[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013081034A1 - Halogenation catalyst and method for producing same - Google Patents

Halogenation catalyst and method for producing same Download PDF

Info

Publication number
WO2013081034A1
WO2013081034A1 PCT/JP2012/080866 JP2012080866W WO2013081034A1 WO 2013081034 A1 WO2013081034 A1 WO 2013081034A1 JP 2012080866 W JP2012080866 W JP 2012080866W WO 2013081034 A1 WO2013081034 A1 WO 2013081034A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
catalyst
halogenated
halogenated catalyst
oxide
Prior art date
Application number
PCT/JP2012/080866
Other languages
French (fr)
Japanese (ja)
Inventor
勇太 仁科
佳志 高見
Original Assignee
国立大学法人岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岡山大学 filed Critical 国立大学法人岡山大学
Publication of WO2013081034A1 publication Critical patent/WO2013081034A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/88Ferrosilicates; Ferroaluminosilicates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • C07C17/12Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms in the ring of aromatic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the present invention relates to a halogenation catalyst for halogenating an aromatic ring and a method for producing the same.
  • the present invention also relates to a method for producing a halogen compound using a halogenated catalyst.
  • Non-Patent Document 1 describes a method of synthesizing bromobenzene by reacting benzene and bromine in the presence of mercury oxide and sulfuric acid.
  • this method it is necessary to add mercury oxide in a stoichiometric amount or more.
  • this method has a problem that a neutralization step is required after the reaction because the reaction is performed under acidic conditions.
  • Patent Document 1 describes a method of synthesizing bromobenzene by reacting benzene and bromine using sodium lauryl sulfate as a catalyst.
  • this method has a problem that the reaction time is long and a neutralization step is required after the reaction because an aqueous sulfuric acid solution is used as a solvent.
  • Non-Patent Document 2 describes a method of synthesizing 1,2,4,5-tetrabromobenzene by reacting benzene and bromine using aluminum bromide as a catalyst.
  • Patent Document 2 describes a method of synthesizing 2-bromo-1,4-difluorobenzene by reacting 1,4-difluorobenzene and bromine using iron powder as a catalyst.
  • these catalysts are uniformly dissolved in the reaction solution, it is difficult to separate from the product after the reaction, and there is a problem that the catalyst cannot be reused.
  • Non-Patent Document 3 describes a method of synthesizing bromobenzene by reacting benzene and bromine in the presence of zeolite.
  • this synthesis method has a problem that an excessive amount of zeolite is required with respect to the amount of bromobenzene and bromine.
  • the present invention has been made to solve the above problems, and provides a halogenation catalyst for halogenating an aromatic ring, which can obtain a halogen compound in a high yield and can be easily recovered. It is intended. Moreover, it aims at providing the manufacturing method of such a halogenated catalyst. Furthermore, it aims at providing the method of manufacturing a halogen compound using such a halogenated catalyst.
  • a halogenation catalyst for halogenating an aromatic ring wherein iron oxide or zinc oxide is supported on a support composed of a composite oxide containing silicon and aluminum.
  • the halogenation catalyst is preferably a bromination catalyst for brominating an aromatic ring. It is also preferable to contain 0.1 to 10 mmol of iron element or zinc element with respect to 1 g of the composite oxide. It is also preferable that iron oxide is supported on the carrier made of the composite oxide.
  • the ratio (Si / Al) of silicon atoms to aluminum atoms in the composite oxide is 1 to 1000. It is also preferable that the composite oxide is zeolite.
  • the said subject is a manufacturing method of the said halogenated catalyst, Comprising: The 1st process which mixes the complex oxide containing a silicon and aluminum, and an iron salt or a zinc salt in a solvent, and obtained by the said 1st process.
  • a method for producing a halogenated catalyst comprising: a second step of removing the solvent from the obtained mixture; and a third step of heating the mixture from which the solvent has been removed in the second step in an oxidizable atmosphere. It is also solved by providing.
  • the subject is a method for producing a halogen compound using the halogenated catalyst; and a method for producing a halogen compound comprising reacting a compound having an aromatic ring with halogen in the presence of the halogenated catalyst. It is also solved by providing.
  • a halogen compound can be obtained in a high yield.
  • the halogenated catalyst of the present invention is easily separated from the reaction system and easily recovered. According to the production method of the present invention, such a halogenated catalyst can be easily obtained. If the halogenated catalyst of the present invention is used, a halogen compound can be easily produced.
  • FIG. 6 is a diagram showing the results of analysis by powder X-ray diffraction of Na- ⁇ zeolite and Na- ⁇ zeolite supporting iron oxide.
  • the halogenation catalyst of the present invention is a catalyst for halogenating an aromatic ring, and iron oxide or zinc oxide is supported on a support made of a composite oxide containing silicon and aluminum.
  • the reaction system becomes a so-called heterogeneous system, and the catalyst can be easily separated and recovered from the reaction system.
  • the composite oxide used in the present invention contains at least silicon (Si), aluminum (Al), and oxygen (O). Specifically, it is a composite oxide containing a silicon oxide and an aluminum oxide, in which at least a part of silicon atoms and aluminum atoms are chemically bonded through oxygen.
  • the ratio of silicon atom to aluminum atom (Si / Al) in the composite oxide is preferably 1 to 1000, more preferably 2 to 500, and 5 to 300. Further preferred.
  • Specific examples of the complex oxide used in the present invention preferably include zeolite, silica alumina, and aluminosilicate, and more preferably zeolite.
  • iron element or zinc element it is preferable that 0.1 to 10 mmol of iron element or zinc element is contained with respect to 1 g of the composite oxide. If the content of the iron element or zinc element relative to 1 g of the composite oxide is less than 0.1 mmol, the reactivity of the halogenation reaction may be lowered, more preferably 0.2 mmol or more, and even more preferably 0. .5 mmol or more. On the other hand, when the content of the iron element or zinc element with respect to 1 g of the composite oxide exceeds 10 mmol, the production cost may increase, more preferably 8 mmol or less, and further preferably 5 mmol or less.
  • the iron element and the zinc element are supported in an oxide state on a support made of a composite oxide containing silicon and aluminum.
  • iron oxide is supported on a support made of a composite oxide containing silicon and aluminum.
  • the iron oxide supported on the carrier is preferably hematite.
  • a preferred method for producing the halogenated catalyst of the present invention comprises a first step of mixing a composite oxide containing silicon and aluminum, an iron salt or a zinc salt in a solvent, and a mixture obtained in the first step. A second step of removing the solvent and a third step of heating the mixture from which the solvent has been removed in the second step in an oxidizable atmosphere.
  • the iron salt or zinc salt used in the first step is not particularly limited as long as it is a metal salt that becomes an oxide when heated.
  • the metal salts include iron chloride, iron nitrate, iron sulfate, iron acetate, iron acetylacetonate, zinc chloride, zinc nitrate, zinc sulfate, zinc acetate, zinc acetylacetonate, etc., which are inexpensive and easily available. Can do.
  • the solvent used in the first step is not particularly limited as long as the metal salt is dissolved and can be easily distilled off, and examples thereof include polar organic solvents such as alcohol and water. Of these, alcohols having 3 or less carbon atoms, particularly methanol, are preferred.
  • the mixing operation in the first step is not particularly limited.
  • the complex oxide may be added to and mixed with the metal salt solution, or the metal salt may be added and dissolved in a mixture of the complex oxide and the solvent.
  • the method for removing the solvent in the second step is not particularly limited, and methods such as reduced pressure and heating can be employed.
  • the mixture from which the solvent has been removed is heated in an oxidizable atmosphere.
  • the oxidizable atmosphere here means an atmosphere in which the metal salt contained in the mixture can be oxidized by heating. Therefore, the atmosphere for heating may be an atmosphere containing oxygen, and heating in the air is simple and preferable.
  • the heating temperature is preferably 150 to 500 ° C.
  • the heating time is set in relation to the heating temperature, but may be set as appropriate so that the metal salt contained in the mixture becomes an oxide.
  • the heating method is not particularly limited, and examples thereof include a method of heating in an oven and a method of heating using a heater.
  • a halogen compound can be produced by reacting a compound having an aromatic ring with halogen.
  • a hydrogen atom on the aromatic ring is substituted with a halogen atom by an aromatic electrophilic substitution reaction.
  • a halogen compound can be obtained with a sufficient yield.
  • the compound having an aromatic ring may be a compound having an aromatic ring and at least one of the atoms bonded to the carbon atom of the aromatic ring being a hydrogen atom.
  • the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, and biphenyl. Further, it may be a 5-membered heteroaromatic ring such as a thiophene ring, a pyrrole ring or a furan ring, or a 6-membered heteroaromatic ring such as a pyridine ring or a pyrimidine ring. Moreover, the compound which these aromatic rings condensed may be sufficient. Examples of the substituent introduced into these aromatic rings include halogen, amino group, hydroxy group, alkoxy group, alkyl group, aryl group, cyano group, nitro group and the like. A plurality of such substituents may be introduced.
  • the reaction temperature when producing the halogen compound is usually room temperature to 150 ° C., and the reaction time is appropriately set in relation to the reaction temperature.
  • the molar ratio of the starting compound having an aromatic ring and the halogen is not particularly limited. It may be equivalent, or one may be in excess.
  • the amount of the halogenated catalyst is not particularly limited.
  • the amount of the halogenated catalyst used per 1 mol of the raw material is preferably 0.5 mol or less, and more preferably 0.1 mol or less, as the number of mols of iron element or zinc element.
  • the usage-amount of the halogenated catalyst with respect to 1 mol of raw materials is 0.001 mol or more normally as a mol number of an iron element or a zinc element.
  • the halogenation catalyst is preferably a bromination catalyst for brominating an aromatic ring.
  • the halogen used in the halogenation reaction in the present invention include chlorine, bromine and iodine. Among these, when the halogenated catalyst of the present invention is used for bromination reaction, the reaction proceeds efficiently.
  • a preferred embodiment of the present invention is to separate the halogenated catalyst from the reaction system after completion of the reaction. More preferably, the separated halogenated catalyst is reused. Since the halogenated catalyst of the present invention is a so-called heterogeneous catalyst, the halogenated catalyst can be separated by a simple method such as centrifugation or filtration after completion of the halogenation reaction. At this time, the halogenated catalyst separated from the reaction system is preferably reused after being heated. As the heating conditions, the same conditions as in the third step in the method for producing a halogenated catalyst are preferably employed. Thus, even when the halogenated catalyst of the present invention is separated and reused, a halogen compound can be obtained in high yield. Therefore, the halogenated catalyst of the present invention is excellent in terms of environment and cost.
  • Example 1 (Examination of metal species supported on a carrier)
  • Example 1 is an example in which the reactivity of the halogenation reaction was examined when the metal species supported on the carrier was changed. Specifically, halogenation catalysts each having iron, zinc, manganese, copper, chromium, and cobalt supported on a carrier were prepared, and the reactivity of bromination reaction and chlorination reaction using these catalysts was examined. Further, the halogenated catalyst used in Reaction Example 1-1 was analyzed by a powder X-ray diffraction method.
  • Reaction Example 1-2 0.14 g (1 mmol) of zinc chloride (ZnCl 2 ) was used as the metal salt, and in Reaction Example 1-3, manganese (II) chloride tetrahydrate was used as the metal salt.
  • Reaction Examples 1-1 to 8 (bromination reaction) Under an argon atmosphere (1 atm), the halogenated catalyst shown in Table 1 (0.01 g), benzene (1 mL) and bromine (0.08 g, 0.5 mmol) were added to a test tube using dichloromethane as a solvent. The mixture was heated and stirred for 1.5 hours. Thereafter, the reaction mixture was treated with an aqueous sodium thiosulfate solution, and organic substances were extracted with hexane. The organic phase was analyzed by gas chromatography to determine the yield of bromobenzene.
  • the hematite used in Reaction Example 1-8 is iron (III) oxide manufactured by Wako Pure Chemical Industries, Ltd. The results are shown in Table 1.
  • the reaction formula is as shown in the following formula (I).
  • Reaction Example 1-9 (bromination reaction) Under an argon atmosphere (1 atm), the halogenated catalyst of Reaction Example 1-1 (0.05 g), benzene (6 mL) and bromine (3.2 g, 20 mmol) were added to a 50 mL eggplant flask, and the top of the eggplant flask was added. A balloon filled with argon was attached. After stirring with heating at 40 ° C. for 2 hours, the reaction mixture was treated with an aqueous sodium thiosulfate solution, and organic substances were extracted with hexane. The organic phase was analyzed by gas chromatography to determine the yield of bromobenzene. The yield of bromobenzene was 87%.
  • the reaction formula is as shown in the following formula (II).
  • Reaction Example 1-10 (chlorination reaction)
  • the halogenated catalyst (0.01 g) and benzene (1 mL) of Reaction Example 1-1 were put in a test tube, and the air in the test tube was replaced with chlorine and sealed, and a chlorine atmosphere (1 atm) was obtained. At this time, the chlorine added to the test tube was 2 mmol.
  • the reaction mixture was treated with an aqueous sodium thiosulfate solution, and organic substances were extracted with hexane. The organic phase was analyzed by gas chromatography to determine the yield of chlorobenzene. The yield of chlorobenzene was 77%.
  • the reaction formula is as shown in the following formula (III).
  • Example 2 is an example in which the reactivity of the halogenation reaction when the carrier was changed was examined. Specifically, except that the support was changed as shown in Table 2, a halogenated catalyst was prepared in the same manner as when the halogenated catalyst of Reaction Example 1-1 was prepared, and the reactivity of the bromination reaction was examined. .
  • the halogenation catalyst of Reaction Example 1-1 that is, the halogenation catalyst in which iron oxide is supported on a zeolite carrier was used.
  • a halogenated catalyst was prepared using aluminum oxide as a carrier that is not a complex oxide, and in Reaction Example 2-5, silicon dioxide was used as a carrier that was not a complex oxide. is there.
  • Example 3 (Examination of reusability)
  • Example 3 is an example of examining whether or not the halogenated catalyst can be separated from the reaction system and reused.
  • the bromination reaction of benzene was performed using the halogenation catalyst of Reaction Example 1-1, that is, the halogenation catalyst in which iron oxide is supported on a zeolite carrier.
  • the reaction solution was filtered through a membrane filter to recover the halogenated catalyst, washed with a very small amount of hexane, and then heated in the atmosphere at 300 ° C. for 1 hour using an electric furnace.
  • the halogenated catalyst thus recovered was reused in the next reaction.
  • the reactivity of the bromination reaction when this operation was repeated was examined.
  • the conditions for the bromination reaction are the same as in Reaction Example 1-1 of Example 1, except that 3 mL of benzene and 0.24 g (1.5 mmol) of bromine were used and the reaction time was 2 hours. The results are shown in Table 3.
  • Example 4 is an example in which the reactivity of the bromination reaction when the reaction substrate was changed was examined. Specifically, bromination reaction was carried out using the reaction substrate shown in Table 4 using the halogenation catalyst used in Reaction Example 1-1, that is, the halogenation catalyst in which iron oxide was supported on a zeolite carrier. The conditions for the bromination reaction are as shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A halogenation catalyst for halogenating an aromatic ring, which is characterized by being obtained by having iron oxide or zinc oxide supported by a carrier that is formed of a complex oxide that contains silicon and aluminum. In this connection, it is preferable that the halogenation catalyst is a bromination catalyst for brominating an aromatic ring. It is also preferable that 0.1-10 mmol of elemental iron or elemental zinc is contained per 1 g of the complex oxide. It is also preferable that the ratio of the silicon atoms to the aluminum atoms in the complex oxide, namely Si/Al is 1-1,000. Consequently, a halide is able to be obtained with a high yield.

Description

ハロゲン化触媒及びその製造方法Halogenated catalyst and method for producing the same
 本発明は、芳香環をハロゲン化するためのハロゲン化触媒及びその製造方法に関する。また、本発明は、ハロゲン化触媒を用いてハロゲン化合物を製造する方法に関する。 The present invention relates to a halogenation catalyst for halogenating an aromatic ring and a method for producing the same. The present invention also relates to a method for producing a halogen compound using a halogenated catalyst.
 従来、有機化学工業の分野において、ハロゲン化合物は重要な中間体あるいは最終生成物となっており、その製造方法については多くの先行技術が知られている。例えば、最も単純な芳香族化合物であるベンゼンの臭素化反応は、これまで数多く報告されている。 Conventionally, in the field of the organic chemical industry, halogen compounds have become important intermediates or final products, and many prior arts are known for their production methods. For example, a number of bromination reactions of benzene, the simplest aromatic compound, have been reported so far.
 非特許文献1には、酸化水銀及び硫酸の存在下で、ベンゼンと臭素とを反応させブロモベンゼンを合成する方法が記載されている。しかしながら、この方法では、化学量論量以上の酸化水銀を加える必要があった。また、この方法は、酸性条件下で反応を行うため反応後に中和工程が必要になるという問題もあった。 Non-Patent Document 1 describes a method of synthesizing bromobenzene by reacting benzene and bromine in the presence of mercury oxide and sulfuric acid. However, in this method, it is necessary to add mercury oxide in a stoichiometric amount or more. In addition, this method has a problem that a neutralization step is required after the reaction because the reaction is performed under acidic conditions.
 特許文献1には、ラウリル硫酸ナトリウムを触媒として、ベンゼンと臭素とを反応させブロモベンゼンを合成する方法が記載されている。しかしながら、この方法は、反応時間が長いうえに、硫酸水溶液を溶媒としているため反応後に中和工程が必要になるという問題があった。 Patent Document 1 describes a method of synthesizing bromobenzene by reacting benzene and bromine using sodium lauryl sulfate as a catalyst. However, this method has a problem that the reaction time is long and a neutralization step is required after the reaction because an aqueous sulfuric acid solution is used as a solvent.
 非特許文献2には、臭化アルミニウムを触媒として、ベンゼンと臭素とを反応させ1,2,4,5-テトラブロモベンゼンを合成する方法が記載されている。また、特許文献2には、鉄粉を触媒として、1,4-ジフルオロベンゼンと臭素とを反応させ2-ブロモ-1,4-ジフルオロベンゼンを合成する方法が記載されている。しかしながら、これらの触媒は反応溶液中に均一状態で溶解しているため、反応後に生成物と分離するのが困難であり、触媒が再利用できないという問題があった。 Non-Patent Document 2 describes a method of synthesizing 1,2,4,5-tetrabromobenzene by reacting benzene and bromine using aluminum bromide as a catalyst. Patent Document 2 describes a method of synthesizing 2-bromo-1,4-difluorobenzene by reacting 1,4-difluorobenzene and bromine using iron powder as a catalyst. However, since these catalysts are uniformly dissolved in the reaction solution, it is difficult to separate from the product after the reaction, and there is a problem that the catalyst cannot be reused.
 非特許文献3には、ゼオライトの存在下で、ベンゼンと臭素とを反応させブロモベンゼンを合成する方法が記載されている。しかしながら、この合成法は、ブロモベンゼン及び臭素の量に対して過剰重量のゼオライトが必要であるという問題があった。 Non-Patent Document 3 describes a method of synthesizing bromobenzene by reacting benzene and bromine in the presence of zeolite. However, this synthesis method has a problem that an excessive amount of zeolite is required with respect to the amount of bromobenzene and bromine.
US2005/0137431 A1US2005 / 0137431 A1 特開平7-285896号公報Japanese Patent Laid-Open No. 7-285896
 本発明は上記課題を解決するためになされたものであり、ハロゲン化合物を高収率で得ることが可能で、かつ回収容易である、芳香環をハロゲン化するためのハロゲン化触媒を提供することを目的とするものである。また、そのようなハロゲン化触媒の製造方法を提供することを目的とする。さらには、そのようなハロゲン化触媒を用いてハロゲン化合物を製造する方法を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a halogenation catalyst for halogenating an aromatic ring, which can obtain a halogen compound in a high yield and can be easily recovered. It is intended. Moreover, it aims at providing the manufacturing method of such a halogenated catalyst. Furthermore, it aims at providing the method of manufacturing a halogen compound using such a halogenated catalyst.
 上記課題は、ケイ素及びアルミニウムを含有する複合酸化物からなる担体に酸化鉄又は酸化亜鉛が担持されてなることを特徴とする芳香環をハロゲン化するためのハロゲン化触媒を提供することによって解決される。このとき、前記ハロゲン化触媒が芳香環を臭素化するための臭素化触媒であることが好ましい。前記複合酸化物1gに対して0.1~10mmolの鉄元素又は亜鉛元素を含有することも好ましい。前記複合酸化物からなる担体に酸化鉄が担持されてなることも好ましい。 The above-mentioned problems are solved by providing a halogenation catalyst for halogenating an aromatic ring, wherein iron oxide or zinc oxide is supported on a support composed of a composite oxide containing silicon and aluminum. The At this time, the halogenation catalyst is preferably a bromination catalyst for brominating an aromatic ring. It is also preferable to contain 0.1 to 10 mmol of iron element or zinc element with respect to 1 g of the composite oxide. It is also preferable that iron oxide is supported on the carrier made of the composite oxide.
 前記複合酸化物のケイ素原子とアルミニウム原子との比(Si/Al)が、1~1000であることも好ましい。前記複合酸化物が、ゼオライトであることも好ましい。 It is also preferable that the ratio (Si / Al) of silicon atoms to aluminum atoms in the composite oxide is 1 to 1000. It is also preferable that the composite oxide is zeolite.
 また、上記課題は、上記ハロゲン化触媒の製造方法であって;ケイ素及びアルミニウムを含有する複合酸化物と、鉄塩又は亜鉛塩を溶媒中で混合する第1工程と、前記第1工程で得られた混合物から溶媒を除去する第2工程と、前記第2工程で溶媒が除去された混合物を酸化可能雰囲気下で加熱する第3工程とを備えることを特徴とするハロゲン化触媒の製造方法を提供することによっても解決される。 Moreover, the said subject is a manufacturing method of the said halogenated catalyst, Comprising: The 1st process which mixes the complex oxide containing a silicon and aluminum, and an iron salt or a zinc salt in a solvent, and obtained by the said 1st process. A method for producing a halogenated catalyst, comprising: a second step of removing the solvent from the obtained mixture; and a third step of heating the mixture from which the solvent has been removed in the second step in an oxidizable atmosphere. It is also solved by providing.
 さらに、上記課題は、上記ハロゲン化触媒を用いたハロゲン化合物の製造方法であって;芳香環を有する化合物とハロゲンとを前記ハロゲン化触媒存在下で反応させることを特徴とするハロゲン化合物の製造方法を提供することによっても解決される。 Furthermore, the subject is a method for producing a halogen compound using the halogenated catalyst; and a method for producing a halogen compound comprising reacting a compound having an aromatic ring with halogen in the presence of the halogenated catalyst. It is also solved by providing.
 本発明のハロゲン化触媒によれば、ハロゲン化合物を高収率で得ることが可能となる。また、本発明のハロゲン化触媒は、反応系から分離しやすく回収が容易である。本発明の製造方法によれば、このようなハロゲン化触媒が簡便に得られる。本発明のハロゲン化触媒を用いれば、ハロゲン化合物を簡便に製造することができる。 According to the halogenation catalyst of the present invention, a halogen compound can be obtained in a high yield. In addition, the halogenated catalyst of the present invention is easily separated from the reaction system and easily recovered. According to the production method of the present invention, such a halogenated catalyst can be easily obtained. If the halogenated catalyst of the present invention is used, a halogen compound can be easily produced.
酸化鉄が担持されたNa-βゼオライト及びNa-βゼオライトの粉末X線回折法による分析結果を示した図である。FIG. 6 is a diagram showing the results of analysis by powder X-ray diffraction of Na-β zeolite and Na-β zeolite supporting iron oxide.
 本発明のハロゲン化触媒は、芳香環をハロゲン化するための触媒であり、ケイ素及びアルミニウムを含有する複合酸化物からなる担体に酸化鉄又は酸化亜鉛が担持されているものである。本発明のハロゲン化触媒を用いて芳香環をハロゲン化すると、反応系がいわゆる不均一系となり、反応系からの触媒の分離回収が容易になる。 The halogenation catalyst of the present invention is a catalyst for halogenating an aromatic ring, and iron oxide or zinc oxide is supported on a support made of a composite oxide containing silicon and aluminum. When the aromatic ring is halogenated using the halogenated catalyst of the present invention, the reaction system becomes a so-called heterogeneous system, and the catalyst can be easily separated and recovered from the reaction system.
 ここで本発明で用いられる複合酸化物は、少なくとも、ケイ素(Si)、アルミニウム(Al)、酸素(O)を含有するものである。具体的にはケイ素の酸化物とアルミニウムの酸化物とを含み、少なくとも一部のケイ素原子とアルミニウム原子とが酸素を介し化学的に結合されてなる複合酸化物である。 Here, the composite oxide used in the present invention contains at least silicon (Si), aluminum (Al), and oxygen (O). Specifically, it is a composite oxide containing a silicon oxide and an aluminum oxide, in which at least a part of silicon atoms and aluminum atoms are chemically bonded through oxygen.
 本発明において、複合酸化物のケイ素原子とアルミニウム原子との比(Si/Al)が、1~1000であることが好適であり、2~500であることがより好適であり、5~300がさらに好適である。本発明で用いられる具体的な複合酸化物としては、好適にはゼオライト、シリカアルミナ、アルミノシリケートを挙げることができ、より好適にはゼオライトである。 In the present invention, the ratio of silicon atom to aluminum atom (Si / Al) in the composite oxide is preferably 1 to 1000, more preferably 2 to 500, and 5 to 300. Further preferred. Specific examples of the complex oxide used in the present invention preferably include zeolite, silica alumina, and aluminosilicate, and more preferably zeolite.
 また、複合酸化物1gに対して0.1~10mmolの鉄元素又は亜鉛元素を含有することが好適である。複合酸化物1gに対する鉄元素又は亜鉛元素の含有量が0.1mmol未満であるとハロゲン化反応の反応性が低下するおそれがあり、より好適には0.2mmol以上であり、さらに好適には0.5mmol以上である。一方、複合酸化物1gに対する鉄元素又は亜鉛元素の含有量が10mmolを超えると製造コストが上昇するおそれがあり、より好適には8mmol以下であり、さらに好適には5mmol以下である。本発明において、鉄元素及び亜鉛元素はケイ素及びアルミニウムを含有する複合酸化物からなる担体に酸化物の状態で担持されている。 Further, it is preferable that 0.1 to 10 mmol of iron element or zinc element is contained with respect to 1 g of the composite oxide. If the content of the iron element or zinc element relative to 1 g of the composite oxide is less than 0.1 mmol, the reactivity of the halogenation reaction may be lowered, more preferably 0.2 mmol or more, and even more preferably 0. .5 mmol or more. On the other hand, when the content of the iron element or zinc element with respect to 1 g of the composite oxide exceeds 10 mmol, the production cost may increase, more preferably 8 mmol or less, and further preferably 5 mmol or less. In the present invention, the iron element and the zinc element are supported in an oxide state on a support made of a composite oxide containing silicon and aluminum.
 ハロゲン化合物を高収率で得る観点から、ケイ素及びアルミニウムを含有する複合酸化物からなる担体に酸化鉄が担持されてなることが好適である。このとき、担体に担持されている酸化鉄がヘマタイトであることが好ましい。 From the viewpoint of obtaining a halogen compound in a high yield, it is preferable that iron oxide is supported on a support made of a composite oxide containing silicon and aluminum. At this time, the iron oxide supported on the carrier is preferably hematite.
 本発明のハロゲン化触媒の好適な製造方法は、ケイ素及びアルミニウムを含有する複合酸化物と、鉄塩又は亜鉛塩を溶媒中で混合する第1工程と、該第1工程で得られた混合物から溶媒を除去する第2工程と、該第2工程で溶媒が除去された混合物を酸化可能雰囲気下で加熱する第3工程とを備えるものである。 A preferred method for producing the halogenated catalyst of the present invention comprises a first step of mixing a composite oxide containing silicon and aluminum, an iron salt or a zinc salt in a solvent, and a mixture obtained in the first step. A second step of removing the solvent and a third step of heating the mixture from which the solvent has been removed in the second step in an oxidizable atmosphere.
 第1工程で用いられる鉄塩又は亜鉛塩は、加熱することにより酸化物となる金属塩であれば特に限定されない。当該金属塩としては、例えば安価で入手容易な塩化鉄、硝酸鉄、硫酸鉄、酢酸鉄、鉄アセチルアセトナート、塩化亜鉛、硝酸亜鉛、硫酸亜鉛、酢酸亜鉛、亜鉛アセチルアセトナートなどを例示することができる。第1工程で用いられる溶媒は、上記金属塩が溶解し、容易に留去させることのできるものであればよく、例えばアルコールなどの極性有機溶媒や水を例示することができる。中でも炭素数が3以下のアルコール、特にメタノールが好適である。また、第1工程における混合操作は特に限定されない。上記金属塩の溶液に複合酸化物を加えて混合してもよいし、複合酸化物及び溶媒の混合物に上記金属塩を加えて溶解させてもよい。 The iron salt or zinc salt used in the first step is not particularly limited as long as it is a metal salt that becomes an oxide when heated. Examples of the metal salts include iron chloride, iron nitrate, iron sulfate, iron acetate, iron acetylacetonate, zinc chloride, zinc nitrate, zinc sulfate, zinc acetate, zinc acetylacetonate, etc., which are inexpensive and easily available. Can do. The solvent used in the first step is not particularly limited as long as the metal salt is dissolved and can be easily distilled off, and examples thereof include polar organic solvents such as alcohol and water. Of these, alcohols having 3 or less carbon atoms, particularly methanol, are preferred. Moreover, the mixing operation in the first step is not particularly limited. The complex oxide may be added to and mixed with the metal salt solution, or the metal salt may be added and dissolved in a mixture of the complex oxide and the solvent.
 第2工程において溶媒を除去する方法は、特に限定されず、減圧、加熱等の方法を採用することができる。 The method for removing the solvent in the second step is not particularly limited, and methods such as reduced pressure and heating can be employed.
 第3工程において、溶媒が除去された混合物を酸化可能雰囲気下で加熱する。ここでいう酸化可能雰囲気下とは、加熱することによって、上記混合物に含まれる金属塩が酸化することが可能な雰囲気のことである。したがって、加熱する際の雰囲気が酸素を含有する雰囲気であればよく、大気中で加熱するのが簡便であり好ましい。加熱温度は、150~500℃であることが好ましい。加熱時間は加熱温度との関係で設定されるが、上記混合物に含まれる金属塩が酸化物になるように適宜設定すればよい。また、加熱方法は、特に限定はされず、オーブン中で加熱する方法やヒーターを用いて加熱する方法などが例示される。 In the third step, the mixture from which the solvent has been removed is heated in an oxidizable atmosphere. The oxidizable atmosphere here means an atmosphere in which the metal salt contained in the mixture can be oxidized by heating. Therefore, the atmosphere for heating may be an atmosphere containing oxygen, and heating in the air is simple and preferable. The heating temperature is preferably 150 to 500 ° C. The heating time is set in relation to the heating temperature, but may be set as appropriate so that the metal salt contained in the mixture becomes an oxide. The heating method is not particularly limited, and examples thereof include a method of heating in an oven and a method of heating using a heater.
 本発明のハロゲン化触媒を用いて、芳香環を有する化合物とハロゲンとを反応させハロゲン化合物を製造することができる。本発明のハロゲン化触媒を用いると芳香族求電子置換反応により芳香環上の水素原子がハロゲン原子に置換される。そして、収率良くハロゲン化合物を得ることができる。 Using the halogenation catalyst of the present invention, a halogen compound can be produced by reacting a compound having an aromatic ring with halogen. When the halogenated catalyst of the present invention is used, a hydrogen atom on the aromatic ring is substituted with a halogen atom by an aromatic electrophilic substitution reaction. And a halogen compound can be obtained with a sufficient yield.
 ここで、芳香環を有する化合物とは、芳香環を有し芳香環の炭素原子に結合している原子の少なくとも1つが水素原子であるものであればよい。芳香環としては、ベンゼン環、ナフタレン環、アントラセン環、ビフェニルなどが例示される。また、チオフェン環、ピロール環、フラン環などの五員複素芳香環、ピリジン環、ピリミジン環などの六員複素芳香環であっても構わない。また、これらの芳香環が縮合した化合物であっても構わない。これらの芳香環に導入される置換基は、ハロゲン、アミノ基、ヒドロキシ基、アルコキシ基、アルキル基、アリール基、シアノ基、ニトロ基などが例示される。当該置換基は複数導入されても構わない。 Here, the compound having an aromatic ring may be a compound having an aromatic ring and at least one of the atoms bonded to the carbon atom of the aromatic ring being a hydrogen atom. Examples of the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, and biphenyl. Further, it may be a 5-membered heteroaromatic ring such as a thiophene ring, a pyrrole ring or a furan ring, or a 6-membered heteroaromatic ring such as a pyridine ring or a pyrimidine ring. Moreover, the compound which these aromatic rings condensed may be sufficient. Examples of the substituent introduced into these aromatic rings include halogen, amino group, hydroxy group, alkoxy group, alkyl group, aryl group, cyano group, nitro group and the like. A plurality of such substituents may be introduced.
 ハロゲン化合物を製造するときの反応温度は、通常、室温~150℃であり、反応時間は反応温度との関係で適宜設定される。ハロゲン化合物を製造するとき、原料の芳香環を有する化合物とハロゲンとのmol比は特に限定されない。当量であっても構わないし、一方が過剰量であっても構わない。ハロゲン化触媒の量も特に限定されない。原料1molに対するハロゲン化触媒の使用量は、鉄元素又は亜鉛元素のmol数として、0.5mol以下であることが好適あり、0.1mol以下であることがより好適である。また、原料1molに対するハロゲン化触媒の使用量は、鉄元素又は亜鉛元素のmol数として、通常、0.001mol以上である。 The reaction temperature when producing the halogen compound is usually room temperature to 150 ° C., and the reaction time is appropriately set in relation to the reaction temperature. When the halogen compound is produced, the molar ratio of the starting compound having an aromatic ring and the halogen is not particularly limited. It may be equivalent, or one may be in excess. The amount of the halogenated catalyst is not particularly limited. The amount of the halogenated catalyst used per 1 mol of the raw material is preferably 0.5 mol or less, and more preferably 0.1 mol or less, as the number of mols of iron element or zinc element. Moreover, the usage-amount of the halogenated catalyst with respect to 1 mol of raw materials is 0.001 mol or more normally as a mol number of an iron element or a zinc element.
 本発明において、上記ハロゲン化触媒が芳香環を臭素化するための臭素化触媒であることが好適である。本発明におけるハロゲン化反応に使用されるハロゲンとしては、塩素、臭素、ヨウ素を挙げることができる。中でも本発明のハロゲン化触媒を臭素化反応に用いると効率良く反応が進行する。 In the present invention, the halogenation catalyst is preferably a bromination catalyst for brominating an aromatic ring. Examples of the halogen used in the halogenation reaction in the present invention include chlorine, bromine and iodine. Among these, when the halogenated catalyst of the present invention is used for bromination reaction, the reaction proceeds efficiently.
 また、本発明の好適な実施形態は、反応終了後に反応系からハロゲン化触媒を分離することである。より好適には、分離したハロゲン化触媒を再使用することである。本発明のハロゲン化触媒は、いわゆる不均一系触媒であるため、ハロゲン化反応の終了後、遠心分離やろ過などの簡易な方法でハロゲン化触媒を分離することができる。このとき、反応系から分離されたハロゲン化触媒は、加熱してから再使用することが好ましい。加熱条件としてはハロゲン化触媒の製造方法における上記第3工程と同じ条件が好適に採用される。このように、本発明のハロゲン化触媒を分離して再使用した場合にもハロゲン化合物を高収率で得ることができる。したがって本発明のハロゲン化触媒は、環境面、コスト面からも優れている。 Also, a preferred embodiment of the present invention is to separate the halogenated catalyst from the reaction system after completion of the reaction. More preferably, the separated halogenated catalyst is reused. Since the halogenated catalyst of the present invention is a so-called heterogeneous catalyst, the halogenated catalyst can be separated by a simple method such as centrifugation or filtration after completion of the halogenation reaction. At this time, the halogenated catalyst separated from the reaction system is preferably reused after being heated. As the heating conditions, the same conditions as in the third step in the method for producing a halogenated catalyst are preferably employed. Thus, even when the halogenated catalyst of the present invention is separated and reused, a halogen compound can be obtained in high yield. Therefore, the halogenated catalyst of the present invention is excellent in terms of environment and cost.
 以下、実施例を用いて本発明を更に具体的に説明する。 Hereinafter, the present invention will be described more specifically using examples.
実施例1(担体に担持させる金属種の検討)
 実施例1は、担体に担持させる金属種を変えた場合のハロゲン化反応の反応性を検討した例である。具体的には、担体に鉄、亜鉛、マンガン、銅、クロム、コバルトをそれぞれ担持させたハロゲン化触媒を調製し、それら触媒を用いた臭素化反応及び塩素化反応の反応性について検討した。また、反応例1-1で用いたハロゲン化触媒については粉末X線回折法による分析を行った。
Example 1 (Examination of metal species supported on a carrier)
Example 1 is an example in which the reactivity of the halogenation reaction was examined when the metal species supported on the carrier was changed. Specifically, halogenation catalysts each having iron, zinc, manganese, copper, chromium, and cobalt supported on a carrier were prepared, and the reactivity of bromination reaction and chlorination reaction using these catalysts was examined. Further, the halogenated catalyst used in Reaction Example 1-1 was analyzed by a powder X-ray diffraction method.
[ハロゲン化触媒の調製]
 金属塩として塩化鉄(III)六水和物(FeCl・6HO)0.27g(1mmol)を10mlのメタノールに溶かした。得られた溶液に、担体としてゼオライトを1g入れ、室温にて1時間撹拌した。その後、エバポレーターを用いてメタノールを留去し、電気炉を用いて大気中、300℃で1時間加熱し、反応例1-1に用いるハロゲン化触媒を得た。また、表1に示すように、反応例1-2では金属塩として塩化亜鉛(ZnCl)0.14g(1mmol)を用い、反応例1-3では金属塩として塩化マンガン(II)四水和物(MnCl・4HO)0.20g(1mmol)を用い、反応例1-4では金属塩として塩化銅(II)(CuCl)0.13g(1mmol)を用い、反応例1-5では金属塩として塩化クロム(III)六水和物(CrCl・6HO)0.27g(1mmol)を用い、反応例1-6では金属塩として塩化コバルト(II)六水和物(CoCl・6HO)0.24g(1mmol)を用いてぞれぞれハロゲン化触媒を得た。ゼオライトはNa-βゼオライト(触媒学会参照触媒「JRC-Z-B25」、SiO/Al=25/1)を用いた。
[Preparation of halogenated catalyst]
Iron chloride as the metal salt (III) hexahydrate (FeCl 3 · 6H 2 O) 0.27g (1mmol) was dissolved in methanol 10 ml. To the obtained solution, 1 g of zeolite was added as a carrier, and stirred at room temperature for 1 hour. Thereafter, methanol was distilled off using an evaporator, and the mixture was heated in the atmosphere at 300 ° C. for 1 hour using an electric furnace to obtain a halogenated catalyst used in Reaction Example 1-1. Further, as shown in Table 1, in Reaction Example 1-2, 0.14 g (1 mmol) of zinc chloride (ZnCl 2 ) was used as the metal salt, and in Reaction Example 1-3, manganese (II) chloride tetrahydrate was used as the metal salt. Product (MnCl 2 .4H 2 O) 0.20 g (1 mmol) was used, and in Reaction Example 1-4, 0.13 g (1 mmol) of copper (II) chloride (CuCl 2 ) was used as the metal salt, and Reaction Example 1-5 In this example, 0.27 g (1 mmol) of chromium (III) chloride hexahydrate (CrCl 3 · 6H 2 O) is used as the metal salt, and in reaction example 1-6, cobalt (II) chloride hexahydrate (CoCl) is used as the metal salt. The halogenated catalyst was obtained using 0.24 g (1 mmol) of 2.6H 2 O). As the zeolite, Na-β zeolite (Catalyst Society reference catalyst “JRC-Z-B25”, SiO 2 / Al 2 O 3 = 25/1) was used.
[粉末X線回折法による分析]
 X線回折装置を用いて、Cu-Kα線による粉末X線回折法により、上記Na-βゼオライト及び反応例1-1に用いるハロゲン化触媒について分析を行った。その結果を図1に示す。図1に示すように、反応例1-1に用いるハロゲン化触媒においては、ヘマタイト由来のピークが観察され、当該ハロゲン化触媒はヘマタイト(Fe)を含むことがわかった。X線回折装置は、株式会社リガク社製のRINT-2000を用いた。
[Analysis by powder X-ray diffraction method]
Using the X-ray diffractometer, the Na-β zeolite and the halogenated catalyst used in Reaction Example 1-1 were analyzed by powder X-ray diffraction using Cu—Kα rays. The result is shown in FIG. As shown in FIG. 1, in the halogenated catalyst used in Reaction Example 1-1, a peak derived from hematite was observed, and it was found that the halogenated catalyst contained hematite (Fe 2 O 3 ). As the X-ray diffractometer, RINT-2000 manufactured by Rigaku Corporation was used.
反応例1-1~8(臭素化反応)
 アルゴン雰囲気下(1atm)で、ジクロロメタンを溶媒として表1に示したハロゲン化触媒(0.01g)、ベンゼン(1mL)及び臭素(0.08g、0.5mmol)を試験管に加え、40℃で1.5時間加熱撹拌した。その後、反応混合物をチオ硫酸ナトリウム水溶液で処理し、ヘキサンで有機物を抽出した。有機相をガスクロマトグラフィーで分析し、ブロモベンゼンの収率を求めた。反応例1-8で用いたヘマタイトは和光純薬工業株式会社製の酸化鉄(III)である。結果を表1に示す。反応式は下記式(I)の通りである。
Reaction Examples 1-1 to 8 (bromination reaction)
Under an argon atmosphere (1 atm), the halogenated catalyst shown in Table 1 (0.01 g), benzene (1 mL) and bromine (0.08 g, 0.5 mmol) were added to a test tube using dichloromethane as a solvent. The mixture was heated and stirred for 1.5 hours. Thereafter, the reaction mixture was treated with an aqueous sodium thiosulfate solution, and organic substances were extracted with hexane. The organic phase was analyzed by gas chromatography to determine the yield of bromobenzene. The hematite used in Reaction Example 1-8 is iron (III) oxide manufactured by Wako Pure Chemical Industries, Ltd. The results are shown in Table 1. The reaction formula is as shown in the following formula (I).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、ゼオライト担体に担持させる金属種として鉄を用いた場合には、ベンゼンの臭素化反応が、ほぼ定量的に進行した(反応例1-1)。また、ゼオライト担体に担持させる金属種として亜鉛(反応例1-2)を用いた場合も高収率でブロモベンゼンを得ることができた。一方、ゼオライト担体に担持させる金属種としてマンガン(反応例1-3)、銅(反応例1-4)、クロム(反応例1-5)、コバルト(反応例1-6)を用いた場合の収率は低かった。また、ベンゼンの臭素化反応の触媒として単にゼオライトを用いた場合も収率は低かった(反応例1-7)。ベンゼンの臭素化反応の触媒として単に酸化鉄(ヘマタイト)を用いた場合には、臭素化反応はほとんど進行しなかった(反応例1-8)。 As shown in Table 1, when iron was used as the metal species supported on the zeolite carrier, the bromination reaction of benzene proceeded almost quantitatively (Reaction Example 1-1). Also, when zinc (reaction example 1-2) was used as the metal species supported on the zeolite carrier, bromobenzene could be obtained in high yield. On the other hand, in the case where manganese (reaction example 1-3), copper (reaction example 1-4), chromium (reaction example 1-5), and cobalt (reaction example 1-6) are used as metal species to be supported on the zeolite carrier. The yield was low. The yield was also low when zeolite was simply used as the catalyst for the benzene bromination reaction (Reaction Example 1-7). When iron oxide (hematite) was simply used as a catalyst for the benzene bromination reaction, the bromination reaction hardly proceeded (Reaction Example 1-8).
反応例1-9(臭素化反応)
 アルゴン雰囲気下(1atm)で、反応例1-1のハロゲン化触媒(0.05g)、ベンゼン(6mL)及び臭素(3.2g、20mmol)を50mLのナスフラスコに加え、当該ナスフラスコの上部にアルゴンを入れた風船を付けた。40℃で2時間加熱撹拌した後、反応混合物をチオ硫酸ナトリウム水溶液で処理し、ヘキサンで有機物を抽出した。有機相をガスクロマトグラフィーで分析し、ブロモベンゼンの収率を求めた。ブロモベンゼンの収率は87%であった。反応式は下記式(II)の通りである。
Reaction Example 1-9 (bromination reaction)
Under an argon atmosphere (1 atm), the halogenated catalyst of Reaction Example 1-1 (0.05 g), benzene (6 mL) and bromine (3.2 g, 20 mmol) were added to a 50 mL eggplant flask, and the top of the eggplant flask was added. A balloon filled with argon was attached. After stirring with heating at 40 ° C. for 2 hours, the reaction mixture was treated with an aqueous sodium thiosulfate solution, and organic substances were extracted with hexane. The organic phase was analyzed by gas chromatography to determine the yield of bromobenzene. The yield of bromobenzene was 87%. The reaction formula is as shown in the following formula (II).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
反応例1-10(塩素化反応)
 反応例1-1のハロゲン化触媒(0.01g)及びベンゼン(1mL)を試験管に入れ、当該試験管内の空気を塩素で置換して密閉し塩素雰囲気下(1atm)にした。このとき試験管に加えた塩素は2mmolであった。40℃で1.5時間加熱撹拌した後、反応混合物をチオ硫酸ナトリウム水溶液で処理し、ヘキサンで有機物を抽出した。有機相をガスクロマトグラフィーで分析し、クロロベンゼンの収率を求めた。クロロベンゼンの収率は77%であった。反応式は下記式(III)の通りである。
Reaction Example 1-10 (chlorination reaction)
The halogenated catalyst (0.01 g) and benzene (1 mL) of Reaction Example 1-1 were put in a test tube, and the air in the test tube was replaced with chlorine and sealed, and a chlorine atmosphere (1 atm) was obtained. At this time, the chlorine added to the test tube was 2 mmol. After stirring with heating at 40 ° C. for 1.5 hours, the reaction mixture was treated with an aqueous sodium thiosulfate solution, and organic substances were extracted with hexane. The organic phase was analyzed by gas chromatography to determine the yield of chlorobenzene. The yield of chlorobenzene was 77%. The reaction formula is as shown in the following formula (III).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
実施例2(担体の検討)
 実施例2は、担体を変えた場合のハロゲン化反応の反応性を検討した例である。具体的には、担体を表2に示すように変更した以外は反応例1-1のハロゲン化触媒を調製したときと同じ方法でハロゲン化触媒を調製し、臭素化反応の反応性を検討した。ここで、反応例2-1では、反応例1-1のハロゲン化触媒、すなわちゼオライト担体に酸化鉄が担持されなるハロゲン化触媒を用いた。反応例2-2で用いたアルミノシリケートは「MCM-41」(SiO/Al=74/1)であり、反応例2-3で用いたシリカアルミナは触媒学会参照触媒「JRC-SAL-3」(SiO/Al=87/13)である。また、反応例2-4では複合酸化物ではない担体として酸化アルミニウムを用いてハロゲン化触媒を調製した例であり、反応例2-5では複合酸化物ではない担体として二酸化ケイ素を用いた例である。
Example 2 (Investigation of carrier)
Example 2 is an example in which the reactivity of the halogenation reaction when the carrier was changed was examined. Specifically, except that the support was changed as shown in Table 2, a halogenated catalyst was prepared in the same manner as when the halogenated catalyst of Reaction Example 1-1 was prepared, and the reactivity of the bromination reaction was examined. . Here, in Reaction Example 2-1, the halogenation catalyst of Reaction Example 1-1, that is, the halogenation catalyst in which iron oxide is supported on a zeolite carrier was used. The aluminosilicate used in Reaction Example 2-2 was “MCM-41” (SiO 2 / Al 2 O 3 = 74/1), and the silica alumina used in Reaction Example 2-3 was the reference catalyst “JRC- SAL-3 "(SiO 2 / Al 2 O 3 = 87/13). In Reaction Example 2-4, a halogenated catalyst was prepared using aluminum oxide as a carrier that is not a complex oxide, and in Reaction Example 2-5, silicon dioxide was used as a carrier that was not a complex oxide. is there.
 これらのハロゲン化触媒を用いてベンゼンの臭素化反応を行った。その方法は、実施例1の臭素化反応において、反応時間を2時間にした以外は実施例1の反応例1-1と同様である。結果を表2に示す。 Benzene bromination reaction was carried out using these halogenated catalysts. The method is the same as Reaction Example 1-1 of Example 1 except that the reaction time in the bromination reaction of Example 1 is 2 hours. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に示すように、酸化鉄を担持させる担体としてゼオライトを用いた場合には、ベンゼンの臭素化反応が定量的に進行した(反応例2-1)。また、アルミノシリケートを担体として用いた場合でもベンゼンの臭素化反応が定量的に進行した(反応例2-2)。さらに、シリカアルミナを担体として用いた場合も、ベンゼンの臭素化反応が、ほぼ定量的に進行した(反応例2-3)。一方、酸化アルミニウムを担体として用いた場合の収率は70%程度であり(反応例2-4)、二酸化ケイ素を担体として用いた場合には、臭素化反応はほとんど進行しなかった(反応例2-5)。 As shown in Table 2, when zeolite was used as the carrier for supporting iron oxide, the bromination reaction of benzene proceeded quantitatively (Reaction Example 2-1). Even when aluminosilicate was used as the carrier, the bromination reaction of benzene proceeded quantitatively (Reaction Example 2-2). Further, even when silica alumina was used as a carrier, the bromination reaction of benzene proceeded almost quantitatively (Reaction Example 2-3). On the other hand, the yield when aluminum oxide was used as a carrier was about 70% (reaction example 2-4), and bromination reaction hardly proceeded when silicon dioxide was used as a carrier (reaction example). 2-5).
実施例3(再使用可能性の検討)
 実施例3は、反応系からハロゲン化触媒を分離して再使用することが可能かどうかについて検討した例である。
Example 3 (Examination of reusability)
Example 3 is an example of examining whether or not the halogenated catalyst can be separated from the reaction system and reused.
 まず、反応例1-1のハロゲン化触媒、すなわちゼオライト担体に酸化鉄が担持されなるハロゲン化触媒を用いてベンゼンの臭素化反応を行った。そして、反応後に反応溶液をメンブレンフィルターでろ過してハロゲン化触媒を回収し、極少量のヘキサンで洗浄してから電気炉を用いて大気中、300℃で1時間加熱した。こうして回収されたハロゲン化触媒を次の反応に再使用した。この操作を繰り返し行った場合の臭素化反応の反応性を検討した。臭素化反応の条件は、ベンゼンを3mL及び臭素を0.24g(1.5mmol)にして反応時間を2時間にした以外は実施例1の反応例1-1と同じである。結果を表3に示す。 First, the bromination reaction of benzene was performed using the halogenation catalyst of Reaction Example 1-1, that is, the halogenation catalyst in which iron oxide is supported on a zeolite carrier. After the reaction, the reaction solution was filtered through a membrane filter to recover the halogenated catalyst, washed with a very small amount of hexane, and then heated in the atmosphere at 300 ° C. for 1 hour using an electric furnace. The halogenated catalyst thus recovered was reused in the next reaction. The reactivity of the bromination reaction when this operation was repeated was examined. The conditions for the bromination reaction are the same as in Reaction Example 1-1 of Example 1, except that 3 mL of benzene and 0.24 g (1.5 mmol) of bromine were used and the reaction time was 2 hours. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3に示すように、4回繰り返し使用しても臭素化反応は進行しブロモベンゼンを得ることができ、しかも反応が定量的に進行した。これにより、反応系からハロゲン化触媒を回収して再使用することが可能であることが確認された。 As shown in Table 3, the bromination reaction proceeded even after repeated use 4 times to obtain bromobenzene, and the reaction proceeded quantitatively. This confirmed that the halogenated catalyst can be recovered from the reaction system and reused.
実施例4(反応基質の検討)
 実施例4は、反応基質を変えた場合の臭素化反応の反応性を検討した例である。具体的には、反応例1-1で用いたハロゲン化触媒、すなわちゼオライト担体に酸化鉄が担持されなるハロゲン化触媒を用いて、表4に示す反応基質を用いて臭素化反応を行った。臭素化反応の条件は、表4に示す通りである。
Example 4 (Examination of reaction substrate)
Example 4 is an example in which the reactivity of the bromination reaction when the reaction substrate was changed was examined. Specifically, bromination reaction was carried out using the reaction substrate shown in Table 4 using the halogenation catalyst used in Reaction Example 1-1, that is, the halogenation catalyst in which iron oxide was supported on a zeolite carrier. The conditions for the bromination reaction are as shown in Table 4.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4に示す条件でブロモベンゼンの臭素化反応を行った結果、ブロモベンゼンは高収率で臭素化されp-及びo-ジブロモベンゼンが得られた(反応例4-1)。また、フルオロベンゼンの臭素化反応を行った結果、高収率かつ高選択的にp-臭素化反応が進行した(反応例4-2)。表4に示す条件で1,4-ジブロモベンゼンの臭素化反応を行うと、モノ及びジ臭素化反応が進行した(反応例4-3)。また、一般的に、フッ素置換ベンゼンの臭素化反応性は臭素置換ベンゼンに比べて低いことが知られているが、反応例1-1のハロゲン化触媒を用いて臭素化反応を行うとフッ素置換ベンゼンでも反応が進行し、収率も悪くはなかった(反応例4-4、4-5)。 As a result of bromination reaction of bromobenzene under the conditions shown in Table 4, bromobenzene was brominated in high yield to obtain p- and o-dibromobenzene (Reaction Example 4-1). Further, as a result of the bromination reaction of fluorobenzene, the p-bromination reaction proceeded with high yield and high selectivity (Reaction Example 4-2). When the bromination reaction of 1,4-dibromobenzene was carried out under the conditions shown in Table 4, the mono and dibromination reactions proceeded (Reaction Example 4-3). In general, bromination reactivity of fluorine-substituted benzene is known to be lower than that of bromine-substituted benzene. However, when bromination reaction is carried out using the halogenation catalyst of Reaction Example 1-1, fluorine substitution is performed. The reaction also proceeded with benzene, and the yield was not bad (Reaction Examples 4-4 and 4-5).

Claims (8)

  1.  ケイ素及びアルミニウムを含有する複合酸化物からなる担体に酸化鉄又は酸化亜鉛が担持されてなることを特徴とする芳香環をハロゲン化するためのハロゲン化触媒。 A halogenation catalyst for halogenating an aromatic ring, wherein iron oxide or zinc oxide is supported on a carrier composed of a composite oxide containing silicon and aluminum.
  2.  前記ハロゲン化触媒が芳香環を臭素化するための臭素化触媒である請求項1に記載のハロゲン化触媒。 The halogenated catalyst according to claim 1, wherein the halogenated catalyst is a brominated catalyst for brominating an aromatic ring.
  3.  前記複合酸化物1gに対して0.1~10mmolの鉄元素又は亜鉛元素を含有する請求項1又は2に記載のハロゲン化触媒。 The halogenated catalyst according to claim 1 or 2, containing 0.1 to 10 mmol of iron element or zinc element with respect to 1 g of the composite oxide.
  4.  前記複合酸化物からなる担体に酸化鉄が担持されてなる請求項1~3のいずれかに記載のハロゲン化触媒。 The halogenated catalyst according to any one of claims 1 to 3, wherein iron oxide is supported on the support made of the composite oxide.
  5.  前記複合酸化物のケイ素原子とアルミニウム原子との比(Si/Al)が、1~1000である請求項1~4のいずれかに記載のハロゲン化触媒。 The halogenated catalyst according to any one of claims 1 to 4, wherein the composite oxide has a ratio of silicon atoms to aluminum atoms (Si / Al) of 1 to 1000.
  6.  前記複合酸化物が、ゼオライトである請求項1~5のいずれかに記載のハロゲン化触媒。 The halogenated catalyst according to any one of claims 1 to 5, wherein the composite oxide is zeolite.
  7.  請求項1~6のいずれかに記載のハロゲン化触媒の製造方法であって;
     ケイ素及びアルミニウムを含有する複合酸化物と、鉄塩又は亜鉛塩を溶媒中で混合する第1工程と、
     前記第1工程で得られた混合物から溶媒を除去する第2工程と、
     前記第2工程で溶媒が除去された混合物を酸化可能雰囲気下で加熱する第3工程とを備えることを特徴とするハロゲン化触媒の製造方法。
    A method for producing a halogenated catalyst according to any one of claims 1 to 6;
    A first step of mixing a composite oxide containing silicon and aluminum and an iron salt or zinc salt in a solvent;
    A second step of removing the solvent from the mixture obtained in the first step;
    And a third step of heating the mixture from which the solvent has been removed in the second step in an oxidizable atmosphere, and a method for producing a halogenated catalyst.
  8.  請求項1~6のいずれかに記載のハロゲン化触媒を用いたハロゲン化合物の製造方法であって;
     芳香環を有する化合物とハロゲンとを前記ハロゲン化触媒存在下で反応させることを特徴とするハロゲン化合物の製造方法。
    A method for producing a halogen compound using the halogenated catalyst according to any one of claims 1 to 6;
    A method for producing a halogen compound, comprising reacting a compound having an aromatic ring with halogen in the presence of the halogenated catalyst.
PCT/JP2012/080866 2011-12-01 2012-11-29 Halogenation catalyst and method for producing same WO2013081034A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-263954 2011-12-01
JP2011263954 2011-12-01

Publications (1)

Publication Number Publication Date
WO2013081034A1 true WO2013081034A1 (en) 2013-06-06

Family

ID=48535484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080866 WO2013081034A1 (en) 2011-12-01 2012-11-29 Halogenation catalyst and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2013081034A1 (en)
WO (1) WO2013081034A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105566183A (en) * 2016-03-21 2016-05-11 太原理工大学 Preparation method of 4,4'-dimercaptodiphenylsulfide
CN115141079A (en) * 2022-08-11 2022-10-04 安徽东至广信农化有限公司 Method for reducing impurity dichlorobenzene in chlorobenzene production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194562A (en) * 2020-09-03 2021-01-08 潍坊摩根化工有限公司 Preparation method of bromobenzene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503066A (en) * 1987-03-25 1989-10-19 イーストマン コダック カンパニー Improved vapor phase bromination of aromatic compounds
JPH07330665A (en) * 1994-06-03 1995-12-19 Mitsubishi Chem Corp Production of halogenated aromatic compound
EP0866046A1 (en) * 1997-03-20 1998-09-23 Contract Chemicals Limited Catalytic process for selective aromatic bromination

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503066A (en) * 1987-03-25 1989-10-19 イーストマン コダック カンパニー Improved vapor phase bromination of aromatic compounds
JPH07330665A (en) * 1994-06-03 1995-12-19 Mitsubishi Chem Corp Production of halogenated aromatic compound
EP0866046A1 (en) * 1997-03-20 1998-09-23 Contract Chemicals Limited Catalytic process for selective aromatic bromination

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. ZABICKY ET AL.: "Molecular sieves as catalysts for aromatic bromination", ZEOLITES, vol. 7, no. 6, 1987, pages 499 - 502, XP055070942 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105566183A (en) * 2016-03-21 2016-05-11 太原理工大学 Preparation method of 4,4'-dimercaptodiphenylsulfide
CN115141079A (en) * 2022-08-11 2022-10-04 安徽东至广信农化有限公司 Method for reducing impurity dichlorobenzene in chlorobenzene production

Also Published As

Publication number Publication date
JPWO2013081034A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5210639B2 (en) Method for producing biphenyl derivative
WO2012009818A1 (en) Protected aldehydes for use as intermediates in chemical syntheses, and processes for their preparation
Chutia et al. Synthesis and characterization of Co (II) and Cu (II) supported complexes of 2-pyrazinecarboxylic acid for cyclohexene oxidation
JP2005510550A (en) 3,3 ′, 5,5 ′, 6,6′-hexaalkyl-2,2′-biphenol, 3,3 ′, 4,4 ′, 5,5′-hexaalkyl-2,2′-biphenol, And 3,3 ', 4,4', 5,5 ', 6,6'-octaalkyl-2,2'-biphenol
WO2013081034A1 (en) Halogenation catalyst and method for producing same
JP5358184B2 (en) Halogenation of activated carbon atoms with Lewis acid catalysts.
JP2007230999A (en) Substituted aromatic nitrile compound and method for producing the same
JP2011529939A (en) Method for producing 4-bromophenyl derivative
WO2015170688A1 (en) Metal-supported porous coordination polymer catalyst
JP6498048B2 (en) Fluorine-containing organic compound and method for producing biaryl compound using this and Grignard reagent
Shirvandi et al. Transition-metal-catalyzed one-pot selenylation of electrophilic arylating agents using triphenyltin chloride/Se as a phenylselenating agent
JP2008255037A (en) Method for producing biphenyl derivative
CN110944965A (en) Method for the heterogeneously cobalt-catalyzed production of alkylated or fluoroalkylated, chloroalkylated, and fluorochloroalkylated compounds
CN116239779B (en) Two-dimensional halogen bond organic framework material for iodination reagent, preparation method and application thereof
CN106431822B (en) Industrial production method of 3,3 ', 4, 4' -tetrafluorobiphenyl
WO2004022512A1 (en) METHOD FOR PRODUCING p-DICHLOROBENZENE
JP2016169165A (en) Method for producing 2,6-difluorobenzoylformate compound
CN107365243A (en) A kind of method of one pot process benzoquinone class compound
JP2753858B2 (en) Manufacturing method of nitriles
WO2023190846A1 (en) Method for producing fluorine-containing aromatic compound
JP4316854B2 (en) Optically active polyhydric phenol derivative, method for producing the same, and use thereof
JP6923199B2 (en) Manufacturing method of halosilane
JP5397907B2 (en) Method for producing optically active phosphorus compound
CN106278811B (en) Synthetic method of p-bromo linear alkylbenzene
JP2021178811A (en) Production method of aromatic ether compound or aromatic sulfhydryl compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547200

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854241

Country of ref document: EP

Kind code of ref document: A1