上の周波数を有する電力を発生する電力発生手段と、処理容器内が所定の状態か否かをモニタするためのモニタ手段であって、処理容器内に生成されたプラズマ及び電極を含む処理容器内の系に関するインピーダンス、電圧、電流及び位相の少なくとも一つの物理量を前記二つ以上の周波数について同時に測定する測定手段を含むモニタ手段とを備えている構成が開示されている。
特開平2−177459号公報 特開平4−48727号公報 特開平7−74159号公報 特開平8−31596号公報 特開平8−55802号公報 特開2000−156370号公報 特開2002−235173号公報 特開2002−299322号公報
Patent Document 8 uses plasma such as RIE (Reactive Ion Etching) having means for solving the problem that radical species generated by plasma and reactive products generated by etching adhere to the inner wall of the vacuum reaction chamber. As a plasma processing apparatus, a processing container that performs plasma processing and a substrate to be processed that is provided in the processing container and on which plasma processing is performed are placed, and high-frequency power having two or more frequencies is applied. For monitoring whether the inside of the processing container is in a predetermined state, the gas introduction means for introducing a gas to be plasma into the processing container, the power generating means for generating electric power having two or more frequencies Means for monitoring the impedance, voltage, current and system related to the system in the processing vessel including the plasma and electrodes generated in the processing vessel. Configuration at least one physical quantity of a phase and a monitor means including measuring means for measuring simultaneously for the two or more frequencies is disclosed.
Japanese Patent Laid-Open No. 2-177459 Japanese Patent Laid-Open No. 4-48727 Japanese Unexamined Patent Publication No. 7-74159 JP-A-8-31596 JP-A-8-55802 JP 2000-156370 A JP 2002-235173 A JP 2002-299322 A

本発明の目的は、下記の課題を解決することにある。
図14に示した参考例の装置では、被処理物を配設する基板(台)が一方の電極Cに載置されており、この電極Cから所定の間隔をおいて配置されている電極Aと電極Bとの間での放電によりプラズマが発生される構成である。このような電極構造の装置では、プラズマの発生効率が低いので、処理時間が長くかかるだけでなく、処理性能にも不満が残されている。このため、プラズマの発生効率のよい電極の構造や、該電極への電力圧印手段(方式)が望まれている。
An object of the present invention is to solve the following problems.
In the apparatus of the reference example shown in FIG. 14, a substrate (base) on which an object to be processed is placed is placed on one electrode C, and an electrode A placed at a predetermined interval from this electrode C. The plasma is generated by the discharge between the electrode B and the electrode B. In the apparatus having such an electrode structure, since the generation efficiency of plasma is low, not only processing time is long, but also dissatisfaction is left in processing performance. For this reason, an electrode structure with high plasma generation efficiency and a power coining means (system) for the electrode are desired.

また、前記特許文献1〜8に共通して言えることであるが、被処理物は、基板上に1枚1枚並べるので、プラズマ処理が完了した非処理物の搬出と次回処理の被処理物の配設に手間がかかるだけでなく、1回にプラズマ処理できる量にも制限がある。このため、1度に処理できる被処理物の量を増加させる構成、並びに、チャンバへの被処理物の配設作業を簡単かつ迅速に行なうことができる構成が望まれている。   In addition, it can be said in common with the above-mentioned Patent Documents 1 to 8. Since the objects to be processed are arranged one by one on the substrate, the unprocessed objects that have undergone the plasma processing are unloaded and the objects to be processed next time. In addition to taking time and labor, the amount of plasma treatment at one time is limited. For this reason, the structure which increases the quantity of the to-be-processed object which can be processed at once, and the structure which can perform the arrangement | positioning work of the to-be-processed object to a chamber simply and rapidly are desired.

更に、前記特許文献1〜8に共通して言えることであるが、被処理物は多種多様でありサイズや形状などに違いがあるため、被処理物のサイズや形状、更にはその量などに随意に対応できるチャンバの構造、特に、被処理物の供給手段、処理空間のサイズ変更及びこれらに伴う電極の対応構造などに改善が望まれている。   Furthermore, as can be said in common with the Patent Documents 1 to 8, since the objects to be processed are various and have different sizes and shapes, the size and shape of the objects to be processed, and the amount of the objects to be processed, etc. It is desired to improve the structure of the chamber that can be arbitrarily adapted, in particular, the supply means of the object to be processed, the size change of the processing space, and the corresponding structure of the electrodes associated therewith.

次に、減圧雰囲気にあるチャンバ内に供給された処理ガスが電極間の放電によりプラズマ化されるのであるが、チャンバ内でのプラズマガスの流れが悪い場合には、プラズマガスが偏在することとなり、被処理物の表面に接触するプラズマガスの量に差が生じることとなり、均一な処理ができないこととなり、一般的にも低い処理能力しか得られないことになる。例えば、ファンなどによりチャンバ内でプラズマガスを強制的に流す構成を採用したとしても、従来型の電極構造は、板状であるために、これが障壁となってしまうので、非処理物の表面に向かう均質なプラズマガスの流れは得られないことになる。この観点から、プラズマの流れ良好化することが可能な電極の構造が望まれている。   Next, the processing gas supplied into the chamber in a reduced pressure atmosphere is turned into plasma by the discharge between the electrodes. However, when the flow of the plasma gas in the chamber is poor, the plasma gas is unevenly distributed. As a result, a difference occurs in the amount of plasma gas in contact with the surface of the object to be processed, so that uniform processing cannot be performed, and generally only a low processing capacity is obtained. For example, even if a configuration in which the plasma gas is forced to flow in the chamber by a fan or the like is adopted, the conventional electrode structure is plate-like, and this becomes a barrier, so that the surface of the non-processed object is A homogeneous flow of plasma gas toward it will not be obtained. From this point of view, an electrode structure capable of improving the plasma flow is desired.

そこで、本発明の第1の課題は、プラズマの発生効率のよい電極の構造や、該電極への電力圧印手段(方式)を提供することであり、第2の課題は、1度に処理できる被処理物の量を増加させることができるようにすることであり、第3の課題は、被処理物の供給手段、処理空間のサイズ変更及びこれらに伴う電極の対応に容易に応じることができるようにすることであり、第4の課題は、均一なプラズマ処理ができるプラズマ処理方法及び装置を提供することである。   Therefore, a first problem of the present invention is to provide an electrode structure with high plasma generation efficiency and a power coining means (method) for the electrode, and the second problem can be processed at a time. It is to be able to increase the amount of the object to be processed, and the third problem is that it is possible to easily respond to the supply means of the object to be processed, the size change of the processing space, and the correspondence of the electrodes accompanying them. The fourth problem is to provide a plasma processing method and apparatus capable of uniform plasma processing.

上記課題を解決する本発明は、下記構成を有する。
1.複数の被処理物を間隔をあけてマガジンに収納してチャンバに配設し、該チャンバ内におけるマガジンの両側面(マガジンの開放方向によっては上・下)に異なる周波数帯域の高周波電力が印加される対構造の電極が対面構造で配置され、更に、チャンバの前記両電極の外側には該電極方向に向かってガスを供給するガス供給口が少なくとも2箇所設けられ、チャンバのほぼ中央2方向には、ガス排出調整口が少なくとも2箇所設けられ、電極でプラズマ化されたガスが被処理物の両側面(マガジンの開放方向によっては上・下)方向から供給されて、次いで、該ガス供給方向の両側面(マガジンの開放方向によっては上・下)方向にガス流を作ることで、被処理物の表面及び裏面の両面に対する均一なガス流の下でプラズマ処理が行われることを特徴とするプラズマ処理方法。
The present invention for solving the above problems has the following configuration.
1. A plurality of objects to be processed are stored in a magazine with a space between them and placed in a chamber, and high frequency power in different frequency bands is applied to both sides of the magazine in the chamber (up and down depending on the magazine opening direction). Further, a pair of electrodes are arranged in a face-to-face structure, and at least two gas supply ports for supplying gas toward the electrode direction are provided outside the both electrodes of the chamber. Is provided with at least two gas discharge control ports, and the gas converted into plasma by the electrodes is supplied from both sides of the workpiece (up / down depending on the magazine opening direction), and then the gas supply direction By creating a gas flow in both sides (up and down depending on the magazine opening direction), plasma treatment is performed under a uniform gas flow on both the front and back surfaces of the workpiece. The plasma processing method comprising and.

2.対構造の電極に印加される電力の一方が、1KHz〜200KHz、好ましくは40KHzの周波数帯域の電流であり、電力の他方が1MHz以上、好ましくは13.56MHzの周波数帯域の電流であることを特徴とする前記1に記載のプラズマ処理方法。 2. One of the power applied to the pair of electrodes is a current in a frequency band of 1 KHz to 200 KHz, preferably 40 KHz, and the other of the power is a current in a frequency band of 1 MHz or more, preferably 13.56 MHz. The plasma processing method according to 1 above.

3.対構造の電極が細線を同一平面上で並設させたものであることを特徴とする前記1又は2に記載のプラズマ処理方法。 3. 3. The plasma processing method according to 1 or 2 above, wherein the pair of electrodes are formed by arranging thin wires side by side on the same plane.

4.マガジンの大きさに対応して電極の位置を変更する電極位置アジャスト機構を有することを特徴とする前記1〜3のいずれかに記載のプラズマ処理方法。 4). 4. The plasma processing method according to any one of 1 to 3, further comprising an electrode position adjusting mechanism that changes the position of the electrode in accordance with the size of the magazine.

5.複数の被処理物を間隔をあけてマガジンに収納してチャンバに配設する被処理物配設手段と、該チャンバ内におけるマガジンの両側面(マガジンの開放方向によっては上・下)に異なる周波数帯域の高周波電力が印加される対構造の電極が対面構造で配置されるプラズマ発生手段と、更に、チャンバの前記両電極の外側には該電極方向に向かってガスを供給するガス供給口が少なくとも2箇所設けられ、チャンバのほぼ中央2方向には、ガス排出調整口が少なくとも2箇所設けられ、電極でプラズマ化されたガスが被処理物の両側面(マガジンの開放方向によっては上・下)方向から供給されて、次いで、該ガス供給方向の両側面(マガジンの開放方向によっては上・下)方向にガス流が行われるガス流通手段とを有しており、被処理物の表面及び裏面の両面に対する均一なガス流の下でプラズマ処理が行われる構成であることを特徴とするプラズマ処理装置。 5. The processing object disposing means for storing a plurality of objects to be processed in a magazine at intervals, and disposing them in the chamber, and different frequencies on both sides of the magazine in the chamber (up and down depending on the magazine opening direction) A plasma generating means in which a pair of electrodes to which a high frequency power of a band is applied is arranged in a face-to-face structure; and a gas supply port for supplying gas toward the electrodes at least outside the both electrodes of the chamber Two places are provided, and at least two gas discharge adjustment ports are provided in approximately two directions in the center of the chamber, and the gas converted into plasma by the electrodes is on both sides of the workpiece (up / down depending on the magazine opening direction). Gas distribution means for supplying gas from the direction and then performing gas flow in both sides of the gas supply direction (up and down depending on the opening direction of the magazine). And a plasma processing apparatus which is a structure in which a plasma treatment is performed under a uniform gas flow to both sides of the back.

6.対構造の電極に印加される電力の一方が、1KHz〜200KHz、好ましくは40KHzの周波数帯域の電流であり、電力の他方が1MHz以上、好ましくは13.56MHzの周波数帯域の電流であることを特徴とする前記5に記載のプラズマ処理装置。 6). One of the power applied to the pair of electrodes is a current in a frequency band of 1 KHz to 200 KHz, preferably 40 KHz, and the other of the power is a current in a frequency band of 1 MHz or more, preferably 13.56 MHz. The plasma processing apparatus according to 5 above.

7.対構造の電極が細線を同一平面上で並設させたものであることを特徴とする前記5又は6に記載のプラズマ処理装置。 7). 7. The plasma processing apparatus as described in 5 or 6 above, wherein the pair of electrodes has thin wires arranged in parallel on the same plane.

8.マガジンの大きさに対応して電極の位置を変更する電極位置アジャスト機構を有することを特徴とする前記5〜7のいずれかに記載のプラズマ処理装置。 8). 8. The plasma processing apparatus according to any one of 5 to 7, further comprising an electrode position adjusting mechanism that changes an electrode position in accordance with a size of the magazine.

本発明における細線とは、ワイヤーの如き柔軟性のある導電性素材や、棒体の如き自己保持性のある剛性の導電性素材を含む導電材であれば、断面形状は、円形、楕円形、方形などいずれでもよい。また、同一平面上に並設とは、厳格に直線上に並べた場合に限らず、図7、8に示すように、細線の外径(φ0.5〜20mm)の範囲内であるところの20mm内であればいずれの方向にずれていてもよい。   If the thin wire in the present invention is a conductive material including a flexible conductive material such as a wire or a self-holding rigid conductive material such as a rod, the cross-sectional shape is circular, elliptical, It can be any square. In addition, the juxtaposition on the same plane is not limited to the case where they are strictly arranged on a straight line, but is within the range of the outer diameter (φ0.5 to 20 mm) of the thin wire as shown in FIGS. It may be displaced in any direction as long as it is within 20 mm.

請求項1〜5に示される発明によれば、周波数帯域を異にする2電源による電力印加によりプラズマを発生させる構成であり、配置する電極にも工夫がなされているので、効率よくプラズマを発生させることが可能である。また、2電源方式を採用している従来の装置に比較しても、回路構成を簡素化することができ、装置の製造コストの低廉化に有益である。更に、被処理物のチャンバへの配設に関して、マガジンを利用して行なうことができる構成としたので、従来の装置に比較して、1度に処理できる量を著しく増加できるばかりでなく、被処理物のチャンバへの配設・排出を短時間で行なうことができ、処理効率の著しい向上が期待できる。   According to the first to fifth aspects of the present invention, plasma is generated by applying power from two power sources having different frequency bands, and the electrodes to be arranged are devised, so that plasma is generated efficiently. It is possible to make it. In addition, the circuit configuration can be simplified as compared with the conventional apparatus adopting the dual power supply system, which is beneficial for reducing the manufacturing cost of the apparatus. Further, since the magazine can be used to arrange the processing object in the chamber, the amount that can be processed at a time can be remarkably increased as compared with the conventional apparatus. It is possible to arrange and discharge the processed material in the chamber in a short time, and a significant improvement in processing efficiency can be expected.

請求項2、6に示される発明によれば、電極の材質等に拘わらず、効率よくプラズマを発生させることができる。   According to the second and sixth aspects of the invention, plasma can be generated efficiently regardless of the electrode material and the like.

請求項3、7に示される発明によれば、チャンバ内でのプラズマガスの流れが著しく改善され、特に、電極がプラズマガスの流れの障壁とならない構成であるので、被処理物への新規プラズマガスの接触率が向上し、著しく処理性能の向上が期待できる。これに加えて、本発明で明らかにされる電極の構造によれば、チャンバ内における被処理物の配設構造の自由度の向上につながり、1度に処理できる被処理物の量の著しい増加、サイズや形状の異なる多種多様な被処理物のプラズマ処理に対応が可能となった。   According to the third and seventh aspects of the present invention, the plasma gas flow in the chamber is remarkably improved, and in particular, since the electrode does not become a barrier to the plasma gas flow, a new plasma to the object to be processed can be obtained. The gas contact rate is improved, and the processing performance can be remarkably improved. In addition, according to the electrode structure disclosed in the present invention, the degree of freedom of the arrangement structure of the objects to be processed in the chamber is improved, and the amount of objects to be processed that can be processed at one time is significantly increased. It has become possible to deal with plasma processing of a wide variety of workpieces with different sizes and shapes.

請求項4、8に示される発明によれば、被処理物の供給手段、処理空間のサイズ変更及びこれらに伴う電極の対応に容易に応じることができる。   According to the fourth and eighth aspects of the present invention, it is possible to easily respond to the supply means of the object to be processed, the size change of the processing space, and the correspondence of the electrodes associated therewith.

以下の説明においては、チャンバ内にセットされるマガシンの両側面に、対構造の電極が対面構造で配置されている場合について説明するが、マガジンの開放方向(ガス流の導入方向)次第では上・下方向に配置される。   In the following description, a case will be described in which counter-structured electrodes are arranged in a face-to-face structure on both sides of a magacin set in the chamber, but depending on the magazine opening direction (gas flow introduction direction)・ It is arranged in the downward direction.

添付図面に従って、本発明に係るプラズマ処理方法及び装置を詳細に説明する。
先ず、図1に従って、本発明に係るプラズマ処理装置の全体を概説する。本体装置100は、後に説明する構成のチャンバ110を備えており、このチャンバ110の扉120を開くことにより、多数枚の被処理物が収納されているマガジン130の搬入・搬出が可能である。また、好ましい態様では、本体装置100の前面部には、装置を操作するための操作パネル140が配置されている。
A plasma processing method and apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
First, according to FIG. 1, the whole plasma processing apparatus according to the present invention will be outlined. The main body device 100 includes a chamber 110 having a configuration described later. By opening the door 120 of the chamber 110, the magazine 130 in which a large number of objects to be processed can be loaded and unloaded. In a preferred embodiment, an operation panel 140 for operating the apparatus is disposed on the front surface of the main body apparatus 100.

電源装置200は、好ましい態様として40KHzと13.56MHzの周波数の電力を供給するものであるが、要するに、被処理物等に応じてKHz帯周波数の電力とMHz帯周波数の電力とを組合せればよく、上記したように、この帯域の高周波電源装置は、多くの市販品が知られており、前記特許文献1〜8に示されるようなプラズマ発生用として設計された市販の高周波電源装置を利用することができる。   The power supply apparatus 200 supplies power with a frequency of 40 KHz and 13.56 MHz as a preferred mode, but in short, if the power of the KHz band frequency and the power of the MHz band frequency are combined according to the object to be processed, etc. Well, as described above, many commercial products are known for the high frequency power supply device in this band, and a commercially available high frequency power supply device designed for plasma generation as shown in Patent Documents 1 to 8 is used. can do.

真空ポンプ300は、チャンバ110内のガス、供給されたプロセスガス、パージガスなどの排除を行なうもので、その能力は、チャンバ110の容量(1度に洗浄可能な被処理物の枚数)によって異なったものとなる。真空ポンプ300としては、市販の種々の真空ポンプを利用することができる。   The vacuum pump 300 eliminates the gas in the chamber 110, the supplied process gas, the purge gas, etc., and the capacity varies depending on the capacity of the chamber 110 (the number of objects to be cleaned at one time). It will be a thing. As the vacuum pump 300, various commercially available vacuum pumps can be used.

プロセスガス(例えば酸素ガスやアルゴンガス)及びパージガス(例えば窒素ガス)などは、ガスボンベ400〜402の形で供給されるが、他の供給形態の採用を制限するものではない。   Process gas (for example, oxygen gas or argon gas) and purge gas (for example, nitrogen gas) are supplied in the form of gas cylinders 400 to 402, but the use of other supply forms is not limited.

本発明に係るプラズマ処理方法並びに装置は、チャンバ110に配設される放電電極の構成、ガスの供給並びに排出のための構成、被処理物の配設・搬出のためのマガジンの構成等に特徴を持つものであり、以下具体的に説明する。   The plasma processing method and apparatus according to the present invention are characterized by the structure of the discharge electrode disposed in the chamber 110, the structure for supplying and discharging the gas, the structure of the magazine for disposing and unloading the workpiece. This will be described in detail below.

図2は、本発明に係るプラズマ処理装置の1実施例を概略図で示すものであるが、チャンバ30内における電極などの各部材の配置が明示されている。尚、チャンバ30の密封と解放とが扉120の開閉により行われることは既に説明した(図1のチャンバ110、扉120を参照)。   FIG. 2 schematically shows an embodiment of the plasma processing apparatus according to the present invention. The arrangement of each member such as an electrode in the chamber 30 is clearly shown. It has already been described that the chamber 30 is sealed and released by opening and closing the door 120 (see the chamber 110 and the door 120 in FIG. 1).

被処理物10の配設・搬出は、マガジン20を介して行われるが、マガジン20の構成に関しては後に詳述する。   Arrangement / unloading of the workpiece 10 is performed via the magazine 20, and the configuration of the magazine 20 will be described in detail later.

例えば、13.56MHzの高周波電力が印加される電極40と、例えば、40KHzの高周波電力が印加される電極50は、複合的な電極構造言わばマルチ電極構造となっており、同様の構造である電極41・51とが、前述のマガジン20を挟んで対面の状態で配設されている。   For example, the electrode 40 to which high frequency power of 13.56 MHz is applied and the electrode 50 to which high frequency power of 40 KHz is applied, for example, have a composite electrode structure, that is, a multi-electrode structure. 41 and 51 are arranged in a face-to-face relationship with the magazine 20 interposed therebetween.

符号60は、ガス導入板であり、好ましくは、少なくとも電極が存在する面積分には透孔(スリットを含む)が配設されており、ガス流が電極部分に向かうよう、また、ガス流が被処理物10の方向に供給されるよう誘導するため、チャンバ30の内部空間を仕切るものである。   Reference numeral 60 denotes a gas introduction plate. Preferably, at least an area where the electrode exists is provided with a through hole (including a slit) so that the gas flow is directed toward the electrode portion. In order to guide it to be supplied in the direction of the workpiece 10, the internal space of the chamber 30 is partitioned.

この実施例では、プロセスガスなどは、前述したようにボンベ400〜402の形で供給されるが、図示しないバルブの制御に従って、ガス供給口31・32を通してチャンバ30の中に供給され、ガス排出調整口33・34から排出されるので、チャンバ30内でのガスの流れとしては、ガス供給口31・32から供給されたガスは、ガス導入板60により分散された状態で電極40・50、電極41・51の方向に流れ、次いで、マガジン20内で積層状態にある被処理物10と被処理物10との間の隙間を通して流れ、中央付近で左右の流れが合流して側方に流れを変えてから、チャンバ30の上方に配置されているガス排出調整口33と下方に配置されているガス排出調整口34とから排出される。但し、ガス排出調整口33、34は上・下方向に限らず、ガス流方向のほぼ直角方向にあるチャンバ30の両側面にあってもよい。即ち、チャンバ30のほぼ中央2方向であればよい。   In this embodiment, process gas or the like is supplied in the form of cylinders 400 to 402 as described above, but is supplied into the chamber 30 through the gas supply ports 31 and 32 according to control of a valve (not shown), and gas is discharged. Since the gas is discharged from the adjusting ports 33 and 34, the gas supplied from the gas supply ports 31 and 32 is dispersed by the gas introduction plate 60 as the gas flow in the chamber 30. It flows in the direction of the electrodes 41 and 51, and then flows through the gap between the processed object 10 and the processed object 10 in a stacked state in the magazine 20, and the left and right flows merge in the vicinity of the center and flow to the side. Then, the gas is discharged from the gas discharge adjusting port 33 disposed above the chamber 30 and the gas discharge adjusting port 34 disposed below. However, the gas discharge adjusting ports 33 and 34 are not limited to the upward and downward directions, and may be provided on both side surfaces of the chamber 30 that are substantially perpendicular to the gas flow direction. That is, it is sufficient that the chamber 30 has almost two directions in the center.

尚、符号35は、チャンバ30内のガスを排出するために行われる真空吸引のための真空吸引用排出口である。   Reference numeral 35 denotes a vacuum suction discharge port for vacuum suction performed for discharging the gas in the chamber 30.

チャンバ30には、プラズマ発生用ガス(プロセスガス)として、例えば酸素ガス、アルゴンガスなど、どのような種類のガスを利用するか、及びその使用量(圧力)等は、従来の技術を参酌すればよい。即ち、これらは本発明とは直接には関係せず、従って、ガスの種類及びその量(圧力)の違いによって本発明の本質が左右されるものではない。   For the chamber 30, the type of gas used as a plasma generating gas (process gas), such as oxygen gas or argon gas, and the amount used (pressure) thereof, for example, can be determined by taking into account conventional technology. That's fine. That is, they are not directly related to the present invention, and therefore the essence of the present invention is not influenced by the difference in the type of gas and the amount (pressure) thereof.

電極に印加する電力の周波数としては、例えば、1KHz〜200KHzの範囲、好ましくは40KHzと、1MHz以上の周波数帯域、好ましくは13.56MHzの周波数帯域、或いは2.45GHzの周波数帯域が選択されるが、どの周波数帯域を利用するかは、本発明にとって本質的な要素ではない。   As the frequency of power applied to the electrodes, for example, a range of 1 KHz to 200 KHz, preferably 40 KHz, a frequency band of 1 MHz or more, preferably a frequency band of 13.56 MHz, or a frequency band of 2.45 GHz is selected. Which frequency band is used is not an essential element for the present invention.

以下、被処理物10をどのような姿勢でチャンバ30内に配設するかについて述べる。
被処理物10には、そのサイズや外形形状に非常に多くの種類があり、従って、チャンバ30内に配設する姿勢によっては、1度に処理できる個数が限定を受け、著しい処理効率の低下が避けられないことになる。殊に、被処理物10のチャンバ30への配設・搬出を1枚1枚行うことは、極めて非効率である。
Hereinafter, how the workpiece 10 is disposed in the chamber 30 will be described.
There are many types of workpieces 10 in terms of size and external shape. Therefore, depending on the position of the workpiece 10 in the chamber 30, the number that can be processed at one time is limited, resulting in a significant reduction in processing efficiency. Is inevitable. In particular, it is extremely inefficient to arrange and carry out the workpieces 10 to and from the chamber 30 one by one.

そこで、本発明では、被処理物10の形状が、基本的には平板状であることに着目したところ、これを一定の間隔で水平に積層状態にする構成(図3の3−1参照)、一定の間隔で縦立設状に並べる構成(図3の3−2参照)により、矢符A方向或いは矢符B方向のプラズマ流によって被処理物10の上面及び下面を同時にプラズマ処理することが可能になり、1度に処理できる被処理物10の量を飛躍的に増加させることが可能となったばかりでなく、マガジン20を利用することにより、チャンバ30への配設・搬出の効率が飛躍的に良好となった。   Therefore, in the present invention, attention is paid to the fact that the shape of the object to be processed 10 is basically a flat plate, and a configuration in which these are horizontally stacked at a constant interval (see 3-1 in FIG. 3). The upper surface and the lower surface of the workpiece 10 are simultaneously plasma-processed by the plasma flow in the direction of the arrow A or the direction of the arrow B by a configuration in which they are arranged vertically at regular intervals (see 3-2 in FIG. 3). This makes it possible not only to dramatically increase the amount of the workpieces 10 that can be processed at one time, but also to use the magazine 20 to improve the efficiency of arrangement and unloading to the chamber 30. Dramatically improved.

図3において、マガジンの配設・搬出方向、特に図1におけるチャンバ110の前面位置に電極などを配置することは構造上の問題があるので、対構造の電極の配置位置としては矢符Aと矢符Bの位置が自然ということになる。勿論、図1において、扉120に電極などを組み込むという発想も実施できないことはない。   In FIG. 3, since there is a structural problem in arranging the electrodes and the like in the magazine arrangement / unloading direction, particularly the front surface position of the chamber 110 in FIG. The position of the arrow B is natural. Of course, the idea of incorporating electrodes and the like into the door 120 in FIG.

マガジン20を具体的に説明する。
図4、図5に従ってマガジン20を詳細に説明する。
図4に示すマガジン20は、無底のボックスタイプの実施例であり、内壁の両側面には
被処理物10を懸架するためのハンガー部21が多段に連設されており、壁面には、ハンガー部21とハンガー部21との中間部が透孔となるように、スリット22が形成されている。
The magazine 20 will be specifically described.
The magazine 20 will be described in detail with reference to FIGS.
The magazine 20 shown in FIG. 4 is an example of a bottomless box type, and hangers 21 for suspending the workpiece 10 are connected in multiple stages on both side surfaces of the inner wall. The slit 22 is formed so that the intermediate part of the hanger part 21 and the hanger part 21 becomes a through-hole.

上記の実施例において、上面部及び下面部にもスリット22を設ける構造とすることができる。また、無底構造であると説明したが、収納する被処理物10の種類等によっては有底構造とすることも可能であり、設けた低部には、ガスの流れを確保するために、スリット22を配設するのが好ましい。   In the above embodiment, the slit 22 can be provided on the upper surface portion and the lower surface portion. Moreover, although it demonstrated that it was a bottomless structure, depending on the kind etc. of the to-be-processed object 10 to accommodate, it can also be set as a bottomed structure, and in order to ensure the flow of gas in the provided low part, A slit 22 is preferably provided.

以上の記述から明らかなように、マガジン20は、多数枚の被処理物10を安定的に懸架すること、積層状態の被処理物10の間隔を決定することが重要であり、洗浄目的のためのプラズマ粒子の移動にとっては障害となる構成は採用しない方がよい。従って、連続したハンガー部21とスリット22の組み合わせも絶対的に必要な構成要件ではなく、上記したように、多数枚の被処理物10の収納するだけの強度が保障されるならば、スリット22を設けず、全面解放状態である構成の方が好ましい態様となる。更には、ハンガー部21が凸条の構成であることは、ハンガー部21がプラズマの移動の障害となるものであるから、例えば、ハンガー部21をより薄い凸条とする構成の外に種々の構成が好ましく採用可能である。   As is clear from the above description, it is important for the magazine 20 to stably suspend a large number of objects to be processed 10 and to determine the interval between the objects to be processed 10 in a stacked state. It is better not to adopt a configuration that hinders the movement of plasma particles. Therefore, the combination of the continuous hanger portion 21 and the slit 22 is not an absolutely necessary constituent element. As described above, if the strength sufficient to accommodate a large number of workpieces 10 is ensured, the slit 22 A configuration in which the entire surface is in a released state without providing the above is a preferable mode. Furthermore, the fact that the hanger portion 21 has a ridge configuration means that the hanger portion 21 becomes an obstacle to plasma movement. For example, there are various configurations other than the configuration in which the hanger portion 21 is a thin ridge. A configuration is preferably employable.

上記に従って採用可能な構成を例示的列挙すれば、複数のハンガー部21を有するハンガー部材が全体で櫛状板である構成、ハンガー部21を含めたハンガー部材の全体が金属線などで形成される構成などが挙げられる。尚、上記したハンガー部材は、金属線などで形成されるフレームによって組み立てられてもよい。   If the structure which can be employ | adopted according to the above is enumerated as an example, the hanger member which has the several hanger part 21 will be a structure which is a comb-like board as a whole, and the whole hanger member including the hanger part 21 is formed with a metal wire etc. Examples include the configuration. The hanger member described above may be assembled by a frame formed of a metal wire or the like.

図4に示した実施例のマガジン20のチャンバ30内での姿勢に関して説明する。
図5の5−1に示したマガジン20の姿勢では、被処理物10は平らに積層された状態であるので、A1・A1及びA2・A2の方向からのガス流が可能であり、従って、後述するように、A1・A1及びA2・A2の側に電極が配置されることになる。
The posture in the chamber 30 of the magazine 20 of the embodiment shown in FIG. 4 will be described.
In the posture of the magazine 20 shown in 5-1 of FIG. 5, since the workpieces 10 are in a state of being flatly stacked, gas flow from the directions of A1, A1, and A2, A2 is possible. As will be described later, electrodes are arranged on the sides of A1, A1, and A2, A2.

図5の5−2に示したマガジン20の姿勢では、被処理物10は縦方向に並べられた状態であるので、A3・A3及びB1・B1の方向からのガス流が可能であり、従って、後述するように、A3・A3及びB1・B1の側に電極が配置されることになる。   In the posture of the magazine 20 shown in 5-2 of FIG. 5, since the objects to be processed 10 are arranged in the vertical direction, the gas flow from the directions of A3, A3 and B1, B1 is possible. As will be described later, electrodes are arranged on the sides of A3 · A3 and B1 · B1.

次に、電極に関して説明する。
図2に示した電極40・50と電極41・51とは、電極ユニットを形成しており、ガスの流れる方向に、対面に配置される構成である。
Next, the electrode will be described.
The electrodes 40 and 50 and the electrodes 41 and 51 shown in FIG. 2 form an electrode unit and are arranged to face each other in the gas flow direction.

電極ユニットの構造は、例えば図6、図7に示されており、例えば、導電性細線をコ字状に連接した各電極を同一平面上において並設(交互に並ぶことがより好ましい。)させており、図示の実施態様では、電極40・41には、異なる周波数の電力として、例えば、40KHzの電力が、電極50・51には、13.56MHzの高周波電力が印加される。電極を形成する素材として、例えばアルミニウム等の導電材が好ましく利用でき、例えばφ0.5〜20mmの範囲のアルミニウムワイヤーないし丸棒が好ましく利用されるが、材質及びサイズ共にこれに限定されるものではない。また、印加される周波数帯域の違いにより、電極の素材及びサイズを異にする構成の採用も可能である。   The structure of the electrode unit is shown, for example, in FIGS. 6 and 7. For example, the electrodes in which conductive thin wires are connected in a U shape are arranged side by side (more preferably, alternately arranged) on the same plane. In the illustrated embodiment, for example, 40 KHz power is applied to the electrodes 40 and 41, and high frequency power of 13.56 MHz is applied to the electrodes 50 and 51, for example. As a material for forming the electrode, for example, a conductive material such as aluminum can be preferably used. For example, an aluminum wire or a round bar having a diameter of 0.5 to 20 mm is preferably used, but the material and the size are not limited thereto. Absent. Further, it is possible to adopt a configuration in which the electrode material and size are different depending on the applied frequency band.

本発明は、電極を対面配置することにより、被処理物10に対して平行に高周波を印加することができるため、マガジン20内の被処理物10の両面を同時に均一にプラズマ処理することが可能である。   Since the present invention can apply a high frequency in parallel to the object to be processed 10 by arranging the electrodes facing each other, both surfaces of the object to be processed 10 in the magazine 20 can be simultaneously plasma processed uniformly. It is.

図9には、非導電性素材により形成されたフレーム45に、電極40(41)と電極50(51)を交互に配設する構成が示されている。図示の実施例では、電極として太さの異なる細線(ワイヤー、棒など)が利用されているが、少なくとも一方の電極、好ましくは両方の電極として、並列された細線、例えば短冊状の板材に接続された細線を利用することができる。   FIG. 9 shows a configuration in which electrodes 40 (41) and electrodes 50 (51) are alternately arranged on a frame 45 formed of a non-conductive material. In the illustrated embodiment, thin wires (wires, rods, etc.) having different thicknesses are used as electrodes, but at least one electrode, preferably both electrodes, are connected to parallel thin wires, for example, strip-shaped plates. Can be used.

図10には、サイズを異にする細線から成る四角状の電極40(41)と50(51)とを同心状に配置して、各導電性のフレーム45、46で各々を固定する構成が示されている。フレーム45、46は、図示のように、縦横十字形に配置する構成に限定されるものではなく、×状に斜めに配置される構成、その他の構成の採用が自由である。尚、一方の導電性フレーム45(46)が、一方の電極を通電させる作用であることは勿論である。   FIG. 10 shows a configuration in which square electrodes 40 (41) and 50 (51) made of fine wires of different sizes are arranged concentrically and fixed by respective conductive frames 45 and 46, respectively. It is shown. As shown in the figure, the frames 45 and 46 are not limited to the configuration in which the frames 45 and 46 are arranged in a vertical and horizontal cross shape. Needless to say, one of the conductive frames 45 (46) acts to energize one of the electrodes.

電極40(41)・50(51)の固定或いはその姿勢を保持するフレームが、ガス流の方向に対して大きな面積を占めることは望ましくなく、ガス流を阻害する要因はできるだけ排除することが好ましい。従って、電極のためのフレーム等は、ガス流の方向に対して大きな配置スペースが設けられていること、それ自体に開孔が設けられている穴明き構造であること等が好ましい。   It is not desirable that the frame for fixing or maintaining the posture of the electrodes 40 (41) and 50 (51) occupy a large area with respect to the direction of gas flow, and it is preferable to eliminate factors that obstruct gas flow as much as possible. . Therefore, it is preferable that the frame for the electrode has a large arrangement space with respect to the direction of gas flow, or has a perforated structure in which an opening is provided in itself.

電極ユニットの構造は、各電極を構成する細線が同一平面上(実質的に同一平面上である場合を含む。)で並設されておればよく、図6、7や図9に示されるような直線状の細線の組合せに限らず、前記図10の如く、方形状又は渦巻状などの曲線状の細線の組合せであってもよい。   The structure of the electrode unit is not limited as long as the thin wires constituting each electrode are arranged in parallel on the same plane (including the case where they are substantially on the same plane), as shown in FIGS. The present invention is not limited to a combination of straight thin lines, and may be a combination of curved thin lines such as a square shape or a spiral shape as shown in FIG.

従来の装置の電極のように、板状の電極では、板全体が電極となるため、効率よくプラズマを発生させることができないが、本発明に係る電極では、細線の組合せによって構成されているため、その周囲に即ち、電極隙間の間に効率的にプラズマを発生させることができる。例えば、図8の8−1に示すように、電極40(41)と電極50(51)とが同一平面上に配置されている構成によれば、図8の8−2に示すように、各電極の周囲で、放電効果の及ぶ範囲が重畳することとなり、効率よくプラズマを発生させることができる。従って、電極の隙間にガスを効率よく流通させることにより、高密度のプラズマを効率よくマガジンまで送り出すことができ、ガスの流れる方向に電極を配置することにより、常に活性なプラズマをマガジン内の被処理物に均一に当てることが可能である。   In the case of a plate-like electrode like the electrode of a conventional device, the whole plate becomes an electrode, so that plasma cannot be generated efficiently. However, the electrode according to the present invention is constituted by a combination of fine wires. The plasma can be efficiently generated around the periphery, that is, between the electrode gaps. For example, as shown to 8-1 of FIG. 8, according to the structure by which the electrode 40 (41) and the electrode 50 (51) are arrange | positioned on the same plane, as shown to 8-2 of FIG. The range where the discharge effect extends is overlapped around each electrode, and plasma can be generated efficiently. Therefore, high-density plasma can be efficiently sent to the magazine by allowing gas to flow efficiently through the gaps between the electrodes. By arranging the electrodes in the direction of gas flow, active plasma can always be supplied in the magazine. It is possible to apply to a processed material uniformly.

次に、本発明のアジャスト構成を説明する。
従来の装置のマガジンでは、被処理物10の種類により様々な形状寸法で製造されており、プラズマ処理する際に、電極からマガジンまでの距離が離れすぎて効果が薄れる場合があるが、電極位置をアジャストできる構造とすることにより、どのような形状寸法のマガジン10でも利用が可能となる。
Next, the adjustment configuration of the present invention will be described.
The magazine of the conventional apparatus is manufactured with various shapes and dimensions depending on the type of the object to be processed 10, and when plasma processing is performed, the distance from the electrode to the magazine may be too far, and the effect may be reduced. By using a structure that can be adjusted, the magazine 10 of any shape and size can be used.

図11には、電極位置をアジャストするための機構の1例が示されている。この実施例は、電極70の基台71がレール72に沿って移行する構成である。レール72は2本以上であることが好ましい。   FIG. 11 shows an example of a mechanism for adjusting the electrode position. In this embodiment, the base 71 of the electrode 70 moves along the rail 72. The number of rails 72 is preferably two or more.

電極70は、レール72に沿って矢符方向に可動であり、図11の11−2に示すように、横幅の狭いマガジン20が配設される場合には、夫々の電極を内側に移動させることで、電極と被処理物との間の距離を調整することができる。   The electrodes 70 are movable in the direction of the arrows along the rails 72. When a magazine 20 having a narrow width is provided as shown in 11-2 of FIG. 11, the respective electrodes are moved inward. Thus, the distance between the electrode and the object to be processed can be adjusted.

レール72をチャンバ30の天井側に配列して、電極70を懸架する方式とすることも可能である。
尚、ガス導入板60は、電極70と共に、可動である構成としてもよいが、図11に示すように、ガス導入板60はチャンバ30の特定位置に固定である構成であることが好ましい。
It is also possible to arrange the rails 72 on the ceiling side of the chamber 30 and suspend the electrodes 70.
The gas introduction plate 60 may be configured to be movable together with the electrode 70, but the gas introduction plate 60 is preferably configured to be fixed at a specific position in the chamber 30 as shown in FIG.

電極位置のアジャスト機構は、電極の配置構造(図5参照)により、異なった構成となる。例えば、電極がマガジンの上方と下方に配設される構成では、レール72が縦方向に位置することなるから、特定の高さで固定するための何らかのストッパ構造が必要である。   The electrode position adjusting mechanism has a different configuration depending on the electrode arrangement structure (see FIG. 5). For example, in the configuration in which the electrodes are arranged above and below the magazine, the rail 72 is positioned in the vertical direction, so that some kind of stopper structure for fixing at a specific height is required.

請求項4、8に示される発明は、マガジンを挟んで配設される対構造の電極ユニットを、チャンバに配設されるマガジンのサイズに対応して変動させる機構を有することが特徴であるが、電極位置をアジャストさせる機械的機構として、公知の構成を採用すればよい。   The invention shown in claims 4 and 8 is characterized in that it has a mechanism for changing the electrode unit of the pair structure arranged with the magazine sandwiched in accordance with the size of the magazine arranged in the chamber. A known configuration may be employed as a mechanical mechanism for adjusting the electrode position.

次に、ガスの流通に関して説明する。
図2に従って説明したように、本発明では、真空排出口を目的別に数箇所設けており、例えば、チャンバ30を大気圧から真空にする場合は、チャンバ30の背面に設けられている排出口35から排気し、また、チャンバ30の天地に微調整用のガス排出調整口33と34とを設ける。尚、上下左右不均一に配置してもよい。
Next, gas distribution will be described.
As described with reference to FIG. 2, in the present invention, several vacuum outlets are provided for each purpose. For example, when the chamber 30 is evacuated from atmospheric pressure, the outlet 35 provided on the back surface of the chamber 30. In addition, gas discharge adjustment ports 33 and 34 for fine adjustment are provided in the top and bottom of the chamber 30. In addition, you may arrange | position unevenly up and down, right and left.

図12に示すように、排気を微調整するガス排出調整口33・34を天地に配置することにより、矢符A・A方向からの高密度のプラズマ流を矢符B・Bの方向に向けさせることができ、ガス流を停滞させることがなく、従って、被処理物10の両面を効率よくプラズマ処理することが可能である。   As shown in FIG. 12, by arranging the gas discharge adjusting ports 33 and 34 for finely adjusting the exhaust gas on the top and bottom, the high-density plasma flow from the directions of the arrows A and A is directed to the directions of the arrows B and B. Therefore, the gas flow is not stagnated. Therefore, it is possible to efficiently perform the plasma treatment on both surfaces of the workpiece 10.

プロセスガスを効率よく電極40(41)・50(51)に導入するために、多数の透孔が設けられているガス導入板60(図2を参照)として、所謂ガスプロジェクタを利用する態様を説明する。   In order to efficiently introduce the process gas into the electrodes 40 (41) and 50 (51), a so-called gas projector is used as the gas introduction plate 60 (see FIG. 2) provided with a large number of through holes. explain.

図13において符号61は中空の箱体であり、チャンバ30の外側又は内側に配置され、パッキング部材などを介して、チャンバ30の外壁又は内壁に密着する態様で、チャンバ30に配置される。箱体61の一側面には、仮想線で示すように、電極の面積に対応する広さで、多数の開孔62が配設されており、矢符方向から供給されるガスが開孔62から直接に電極に対して流れることとなる。単なる開孔62に代えて、小さな筒体或いはノズルを配置する構成であってもよい。   In FIG. 13, reference numeral 61 denotes a hollow box, which is disposed outside or inside the chamber 30, and is disposed in the chamber 30 so as to be in close contact with the outer wall or the inner wall of the chamber 30 via a packing member or the like. A large number of apertures 62 are provided on one side surface of the box 61 with a width corresponding to the area of the electrode as indicated by phantom lines, and the gas supplied from the direction of the arrow is the aperture 62. Will flow directly to the electrode. Instead of the simple opening 62, a configuration in which a small cylinder or nozzle is arranged may be used.

上記した構成によれば、チャンバ30の壁面に設けた開口を通じてガスを供給する構成と比較して、電極へと向かうガス流量が著しく多く、供給したガスの量に見合った量のプラズマを発生させることができる。チャンバ30の圧力は微妙であり、最適な圧力に調整されているのであるから、チャンバ30内に供給できるガス量には制限があり、従って、プラズマ化していない、言わば生のガスの量と、電極の部分を流れプラズマ化されたガスの量との比を考えれば、単純な構成のガス導入板60によるガスの導入では、プラズマ化されないガスの量が多くなることもあるが、このガスプロジェクタを利用した例では、この点を大巾に解決できる。   According to the above-described configuration, the gas flow rate toward the electrode is remarkably large compared to the configuration in which the gas is supplied through the opening provided in the wall surface of the chamber 30, and an amount of plasma corresponding to the amount of the supplied gas is generated. be able to. Since the pressure in the chamber 30 is delicate and adjusted to an optimum pressure, there is a limit to the amount of gas that can be supplied into the chamber 30, and therefore, the amount of raw gas that has not been converted to plasma, that is, raw gas, Considering the ratio with the amount of plasma gas flowing through the electrode portion, the introduction of gas by the gas introduction plate 60 having a simple configuration may increase the amount of gas that is not converted to plasma. In the example using, this can be solved greatly.

以上説明した装置を利用して被処理物をプラズマ処理する工程を説明する。
A:.マガジン(被処理物)の配設について
被処理物10は、自動操作或いは手作業により、マガジン20内に収納されて待機状態に置かれ、順次1つのマガジン20毎にチャンバ110へと配設される。尚、当然のことながら、洗浄装置100が、複数のマガジン20を収納して同時に洗浄を行なう構成とすることもできる。このような構成では、洗浄装置100は複数のチャンバ110を持つこともできる。
A process for plasma-treating an object to be processed using the apparatus described above will be described.
A:. Arrangement of magazines (objects to be processed) The objects to be processed 10 are stored in the magazine 20 by automatic operation or manual operation and placed in a standby state, and are sequentially arranged in the chamber 110 for each magazine 20. The As a matter of course, the cleaning apparatus 100 may be configured to store a plurality of magazines 20 and perform cleaning simultaneously. In such a configuration, the cleaning apparatus 100 may have a plurality of chambers 110.

チャンバ30(110)内へのマガジン20の配設が完了すると、扉120が閉鎖されてチャンバ110は、密閉空間となる。   When the placement of the magazine 20 in the chamber 30 (110) is completed, the door 120 is closed and the chamber 110 becomes a sealed space.

B:予備工程について
扉120の閉鎖によりチャンバ110が密閉空間となると、真空ポンプ300が稼動されて、チャンバ110内のガスの排出が行なわれ、真空状態となる。
B: Preliminary process When the chamber 110 becomes a sealed space by closing the door 120, the vacuum pump 300 is operated, and the gas in the chamber 110 is discharged to be in a vacuum state.

C:プラズマ処理工程について
プラズマ処理工程では、先ず、ガスボンベ400に用意されているプロセスガス、例えば酸素ガスがチャンバ110内に供給され、次いで、電源装置200の稼動により、電極40・41と電源50・51の夫々に電圧の印加が行なわれる。酸素ガスによる処理は、プラズマ化された酸素ガスにより被処理物10の表面を化学反応により処理するものであり、被処理物10の表面は親水化される。プロセスガスとしてアルゴンガスの供給が行なわれる処理では、被処理物10の表面に形成された酸化膜などの無機物をスパッタ効果により除去するものである。
C: Plasma Processing Step In the plasma processing step, first, a process gas prepared in the gas cylinder 400, such as oxygen gas, is supplied into the chamber 110, and then the electrodes 40 and 41 and the power source 50 are operated by the operation of the power supply device 200. A voltage is applied to each of 51. In the treatment with oxygen gas, the surface of the workpiece 10 is treated by a chemical reaction with the oxygenated gas, and the surface of the workpiece 10 is hydrophilized. In the process in which argon gas is supplied as a process gas, inorganic substances such as an oxide film formed on the surface of the object to be processed 10 are removed by a sputtering effect.

プラズマ処理工程で利用されるガスは、特に限定されるものではなく、公知公用の種々のガス、例えば、Ar、O、CF、Nなど、及びこれらの混合ガスが選択的に利用可能である。プロセスガスの供給量並びに処理工程に必要な時間は、チャンバ110のサイズないし被処理物10の枚数により異なる。 The gas used in the plasma processing step is not particularly limited, and various known and publicly used gases such as Ar, O 2 , CF 4 , N 2 , and a mixed gas thereof can be selectively used. It is. The supply amount of the process gas and the time required for the processing step vary depending on the size of the chamber 110 or the number of objects 10 to be processed.

D:パージ工程について
プラズマ処理工程が所定時間経過したら、電極への高周波電力の印加が停止され、真空ポンプ300が停止されると共に、ガスボンベ402に用意されているパージガス、例えば窒素ガスの供給が行なわれ、大気圧に復帰する。
D: Purging Step After the plasma processing step has passed for a predetermined time, the application of high-frequency power to the electrodes is stopped, the vacuum pump 300 is stopped, and a purge gas prepared in the gas cylinder 402, for example, nitrogen gas is supplied. Return to atmospheric pressure.

E:.マガジン(被処理物)の排出について
チャンバ110内を大気圧に復帰させた段階で扉120を開き、洗浄済みの被処理物10はマガジン20ごとチャンバ110から排出され、一連の処理工程は終了となる。
E :. About discharge of magazine (object to be processed) When the inside of the chamber 110 is returned to atmospheric pressure, the door 120 is opened, the cleaned object 10 to be processed is discharged from the chamber 110 together with the magazine 20, and a series of processing steps is completed. Become.

チップマウンティング、ワイヤボンディングのための前処理としてのプラズマ処理を、下記の条件で行った。
利用した装置:図1、図2に示した装置を利用した。
利用した処理ガス:アルゴンガス
ガス供給速度:10/ml/min
チャンバ内圧力:5Pa
電力:13.56MHz、200W
40KHz、600W
処理時間:5分
被処理物のサイズ及び量:20段構成の各段(棚)に縦180mm×横40mm
×厚み0.5mmのBGA基板(部品5〜6程度から構成)
を1枚宛、収納した。
Plasma treatment as a pretreatment for chip mounting and wire bonding was performed under the following conditions.
Used apparatus: The apparatus shown in FIGS. 1 and 2 was used.
Process gas used: Argon gas
Gas supply rate: 10 / ml / min
Chamber pressure: 5Pa
Power: 13.56MHz, 200W
40KHz, 600W
Processing time: 5 minutes Size and amount of workpieces: 180mm x 40mm on each level (shelf) with 20 levels
× BGA board with a thickness of 0.5 mm (consisting of 5 to 6 parts)
Was stored for one sheet.

効果は、処理された被処理物の表面での水の平均接触角で判断した。処理前の平均接触角が100度であるのに対し、処理後のそれは15度以下であり、優れた処理能力であることが確認された。   The effect was judged by the average contact angle of water on the surface of the treated object. The average contact angle before the treatment was 100 degrees, whereas that after the treatment was 15 degrees or less, and it was confirmed that the treatment ability was excellent.

モールディングのための前処理としてのプラズマ処理を、下記の条件で行った。
利用した装置:図1、図2に示した装置を利用した。
利用した処理ガス:アルゴンガスと酸素ガスの混合
ガス供給速度:アルゴンガス 50ml/min
酸素ガス 100ml/min
チャンバ内圧力:130Pa
電力:13.56MHz、100W
40KHz、300W
処理時間:3分
被処理物のサイズ及び量:20段構成の各段(棚)に縦180mm×横15mm
×厚み0.5mmのリードフレーム(部品30個程度から構
成)を1枚宛、収納した。
Plasma treatment as a pretreatment for molding was performed under the following conditions.
Used apparatus: The apparatus shown in FIGS. 1 and 2 was used.
Process gas used: Argon gas and oxygen gas mixed
Gas supply rate: Argon gas 50 ml / min
Oxygen gas 100ml / min
Chamber pressure: 130Pa
Power: 13.56MHz, 100W
40KHz, 300W
Processing time: 3 minutes Size and amount of workpieces: 180 mm x 15 mm x 20 tiers (shelf)
× Lead frame with a thickness of 0.5 mm
N) was stored for one sheet.

効果は、処理された被処理物の表面での水の平均接触角で判断した。処理前の平均接触角が100度であるのに対し、処理後のそれは15度以下であり、優れた処理能力であることが確認された。   The effect was judged by the average contact angle of water on the surface of the treated object. The average contact angle before the treatment was 100 degrees, whereas that after the treatment was 15 degrees or less, and it was confirmed that the treatment ability was excellent.

本発明に係る処理装置の概略図Schematic of the processing apparatus according to the present invention 本発明に係る処理方法を行なうチャンバの概略図Schematic of a chamber performing a processing method according to the present invention チャンバにおける被処理物の姿勢を示す概略図Schematic showing the posture of the workpiece in the chamber 本発明に係るマガジンの1例を示す概略図Schematic showing an example of a magazine according to the present invention 本発明に係るマガジンの姿勢を示す概略図Schematic showing the attitude of the magazine according to the present invention 本発明に係る電極の1例を示す概略正面図Schematic front view showing an example of an electrode according to the present invention 本発明に係る電極の1例を示す概略平面図Schematic plan view showing an example of an electrode according to the present invention 本発明に係る電極の作用説明図Action explanatory diagram of electrode according to the present invention 本発明に係る電極の他の例を示す概略斜視図The schematic perspective view which shows the other example of the electrode which concerns on this invention 本発明に係る電極の他の例を示す概略正面図Schematic front view showing another example of the electrode according to the present invention 電極位置のアジャスタ機の1例を示す概略正面図Schematic front view showing an example of an adjuster for electrode positions 被処理物に対するガス流を示す概念図Conceptual diagram showing the gas flow for the workpiece 本発明に係るガス案内部材の1例を示す概略斜視図Schematic perspective view showing an example of a gas guide member according to the present invention 参考例としてのプラズマ処理装置のチャンバを示す概略図Schematic showing a chamber of a plasma processing apparatus as a reference example

符号の説明Explanation of symbols

10−被処理物
20−マガジン
21−ハンガー部
22−スリット
30−チャンバ
31−ガス供給口(孔)
32−ガス供給口(孔)
33−ガス排出調整口(孔)
34−ガス排出調整口(孔)
35−真空吸引用排出口(孔)
40−電極
41−電極
45−フレーム
46−フレーム
50−電極
51−電極
60−ガス導入板
61−中空の箱体
62−開孔
70−電極
71−基台
72−レール
100−装置本体
110−チャンバ
120−扉
130−マガジン
140−操作パネル
200−電源装置
300−真空ポンプ
400−ボンベ
401−ボンベ
402−ボンベ
10-processed object 20-magazine 21-hanger part 22-slit 30-chamber 31-gas supply port (hole)
32-gas supply port (hole)
33-Gas discharge adjustment port (hole)
34-Gas discharge adjustment port (hole)
35-Vacuum suction outlet (hole)
40-electrode 41-electrode 45-frame 46-frame 50-electrode 51-electrode 60-gas introduction plate 61-hollow box 62-opening 70-electrode 71-base 72-rail 100-device main body 110-chamber 120-door 130-magazine 140-operation panel 200-power supply device 300-vacuum pump 400-cylinder 401-cylinder 402-cylinder

Claims (8)

複数の被処理物を間隔をあけてマガジンに収納してチャンバに配設し、該チャンバ内におけるマガジンの両側面(マガジンの開放方向によっては上・下)に異なる周波数帯域の高周波電力が印加される対構造の電極が対面構造で配置され、更に、チャンバの前記両電極の外側には該電極方向に向かってガスを供給するガス供給口が少なくとも2箇所設けられ、チャンバのほぼ中央2方向には、ガス排出調整口が少なくとも2箇所設けられ、電極でプラズマ化されたガスが被処理物の両側面(マガジンの開放方向によっては上・下)方向から供給されて、次いで、該ガス供給方向の両側面(マガジンの開放方向によっては上・下)方向にガス流を作ることで、被処理物の表面及び裏面の両面に対する均一なガス流の下でプラズマ処理が行われることを特徴とするプラズマ処理方法。 A plurality of objects to be processed are stored in a magazine at intervals and arranged in a chamber, and high frequency power in different frequency bands is applied to both sides of the magazine in the chamber (up and down depending on the magazine opening direction). The pair of electrodes are arranged in a face-to-face structure, and at least two gas supply ports for supplying gas toward the electrode direction are provided outside the both electrodes of the chamber. The gas discharge adjusting port is provided at least in two places, and the gas converted into plasma by the electrode is supplied from both side surfaces (up and down depending on the magazine opening direction), and then the gas supply direction By creating a gas flow in both sides (up / down depending on the magazine opening direction), plasma treatment is performed under a uniform gas flow on both the front and back surfaces of the workpiece. The plasma processing method comprising and. 対構造の電極に印加される電力の一方が、1KHz〜200KHz、好ましくは40KHzの周波数帯域の電流であり、電力の他方が1MHz以上、好ましくは13.56MHzの周波数帯域の電流であることを特徴とする請求項1に記載のプラズマ処理方法。 One of the power applied to the pair of electrodes is a current in a frequency band of 1 KHz to 200 KHz, preferably 40 KHz, and the other of the power is a current in a frequency band of 1 MHz or more, preferably 13.56 MHz. The plasma processing method according to claim 1. 対構造の電極が細線を同一平面上で並設させたものであることを特徴とする請求項1又は2に記載のプラズマ処理方法。 3. The plasma processing method according to claim 1, wherein the pair of electrodes are formed by arranging thin wires side by side on the same plane. マガジンの大きさに対応して電極の位置を変更する電極位置アジャスト機構を有することを特徴とする請求項1〜3のいずれかに記載のプラズマ処理方法。 The plasma processing method according to claim 1, further comprising an electrode position adjusting mechanism that changes the position of the electrode in accordance with the size of the magazine. 複数の被処理物を間隔をあけてマガジンに収納してチャンバに配設する被処理物配設手段と、該チャンバ内におけるマガジンの両側面(マガジンの開放方向によっては上・下)に異なる周波数帯域の高周波電力が印加される対構造の電極が対面構造で配置されるプラズマ発生手段と、更に、チャンバの前記両電極の外側には該電極方向に向かってガスを供給するガス供給口が少なくとも2箇所設けられ、チャンバのほぼ中央2方向には、ガス排出調整口が少なくとも2箇所設けられ、電極でプラズマ化されたガスが被処理物の両側面(マガジンの開放方向によっては上・下)方向から供給されて、次いで、該ガス供給方向の両側面(マガジンの開放方向によっては上・下)方向にガス流が行われるガス流通手段とを有しており、被処理物の表面及び裏面の両面に対する均一なガス流の下でプラズマ処理が行われる構成であることを特徴とするプラズマ処理装置。 The processing object disposing means for storing a plurality of objects to be processed in a magazine at intervals, and disposing them in the chamber, and different frequencies on both sides of the magazine in the chamber (up and down depending on the magazine opening direction) A plasma generating means in which a pair of electrodes to which a high frequency power of a band is applied is arranged in a face-to-face structure; and a gas supply port for supplying gas toward the electrodes at least outside the both electrodes of the chamber Two places are provided, and at least two gas discharge adjustment ports are provided in approximately two directions in the center of the chamber, and the gas converted into plasma by the electrodes is on both sides of the workpiece (up / down depending on the magazine opening direction). Gas distribution means for supplying gas from the direction and then performing gas flow in both sides of the gas supply direction (up and down depending on the opening direction of the magazine). And a plasma processing apparatus which is a structure in which a plasma treatment is performed under a uniform gas flow to both sides of the back. 対構造の電極に印加される電力の一方が、1KHz〜200KHz、好ましくは40KHzの周波数帯域の電流であり、電力の他方が1MHz以上、好ましくは13.56MHzの周波数帯域の電流であることを特徴とする請求項5に記載のプラズマ処理装置。 One of the power applied to the pair of electrodes is a current in a frequency band of 1 KHz to 200 KHz, preferably 40 KHz, and the other of the power is a current in a frequency band of 1 MHz or more, preferably 13.56 MHz. The plasma processing apparatus according to claim 5. 対構造の電極が細線を同一平面上で並設させたものであることを特徴とする請求項5又は6に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 5 or 6, wherein the pair of electrodes are formed by arranging thin wires side by side on the same plane. マガジンの大きさに対応して電極の位置を変更する電極位置アジャスト機構を有することを特徴とする請求項5〜7のいずれかに記載のプラズマ処理装置。 The plasma processing apparatus according to claim 5, further comprising an electrode position adjusting mechanism that changes the position of the electrode in accordance with the size of the magazine.
JP2004151651A 2004-05-21 2004-05-21 Plasma processing method and apparatus Expired - Fee Related JP4549735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151651A JP4549735B2 (en) 2004-05-21 2004-05-21 Plasma processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151651A JP4549735B2 (en) 2004-05-21 2004-05-21 Plasma processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2005329353A true JP2005329353A (en) 2005-12-02
JP4549735B2 JP4549735B2 (en) 2010-09-22

Family

ID=35484346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151651A Expired - Fee Related JP4549735B2 (en) 2004-05-21 2004-05-21 Plasma processing method and apparatus

Country Status (1)

Country Link
JP (1) JP4549735B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029930A (en) * 2006-07-27 2008-02-14 Hitachi High-Tech Instruments Co Ltd Plasma cleaning apparatus
JP2008047740A (en) * 2006-08-17 2008-02-28 Matsushita Electric Ind Co Ltd Method of and apparatus for mounting component on substrate
JP2008186994A (en) * 2007-01-30 2008-08-14 Hitachi High-Tech Instruments Co Ltd Plasma cleaning device
US8399794B2 (en) 2006-05-30 2013-03-19 Panasonic Corporation Atmospheric pressure plasma, generating method, plasma processing method and component mounting method using same, and device using these methods
WO2014065034A1 (en) * 2012-10-24 2014-05-01 株式会社Jcu Plasma treatment device and method
JPWO2014030224A1 (en) * 2012-08-22 2016-07-28 株式会社Jcu Plasma processing equipment
JP7178020B2 (en) 2018-03-23 2022-11-25 株式会社小松精機工作所 Surface cleaning method and bonding method for thin metal plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288818A (en) * 1991-03-18 1992-10-13 Fujitsu Ltd Semiconductor manufacturing apparatus and manufacture of semiconductor device
JPH0831596A (en) * 1994-07-21 1996-02-02 Hitachi Ltd Plasma treating method and its device
JP2001271169A (en) * 2000-03-27 2001-10-02 Mitsubishi Heavy Ind Ltd Plsma chemical vapor deposition system having fork type electrode
JP2003209212A (en) * 2002-01-16 2003-07-25 Mori Engineering:Kk Magazine type plasma cleaning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288818A (en) * 1991-03-18 1992-10-13 Fujitsu Ltd Semiconductor manufacturing apparatus and manufacture of semiconductor device
JPH0831596A (en) * 1994-07-21 1996-02-02 Hitachi Ltd Plasma treating method and its device
JP2001271169A (en) * 2000-03-27 2001-10-02 Mitsubishi Heavy Ind Ltd Plsma chemical vapor deposition system having fork type electrode
JP2003209212A (en) * 2002-01-16 2003-07-25 Mori Engineering:Kk Magazine type plasma cleaning system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8399794B2 (en) 2006-05-30 2013-03-19 Panasonic Corporation Atmospheric pressure plasma, generating method, plasma processing method and component mounting method using same, and device using these methods
JP2008029930A (en) * 2006-07-27 2008-02-14 Hitachi High-Tech Instruments Co Ltd Plasma cleaning apparatus
JP2008047740A (en) * 2006-08-17 2008-02-28 Matsushita Electric Ind Co Ltd Method of and apparatus for mounting component on substrate
JP4760609B2 (en) * 2006-08-17 2011-08-31 パナソニック株式会社 Component mounting method and apparatus on board
JP2008186994A (en) * 2007-01-30 2008-08-14 Hitachi High-Tech Instruments Co Ltd Plasma cleaning device
JPWO2014030224A1 (en) * 2012-08-22 2016-07-28 株式会社Jcu Plasma processing equipment
WO2014065034A1 (en) * 2012-10-24 2014-05-01 株式会社Jcu Plasma treatment device and method
WO2014064779A1 (en) * 2012-10-24 2014-05-01 株式会社Jcu Plasma treatment device and method
JPWO2014065034A1 (en) * 2012-10-24 2016-09-08 株式会社Jcu Plasma processing apparatus and method
TWI631877B (en) * 2012-10-24 2018-08-01 Jcu股份有限公司 Plasma processing device
JP7178020B2 (en) 2018-03-23 2022-11-25 株式会社小松精機工作所 Surface cleaning method and bonding method for thin metal plate

Also Published As

Publication number Publication date
JP4549735B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
KR102539151B1 (en) Substrate processing method
JP3609448B2 (en) Plasma processing apparatus and method for driving the same
US7013834B2 (en) Plasma treatment system
JP6282979B2 (en) Plasma processing equipment
US8852386B2 (en) Plasma processing apparatus
KR20100003708A (en) Plasma processing apparatus
US9970111B2 (en) Substrate processing apparatus having ground electrode
KR20170024922A (en) Plasma generating apparatus
CN110592558B (en) Film forming apparatus
CN111095498B (en) Mounting table, substrate processing apparatus, and edge ring
JP4549735B2 (en) Plasma processing method and apparatus
KR20160131904A (en) Substrate processing apparatus
KR20180014656A (en) Substrate processing apparatus and substrate processing method
US20190085449A1 (en) Apparatus and method
US6267075B1 (en) Apparatus for cleaning items using gas plasma
TW201535511A (en) Plasma processing device
JP4231250B2 (en) Plasma CVD equipment
US10490390B2 (en) Substrate processing device
JP2020126881A (en) Substrate processing apparatus and cleaning method
US20230207288A1 (en) Substrate treatment apparatus
KR101213391B1 (en) Substrate processing apparatus
JP2017141159A (en) Ozone generating apparatus and ozone generation method
KR20220150373A (en) Cleaning method and semiconductor device manufacturing method
KR100924237B1 (en) An apparatus and a method for treating a workpiece with a plasma
US20220246407A1 (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees