[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005200410A - Method for producing tetraarylphosphonium halide - Google Patents

Method for producing tetraarylphosphonium halide Download PDF

Info

Publication number
JP2005200410A
JP2005200410A JP2004362323A JP2004362323A JP2005200410A JP 2005200410 A JP2005200410 A JP 2005200410A JP 2004362323 A JP2004362323 A JP 2004362323A JP 2004362323 A JP2004362323 A JP 2004362323A JP 2005200410 A JP2005200410 A JP 2005200410A
Authority
JP
Japan
Prior art keywords
reaction
halide
water
group
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004362323A
Other languages
Japanese (ja)
Other versions
JP4544981B2 (en
Inventor
Yuji Niwa
祐司 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Chemical Inc filed Critical Air Water Chemical Inc
Priority to JP2004362323A priority Critical patent/JP4544981B2/en
Publication of JP2005200410A publication Critical patent/JP2005200410A/en
Application granted granted Critical
Publication of JP4544981B2 publication Critical patent/JP4544981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tetraarylphosphonium halide in high yield under a mild condition from triarylphosphine and an aryl halide. <P>SOLUTION: The tetraarylphosphonium halide is produced by reacting the triarylphosphine with the aryl halide by using a metal halide such as nickel chloride as a catalyst and N, N-dimethylformamide as a reaction solvent, preferably at a temperature of 130°C or more to less than 150°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、各種反応の触媒として有用なテトラアリールホスホニウムハライドを工業的に有利に製造する方法に関する。   The present invention relates to a method for industrially advantageously producing a tetraarylphosphonium halide useful as a catalyst for various reactions.

ハロゲン交換反応触媒、相間移動触媒、重合触媒などとして有用なテトラアリールホスホニウムハライドは、トリアリールホスフィンとアリールハライドの反応によって製造することができる。一般には金属ハロゲン化物触媒の存在下で反応が行なわれており、また反応溶媒として種々のものが提案されている。例えばメタノール溶媒を使用する方法(非特許文献1及び2)、ベンゾニトリル溶媒を使用する方法(非特許文献3)、脂肪族多価アルコール、脂肪族多価アルコールのモノエーテル、フェノール類、炭素数5〜6の脂肪族カルボン酸などの水溶性高沸点溶媒を使用する方法(特許文献1)などが知られている。この内、特許文献1の方法は、メタノール溶媒やベンゾニトリル溶媒を使用する方法の欠点を改良するものとして提案されている。   A tetraarylphosphonium halide useful as a halogen exchange reaction catalyst, a phase transfer catalyst, a polymerization catalyst, or the like can be produced by a reaction of a triarylphosphine and an aryl halide. In general, the reaction is carried out in the presence of a metal halide catalyst, and various reaction solvents have been proposed. For example, a method using a methanol solvent (Non-Patent Documents 1 and 2), a method using a benzonitrile solvent (Non-Patent Document 3), an aliphatic polyhydric alcohol, an aliphatic polyhydric alcohol monoether, a phenol, a carbon number A method using a water-soluble high-boiling solvent such as an aliphatic carboxylic acid having 5 to 6 (Patent Document 1) is known. Among these, the method of Patent Document 1 has been proposed as an improvement of the disadvantages of the method using a methanol solvent or a benzonitrile solvent.

すなわち特許文献1によれば、上記メタノール溶媒を使用する方法においては、高温高圧下の反応であるため耐圧容器が必要であること、反応後にメタノールを留去すると反応物が固化してしてその取扱い及び目的物の分離が煩雑になるという問題があるとしている。また上記ベンゾニトリル溶媒を使用する方法においては、金属ハロゲン化物触媒を多量に使用する必要があること、また反応混合物から目的物を分離するに際して種々の問題点があることを指摘している。これに対して上記水溶性高沸点溶媒を使用する特許文献1の方法はこれら欠点を改良するものであって、常圧で温和な条件で反応を行なうことができるとしている。   That is, according to Patent Document 1, in the method using the methanol solvent, a pressure vessel is necessary because the reaction is performed under high temperature and high pressure, and when methanol is distilled off after the reaction, the reaction product is solidified and The problem is that the handling and separation of the object are complicated. In the method using the benzonitrile solvent, it is pointed out that it is necessary to use a large amount of a metal halide catalyst, and there are various problems in separating the target product from the reaction mixture. On the other hand, the method of Patent Document 1 using the above-mentioned water-soluble high boiling point solvent improves these drawbacks, and it is said that the reaction can be carried out under mild conditions at normal pressure.

ところがこの改良方法においても、温和な条件とは言え、反応温度は150℃以上、とくに160℃以上という高温を推奨しており、具体例においては170℃を越えるような温度で反応を行なっている。   However, even in this improved method, although the conditions are mild, the reaction temperature is recommended to be 150 ° C. or higher, particularly 160 ° C. or higher. In a specific example, the reaction is performed at a temperature exceeding 170 ° C. .

特開平9−328492号公報JP 9-328492 A Bull.Chem.Soc.Jpn.,30巻、667頁(1957年)Bull. Chem. Soc. Jpn. , 30, 667 (1957) 日本化学雑誌86巻、112頁(1965年)The Nippon Chemical Journal, Volume 86, 112 (1965) Chem.Ber.,99巻、2782頁(1966年)Chem. Ber. 99, 2782 (1966)

そこで本発明の目的は、より低温度でしかも常圧であるいはそれ程高圧にすることなく選択性よく反応させることができ、また目的物の分離も容易に行なうことができるテトラアリールホスホニウムハライドの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a tetraarylphosphonium halide which can be reacted with high selectivity at a lower temperature and at normal pressure or without so high pressure, and the target product can be easily separated. Is to provide.

すなわち本発明によれば、トリアリールホスフィンとハロゲン化アリールを、金属ハロゲン化物触媒及びN,N−ジメチルホルムアミドの存在下で反応させることを特徴とするテトラアリールホスホニウムハライドの製造方法が提供される。   That is, according to the present invention, there is provided a process for producing a tetraarylphosphonium halide, characterized by reacting a triarylphosphine and an aryl halide in the presence of a metal halide catalyst and N, N-dimethylformamide.

本発明によれば、150℃未満の温度で、常圧であるいは僅かな加圧状態で収率良くテトラアリールホスホニウムハライドを製造することができる。また反応混合物からテトラアリールホスホニウムハライドを単離する場合においても、煩雑な操作を必要とせずに行なうことができる。   According to the present invention, a tetraarylphosphonium halide can be produced at a temperature of less than 150 ° C. at normal pressure or in a slightly pressurized state with a high yield. Further, when tetraarylphosphonium halide is isolated from the reaction mixture, it can be carried out without requiring a complicated operation.

本発明で使用されるトリアリールホスフィンは、次式(1)

Figure 2005200410
(式中、Ar、Ar、Arは、アリール基)で示されるものである。上記式(1)において、Ar、Ar、Arは、それぞれ同一又は異なるアリール基であり、これらの二つは互いに結合していてもよい。またこれらは、芳香環に置換基を有するものでも有しないものでもよい。具体的には、置換基を有する又は有しないフェニル基、置換基を有する又は有しないナフチル基などである。ここに置換基としては、メチル基、エチル基、フェニル基などの炭化水素基、メトキシ基、エトキシ基、フェノキシ基などのアルコキシ基又はアリーロキシ基、トリフルオロメチル基のようなハロゲン化炭化水素基、フッ素、塩素、臭素、沃素などのハロゲンなどを例示することができる。これら置換基は2以上有していてもよい。 The triarylphosphine used in the present invention has the following formula (1)
Figure 2005200410
(Wherein Ar 1 , Ar 2 , and Ar 3 are aryl groups). In the above formula (1), Ar 1 , Ar 2 , and Ar 3 are the same or different aryl groups, and these two may be bonded to each other. These may or may not have a substituent on the aromatic ring. Specific examples include a phenyl group having or not having a substituent, a naphthyl group having or not having a substituent. Examples of the substituent include a hydrocarbon group such as a methyl group, an ethyl group, and a phenyl group, an alkoxy group such as a methoxy group, an ethoxy group, and a phenoxy group, or an aryloxy group, a halogenated hydrocarbon group such as a trifluoromethyl group, Illustrative are halogens such as fluorine, chlorine, bromine and iodine. These substituents may have two or more.

トリアリールホスフィンとしてより具体的には、トリフェニルホスフィン、トリス(2−メチルフェニル)ホスフィン、トリス(3−メチルフェニル)ホスフィン、トリス(4−メチルフェニル)ホスフィン、トリス(2−エチルフェニル)ホスフィン、トリス(3−エチルフェニル)ホスフィン、トリス(4−エチルフェニル)ホスフィン、トリス(2,3−ジメチルフェニル)ホスフィン、トリス(2,4−ジメチルフェニル)ホスフィン、トリス(2,4,6−トリメチルフェニル)ホスフィン、ジフェニル(2−メチルフェニル)ホスフィン、ジフェニル(3−メチルフェニル)ホスフィン、ジフェニル(4−メチルフェニル)ホスフィン、トリス(2−トリフルオロメチルフェニル)ホスフィン、トリス(3−メトキシフェニル)ホスフィン、トリス(2,4,6−トリメトキシフェニル)ホスフィン、トリス(2−クロロフェニル)ホスフィン、トリス(3−クロロフェニル)ホスフィン、トリス(4−フルオロフェニル)ホスフィン、トリ(1−ナフチル)ホスフィン、トリ(2−ナフチル)ホスフィンなどを挙げることができる   More specifically, as triarylphosphine, triphenylphosphine, tris (2-methylphenyl) phosphine, tris (3-methylphenyl) phosphine, tris (4-methylphenyl) phosphine, tris (2-ethylphenyl) phosphine, Tris (3-ethylphenyl) phosphine, tris (4-ethylphenyl) phosphine, tris (2,3-dimethylphenyl) phosphine, tris (2,4-dimethylphenyl) phosphine, tris (2,4,6-trimethylphenyl) ) Phosphine, diphenyl (2-methylphenyl) phosphine, diphenyl (3-methylphenyl) phosphine, diphenyl (4-methylphenyl) phosphine, tris (2-trifluoromethylphenyl) phosphine, tris (3-methoxyphenyl) Sphin, tris (2,4,6-trimethoxyphenyl) phosphine, tris (2-chlorophenyl) phosphine, tris (3-chlorophenyl) phosphine, tris (4-fluorophenyl) phosphine, tri (1-naphthyl) phosphine, tri And (2-naphthyl) phosphine.

