[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005238074A - Regenerating method of active carbon catalyst for flue gas desulfurization - Google Patents

Regenerating method of active carbon catalyst for flue gas desulfurization Download PDF

Info

Publication number
JP2005238074A
JP2005238074A JP2004049812A JP2004049812A JP2005238074A JP 2005238074 A JP2005238074 A JP 2005238074A JP 2004049812 A JP2004049812 A JP 2004049812A JP 2004049812 A JP2004049812 A JP 2004049812A JP 2005238074 A JP2005238074 A JP 2005238074A
Authority
JP
Japan
Prior art keywords
activated carbon
carbon catalyst
catalyst
desulfurization
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004049812A
Other languages
Japanese (ja)
Other versions
JP4507635B2 (en
Inventor
Yoichi Umehara
洋一 梅原
Eiji Awai
英司 粟井
Kazushige Kawamura
和茂 川村
Itsuo Jokyo
逸夫 乗京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Hokuriku Electric Power Co
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Hokuriku Electric Power Co
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Hokuriku Electric Power Co, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP2004049812A priority Critical patent/JP4507635B2/en
Publication of JP2005238074A publication Critical patent/JP2005238074A/en
Application granted granted Critical
Publication of JP4507635B2 publication Critical patent/JP4507635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a regenerating method for recovering desulfurization capability when the desulfurization capability of active carbon catalyst for the flue gas desulfurization in removing and recovering a sulfurous acid gas as sulfuric acid by contacting with an exhaust gas containing the sulfurous acid gas to adsorb and oxidize the sufurous acid gas is decreased due to the deposition of elemental sulfur, polysulfide or polythionic acid on the catalyst. <P>SOLUTION: The active carbon catalyst for removing and recovering the sulfurous acid gas as sulfuric acid by contacting the exhaust gas containing the sulfurous gas to adsorb and oxidize the sulfurous acid gas is regenerated by washing the active carbon for the flue gas desulfurization with an aqueous hydrogen peroxide solution. In this case it is preferable that the active carbon catalyst for the flue gas desulfurization is further washed with water or a basic aqueous solution. Preferably, the aqueous hydrogen peroxide solution is a water solution containing 1-15 wt.% of hydrogen peroxide. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、亜硫酸ガスを含有する排ガスと接触し、該亜硫酸ガスを吸着し酸化して硫酸として回収除去するための排煙脱硫用活性炭触媒の再生方法に関する。   The present invention relates to a method for regenerating an activated carbon catalyst for flue gas desulfurization, which comes into contact with exhaust gas containing sulfurous acid gas, adsorbs and oxidizes the sulfurous acid gas and recovers and removes it as sulfuric acid.

火力発電所用ボイラーなどから排出される多量の燃焼排ガス中に含まれている有毒な亜硫酸ガスを除去するために、活性炭触媒を使用し、亜硫酸ガスを硫酸として回収可能な排煙脱硫方法が提案されている(特許文献1〜4)。このような排煙脱硫方法においては、活性炭触媒が充填された触媒充填塔に排ガスを導入し、排ガス中の亜硫酸ガスを活性炭触媒上で排ガス中の酸素ガスにより接触酸化させて三酸化硫黄としている。この三酸化硫黄は、排ガス中の水分と反応して更に硫酸に変換され、活性炭触媒に吸着保持される。そして、活性炭触媒に保持できなくなった硫酸が、活性炭触媒から重力により離脱し、触媒充填塔下部において回収されることとなる。   In order to remove toxic sulfurous acid gas contained in a large amount of combustion exhaust gas discharged from boilers for thermal power plants, etc., a flue gas desulfurization method that uses activated carbon catalyst and can recover sulfurous acid gas as sulfuric acid has been proposed. (Patent Documents 1 to 4). In such a flue gas desulfurization method, exhaust gas is introduced into a catalyst packed tower packed with an activated carbon catalyst, and sulfurous acid gas in the exhaust gas is contact oxidized with oxygen gas in the exhaust gas on the activated carbon catalyst to form sulfur trioxide. . This sulfur trioxide reacts with moisture in the exhaust gas and is further converted into sulfuric acid, and is adsorbed and held on the activated carbon catalyst. Then, the sulfuric acid that can no longer be held by the activated carbon catalyst is separated from the activated carbon catalyst by gravity and collected at the lower part of the catalyst packed tower.

ところで、火力発電所用ボイラーで燃焼させる燃料として重油が用いられているが、燃料として使用する前に、含有されているメルカプタン類やチオフェン類などの全イオウ成分を水素を用いて硫化水素に還元し、更にクラウス反応を利用し元素状硫黄として回収(水素化脱硫)することが、大気汚染を防止する観点から必須となっている。このような水素化脱硫処理は、重油に限らず、軽質油、灯油や軽油等に対しても必要となっている。ここで、このような水素化脱硫処理のオフガスには、硫化水素が含まれているため、オフガスをインシネレーターで燃焼処理して硫化水素を亜硫酸ガスに変換し、その亜硫酸ガスを含有するインシネレーターからの排ガスに対し、前述したような、活性炭触媒を使用する排煙脱硫処理を行うことが必要となる。   By the way, heavy oil is used as the fuel to be burned in boilers for thermal power plants. Before using it as fuel, all sulfur components such as mercaptans and thiophenes are reduced to hydrogen sulfide using hydrogen. In addition, it is essential to recover (hydrodesulfurization) as elemental sulfur using the Claus reaction from the viewpoint of preventing air pollution. Such hydrodesulfurization treatment is required not only for heavy oil but also for light oil, kerosene, light oil and the like. Here, since the off-gas of such hydrodesulfurization treatment contains hydrogen sulfide, the off-gas is combusted by an incinerator to convert the hydrogen sulfide into sulfurous acid gas, and the sulfur dioxide gas containing the sulfurous acid gas. It is necessary to perform the flue gas desulfurization treatment using the activated carbon catalyst as described above on the exhaust gas from the synerator.

特許第3272366号明細書Japanese Patent No. 3272366 特開平10−230129号公報Japanese Patent Laid-Open No. 10-230129 特開平10−314586号公報Japanese Patent Laid-Open No. 10-314586 特開平11−290688号公報JP-A-11-290688

しかしながら、水素化脱硫処理オフガスをインシネレーターで燃焼処理して硫化水素を亜硫酸ガスに変換した場合、燃焼処理が完全であれば、得られる排ガス中に硫化水素が混入することがないはずであるが、燃焼温度低下、酸素不足等のために排ガス中に硫化水素が混入することが有り得る。活性炭触媒を使用する排煙脱硫の際に、処理すべき排ガス中に硫化水素が混入した場合、元素状硫黄、ポリサルファイド、あるいはポリチオン酸が活性炭触媒上に蓄積しやすくなり、一旦蓄積すると活性炭触媒の脱硫性能が低下するという問題がある。   However, when the hydrodesulfurization off gas is combusted with an incinerator to convert hydrogen sulfide into sulfurous acid gas, if the combustion process is complete, hydrogen sulfide should not be mixed into the resulting exhaust gas. However, hydrogen sulfide may be mixed into the exhaust gas due to a decrease in combustion temperature, lack of oxygen, and the like. In the case of flue gas desulfurization using an activated carbon catalyst, if hydrogen sulfide is mixed into the exhaust gas to be treated, elemental sulfur, polysulfide, or polythionic acid tends to accumulate on the activated carbon catalyst. There is a problem that the desulfurization performance decreases.

本発明は、以上の従来の技術の問題を解決しようとするものであり、亜硫酸ガスを含有する排ガスと接触し、該亜硫酸ガスを吸着し酸化して硫酸として回収除去するための排煙脱硫用活性炭触媒が、元素状硫黄、ポリサルファイド、あるいはポリチオン酸の触媒上への蓄積によりその脱硫性能が低下した場合に、その脱硫性能を回復させることのできる再生方法を提供することを目的とする。   The present invention is intended to solve the above-described problems of the prior art, and is for flue gas desulfurization for contacting with exhaust gas containing sulfurous acid gas, adsorbing the sulfurous acid gas, oxidizing it, and recovering and removing it as sulfuric acid. It is an object of the present invention to provide a regeneration method capable of recovering the desulfurization performance when the activated carbon catalyst has its desulfurization performance lowered due to accumulation of elemental sulfur, polysulfide, or polythionic acid on the catalyst.

本発明者は、活性炭触媒表面に析出した硫黄等を酸化剤により亜硫酸ガス、更には硫酸にまで酸化することができれば、活性炭触媒の脱硫性能を回復させることができるという仮定の下、1)空気酸化により活性炭触媒上の硫黄を除去することを試みたが、活性炭が空気中でホットスポットができず、燃焼もせず、また、活性炭触媒に用いた有機バインダー(例えば、パーフルオロエチレン、ポリエチレン)が変質しない温度範囲(〜200℃)での酸化速度が非常に小さく、また、活性炭触媒の細孔内に残存していた生成希硫酸が濃縮されて高濃度硫酸となり、それが活性炭触媒の表面に親水性の酸素官能基を生成させ、活性炭触媒からの硫酸の円滑な離脱を阻害し、脱硫性能を逆に低下させる可能性があること、2)過酸化水素水溶液は、水不溶性である硫黄を実用的な速度では酸化できないことが知られていたところ、予想外にも活性炭触媒上に生成した硫黄については、実用的な速度で酸化することができ、再生すべき活性炭触媒の低下した脱硫性能等に応じて、過酸化水素の濃度や量を制御することによって効果的に再生できること、を見出し本発明を完成させた。また、過酸化水素溶液以外の酸化剤として、過マンガン酸、次亜塩素酸が知られているが、酸化処理後に活性炭触媒にそれぞれマンガン化合物、塩化物が残留し、活性炭触媒の脱硫性能や装置材の腐食に影響があることもわかった。   The present inventor assumes that if the sulfur or the like deposited on the surface of the activated carbon catalyst can be oxidized to sulfurous acid gas and further to sulfuric acid by an oxidizing agent, the desulfurization performance of the activated carbon catalyst can be recovered. Attempts were made to remove sulfur on the activated carbon catalyst by oxidation, but the activated carbon did not form hot spots in the air and did not burn, and the organic binder used for the activated carbon catalyst (for example, perfluoroethylene, polyethylene) The oxidation rate in the temperature range (~ 200 ° C) where the quality does not change is very small, and the dilute sulfuric acid remaining in the pores of the activated carbon catalyst is concentrated to become high-concentration sulfuric acid. It has the potential to generate hydrophilic oxygen functional groups, inhibit the smooth release of sulfuric acid from the activated carbon catalyst, and reduce the desulfurization performance. 2) It was known that water-insoluble sulfur could not be oxidized at a practical rate, but unexpectedly, the sulfur produced on the activated carbon catalyst could be oxidized at a practical rate and activated carbon to be regenerated. The present invention has been completed by finding that it can be effectively regenerated by controlling the concentration and amount of hydrogen peroxide in accordance with the desulfurization performance of the catalyst and the like. In addition, permanganic acid and hypochlorous acid are known as oxidizing agents other than hydrogen peroxide solution, but manganese compounds and chlorides remain on the activated carbon catalyst after the oxidation treatment, respectively, and the desulfurization performance and equipment of the activated carbon catalyst It was also found that the corrosion of the material was affected.

即ち、本発明は、亜硫酸ガスを含有する排ガスと接触し、該亜硫酸ガスを吸着し酸化して硫酸として回収除去するための排煙脱硫用活性炭触媒の再生方法であって、該排煙脱硫用活性炭触媒を過酸化水素水溶液で洗浄することを特徴とする再生方法を提供する。   That is, the present invention is a method for regenerating an activated carbon catalyst for flue gas desulfurization that comes into contact with exhaust gas containing sulfurous acid gas, adsorbs the sulfurous acid gas, oxidizes, and recovers and removes it as sulfuric acid, There is provided a regeneration method characterized by washing an activated carbon catalyst with an aqueous hydrogen peroxide solution.

本発明の排煙脱硫用活性炭触媒の再生方法によれば、元素状硫黄やポリチオン酸の析出による排煙脱硫用活性炭触媒の低下した脱硫性能を回復させることができる。   According to the regeneration method of the activated carbon catalyst for flue gas desulfurization of the present invention, the reduced desulfurization performance of the activated carbon catalyst for flue gas desulfurization due to precipitation of elemental sulfur or polythionic acid can be recovered.

本発明の排煙脱硫用活性炭触媒の再生方法は、排煙脱硫用活性炭触媒を過酸化水素水溶液で洗浄することを特徴とする。これにより、元素状硫黄やポリチオン酸の析出による排煙脱硫用活性炭触媒の脱硫性能の低下に対し、脱硫性能の低下の原因となった析出硫黄を酸化し、更に硫酸にまで変化させることが比較的簡便な操作で可能となり、その脱硫性能を回復させることができる。   The method for regenerating an activated carbon catalyst for flue gas desulfurization according to the present invention is characterized in that the activated carbon catalyst for flue gas desulfurization is washed with an aqueous hydrogen peroxide solution. By this, compared with the decrease in the desulfurization performance of the activated carbon catalyst for flue gas desulfurization due to the precipitation of elemental sulfur and polythionic acid, it is compared that the precipitated sulfur that caused the decrease in the desulfurization performance is oxidized and further changed to sulfuric acid It is possible to recover the desulfurization performance by simple and easy operation.

本発明において、排煙脱硫用活性炭触媒とは、亜硫酸ガスを含有する排ガスと接触し、該亜硫酸ガスを吸着し酸化して硫酸として回収除去するための触媒であり、従来より排煙脱硫用活性炭触媒として用いられているものを使用することができるが、中でも、非酸化雰囲気中で熱処理することにより表面疎水化処理された繊維状の活性炭触媒(特許第3272366号明細書、請求項1〜8)、活性炭粉末にフッ素樹脂粒子又はフッ素樹脂分散液を担持させて成形した活性炭触媒(特開平10−314586号公報、請求項1〜5)、活性炭粉末とフッ素樹脂とを剪断力を付加しながら混練して成形した活性炭触媒(特開平11−290688号公報、請求項1〜6)、粒状活性炭に微細な撥水性物質を担持させた活性炭触媒の撥水化処理物(特開平10−314585号公報、請求項1〜4)等を好ましく使用することができる。また、排煙脱硫用活性炭触媒は、ハニカム構造等のダストスルー構造に成形されたものを好ましく使用することができる。   In the present invention, the activated carbon catalyst for flue gas desulfurization is a catalyst that comes into contact with exhaust gas containing sulfurous acid gas, adsorbs and oxidizes the sulfurous acid gas, and recovers and removes it as sulfuric acid. Although what is used as a catalyst can be used, the fibrous activated carbon catalyst by which the surface hydrophobization process was carried out by heat-processing in a non-oxidizing atmosphere (patent 3272366 specification, Claims 1-8) ), Activated carbon catalyst formed by supporting activated carbon powder with fluororesin particles or fluororesin dispersion (Japanese Patent Laid-Open No. 10-314586, claims 1 to 5), while applying a shearing force between activated carbon powder and fluororesin Kneaded and molded activated carbon catalyst (Japanese Patent Application Laid-Open No. 11-290688, claims 1 to 6), activated carbon catalyst with water repellent treated with fine activated water repellent substance on granular activated carbon JP 10-314585 discloses, can be used preferably according to claim 1 to 4) or the like. Moreover, as the activated carbon catalyst for flue gas desulfurization, a catalyst molded into a dust-through structure such as a honeycomb structure can be preferably used.

本発明の再生方法の対象となる排煙脱硫用活性炭触媒で脱硫する、亜硫酸ガスを含有する排ガスとして、亜硫酸ガスを含有する種々の燃焼排ガスを対象とすることができ、特に、意図せずに硫化水素が混入した排ガスでも対象とすることができる。これは、本発明の再生方法により排煙脱硫用活性炭触媒の脱硫性能を回復できるためである。また、排ガス中に硫化水素が混入した場合、短時間でも脱硫性能が低下するので、実用上はH2S濃度が100ppmを超えないようにすることが好ましい。H2S濃度が高くなると、脱硫性能の著しい低下を招く。下限については、本来的に含有していないことが好ましいので特に制限はない。 As the exhaust gas containing sulfurous acid gas, which is desulfurized with the activated carbon catalyst for flue gas desulfurization that is the object of the regeneration method of the present invention, various combustion exhaust gases containing sulfurous acid gas can be targeted, especially without intention. Even exhaust gas mixed with hydrogen sulfide can be targeted. This is because the desulfurization performance of the activated carbon catalyst for flue gas desulfurization can be recovered by the regeneration method of the present invention. In addition, when hydrogen sulfide is mixed in the exhaust gas, the desulfurization performance deteriorates even in a short time. Therefore, in practice, it is preferable that the H 2 S concentration does not exceed 100 ppm. When the H 2 S concentration is increased, the desulfurization performance is significantly reduced. The lower limit is not particularly limited because it is preferably not inherently contained.

なお、排ガスには、亜硫酸ガスや硫化水素、硫黄を酸化するために酸素ガスが含有されている必要がある。少なくとも活性炭触媒上における酸素濃度は、少なすぎると充分な脱硫性能が得られないばかりでなく、硫化水素による性能低下速度が大きくなり、多すぎると活性炭触媒から硫酸の離脱を阻害する親水性酸素官能基が徐々に生成するので、好ましくは0.5〜15容量%、より好ましくは2〜10容量%である。酸素は、通常、当初より排ガスに含有されているものであるが、脱硫処理の際に、酸素ガスを排ガスに導入してもよい。   The exhaust gas needs to contain oxygen gas to oxidize sulfurous acid gas, hydrogen sulfide, and sulfur. If at least the oxygen concentration on the activated carbon catalyst is too low, not only will sufficient desulfurization performance not be obtained, but the rate of performance degradation due to hydrogen sulfide will increase, and if it is too high, it will inhibit the release of sulfuric acid from the activated carbon catalyst. Since the group is gradually formed, it is preferably 0.5 to 15% by volume, more preferably 2 to 10% by volume. Although oxygen is normally contained in the exhaust gas from the beginning, oxygen gas may be introduced into the exhaust gas during the desulfurization treatment.

また、亜硫酸ガスは、活性炭触媒上で酸化されて三酸化硫黄となり、更に硫酸となるが、そのためには三酸化硫黄と反応する水が必要である。この水は、排ガス中の水蒸気として、あるいは脱硫系外から活性炭触媒に供給してもよい。   In addition, sulfurous acid gas is oxidized on the activated carbon catalyst to form sulfur trioxide and further to sulfuric acid. For this purpose, water that reacts with sulfur trioxide is required. This water may be supplied to the activated carbon catalyst as water vapor in the exhaust gas or from outside the desulfurization system.

本発明の再生方法における、排煙脱硫用活性炭触媒を過酸化水素水溶液で洗浄する手法としては、特に限定されないが、例えば、過酸化水素水溶液中に排煙脱硫用活性炭触媒を浸漬することや、排煙脱硫用活性炭触媒に過酸化水素水溶液をシャワーリングすることが挙げられる。シャワーリングの好ましい態様としては、排煙脱硫用活性炭触媒を触媒充填塔に充填して触媒層を構成し、過酸化水素水溶液を触媒充填塔内の上方に設けられたシャワー用ノズルから該触媒層に対してシャワーリングすることが挙げられる。シャワーリングに供した過酸化水素水溶液は、触媒層を流下し、触媒層から触媒充填塔内下方にしたたり落ちる。したたり落ちた過酸化水素水溶液を、再び、触媒充填塔内の上方にあるシャワー用ノズルから該触媒層に対してシャワーリングしてもよい。   In the regeneration method of the present invention, the method for washing the activated carbon catalyst for flue gas desulfurization with an aqueous hydrogen peroxide solution is not particularly limited, for example, immersing the activated carbon catalyst for flue gas desulfurization in an aqueous hydrogen peroxide solution, It is possible to shower hydrogen peroxide aqueous solution on the activated carbon catalyst for flue gas desulfurization. As a preferred embodiment of the shower ring, an activated carbon catalyst for flue gas desulfurization is packed in a catalyst packed tower to form a catalyst layer, and an aqueous hydrogen peroxide solution is supplied from the shower nozzle provided above the catalyst packed tower to the catalyst layer. Showering. The aqueous hydrogen peroxide solution used for showering flows down the catalyst layer and falls down from the catalyst layer into the catalyst packed tower. The aqueous hydrogen peroxide solution that has dropped or dropped may be again showered against the catalyst layer from a shower nozzle located above the catalyst packed tower.

本発明において使用する過酸化水素水溶液の過酸化水素濃度は、低すぎると排煙脱硫用活性炭触媒の性能が本来の性能に戻らず、硫化水素ガスによる劣化が著しくなり、再生効果が小さく、高すぎると活性炭触媒表面に親水性の酸素官能基が生成することになるので、好ましくは1〜15重量%、より好ましくは3〜10重量%である。   If the hydrogen peroxide concentration of the aqueous hydrogen peroxide solution used in the present invention is too low, the performance of the activated carbon catalyst for flue gas desulfurization does not return to the original performance, the deterioration due to hydrogen sulfide gas becomes significant, the regeneration effect is small, and the high If the amount is too high, hydrophilic oxygen functional groups will be generated on the surface of the activated carbon catalyst, so the content is preferably 1 to 15% by weight, more preferably 3 to 10% by weight.

過酸化水素水溶液で排煙脱硫用活性炭触媒を洗浄する際の温度は、低すぎると処理時間を長くする必要があり、従って、温度を低く設定したままで過酸化水素濃度を高めることが考えられるが、過酸化水素濃度を高め過ぎると酸性官能基が生成し、再生効果がなくなる。一方、洗浄する際の温度が高すぎると過酸化水素の自己分解速度が大きくなり、洗浄効果が低くなるので、好ましくは5〜80℃、より好ましくは20〜60℃である。また、洗浄(接触)時間は、活性炭触媒の撥水状態、シャワーリング(液噴霧)状態などによって異なるので、一様に特定できないが、活性炭触媒を過酸化水素水溶液に浸漬する場合には、24〜120時間、好ましくは48〜72時間である。   If the temperature when washing the activated carbon catalyst for flue gas desulfurization with an aqueous hydrogen peroxide solution is too low, it is necessary to lengthen the treatment time. Therefore, it is conceivable to increase the hydrogen peroxide concentration while keeping the temperature low. However, if the hydrogen peroxide concentration is too high, acidic functional groups are generated and the regeneration effect is lost. On the other hand, when the temperature at the time of washing is too high, the rate of self-decomposition of hydrogen peroxide increases and the washing effect becomes low, so the temperature is preferably 5 to 80 ° C, more preferably 20 to 60 ° C. Further, the cleaning (contact) time varies depending on the water repellent state, showering (liquid spraying) state, etc. of the activated carbon catalyst, and thus cannot be specified uniformly. However, when the activated carbon catalyst is immersed in an aqueous hydrogen peroxide solution, it is 24. -120 hours, preferably 48-72 hours.

過酸化水素水溶液の排煙脱硫用活性炭触媒に対する使用量は、触媒の性能低下度合、付着物や温度などの洗浄条件により異なるので、一様に規定できないが、例えば、活性炭触媒中の活性炭1重量部に対し、過酸化水素が0.1〜40重量部用いられる。   The amount of hydrogen peroxide aqueous solution used for the activated carbon catalyst for flue gas desulfurization varies depending on the catalyst performance degradation degree, the washing conditions such as deposits and temperature, but cannot be uniformly defined. For example, 1 weight of activated carbon in the activated carbon catalyst 0.1 to 40 parts by weight of hydrogen peroxide is used with respect to parts.

本発明の排煙脱硫用活性炭触媒の再生方法においては、過酸化水素水溶液での洗浄に先立って、排煙脱硫用活性炭触媒を水又は塩基性水溶液で洗浄しておくことが好ましい。これにより、排煙脱硫用活性炭触媒上の硫酸濃度を低減させ、さらにはアルカリ性とすることができるので、過酸化水素の活性を高めることができ、より効果的に排煙脱硫用活性炭触媒を再生することができる。   In the regeneration method of the activated carbon catalyst for flue gas desulfurization of the present invention, it is preferable to wash the activated carbon catalyst for flue gas desulfurization with water or a basic aqueous solution prior to the washing with the aqueous hydrogen peroxide solution. As a result, the concentration of sulfuric acid on the activated carbon catalyst for flue gas desulfurization can be reduced and made alkaline, so that the activity of hydrogen peroxide can be increased and the activated carbon catalyst for flue gas desulfurization can be regenerated more effectively. can do.

なお、排煙脱硫用活性炭触媒上に過酸化水素が、前述の濃度、温度で長時間(例えば150時間以上)滞留した場合には、活性炭表面自体が酸化されて酸素含有基(例えば、カルボキシル基、水酸基)が形成され、活性炭表面が親水性となる可能性が増大する。活性炭表面が親水性となると、排煙脱硫の際に生成した硫酸が活性炭触媒から離脱し難くなり、脱硫性能の低下を招くことが懸念される。従って。本発明の排煙脱硫用活性炭触媒の再生方法においては、排煙脱硫用活性炭触媒を過酸化水素水溶液で洗浄した後に、更に水又は塩基性水溶液で洗浄することが好ましい。   In addition, when hydrogen peroxide stays on the activated carbon catalyst for flue gas desulfurization at the above-mentioned concentration and temperature for a long time (for example, 150 hours or more), the activated carbon surface itself is oxidized and oxygen-containing groups (for example, carboxyl groups) , Hydroxyl group) is formed, and the possibility that the activated carbon surface becomes hydrophilic increases. When the activated carbon surface becomes hydrophilic, sulfuric acid generated during flue gas desulfurization becomes difficult to separate from the activated carbon catalyst, which may cause a decrease in desulfurization performance. Therefore. In the regeneration method of the activated carbon catalyst for flue gas desulfurization according to the present invention, it is preferable that the activated carbon catalyst for flue gas desulfurization is washed with an aqueous hydrogen peroxide solution and further washed with water or a basic aqueous solution.

排煙脱硫用活性炭触媒を洗浄する水としては、通常の工業用水を好ましく使用することができる。また、塩基性水溶液としては、水酸化ナトリウム、水酸化アンモニウム又は水酸化マグネシウム等の塩基性化合物を含有する塩基性水溶液を使用することができる。これらの塩基性化合物は、低濃度で多量の水溶液を用いることが好ましい。高濃度の水溶液を用いると中和により生じた塩が、特に脱硫操作休止時に活性炭触媒に固着するおそれがある。通常、塩基性化合物の濃度は、0.01〜1規定濃度が好ましい。   As water for washing the activated carbon catalyst for flue gas desulfurization, normal industrial water can be preferably used. As the basic aqueous solution, a basic aqueous solution containing a basic compound such as sodium hydroxide, ammonium hydroxide or magnesium hydroxide can be used. These basic compounds are preferably used in a low concentration and a large amount of an aqueous solution. When a high-concentration aqueous solution is used, the salt generated by neutralization may adhere to the activated carbon catalyst particularly when the desulfurization operation is stopped. Usually, the concentration of the basic compound is preferably 0.01 to 1 N.

以下、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

参考例1
ハニカム形状に加工した活性炭触媒0.001m3を、50mm×50mmの角型触媒充填塔に充填し、その触媒層に、硫化水素ガスを含まない亜硫酸ガス1000ppmの模擬排ガス1m3/hを5000時間に亘って通過させた。5000時間後の脱硫率は95%で安定していた。この触媒及び未使用の触媒表面のS分布をSEM−EDXで観察し、両者に差がないことが確認できた。
Reference example 1
An activated carbon catalyst 0.001 m 3 processed into a honeycomb shape is packed into a 50 mm × 50 mm square catalyst packed tower, and a simulated exhaust gas 1 m 3 / h of 1000 ppm sulfurous acid gas not containing hydrogen sulfide gas is added to the catalyst layer for 5000 hours. Passed through. The desulfurization rate after 5000 hours was stable at 95%. The S distribution on the surface of this catalyst and the unused catalyst was observed with SEM-EDX, and it was confirmed that there was no difference between them.

実施例1
ハニカム形状に加工した活性炭触媒0.001m3を、50mm×50mmの角形触媒充填塔に充填し、その触媒層に、硫化水素ガス500ppmと亜硫酸ガス1000ppmとを含む模擬排ガス1m3/hを1000時間に亘って通過させた。1000時間後の脱硫率は徐々に低下し60%となった。このように、脱硫率が低下した触媒及び未使用の触媒の表面のS分布をSEM−EDXで観察し、未使用の触媒に比べて脱硫性能が低下した触媒表面のSが大幅に増加していることが確認できた。
Example 1
An activated carbon catalyst 0.001 m 3 processed into a honeycomb shape is packed in a square catalyst packed tower of 50 mm × 50 mm, and simulated exhaust gas 1 m 3 / h containing 500 ppm of hydrogen sulfide gas and 1000 ppm of sulfurous acid gas is applied to the catalyst layer for 1000 hours. Passed through. The desulfurization rate after 1000 hours gradually decreased to 60%. As described above, the S distribution on the surface of the catalyst having a reduced desulfurization rate and the unused catalyst was observed with SEM-EDX, and the S on the catalyst surface having a reduced desulfurization performance compared to the unused catalyst was greatly increased. It was confirmed that

次に、この脱硫率が低下した(換言すれば、硫化水素ガスで被毒した)活性炭触媒を、0.1重量%過酸化水素水溶液(過酸化水素量;活性炭触媒中の活性炭に対して重量比で約1.2倍)に48時間浸漬した。この操作を行った後、硫化水素ガスを含まない亜硫酸ガス1000ppmの排ガスを5000時間通過させ、脱硫率を測定したところ、70%を示した。   Next, the activated carbon catalyst with a reduced desulfurization rate (in other words, poisoned with hydrogen sulfide gas) was added to a 0.1 wt% aqueous hydrogen peroxide solution (hydrogen peroxide amount; weight relative to the activated carbon in the activated carbon catalyst). For about 48 hours). After performing this operation, an exhaust gas containing 1000 ppm of sulfurous acid gas not containing hydrogen sulfide gas was passed for 5000 hours and the desulfurization rate was measured. As a result, it was 70%.

実施例2
実施例1と同様の操作により、脱硫率が60%に低下した活性炭触媒を調製し、その活性炭触媒を、1重量%過酸化水素水溶液(過酸化水素量;活性炭触媒中の活性炭に対して重量比で約1.2倍)に48時間浸漬した。この操作を行った後、上記排ガスを5000時間通過させ、脱硫率を測定したところ85%を示した。
Example 2
By the same operation as in Example 1, an activated carbon catalyst having a desulfurization rate reduced to 60% was prepared, and the activated carbon catalyst was mixed with a 1 wt% aqueous hydrogen peroxide solution (hydrogen peroxide amount; weight relative to the activated carbon in the activated carbon catalyst). For about 48 hours). After performing this operation, the exhaust gas was passed through for 5000 hours, and the desulfurization rate was measured and found to be 85%.

実施例3
実施例1と同様の操作により、脱硫率が60%に低下した活性炭触媒を調製し、その活性炭触媒を、4重量%過酸化水素水溶液(過酸化水素量;活性炭触媒中の活性炭に対して重量比で約1.2倍)に48時間浸漬した。この操作を行った後、上記排ガスを5000時間通過させ、脱硫率を測定したところ93%を示した。
Example 3
An activated carbon catalyst having a desulfurization rate reduced to 60% was prepared by the same operation as in Example 1, and the activated carbon catalyst was mixed with a 4 wt% aqueous hydrogen peroxide solution (hydrogen peroxide amount; weight relative to the activated carbon in the activated carbon catalyst). For about 48 hours). After this operation, the exhaust gas was allowed to pass through for 5000 hours, and the desulfurization rate was measured to show 93%.

実施例4
実施例1と同様の操作により、脱硫率が60%に低下した活性炭触媒を調製し、その活性炭触媒を、7.5重量%過酸化水素水溶液(過酸化水素量;活性炭触媒中の活性炭に対して重量比で約1.2倍)に48時間浸漬した。この操作を行った後、上記排ガスを5000時間通過させ、脱硫率を測定したところ94%を示した。
Example 4
By the same operation as in Example 1, an activated carbon catalyst having a desulfurization rate reduced to 60% was prepared, and the activated carbon catalyst was added to a 7.5 wt% aqueous hydrogen peroxide solution (hydrogen peroxide amount; relative to the activated carbon in the activated carbon catalyst). For about 48 times by weight). After this operation, the exhaust gas was passed through for 5000 hours, and the desulfurization rate was measured to show 94%.

実施例5
実施例1と同様の操作により、脱硫率が60%に低下した活性炭触媒を調製し、その活性炭触媒を、10重量%過酸化水素水溶液(過酸化水素量;活性炭触媒中の活性炭に対して重量比で約1.2倍)に48時間浸漬した。この操作を行った後、上記排ガスを5000時間通過させ、脱硫率を測定したところ93%を示した。
Example 5
By the same operation as in Example 1, an activated carbon catalyst having a desulfurization rate reduced to 60% was prepared, and the activated carbon catalyst was added to a 10 wt% aqueous hydrogen peroxide solution (hydrogen peroxide amount; weight relative to the activated carbon in the activated carbon catalyst). For about 48 hours). After this operation, the exhaust gas was allowed to pass through for 5000 hours, and the desulfurization rate was measured to show 93%.

実施例6
実施例1と同様の操作により、脱硫率が60%に低下した活性炭触媒を調製し、その活性炭触媒を、20重量%過酸化水素水溶液(過酸化水素量;活性炭触媒中の活性炭に対して重量比で約1.2倍)に48時間浸漬した。この操作を行った後、上記排ガスを5000時間通過させ、脱硫率を測定したところ73%を示した。
Example 6
By the same operation as in Example 1, an activated carbon catalyst having a desulfurization rate reduced to 60% was prepared, and the activated carbon catalyst was mixed with a 20 wt% aqueous hydrogen peroxide solution (hydrogen peroxide amount; weight relative to the activated carbon in the activated carbon catalyst). For about 48 hours). After this operation, the exhaust gas was allowed to pass for 5000 hours and the desulfurization rate was measured to be 73%.

実施例7
実施例1と同様の操作により、脱硫率が60%に低下した活性炭触媒を調製し、その活性炭触媒を、30重量%過酸化水素水溶液(過酸化水素量;活性炭触媒中の活性炭に対して重量比で約1.2倍)に48時間浸漬した。この操作を行った後、上記排ガスを5000時間通過させ、脱硫率を測定したところ65%を示した。
Example 7
By the same operation as in Example 1, an activated carbon catalyst having a desulfurization rate reduced to 60% was prepared, and the activated carbon catalyst was mixed with a 30 wt% aqueous hydrogen peroxide solution (hydrogen peroxide amount; weight relative to the activated carbon in the activated carbon catalyst). For about 48 hours). After this operation, the exhaust gas was passed through for 5000 hours, and the desulfurization rate was measured and found to be 65%.

実施例8
ハニカム形状に加工した活性炭触媒0.001m3を、50mm×50mmの角形触媒充填塔に充填し、その触媒層に、硫化水素ガス500ppmと亜硫酸ガス1000ppmとを含む模擬排ガス1m3/hを1000時間に亘って通過させた。1000時間後の脱硫率は60%に低下した。
Example 8
An activated carbon catalyst 0.001 m 3 processed into a honeycomb shape is packed in a square catalyst packed tower of 50 mm × 50 mm, and simulated exhaust gas 1 m 3 / h containing 500 ppm of hydrogen sulfide gas and 1000 ppm of sulfurous acid gas is applied to the catalyst layer for 1000 hours. Passed through. The desulfurization rate after 1000 hours decreased to 60%.

この活性炭触媒層に、5重量%水酸化アンモニウム水溶液をその上部から均一に、活性炭触媒層から排出される液がpH6を示すまでシャワーリングを行った後、5重量%過酸化水素水溶液(過酸化水素量;活性炭触媒中の活性炭に対して重量比で約1.2倍)を72時間噴霧した。この操作を行った後、上記排ガスを5000時間通過させ、脱硫率を測定したところ、93%を示した。   The activated carbon catalyst layer was showered with a 5% by weight aqueous ammonium hydroxide solution uniformly from the top until the liquid discharged from the activated carbon catalyst layer showed pH 6, and then 5% by weight aqueous hydrogen peroxide solution (peroxidized). The amount of hydrogen; about 1.2 times by weight with respect to the activated carbon in the activated carbon catalyst) was sprayed for 72 hours. After this operation, the exhaust gas was passed through for 5000 hours, and the desulfurization rate was measured. As a result, it was 93%.

実施例9
実施例8と同様の操作により、脱硫率が60%に低下した活性炭触媒を調製し、その活性炭触媒層に、水を400kg/時・mの割合で24時間に亘ってシャワーリングした後に、5重量%過酸化水素水溶液(過酸化水素量;活性炭触媒中の活性炭に対して重量比で約1.2倍)を72時間噴霧した。この操作を行った後、上記排ガスを5000時間通過させ、脱硫率を測定したところ90%を示した。
Example 9
An activated carbon catalyst having a desulfurization rate reduced to 60% was prepared by the same operation as in Example 8, and water was showered on the activated carbon catalyst layer at a rate of 400 kg / hour · m 2 for 24 hours. A 5% by weight aqueous hydrogen peroxide solution (hydrogen peroxide amount; about 1.2 times by weight with respect to the activated carbon in the activated carbon catalyst) was sprayed for 72 hours. After performing this operation, the exhaust gas was passed through for 5000 hours, and the desulfurization rate was measured to show 90%.

実施例10
実施例8と同様の操作により、脱硫率が60%に低下した活性炭触媒を調製し、その活性炭触媒層に、水を400kg/時・mの割合で24時間に亘ってシャワーリングした後に、5重量%過酸化水素水溶液(過酸化水素量;活性炭触媒中の活性炭に対して重量比で約1.2倍)を72時間噴霧した。次に、再び活性炭触媒層に、水を400kg/時・mの割合で24時間に亘ってシャワーリングした後に、上記排ガスを5000時間通過させ、脱硫率を測定したところ94%を示した。
Example 10
An activated carbon catalyst having a desulfurization rate reduced to 60% was prepared by the same operation as in Example 8, and water was showered on the activated carbon catalyst layer at a rate of 400 kg / hour · m 2 for 24 hours. A 5% by weight aqueous hydrogen peroxide solution (hydrogen peroxide amount; about 1.2 times by weight with respect to the activated carbon in the activated carbon catalyst) was sprayed for 72 hours. Next, after showering water over the activated carbon catalyst layer at a rate of 400 kg / hour · m 2 for 24 hours, the exhaust gas was passed through for 5000 hours and the desulfurization rate was measured to be 94%.

本発明の排煙脱硫用活性炭触媒の再生方法によれば、石油精製、天然ガス精製等の硫黄回収装置オフガスのように硫化水素が共存する可能性のある排ガス中の亜硫酸ガスを活性炭触媒により希硫酸として除去し回収する排煙脱硫方法において、硫化水素により被毒して脱硫性能が低下した活性炭触媒を触媒充填塔に充頃したままでも、その変質を伴わずに再生することができる。
According to the method for regenerating an activated carbon catalyst for flue gas desulfurization of the present invention, sulfur dioxide gas in exhaust gas in which hydrogen sulfide may coexist, such as off-gas for sulfur recovery equipment such as petroleum refining and natural gas refining, is diluted with the activated carbon catalyst. In the flue gas desulfurization method that removes and recovers as sulfuric acid, the activated carbon catalyst that has been poisoned by hydrogen sulfide and reduced in desulfurization performance can be regenerated without being altered even when the catalyst packed tower is filled.

Claims (8)

亜硫酸ガスを含有する排ガスと接触し、該亜硫酸ガスを吸着し酸化して硫酸として回収除去するための排煙脱硫用活性炭触媒の再生方法であって、該排煙脱硫用活性炭触媒を過酸化水素水溶液で洗浄することを特徴とする再生方法。   A method for regenerating an activated carbon catalyst for flue gas desulfurization, which is in contact with exhaust gas containing sulfurous acid gas, adsorbs the sulfurous acid gas, oxidizes and recovers and removes it as sulfuric acid. A regeneration method comprising washing with an aqueous solution. 該排煙脱硫用活性炭触媒を水又は塩基性水溶液で洗浄後に過酸化水素水溶液で洗浄する請求項1記載の再生方法。   The regeneration method according to claim 1, wherein the activated carbon catalyst for flue gas desulfurization is washed with water or a basic aqueous solution and then washed with an aqueous hydrogen peroxide solution. 該排煙脱硫用活性炭触媒を過酸化水素水溶液で洗浄した後に、更に水又は塩基性水溶液で洗浄する請求項1又は2記載の再生方法。   The regeneration method according to claim 1 or 2, wherein the flue gas desulfurization activated carbon catalyst is washed with an aqueous hydrogen peroxide solution and then further washed with water or a basic aqueous solution. 該過酸化水素水溶液の過酸化水素濃度が1〜15重量%である請求項1〜3のいずれかに記載の再生方法。   The regeneration method according to any one of claims 1 to 3, wherein the hydrogen peroxide concentration of the aqueous hydrogen peroxide solution is 1 to 15% by weight. 該過酸化水素水溶液での洗浄時の温度が5〜80℃である請求項1〜4のいずれかに記載の再生方法。   The regeneration method according to any one of claims 1 to 4, wherein the temperature during washing with the aqueous hydrogen peroxide solution is 5 to 80 ° C. 該排煙脱硫用活性炭触媒が、繊維状活性炭、粒状活性炭、又はこれらの撥水処理化物である請求項1〜5のいずれかに記載の再生方法。   The regeneration method according to any one of claims 1 to 5, wherein the activated carbon catalyst for flue gas desulfurization is fibrous activated carbon, granular activated carbon, or a water-repellent treated product thereof. 該塩基性水溶液が、水酸化ナトリウム、水酸化アンモニウム又は水酸化マグネシウムを含有する請求項2〜6のいずれかに記載の再生方法。   The regeneration method according to any one of claims 2 to 6, wherein the basic aqueous solution contains sodium hydroxide, ammonium hydroxide or magnesium hydroxide. 該排煙脱硫用活性炭触媒を触媒充填塔に充填して触媒層を構成し、触媒充填塔内の上方に設けられたシャワー用ノズルから該触媒層に対して過酸化水素水溶液をシャワーリングすることにより該排煙脱硫用活性炭触媒の洗浄を行う請求項1〜7のいずれかに記載の再生方法。
A catalyst layer is constructed by filling the activated carbon catalyst for flue gas desulfurization into a catalyst packed tower, and a hydrogen peroxide aqueous solution is showered to the catalyst layer from a shower nozzle provided above the catalyst packed tower. The regeneration method according to any one of claims 1 to 7, wherein the activated carbon catalyst for flue gas desulfurization is washed by the method.
JP2004049812A 2004-02-25 2004-02-25 Regeneration method of activated carbon catalyst for flue gas desulfurization Expired - Lifetime JP4507635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049812A JP4507635B2 (en) 2004-02-25 2004-02-25 Regeneration method of activated carbon catalyst for flue gas desulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049812A JP4507635B2 (en) 2004-02-25 2004-02-25 Regeneration method of activated carbon catalyst for flue gas desulfurization

Publications (2)

Publication Number Publication Date
JP2005238074A true JP2005238074A (en) 2005-09-08
JP4507635B2 JP4507635B2 (en) 2010-07-21

Family

ID=35020373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049812A Expired - Lifetime JP4507635B2 (en) 2004-02-25 2004-02-25 Regeneration method of activated carbon catalyst for flue gas desulfurization

Country Status (1)

Country Link
JP (1) JP4507635B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513063A (en) * 2008-03-11 2011-04-28 エヴォニク エナジー サーヴィシィズ エルエルシー Method for regenerating SCR catalyst contaminated with phosphorus component in flue gas
KR101359193B1 (en) * 2006-12-21 2014-02-05 주식회사 포스코 Regeneration of desulfurization agent in desulfurization of anaerobic digester gas
CN105944769A (en) * 2016-05-19 2016-09-21 昆明理工大学 Method using microwave heating to treat waste mercuric chloride catalyst
CN107774278A (en) * 2016-08-31 2018-03-09 中国石油化工股份有限公司 A kind of preparation method of flue gas reduction and desulfurization catalyst
CN113877553A (en) * 2021-10-27 2022-01-04 中冶赛迪技术研究中心有限公司 Regeneration process of activated carbon for blast furnace gas desulfurization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173967A (en) * 1974-12-23 1976-06-26 Hirakawa Tekkosho Baijin iosankabutsu chitsusosankabutsutooganjusurunenshohaigasuno dojishitsushikishorihoho
JPS60102945A (en) * 1983-11-08 1985-06-07 Daido Steel Co Ltd Catalyst regenerating method
JPH06142440A (en) * 1992-11-13 1994-05-24 Nippon Steel Corp Oxidation treatment of gas containing harmful gas and device for the same
JPH10156193A (en) * 1996-12-03 1998-06-16 Ishikawajima Harima Heavy Ind Co Ltd Activity regenerating method of for eliminating nitrogen oxides and device therefor
JP2000288339A (en) * 1999-04-08 2000-10-17 Osaka Gas Co Ltd Desulfurization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173967A (en) * 1974-12-23 1976-06-26 Hirakawa Tekkosho Baijin iosankabutsu chitsusosankabutsutooganjusurunenshohaigasuno dojishitsushikishorihoho
JPS60102945A (en) * 1983-11-08 1985-06-07 Daido Steel Co Ltd Catalyst regenerating method
JPH06142440A (en) * 1992-11-13 1994-05-24 Nippon Steel Corp Oxidation treatment of gas containing harmful gas and device for the same
JPH10156193A (en) * 1996-12-03 1998-06-16 Ishikawajima Harima Heavy Ind Co Ltd Activity regenerating method of for eliminating nitrogen oxides and device therefor
JP2000288339A (en) * 1999-04-08 2000-10-17 Osaka Gas Co Ltd Desulfurization

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359193B1 (en) * 2006-12-21 2014-02-05 주식회사 포스코 Regeneration of desulfurization agent in desulfurization of anaerobic digester gas
JP2011513063A (en) * 2008-03-11 2011-04-28 エヴォニク エナジー サーヴィシィズ エルエルシー Method for regenerating SCR catalyst contaminated with phosphorus component in flue gas
CN105944769A (en) * 2016-05-19 2016-09-21 昆明理工大学 Method using microwave heating to treat waste mercuric chloride catalyst
CN105944769B (en) * 2016-05-19 2019-06-11 昆明理工大学 A kind of method of the useless mercuric chloride catalyst of microwave heating treatment
CN107774278A (en) * 2016-08-31 2018-03-09 中国石油化工股份有限公司 A kind of preparation method of flue gas reduction and desulfurization catalyst
CN107774278B (en) * 2016-08-31 2019-10-15 中国石油化工股份有限公司 A kind of preparation method of flue gas reduction and desulfurization catalyst
CN113877553A (en) * 2021-10-27 2022-01-04 中冶赛迪技术研究中心有限公司 Regeneration process of activated carbon for blast furnace gas desulfurization
CN113877553B (en) * 2021-10-27 2024-01-23 中冶赛迪技术研究中心有限公司 Active carbon regeneration process for desulfurization of blast furnace gas

Also Published As

Publication number Publication date
JP4507635B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
CA2680175C (en) Exhaust gas treating method
US8007749B2 (en) Method for scavenging mercury
JP5553966B2 (en) Mercury adsorbent and smoke treatment method using the adsorbent
JP5384799B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP4616497B2 (en) Desulfurization apparatus and desulfurization method
JP3872677B2 (en) Mercury removal method and system
WO2008012878A1 (en) Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
WO2009093574A1 (en) System and method for treating discharge gas from coal-fired boiler
WO2009093575A1 (en) System and method for treating discharge gas from coal-fired boiler
WO2014164979A1 (en) Multicomponent mercury oxidation and capture
CA1069273A (en) Purification of sulfur-containing waste gases with hydrogen peroxide
CA2550875A1 (en) Method and device for decontamination air for fuel cell, and fuel cell
JP4507635B2 (en) Regeneration method of activated carbon catalyst for flue gas desulfurization
EP1347818B1 (en) Method for removing mercury from gas
CN110997111B (en) Enhanced mercury oxidant injection
JP4831295B2 (en) Exhaust gas desulfurization method
CN103877840A (en) Integral purification process of pollutants in sintering flue gas
JP5689878B2 (en) Solid inorganic composition, process for its preparation and its use for reducing heavy metals in flue gas
KR101358753B1 (en) Method for producing active carbon for eliminating hydrogen sulfide gas by using chaff and pitch
JPH0889757A (en) Treatment of waste gas from refuse incineration furnace
JP2007007581A (en) Exhaust gas treatment device and method
JP2006104598A (en) Activated carbon fiber, method for producing the same and gas purification method
JP2010000453A (en) Exhaust gas clarification method and equipment
JP2005169370A (en) Dehydrosulfurization treatment agent of gas containing hydrogen sulfide, treatment method and treatment apparatus
JPH11165035A (en) Method for removing mercury in waste gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4507635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term