本発明で使用されるハロゲン化アリールは、次式(2)

Figure 2005200410
(式中、Arはアリール基、Xはハロゲン)で示される芳香族化合物であって、Arは、Ar等と同様に、芳香環に置換基を有するものでも有しないものでもよい。置換基を有する場合には、置換基としてメチル基、エチル基、フェニル基などの炭化水素基、メトキシ基、エトキシ基、フェノキシ基などのアルコキシ基又はアリーロキシ基、トリフルオロメチル基のようなハロゲン化炭化水素基、フッ素、塩素、臭素、沃素などのハロゲンなどを例示することができる。これら置換基は2以上有していてもよい。 The aryl halide used in the present invention has the following formula (2)
Figure 2005200410
(In the formula, Ar 4 is an aryl group, and X is a halogen), and Ar 4 may or may not have a substituent on the aromatic ring, similarly to Ar 1 and the like. When having a substituent, a halogenated group such as a hydrocarbon group such as a methyl group, an ethyl group or a phenyl group, an alkoxy group such as a methoxy group, an ethoxy group or a phenoxy group, an aryloxy group or a trifluoromethyl group. Examples include hydrocarbon groups, halogens such as fluorine, chlorine, bromine and iodine. These substituents may have two or more.

ハロゲン化アリールとしてより具体的には、ブロモベンゼン、ヨードベンゼン、1−クロロナフタレン、1−ブロモナフタレン、1−ヨードナフタレン、2−クロロナフタレン、2−ブロモナフタレン、2−ヨードナフタレン、2−ブロモトルエン、3−ブロモトルエン、4−ブロモトルエン、2−ヨードトルエン、3−ヨードトルエン、4−ヨードトルエン、2−ブロモエチルベンゼン、4−ブロモエチルベンゼン、2−ヨードエチルベンゼン、4−ヨードエチルベンゼン、2,3−ジメチルクロロベンゼン、2,4−ジメチルクロロベンゼン、3,4−ジメチルクロロベンゼン、2,5−ジメチルクロロベンゼン、2,3−ジメチルブロモベンゼン、2,4−ジメチルブロモベンゼン、3,4−ジメチルブロモベンゼン、2,5−ジメチルブロモベンゼン、3−クロロアニソール、3−ブロモアニソール、3−ヨードアニソール、2−ブロモビフェニル、4−ブロモビフェニル、2−ヨードビフェニル、4−ヨードビフェニル、4,4’−ジブロモビフェニル、4−ブロモジフェニルエーテル、1,2−ジクロロベンゼン、1,4−ジクロロベンゼン、1,2−ジブロモベンゼン、1,4−ジブロモベンゼン、1,4−ジヨードベンゼン、4−クロロブロモベンゼン、4−クロロヨードベンゼンなどを挙げることができる。   More specifically, as the aryl halide, bromobenzene, iodobenzene, 1-chloronaphthalene, 1-bromonaphthalene, 1-iodonaphthalene, 2-chloronaphthalene, 2-bromonaphthalene, 2-iodonaphthalene, 2-bromotoluene 3-bromotoluene, 4-bromotoluene, 2-iodotoluene, 3-iodotoluene, 4-iodotoluene, 2-bromoethylbenzene, 4-bromoethylbenzene, 2-iodoethylbenzene, 4-iodoethylbenzene, 2,3- Dimethylchlorobenzene, 2,4-dimethylchlorobenzene, 3,4-dimethylchlorobenzene, 2,5-dimethylchlorobenzene, 2,3-dimethylbromobenzene, 2,4-dimethylbromobenzene, 3,4-dimethylbromobenzene, 2, 5-Dimethyl Bromobenzene, 3-chloroanisole, 3-bromoanisole, 3-iodoanisole, 2-bromobiphenyl, 4-bromobiphenyl, 2-iodobiphenyl, 4-iodobiphenyl, 4,4′-dibromobiphenyl, 4-bromodiphenyl ether 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dibromobenzene, 1,4-dibromobenzene, 1,4-diiodobenzene, 4-chlorobromobenzene, 4-chloroiodobenzene, etc. Can be mentioned.

本発明においては、上記したトリアリールホスフィンとハロゲン化アリールを反応させることによって、次式(3)

Figure 2005200410
(式中、Ar、Ar、Ar、Ar、Xは、上記式(1)又は(2)のものと同じ)で示されるテトラアリールホスホニウムハライドを得るものである。反応に際しては、触媒として金属ハロゲン化物触媒、また反応溶媒としてN,N−ジメチルホルムアミドがそれぞれ使用される。金属ハロゲン化物触媒としては、周期律表7〜12族金属のハロゲン化物の使用が好ましい。具体的には、7族金属のハロゲン化物としては、塩化マンガン、臭化マンガン、沃化マンガンなどのマンガンハロゲン化物、8族金属のハロゲン化物としては、塩化鉄、臭化鉄、沃化鉄などの鉄ハロゲン化物、9族金属のハロゲン化物としては、塩化コバルト、臭化コバルト、沃化コバルトなどのコバルトハロゲン化物、10族金属のハロゲン化物としては、塩化ニッケル、臭化ニッケル、沃化ニッケルなどのニッケルハロゲン化物、11族金属のハロゲン化物としては、塩化銅、臭化銅、沃化銅などの銅ハロゲン化物、12族金属のハロゲン化物としては、塩化亜鉛、臭化亜鉛、沃化亜鉛などの亜鉛ハロゲン化物などを挙げることができる。これら金属ハロゲン化物の中では、周期律表9〜12族金属のハロゲン化物、とくに塩化物又は臭化物の使用が好ましい。すなわちニッケル、コバルト、銅又は亜鉛のハロゲン化物、とくに塩化物又は臭化物が好ましく、とりわけニッケルのハロゲン化物、とくに塩化物又は臭化物の使用が最も好ましい。これら金属ハロゲン化物は、無水のものでも水和物でも使用することができる。一般には微量の水の存在により、反応が促進される一方で、過剰の水の存在は反応に悪影響を及ぼすことがあるので、水和物の使用及び/又は微量の水の添加により水分量を調整することが望ましい。例えば上記金属ハロゲン化物1モルに対し、結晶水と別途添加する水の合計量が、40モル以下、好ましくは5〜35モル、一層好ましくは10〜30モルとなるように調整するのが望ましい。 In the present invention, by reacting the above triarylphosphine with an aryl halide, the following formula (3)
Figure 2005200410
(In the formula, Ar 1 , Ar 2 , Ar 3 , Ar 4 , X are the same as those in the above formula (1) or (2)) to obtain a tetraarylphosphonium halide. In the reaction, a metal halide catalyst is used as a catalyst, and N, N-dimethylformamide is used as a reaction solvent. As the metal halide catalyst, it is preferable to use a halide of a metal in groups 7 to 12 of the periodic table. Specifically, group 7 metal halides include manganese halides such as manganese chloride, manganese bromide and manganese iodide, and group 8 metal halides include iron chloride, iron bromide and iron iodide. As iron halides of Group 9, and halides of Group 9 metals, cobalt halides such as cobalt chloride, cobalt bromide and cobalt iodide, and as halides of Group 10 metals, nickel chloride, nickel bromide and nickel iodide, etc. Nickel halides of Group 11, metal halides such as copper chloride, copper bromide, copper iodide, etc., and group 12 metal halides such as zinc chloride, zinc bromide, zinc iodide, etc. And zinc halides. Among these metal halides, the use of halides of group 9-12 metals in the periodic table, particularly chlorides or bromides is preferred. That is, nickel, cobalt, copper or zinc halides, particularly chlorides or bromides are preferred, and nickel halides, especially chlorides or bromides are most preferred. These metal halides can be used either anhydrous or hydrated. In general, the reaction is promoted by the presence of a trace amount of water, but the presence of excess water may adversely affect the reaction. Therefore, the amount of water can be reduced by using a hydrate and / or adding a trace amount of water. It is desirable to adjust. For example, it is desirable to adjust the total amount of water added separately from crystallization water to 40 mol or less, preferably 5 to 35 mol, and more preferably 10 to 30 mol per 1 mol of the metal halide.

本発明の反応には、反応溶媒としてN,N−ジメチルホルムアミドが使用される。これにより150℃未満の温度で、常圧あるいは密閉系での反応混合物自生圧の僅かな加圧条件下で、収率良くテトラアリールホスホニウムハライドを製造することができる。   In the reaction of the present invention, N, N-dimethylformamide is used as a reaction solvent. Thus, tetraarylphosphonium halide can be produced in good yield at a temperature of less than 150 ° C. under normal pressure or a slight pressure of the reaction mixture's self-generated pressure in a closed system.

本発明の反応においては、ハロゲン化アリールは、トリアリールホスフィンに対して、通常0.8〜2倍モル、好ましくは0.9〜1.5倍モル、さらに好ましくは1.0〜1.3倍モルの割合で使用される。また金属ハロゲン化物の使用量は、トリアリールホスフィンに対して、通常0.1〜40モル%、好ましくは1〜30モル%程度である。さらに反応溶媒であるN,N−ジメチルホルムアミドの使用量は、収率や後処理操作を考慮すると、トリアリールホスフィンに対して通常0.1〜10重量倍、とくに0.2〜5重量倍程度の割合とするのがよい。   In the reaction of the present invention, the aryl halide is usually 0.8 to 2 times mol, preferably 0.9 to 1.5 times mol, more preferably 1.0 to 1.3 mol, relative to triarylphosphine. Used in a molar ratio. Moreover, the usage-amount of a metal halide is 0.1-40 mol% normally with respect to a triaryl phosphine, Preferably it is about 1-30 mol%. Further, the amount of N, N-dimethylformamide used as a reaction solvent is usually about 0.1 to 10 times by weight, particularly about 0.2 to 5 times by weight with respect to triarylphosphine in consideration of yield and post-treatment operation. It is good to make the ratio.

本発明の反応は、反応容器に上記原料、触媒及び溶媒を仕込んで行なわれる。反応温度は、好ましくは130℃以上、一層好ましくは130℃以上150℃未満の温度である。反応容器としては、開放系でも密閉系でもよいが、反応混合物の自生圧で僅かな加圧系となる密閉容器で行なうのが好ましい。反応圧力は、系内の水分量によって影響を受けるが、通常、大気圧以上、0.5MPa以下、好ましくは0.3MPa以下程度の僅かな加圧状態で反応が行われる。反応時間は、原料化合物や触媒の種類及びその使用量、反応温度などによっても異なるが、通常0.5〜30時間程度である。   The reaction of the present invention is carried out by charging the above raw material, catalyst and solvent into a reaction vessel. The reaction temperature is preferably 130 ° C or higher, more preferably 130 ° C or higher and lower than 150 ° C. The reaction vessel may be an open system or a closed system, but it is preferably carried out in a closed container that forms a slight pressure system due to the autogenous pressure of the reaction mixture. The reaction pressure is affected by the amount of water in the system, but the reaction is usually carried out in a slightly pressurized state of atmospheric pressure or higher and 0.5 MPa or lower, preferably 0.3 MPa or lower. The reaction time is usually about 0.5 to 30 hours, although it varies depending on the type of raw material compound and catalyst, the amount used, the reaction temperature, and the like.

反応終了後は、反応混合物から未反応ハロゲン化アリールやN,N−ジメチルホルムアミドなどを留去して濃縮し、濃縮物に水及び水不溶性溶媒、例えばトルエンなどの炭化水素溶媒を加えて加温し、その後2層分離して水層を冷却すれば、目的物であるテトラアリールホスホニウムハライドが晶出してくるので、これを分離すれば良い。かくして得られるテトラアリールホスホニウムハライドは、必要に応じ洗浄、再結晶などによって純度を高めることができる。   After completion of the reaction, unreacted aryl halide, N, N-dimethylformamide and the like are distilled off from the reaction mixture and concentrated, and water and a water-insoluble solvent such as a hydrocarbon solvent such as toluene are added to the concentrate and heated. Then, if the two layers are separated and the aqueous layer is cooled, the target tetraarylphosphonium halide crystallizes out, which can be separated. The purity of the tetraarylphosphonium halide thus obtained can be increased by washing, recrystallization or the like, if necessary.

以下、実施例により本発明をさらに詳細に説明する。
[実施例1]
100mlのナス型フラスコに、トリフェニルホスフィン10g、ブロモベンゼン10.2g、塩化ニッケル6水和物1.7g及びN,N−ジメチルホルムアミド25gを入れ、常圧条件下、溶液温度138℃で16時間、攪拌下に反応を行なった。反応終了後、減圧下で未反応ブロモベンゼン、N,N−ジメチルホルムアミド及び水を留去した(21.0g)。蒸留残を室温まで冷却した後、トルエン14.3g、水35.7gを加え、80℃に加熱して溶解させて静置し、2層に分離した後、水層を分液した。分離した水層を室温まで冷却して結晶を析出させ、これを吸引濾過により集めた。得られた結晶を水10gで洗浄した後、100℃で5時間減圧乾燥を行ない、テトラフェニルホスホニウムブロマイド(純度98.9%)を13.31g得た(トリフェニルホスフィン基準収率82.4%)。
Hereinafter, the present invention will be described in more detail with reference to examples.
[Example 1]
A 100 ml eggplant type flask is charged with 10 g of triphenylphosphine, 10.2 g of bromobenzene, 1.7 g of nickel chloride hexahydrate and 25 g of N, N-dimethylformamide, and at a solution temperature of 138 ° C. for 16 hours under normal pressure conditions. The reaction was carried out with stirring. After completion of the reaction, unreacted bromobenzene, N, N-dimethylformamide and water were distilled off under reduced pressure (21.0 g). After the distillation residue was cooled to room temperature, 14.3 g of toluene and 35.7 g of water were added, heated to 80 ° C., dissolved, allowed to stand, separated into two layers, and then the aqueous layer was separated. The separated aqueous layer was cooled to room temperature to precipitate crystals, which were collected by suction filtration. The obtained crystal was washed with 10 g of water and then dried under reduced pressure at 100 ° C. for 5 hours to obtain 13.31 g of tetraphenylphosphonium bromide (purity 98.9%) (triphenylphosphine reference yield 82.4%). ).

[実施例2]
300mlの耐圧ガラス容器に、トリフェニルホスフィン10g、ブロモベンゼン10.2g、塩化ニッケル0.9g及びN,N−ジメチルホルムアミド25gを加えた後、密閉し、温度140℃、反応圧力0.2MPaで13時間、攪拌下に反応を行なった。反応終了後、減圧下で未反応ブロモベンゼン及びN,N−ジメチルホルムアミドを留去した(24.5g)。蒸留残を室温まで冷却した後、トルエン14.3g、水30.7gを加え、80℃に加熱して溶解させて静置し、2層に分離した後、水層を分液した。分離した水層を室温まで冷却して結晶を析出させ、これを吸引濾過により集めた。得られた結晶を水10gで洗浄した後、100℃で5時間減圧乾燥を行ない、テトラフェニルホスホニウムブロマイド(純度90.4%)を14.63g得た(トリフェニルホスフィン基準収率82.7%)。
[Example 2]
After adding 10 g of triphenylphosphine, 10.2 g of bromobenzene, 0.9 g of nickel chloride and 25 g of N, N-dimethylformamide to a 300 ml pressure-resistant glass container, the container is sealed and sealed at a temperature of 140 ° C. and a reaction pressure of 0.2 MPa. The reaction was carried out with stirring for a time. After completion of the reaction, unreacted bromobenzene and N, N-dimethylformamide were distilled off under reduced pressure (24.5 g). After the distillation residue was cooled to room temperature, 14.3 g of toluene and 30.7 g of water were added, heated to 80 ° C., dissolved, allowed to stand, separated into two layers, and then the aqueous layer was separated. The separated aqueous layer was cooled to room temperature to precipitate crystals, which were collected by suction filtration. The obtained crystals were washed with 10 g of water, and then dried under reduced pressure at 100 ° C. for 5 hours to obtain 14.63 g of tetraphenylphosphonium bromide (purity 90.4%) (triphenylphosphine reference yield 82.7%). ).

[実施例3]
1000mlの耐圧ガラス容器に、トリフェニルホスフィン100.0g、ブロモベンゼン83.8g、塩化ニッケル6水和物17.2g、N,N−ジメチルホルムアミド150g及び水11.0gを加えた後、密閉し、温度140℃、反応圧力0.3MPaで5時間、攪拌下に反応を行なった。反応終了後、減圧下で未反応ブロモベンゼン及びN,N−ジメチルホルムアミドを留去した(119.4g)。蒸留残を室温まで冷却した後、トルエン110.0g、水310.0gを加え、80℃に加熱して溶解させて静置し、2層に分離した後、水層を分液した。分離した水層を室温まで冷却して結晶を析出させ、これを吸引濾過により集めた。得られた結晶を水150gで洗浄した後、110℃で3時間減圧乾燥を行ない、テトラフェニルホスホニウムブロマイド(純度99.7%)を95.0g得た(トリフェニルホスフィン基準収率94.6%)。
[Example 3]
To a 1000 ml pressure-resistant glass container, 100.0 g of triphenylphosphine, 83.8 g of bromobenzene, 17.2 g of nickel chloride hexahydrate, 150 g of N, N-dimethylformamide and 11.0 g of water were added and sealed. The reaction was conducted with stirring at a temperature of 140 ° C. and a reaction pressure of 0.3 MPa for 5 hours. After completion of the reaction, unreacted bromobenzene and N, N-dimethylformamide were distilled off under reduced pressure (119.4 g). After the distillation residue was cooled to room temperature, 110.0 g of toluene and 310.0 g of water were added, heated to 80 ° C., dissolved and allowed to stand. After separating into two layers, the aqueous layer was separated. The separated aqueous layer was cooled to room temperature to precipitate crystals, which were collected by suction filtration. The obtained crystals were washed with 150 g of water and then dried under reduced pressure at 110 ° C. for 3 hours to obtain 95.0 g of tetraphenylphosphonium bromide (purity 99.7%) (triphenylphosphine reference yield 94.6%). ).

[実施例4]
1000mlの耐圧ガラス容器に、トリフェニルホスフィン100.0g、ブロモベンゼン83.8g、塩化ニッケル6水和物17.2g、N,N−ジメチルホルムアミド100g及び水11.0gを加えた後、密閉し、温度140℃、反応圧力0.3MPaで5時間、攪拌下に反応を行なった。反応終了後、減圧下で未反応ブロモベンゼン及びN,N−ジメチルホルムアミドを留去した(117.3g)。蒸留残を室温まで冷却した後、トルエン110.0g、水310.0gを加え、80℃に加熱して溶解させて静置し、2層に分離した後、水層を分液した。分離した水層を室温まで冷却して結晶を析出させ、これを吸引濾過により集めた。得られた結晶を水150gで洗浄した後、110℃で3時間減圧乾燥を行ない、テトラフェニルホスホニウムブロマイド(純度98.1%)を94.2g得た(トリフェニルホスフィン基準収率92.4%)。
[Example 4]
After adding 100.0 g of triphenylphosphine, 83.8 g of bromobenzene, 17.2 g of nickel chloride hexahydrate, 100 g of N, N-dimethylformamide and 11.0 g of water to a 1000 ml pressure-resistant glass container, the container was sealed, The reaction was conducted with stirring at a temperature of 140 ° C. and a reaction pressure of 0.3 MPa for 5 hours. After completion of the reaction, unreacted bromobenzene and N, N-dimethylformamide were distilled off under reduced pressure (117.3 g). After the distillation residue was cooled to room temperature, 110.0 g of toluene and 310.0 g of water were added, heated to 80 ° C., dissolved and allowed to stand. After separating into two layers, the aqueous layer was separated. The separated aqueous layer was cooled to room temperature to precipitate crystals, which were collected by suction filtration. The obtained crystals were washed with 150 g of water and then dried under reduced pressure at 110 ° C. for 3 hours to obtain 94.2 g of tetraphenylphosphonium bromide (purity 98.1%) (triphenylphosphine reference yield 92.4%). ).

[実施例5]
1000mlの耐圧ガラス容器に、トリフェニルホスフィン100.0g、ブロモベンゼン83.8g、塩化ニッケル6水和物17.2g、N,N−ジメチルホルムアミド50g及び水11.0gを加えた後、密閉し、温度140℃、反応圧力0.3MPaで9時間、攪拌下に反応を行なった。反応終了後、減圧下で未反応ブロモベンゼン及びN,N−ジメチルホルムアミドを留去した(116.9g)。蒸留残を室温まで冷却した後、トルエン110.0g、水310.0gを加え、80℃に加熱して溶解させて静置し、2層に分離した後、水層を分液した。分離した水層を室温まで冷却して結晶を析出させ、これを吸引濾過により集めた。得られた結晶を水150gで洗浄した後、110℃で3時間減圧乾燥を行ない、テトラフェニルホスホニウムブロマイド(純度99.4%)を94.1g得た(トリフェニルホスフィン基準収率95.0%)。
[Example 5]
After adding 100.0 g of triphenylphosphine, 83.8 g of bromobenzene, 17.2 g of nickel chloride hexahydrate, 50 g of N, N-dimethylformamide and 11.0 g of water to a 1000 ml pressure-resistant glass container, the container was sealed, The reaction was conducted with stirring at a temperature of 140 ° C. and a reaction pressure of 0.3 MPa for 9 hours. After completion of the reaction, unreacted bromobenzene and N, N-dimethylformamide were distilled off under reduced pressure (116.9 g). After the distillation residue was cooled to room temperature, 110.0 g of toluene and 310.0 g of water were added, heated to 80 ° C., dissolved and allowed to stand. After separating into two layers, the aqueous layer was separated. The separated aqueous layer was cooled to room temperature to precipitate crystals, which were collected by suction filtration. The obtained crystals were washed with 150 g of water and then dried under reduced pressure at 110 ° C. for 3 hours to obtain 94.1 g of tetraphenylphosphonium bromide (purity 99.4%) (triphenylphosphine reference yield 95.0%). ).

[実施例6]
1000mlの耐圧ガラス容器に、トリフェニルホスフィン100.0g、ブロモベンゼン83.8g、塩化ニッケル6水和物17.2g、N,N−ジメチルホルムアミド50g及び水18.2gを加えた後、密閉し、温度140℃、反応圧力0.3MPaで5時間、攪拌下に反応を行なった。反応終了後、減圧下で未反応ブロモベンゼン及びN,N−ジメチルホルムアミドを留去した(118.4g)。蒸留残を室温まで冷却した後、トルエン110.0g、水310.0gを加え、80℃に加熱して溶解させて静置し、2層に分離した後、水層を分液した。分離した水層を室温まで冷却して結晶を析出させ、これを吸引濾過により集めた。得られた結晶を水150gで洗浄した後、110℃で3時間減圧乾燥を行ない、テトラフェニルホスホニウムブロマイド(純度98.6%)を94.8g得た(トリフェニルホスフィン基準収率93.5%)。
[Example 6]
After adding 100.0 g of triphenylphosphine, 83.8 g of bromobenzene, 17.2 g of nickel chloride hexahydrate, 50 g of N, N-dimethylformamide and 18.2 g of water to a 1000 ml pressure-resistant glass container, the container was sealed. The reaction was conducted with stirring at a temperature of 140 ° C. and a reaction pressure of 0.3 MPa for 5 hours. After completion of the reaction, unreacted bromobenzene and N, N-dimethylformamide were distilled off under reduced pressure (118.4 g). After the distillation residue was cooled to room temperature, 110.0 g of toluene and 310.0 g of water were added, heated to 80 ° C., dissolved and allowed to stand. After separating into two layers, the aqueous layer was separated. The separated aqueous layer was cooled to room temperature to precipitate crystals, which were collected by suction filtration. The obtained crystals were washed with 150 g of water and then dried under reduced pressure at 110 ° C. for 3 hours to obtain 94.8 g of tetraphenylphosphonium bromide (purity 98.6%) (triphenylphosphine reference yield 93.5%). ).

[実施例7]
1000mlの耐圧ガラス容器に、トリフェニルホスフィン100.0g、ブロモベンゼン83.8g、塩化ニッケル6水和物17.2g、N,N−ジメチルホルムアミド50g及び水31.2gを加えた後、密閉し、温度140℃、反応圧力0.3MPaで5時間、攪拌下に反応を行なった。反応終了後、減圧下で未反応ブロモベンゼン及びN,N−ジメチルホルムアミドを留去した(119.9g)。蒸留残を室温まで冷却した後、トルエン110.0g、水310.0gを加え、80℃に加熱して溶解させて静置し、2層に分離した後、水層を分液した。分離した水層を室温まで冷却して結晶を析出させ、これを吸引濾過により集めた。得られた結晶を水150gで洗浄した後、110℃で3時間減圧乾燥を行ない、テトラフェニルホスホニウムブロマイド(純度99.0%)を91.8g得た(トリフェニルホスフィン基準収率90.9%)。

[Example 7]
After adding 100.0 g of triphenylphosphine, 83.8 g of bromobenzene, 17.2 g of nickel chloride hexahydrate, 50 g of N, N-dimethylformamide and 31.2 g of water to a 1000 ml pressure-resistant glass container, the container was sealed, The reaction was conducted with stirring at a temperature of 140 ° C. and a reaction pressure of 0.3 MPa for 5 hours. After completion of the reaction, unreacted bromobenzene and N, N-dimethylformamide were distilled off under reduced pressure (119.9 g). After the distillation residue was cooled to room temperature, 110.0 g of toluene and 310.0 g of water were added, heated to 80 ° C., dissolved and allowed to stand. After separating into two layers, the aqueous layer was separated. The separated aqueous layer was cooled to room temperature to precipitate crystals, which were collected by suction filtration. The obtained crystals were washed with 150 g of water and then dried under reduced pressure at 110 ° C. for 3 hours to obtain 91.8 g of tetraphenylphosphonium bromide (purity 99.0%) (triphenylphosphine reference yield 90.9%). ).

Claims (3)

トリアリールホスフィンとハロゲン化アリールを、金属ハロゲン化物触媒及びN,N−ジメチルホルムアミドの存在下で反応させることを特徴とするテトラアリールホスホニウムハライドの製造方法。   A process for producing a tetraarylphosphonium halide, comprising reacting a triarylphosphine with an aryl halide in the presence of a metal halide catalyst and N, N-dimethylformamide. 金属ハロゲン化物1モルに対し、40モル以下の水の共存下で反応させることを特徴とする請求項1記載のテトラアリールホスホニウムハライドの製造方法。   The method for producing a tetraarylphosphonium halide according to claim 1, wherein the reaction is carried out in the presence of 40 mol or less of water with respect to 1 mol of the metal halide. 反応を、130℃以上150℃未満の温度で行なうことを特徴とする請求項1又は2記載のテトラアリールホスホニウムハライドの製造方法。   The method for producing a tetraarylphosphonium halide according to claim 1 or 2, wherein the reaction is performed at a temperature of 130 ° C or higher and lower than 150 ° C.
JP2004362323A 2003-12-19 2004-12-15 Method for producing tetraarylphosphonium halide Expired - Fee Related JP4544981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362323A JP4544981B2 (en) 2003-12-19 2004-12-15 Method for producing tetraarylphosphonium halide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003422255 2003-12-19
JP2004362323A JP4544981B2 (en) 2003-12-19 2004-12-15 Method for producing tetraarylphosphonium halide

Publications (2)

Publication Number Publication Date
JP2005200410A true JP2005200410A (en) 2005-07-28
JP4544981B2 JP4544981B2 (en) 2010-09-15

Family

ID=34829328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362323A Expired - Fee Related JP4544981B2 (en) 2003-12-19 2004-12-15 Method for producing tetraarylphosphonium halide

Country Status (1)

Country Link
JP (1) JP4544981B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307827A (en) * 2021-06-04 2021-08-27 山东师范大学实验厂 Aqueous phase synthesis method of tetraphenylphosphine phenolate
CN113735901A (en) * 2021-09-16 2021-12-03 西安思科赛实业有限公司 Preparation method of tetraphenyl phosphorus iodide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169892A (en) * 1994-12-16 1996-07-02 Hokko Chem Ind Co Ltd Tetra(substituted phenyl)phosphonium tetra(substituted phenyl)borate and industrial antiseptic and antifungal agent
JPH09328492A (en) * 1996-06-07 1997-12-22 Ube Ind Ltd Production of tetraarylphosphonium halide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169892A (en) * 1994-12-16 1996-07-02 Hokko Chem Ind Co Ltd Tetra(substituted phenyl)phosphonium tetra(substituted phenyl)borate and industrial antiseptic and antifungal agent
JPH09328492A (en) * 1996-06-07 1997-12-22 Ube Ind Ltd Production of tetraarylphosphonium halide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307827A (en) * 2021-06-04 2021-08-27 山东师范大学实验厂 Aqueous phase synthesis method of tetraphenylphosphine phenolate
CN113735901A (en) * 2021-09-16 2021-12-03 西安思科赛实业有限公司 Preparation method of tetraphenyl phosphorus iodide

Also Published As

Publication number Publication date
JP4544981B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
KR101482594B1 (en) Method for producing biphenyl derivative
JP5954080B2 (en) Method for producing asymmetric tetraarylphosphonium halide and method for producing carbonic acid diester
JP4544981B2 (en) Method for producing tetraarylphosphonium halide
EP0384392A1 (en) Cyanation of haloaromatics utilizing catalysts generated in situ starting with NiCl2 or NiCl2 6H2O
JP2005238218A (en) Palladium catalyst for carbon-carbon bond forming reaction and production method of olefin group-substituted aromatic compound using the palladium catalyst
WO2007052516A1 (en) Process for production of biphenyl derivatives
JPH09183745A (en) New derivative of 2,3,6-trifluorophenol and production of the same
JPH09328492A (en) Production of tetraarylphosphonium halide
WO2013081034A1 (en) Halogenation catalyst and method for producing same
JP6498048B2 (en) Fluorine-containing organic compound and method for producing biaryl compound using this and Grignard reagent
JP2008536895A (en) Process for producing 1,3,5-trifluoro-2,4,6-trichlorobenzene from a fluorobenzene derivative
JP6003896B2 (en) Method for producing chloroalkylsulfonyl chloride
JP6124015B2 (en) Method for producing pentafluorosulfanylbenzoic acid
JP3514427B2 (en) Method for producing brominated trifluoromethylbenzenes
US7102042B2 (en) Method for producing substituted fluorene monomers
JP2557382B2 (en) Method for producing metabrominated bifunol
JP2023150474A (en) Production method of fluorine-containing aromatic compound
JP2753858B2 (en) Manufacturing method of nitriles
JP2527596B2 (en) Method for producing fluorobenzaldehydes
JPH10114736A (en) Production of 2-methyl-1-(4-(alkylthio)phenyl)-2-morpholino-1-propanone
JPH04234825A (en) Process for producing benzotrifluoride compound
WO2021240331A1 (en) Process for the preparation of 3,5-dichloro-2,2,2-trifluoroacetophenone
JP4839678B2 (en) Method for producing dihalogenated biaryl derivative
JP4383027B2 (en) Method for producing (thiophene / phenylene) co-oligomers
JP5837843B2 (en) Method for producing polycyclic aromatic compound having halogen atom

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4544981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees