[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005292662A - 波面補償装置、波面補償方法、プログラム、及び、記録媒体 - Google Patents

波面補償装置、波面補償方法、プログラム、及び、記録媒体 Download PDF

Info

Publication number
JP2005292662A
JP2005292662A JP2004110303A JP2004110303A JP2005292662A JP 2005292662 A JP2005292662 A JP 2005292662A JP 2004110303 A JP2004110303 A JP 2004110303A JP 2004110303 A JP2004110303 A JP 2004110303A JP 2005292662 A JP2005292662 A JP 2005292662A
Authority
JP
Japan
Prior art keywords
wavefront
control
control point
spatial light
address type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004110303A
Other languages
English (en)
Other versions
JP4531431B2 (ja
Inventor
Kokin Ko
洪欣 黄
Taku Inoue
卓 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2004110303A priority Critical patent/JP4531431B2/ja
Publication of JP2005292662A publication Critical patent/JP2005292662A/ja
Application granted granted Critical
Publication of JP4531431B2 publication Critical patent/JP4531431B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】 波面を精密に補償できる波面補償装置、波面補償方法、プログラムおよび記録媒体を提供する。
【解決手段】 波面変調デバイス40が入射光を位相変調して位相変調光を生成する。波面検出デバイス60が位相変調光を多点スポット画像に変換して撮影し、多点スポット画像の画像信号を制御装置80に送出する。制御装置80は、多点スポット画像のスポット重心と参照重心との差を重心シフトとして計算し、重心シフトと多項式の1次微分式との関係式に最小2乗法を適用して多項式の重み係数を算出して波面方程式を求める。波面方程式に各制御点の座標を代入することにより制御点毎の残差波面を算出し、帰還制御データを求め、さらにルックアップテーブルにより帰還制御データを制御信号に変換する。制御装置80は、制御信号を波面変調デバイス40に閉ループフィードバックすることにより、入射光の波面30を補償し、理想的な波面70を出力する。
【選択図】 図1

Description

本発明は波面補償装置、波面補償方法、プログラム、及び、記録媒体に関する。
波面収差を取り除く技術として、波面収差を検出する波面検出デバイスと波面変調デバイスとを備え、波面検出デバイスにて検出した波面収差に基づいて波面変調デバイスを開ループフィードバック制御もしくは閉ループフィードバック制御して、波面収差を補償する波面収差補償装置が知られている。
開ループフィードバック制御を行う波面収差補償装置としては、波面検出デバイスとしてシャックハルトマン型の波面センサを使用し、波面変調デバイスとして電気アドレス型空間光位相変調装置を使用した位相変調装置が知られている(例えば、特許文献1参照)。波面センサが測定した波面の収差の符号を反転させて収差補正用パターンを作成する。収差補正用パターンを任意の波面に足しあわせて歪み補正済みのパターンを作成する。なお、足しあわせの際、余り演算による2πの折りたたみ処理を行なう。こうして、電気アドレス型空間光位相変調装置を歪み補正済みのパターンにて開ループフィードバック制御する。
しかし、このような開ループフィードバック制御では、波面検出デバイスが検出を行っている間、電気アドレス型空間光位相変調装置を非動作状態にする必要がある。このため、波面検出デバイスが検出した波面収差は、電気アドレス型空間光位相変調装置に印加する制御信号とは無関係である。したがって、波面補償を精度よく補償できない。
一方、閉ループフィードバック制御を行う波面収差補償装置では、電気アドレス型空間光位相変調装置が動作中に波面検出デバイスが検出を行う。このため、波面検出デバイスが検出した波面収差は、電気アドレス型空間光位相変調装置に印加する制御信号に依存しており、波面をより精度良く補償できる。
閉ループフィードバック制御を行う波面収差補償装置としては、波面検出デバイスとしてシャックハルトマン型の波面センサを使用し、波面変調デバイスとして低解像度の電気アドレス型空間光位相変調装置(例えば69個の制御点を有する電気アドレス型空間光位相変調装置)を使用した波面収差補償装置が知られている(例えば、非特許文献1参照)。制御点の個数が小さいため、あらかじめ計測された制御マトリクスを用いて,制御信号を演算する。制御マトリクスとは,波面検出デバイスの検出結果と波面変調デバイスの制御信号との対応関係を記述したマトリクスである。ベクトル表記された波面検出デバイスの検出結果を作用させることにより、ベクトル形式の波面変調デバイスの制御信号が得られる。しかしながら,制御点が多くなると制御マトリクスを計測によって得ることが困難になる上に、低解像度の電気アドレス型空間光位相変調装置では細かく精密な補正ができない。
そこで、波面変調デバイスとして高解像度の電気アドレス型空間光位相変調装置(例えば640x480個の制御点を有する電気アドレス型空間光位相変調装置)を使用した閉ループフィードバック制御を行う波面補償装置が提案されている。波面検出デバイスとしてシャックハルトマン型の波面センサを使用している(例えば、非特許文献2〜4参照)。ただし,高解像度の電気アドレス型空間光位相変調装置を使用しており、制御点数が多いため、制御マトリクスを測定することは不可能である。このため、波面センサの検出結果に基づきフーリエ変換方式にて波面センサの各レンズに入射した位相を逆計算する。ここで、レンズのピッチは電気アドレス型空間光位相変調装置の制御点のピッチより大きい。このため、制御点をグループ化し、各グループ内の全制御点を一つのレンズに対応させ、当該グループ内の全制御点に対し同一の位相を与えるようにしている。すなわち,高解像度の空間光位相変調装置を低解像度で制御している。
国際出願WO03/036368号公報(第58−59頁、第10、15図) Gourlay et al.," A real-time closed-loop liquid crystal adaptive optics system: first result、" Optics Communications、 vol 137、 pp17-21. (1997) Olivier et al., "High-resolution wavefront control using liquid crystal spatial light modulators", Proceedings SPIE 3760-08(1999) Thompson et al., "Performance of a high-resolution wavefront control system using a liquid crystal spatial light modulator、" Proceeding SPIE 4124、 pp170-177(2000) Wilks et al., "High−Resolution Adaptive Optics Test−Bed for Vision Science"、Proceedings SPIE Vol 4494、 pp349-356.(2001)
しかし、電気アドレス型空間光位相変調装置の制御点をグループ化し各グループ内の制御点に同一の位相を与えていたのでは、電気アドレス型空間光位相変調装置本来の空間解像度を十分に活用することができない。このように、フーリエ変換を用いた位相計算法では、電気アドレス型空間光位相変調装置本来の空間解像度を十分に活用することができず、波面を精密に補正することができない。
そこで、本発明は、電気アドレス型空間光位相変調装置本来の空間解像度の位相変調能力を十分に活用することで、波面を精密に補正することが可能な波面補償装置、波面補償方法、プログラム、及び、記録媒体を提供することを目的とする。
上記目的を達成するために、請求項1に記載の発明は、複数の制御点が2次元状に配置された変調部を備え、前記変調部に入射した読み出し光の位相を前記制御点毎に変調する電気アドレス型空間光位相変調装置と、複数のレンズが2次元状に配置され、前記電気アドレス型空間光位相変調装置で位相が変調された読み出し光を複数のスポットからなる多点スポット画像に変換するレンズアレイと、前記多点スポット画像の光強度分布を検出する画像検出手段と、前記検出された光強度分布に基づき前記複数のスポットの重心位置を示す複数のスポット重心を演算し、演算された前記複数のスポット重心と予め設定された複数の参照重心との差を示す複数の重心差を計算する重心差演算手段と、演算された前記複数の重心差を最小2乗法を用いて所定の多項式の1次微分式にフィッティングすることより、所定の多項式の重み係数を求める重み係数演算手段と、演算された前記重み係数を用いて各制御点の座標に対応する値を前記所定の多項式に代入することにより、前記制御点毎の残差歪を求める残差歪演算手段と、演算された各制御点の前記残差歪に基づいて前記制御点用の閉ループ制御データを求める制御データ演算手段と、前記電気アドレス型空間光位相変調装置の各制御点を前記閉ループ制御データに基づいて制御する制御手段とを備えることを特徴とする波面補償装置を提供している。
このように、多項式の重み係数を演算することにより、レンズアレイに入力した読み出し光の波面を多項式にフィッテイングする。多項式に各制御点の座標に対応する値を代入することにより、入力波面の各制御点における残差歪みが求められる。計算された残差歪みに基づき閉ループ制御データが作成される。電気アドレス型空間光位相変調装置を閉ループ制御データに基づき繰り返し制御することで、電気アドレス型空間光位相変調装置が読み出し光の位相変調を繰り返し実行し、波面補償を行う。
また、請求項2に記載の発明は、請求項1に記載の波面補償装置であって、前記電気アドレス型空間光位相変調装置の各制御点は、入射した読み出し光を、入力された前記制御信号に対応した位相変調量にて変調し、前記制御手段は信号変換手段を更に備え、前記信号変換手段は、各制御点の残差歪に基づいて各制御点が変調すべき位相変調量を決定し、予め設定されたルックアップテーブルを用いて前記決定した位相変調量を制御信号に変換し、前記制御信号に基づいて前記電気アドレス型空間光位相変調装置の各制御点を制御することを特徴としている。
電気アドレス型空間光位相変調装置は、例えば、光アドレス型液晶空間光位相変調器(例えば、PAL−SLM)と電気アドレス型液晶空間光強度変調器(例えば、LCD)と書き込み光源とからなる電気アドレス型液晶位相変調モジュールから構成することが好ましい。電気アドレス型液晶空間光強度変調器は、複数の制御点が2次元状に配置された変調部を備えている。光アドレス型液晶空間光位相変調器は、電気アドレス型液晶空間光強度変調器の制御点に1対1に対応した複数の制御点を備えている。信号変換手段が電気アドレス型液晶空間光強度変調器の各制御点に制御信号を入力すると、電気アドレス型液晶空間光強度変調器は書き込み光を制御点毎に制御信号に応じて強度変調する。光アドレス型液晶空間光位相変調器は変調部に入射した読み出し光を書き込み光強度に応じて制御点毎に位相変調する。したがって、光アドレス型液晶空間光位相変調器は入射した読み出し光を制御点毎に制御信号に対応した位相変調量だけ位相変調する。かかる電気アドレス型液晶位相変調モジュールによれば、簡単に、かつ、精度よく読み出し光の位相を変調することができる。
また、請求項3に記載の発明は、請求項1に記載の波面補償装置であって、前記重心差演算手段は、演算された前記複数のスポット重心の評価をし、前記重み係数演算手段は、前記複数のスポット重心のうち、無効なスポット重心として評価されたスポット重心以外のスポット重心に対して演算された重心差に基づいて前記重み係数を演算することを特徴としている。
また、請求項4に記載の発明は、請求項1に記載の波面補償装置であって、前記電気アドレス型空間光位相変調装置の前記変調部のうち前記制御点が配列されている制御点領域の大きさが前記変調部に入射する読み出し光の大きさより大きいことを特徴としている。
また、請求項5に記載の発明は、2次元状に配置された複数の制御点を有する電気アドレス型空間光位相変調装置を閉ループフィードバック制御して読み出し光の波面を補償する波面補償方法であって、前記電気アドレス型空間光位相変調装置により制御点毎に位相が変調された読み出し光が複数のレンズが2次元状に配置されたレンズアレイを透過することにより形成する複数のスポットからなる多点スポット画像の光強度分布を検出する画像検出工程と、検出された前記光強度分布に基づき前記複数のスポットの重心位置を示す複数のスポット重心を演算し、演算された前記複数のスポット重心と予め設定された複数の参照重心との差を示す複数の重心差を計算する重心差演算工程と、演算された前記複数の重心差を最小2乗法を用いて所定の多項式の1次微分式にフィッティングすることより、前記所定の多項式の重み係数を求める重み係数演算工程と、演算された前記重み係数を用いて各制御点の座標に対応する値を前記所定の多項式に代入することにより、前記制御点毎の残差歪を求める残差歪演算工程と、演算された各制御点の前記残差歪に基づいて前記制御点用の閉ループ制御データを求める制御データ演算工程と、前記電気アドレス型空間光位相変調装置の各制御点を前記閉ループ制御データに基づいて制御する制御工程とを有し、前記各工程を反復することを特徴とする波面補償方法を提供している。
このように、多項式の重み係数を演算することにより、レンズアレイに入力した読み出し光の波面を多項式にフィッテイングする。多項式に各制御点の座標に対応する値を代入することにより、入力波面の各制御点における残差歪みが求められる。計算された残差歪みに基づき閉ループ制御データが作成される。電気アドレス型空間光位相変調装置を閉ループ制御データに基づき繰り返し制御することで、電気アドレス型空間光位相変調装置が読み出し光の位相変調を繰り返し実行し、波面補償を行う。
また、請求項6に記載の発明は、コンピュータに対し、2次元状に配置された複数の制御点を有する電気アドレス型空間光位相変調装置を閉ループフィードバック制御させ、読み出し光の波面を補償させるプログラムであって、前記電気アドレス型空間光位相変調装置により制御点毎に位相が変調された読み出し光が複数のレンズが2次元状に配置されたレンズアレイを透過することにより形成する複数のスポットからなる多点スポット画像の光強度分布に基づき複数のスポットの重心位置を示す複数のスポット重心を算出し、算出された前記複数のスポット重心と予め設定された複数の参照重心との差を示す複数の重心差を計算する重心差演算手順と、演算された前記複数の重心差を最小2乗法を用いて所定の多項式の1次微分式にフィッティングすることより、前記所定の多項式の重み係数を求める重み係数演算手順と、演算された前記重み係数を用いて各制御点の座標に対応する値を所定の多項式に代入することにより、制御点毎の残差歪を求める残差歪演算手順と、演算された各制御点の前記残差歪に基づいて前記制御点用の閉ループ制御データを求める制御データ演算手順と、前記電気アドレス型空間光位相変調装置の各制御点を前記閉ループ制御データに基づいて制御する制御手順と、前記各手順を反復する手順とを有することを特徴とするプログラムを提供している。
コンピュータは、請求項6に記載のプログラムを実行することにより、電気アドレス型空間光位相変調装置を閉ループフィードバック制御して波面補償を行う。
また、請求項7に記載の発明は、請求項6に記載のプログラムを記録した、コンピュータ読み取り可能な記録媒体を提供している。
また、請求項8に記載の発明は、複数の制御点が2次元状に配列され、読み出し光を制御点毎に制御データに基づいて位相変調して位相パターンを生成する電気アドレス型空間光位相変調装置と、複数のレンズが2次元状に配列されたレンズアレイを備え、前記電気アドレス型空間光位相変調装置から出力された位相パターンを複数のスポットからなる多点スポット画像に変換し、前記多点スポット画像の光強度分布を検出する波面検出手段と、検出された前記光強度分布に基づき前記複数のスポットの重心位置を示す複数のスポット重心を算出し、前記複数のスポット重心と予め設定された理想波面に対応する複数の参照重心との差を示す複数の重心差に基づき前記電気アドレス型空間光位相変調装置より出力された前記位相パターンと前記理想波面との位相差を表す波面方程式を算出し、前記波面方程式に前記制御点の座標に対応する値を代入して前記制御点毎の位相差を残差波面として算出する算出手段と、前記残差波面と収差波面とを前記制御点毎に足し算し、その結果を前記制御点毎の新たな収差波面として記憶する収差波面算出記憶手段と、前記新たな収差波面と前記理想波面とを前記制御点毎に足し算し、その結果に基づいて帰還制御データを作成する波面合成手段と、前記帰還制御データを前記制御データとして前記電気アドレス型空間光位相変調装置に出力する制御手段とを有し、前記電気アドレス型空間光位相変調装置が前記制御手段から入力される前記帰還制御データに基づき読み出し光の位相変調を繰り返すことを特徴とする波面補償装置を提供している。
波面方程式に各制御点の座標に対応する値を代入すると、制御点毎の位相差を残差波面として正確に算出することができる。レンズピッチが制御点ピッチより大きくても、すなわち、波面検出手段の空間分解能が電気アドレス型空間光位相変調装置の空間分解能より低くても、電気アドレス型空間光位相変調装置の空間分解能を損なわずに残差波面を精密に算出できる。こうして精密に算出した残差波面に基づき帰還制御データを作成し、帰還制御データに基づき電気アドレス型空間光位相変調装置を制御して読み出し光の位相変調を行わせる。電気アドレス型空間光位相変調装置を帰還制御データに基づき繰り返し閉ループフィードバック制御することにより、電気アドレス型空間光位相変調装置から出力される位相パターンの歪を順次補正していく。
また、請求項9に記載の発明は、請求項8に記載の波面補償装置であって、前記波面方程式は多項式であり、前記算出手段は前記重心差と前記多項式の1次微分式との関係式に最小2乗法を適用して前記多項式の重み係数を算出し、もって、前記波面方程式を求めることを特徴としている。
また、請求項10に記載の発明は、2次元状に配列された複数の制御点を有する電気アドレス型空間光位相変調装置を閉ループフィードバック制御して、前記電気アドレス型空間光位相変調装置により制御点毎に制御データに基づいて位相変調された読み出し光の波面を補償する波面補償方法であって、前記電気アドレス型空間光位相変調装置から出力された読み出し光が複数のレンズが2次元状に配列されたレンズアレイを透過することにより形成する複数のスポットからなる多点スポット画像の光強度分布を検出する波面検出工程と、検出された前記光強度分布に基づき前記複数のスポットの重心位置を示す複数のスポット重心を算出し、前記複数のスポット重心と予め設定された理想波面に対応する複数の参照重心との差を示す複数の重心差に基づき前記電気アドレス型空間光位相変調装置より出力された読み出し光の波面と前記理想波面との位相差を表す波面方程式を算出し、前記波面方程式に前記制御点の座標に対応する値を代入して前記制御点毎の位相差を残差波面として算出する算出工程と、前記残差波面と収差波面とを前記制御点毎に足し算し、その結果を前記制御点毎の新たな収差波面として記憶する収差波面算出記憶工程と、前記新たな収差波面と前記理想波面とを前記制御点毎に足し算し、その結果に基づいて帰還制御データを作成する波面合成工程と、前記帰還制御データを前記制御データとして前記電気アドレス型空間光位相変調装置に出力する制御工程と、前記各工程を反復する工程とを有することを特徴とする波面補償方法を提供している。
波面方程式に各制御点の座標に対応する値を代入すると、制御点毎の位相差を残差波面として正確に算出することができる。レンズピッチが制御点ピッチより大きくても、電気アドレス型空間光位相変調装置の空間分解能を損なわずに残差波面を精密に算出できる。こうして精密に算出した残差波面に基づき帰還制御データを作成し、帰還制御データに基づき電気アドレス型空間光位相変調装置を制御して読み出し光の位相変調を行わせる。電気アドレス型空間光位相変調装置を帰還制御データに基づき繰り返し閉ループフィードバック制御することにより、電気アドレス型空間光位相変調装置から出力される位相パターンの歪を順次補正していく。
また、請求項11に記載の発明は、請求項10に記載の波面補償方法であって、前記波面方程式は多項式であり、前記算出工程は前記重心差と前記多項式の1次微分式との関係式に最小2乗法を適用して前記多項式の重み係数を算出し、もって、前記波面方程式を求めることを特徴としている。
また、請求項12に記載の発明は、コンピュータに対し、2次元状に配列された複数の制御点を有する電気アドレス型空間光位相変調装置を閉ループフィードバック制御させ、前記電気アドレス型空間光位相変調装置により制御点毎に制御データに基づいて位相変調された読み出し光の波面を補償するプログラムであって、前記電気アドレス型空間光位相変調装置から出力された読み出し光が複数のレンズが2次元状に配列されたレンズアレイを透過することにより形成する複数のスポットからなる多点スポット画像の光強度分布に基づき前記複数のスポットの重心位置を示す複数のスポット重心を算出し、前記複数のスポット重心と予め設定された理想波面に対応する複数の参照重心との差を示す複数の重心差に基づき前記電気アドレス型空間光位相変調装置より出力された読み出し光の波面と前記理想波面との位相差を表す波面方程式を算出し、前記波面方程式に前記制御点の座標に対応する値を代入して前記制御点毎の位相差を残差波面として算出する算出手順と、前記残差波面と収差波面とを前記制御点毎に足し算し、その結果を前記制御点毎の新たな収差波面として記憶する収差波面算出記憶手順と、前記新たな収差波面と前記理想波面とを前記制御点毎に足し算し、その結果に基づいて帰還制御データを作成する波面合成手順と、前記帰還制御データを前記制御データとして前記電気アドレス型空間光位相変調装置に出力する制御手順と、前記各手順を反復する手順とを有することを特徴とするプログラムを提供している。
コンピュータは、請求項12に記載のプログラムを実行することにより、電気アドレス型空間光位相変調装置を閉ループフィードバック制御して波面補償を行う。
また、請求項13に記載の発明は、請求項12に記載のプログラムであって、前記波面方程式は多項式であり、前記算出手順は前記重心差と前記多項式の1次微分式との関係式に最小2乗法を適用して前記多項式の重み係数を算出し、もって、前記波面方程式を求めることことを特徴としている。
また、請求項14に記載の発明は、請求項12に記載のプログラムを記録した、コンピュータ読み取り可能な記録媒体を提供している。
本発明の請求項1記載の波面補償装置によれば、電気アドレス型空間光位相変調装置の制御点ピッチとレンズアレイのレンズピッチとが整合性を有しておらず、レンズピッチが制御点ピッチより大きく、すなわち、レンズアレイの空間分解能が電気アドレス型空間光位相変調装置の空間分解能より小さくても、入力波面の各制御点における残差歪みを高精度に計算することができる。したがって、電気アドレス型空間光位相変調装置本来の空間解像度の位相変調能力を十分活用して波面補償を精密に行うことができる。
本発明の請求項2記載の波面補償装置によれば、電気アドレス型空間光位相変調装置が非線形な変調特性を有していてもルックアップテーブルがこの変調特性を反映しているので、電気アドレス型空間光位相変調装置の制御信号レベルを正確に調整できる。このため、精密な制御が可能となる。
本発明の請求項3記載の波面補償装置は、複雑な環境で使用され特異なスポット重心が発生してしまっても、安定的に動作し続けることができる。
本発明の請求項4記載の波面補償装置によれば、読み出し光の歪みにより読み出し光の入射位置や大きさが変動しても、読み出し光が制御点領域内に収まり続けるため、波面補償装置は波面補償を安定に実行し続けることができる。
本発明の請求項5記載の波面補償方法によれば、電気アドレス型空間光位相変調装置の制御点ピッチとレンズアレイのレンズピッチとが整合性を有していなくても、入力波面の各制御点における残差歪みを高精度に計算することができるため、電気アドレス型空間光位相変調装置本来の空間解像度の位相変調能力を十分活用して波面補償を精密に行うことができる。
本発明の請求項6記載のプログラムをコンピュータが実行すれば、電気アドレス型空間光位相変調装置本来の空間解像度の位相変調能力を十分活用して波面補償を精密に行うことができる。
本発明の請求項7に記載のコンピュータ読み取り可能な記録媒体に請求項6に記載のプログラムを記録して保存し、このプログラムを任意のコンピュータに移植すれば、当該任意のコンピュータが請求項6に記載のプログラムを実行することにより、電気アドレス型空間光位相変調装置本来の空間解像度の位相変調能力を十分活用して波面補償を精密に行うことができる。
本発明の請求項8記載の波面補償装置によれば、電気アドレス型空間光位相変調装置の制御点ピッチとレンズアレイのレンズピッチとが整合性を有しておらず、レンズピッチが制御点ピッチより大きく、すなわち、レンズアレイの空間分解能が電気アドレス型空間光位相変調装置の空間分解能より小さくても、入力波面の各制御点における残差波面を高精度に計算することができる。このため、電気アドレス型空間光位相変調装置本来の空間解像度の位相変調能力を十分活用して波面補償を精密に行うことができる。
本発明の請求項9記載の波面補償装置によれば、電気アドレス型空間光位相変調装置本来の空間解像度の位相変調能力を十分活用して波面補償を精密に行うことができる。
本発明の請求項10記載の波面補償方法によれば、電気アドレス型空間光位相変調装置の制御点ピッチとレンズピッチとが整合性を有していなくても、入力波面の各制御点における残差波面を高精度に計算することができるため、電気アドレス型空間光位相変調装置本来の空間解像度の位相変調能力を十分活用して波面補償を精密に行うことができる。
本発明の請求項11記載の波面補償方法によれば、電気アドレス型空間光位相変調装置本来の空間解像度の位相変調能力を十分活用して波面補償を精密に行うことができる。
本発明の請求項12記載のプログラムをコンピュータが実行すれば、電気アドレス型空間光位相変調装置本来の空間解像度の位相変調能力を十分活用して波面補償を精密に行うことができる。
本発明の請求項13記載のプログラムをコンピュータが実行すれば、波面補償を精密に行うことができる。
本発明の請求項14に記載のコンピュータ読み取り可能な記録媒体に請求項12に記載のプログラムを記録して保存し、このプログラムを任意のコンピュータに移植すれば、当該任意のコンピュータが請求項12に記載のプログラムを実行することにより、電気アドレス型空間光位相変調装置本来の空間解像度の位相変調能力を十分活用して波面補償を精密に行うことができる。
本発明の本実施の形態による波面補償装置、波面補償方法、プログラムおよび記録媒体について、図1乃至16(e)に基づき説明する。
本実施の形態による波面補償装置1は、図1に示すように、波面変調デバイス40、ビームサンプラ50、波面検出デバイス60、及び、制御装置80を備えている。波面補償装置1は、入射光(読み出し光)の入射波面30を所望の波面70に変調して出力するための光学装置である。
波面変調デバイス40は、変調部40sを備える電気アドレス型位相変調型液晶空間光変調装置である。波面変調デバイス40は、読み出し用光源(図示せず)から変調部40sに入射した読み出し光に対して位相変調を施し、位相変調された読み出し光を変調部40sから出射する。読み出し用光源は、例えばHe−Neレーザからなり、空間コヒーレンス度の高い読み出し光を生成する。読み出し用光源からの読み出し光は、略一様な位相分布の波面10を有し、かつ、図1の紙面に対して平行な偏光面を有する直線偏光である。
読み出し用光源から波面変調デバイス40に至る光路上には、図示しないビーム径変換コリメート手段が設けられており、読み出し用光源から出射した読み出し光を、光軸に直交する断面が略円形状で所定のビーム径を有する平行ビームに変換する。なお、読み出し用光源から波面変調デバイス40に至る光路上には、ビーム径変換コリメート手段の他にも、図示しない光学素子や光学デバイスが設けられている。
読み出し光は、通常、波面変調デバイス40に入射する際には、歪んだ波面30を有している。これは、読み出し用光源から波面変調デバイス40に至る光路上に存在する乱れ要因20による。乱れ要因20には、読み出し用光源から波面変調デバイス40に至る光路上に存在する光学素子や光学デバイスの設計誤差、製造誤差、及び、アライメント誤差、読み出し光が通る媒質の熱効果による揺らぎ、及び、読み出し用光源の発光揺らぎが含まれる。波面変調デバイス40は、歪んだ波面30を有する読み出し光に対して位相変調を施し、位相変調した読み出し光を出射する。
ビームサンプラ50は、入射光を所定の割合で透過および反射する光学素子である。ここでは、ビームサンプラ50は、波面変調デバイス40から出力されてビームサンプラ50に入射した光を、透過光と反射光とに分割する。
波面検出デバイス60には、波面変調デバイス40で位相変調された光のうちビームサンプラ50により反射された光が入射する。波面検出デバイス60は、入射光の波面を多点スポット画像信号に変換してこれを検出し制御装置80に出力するためのものである。
なお、ビームサンプラ50と波面変調デバイス40との間、及び、ビームサンプラ50と波面検出デバイス60との間の少なくとも一方には、図示しないリレーレンズ系が配置されている。
制御装置80は、波面変調デバイス40を閉ループフィードバック制御するためのものである。閉ループフィードバック制御の結果、波面変調デバイス40から出射される位相パターンの歪は徐々に補正され、理想波面に近い波面70を有する光が生成される。この理想波面に近い波面70を有する光のうちビームサンプラ50を透過した部分が後段の任意の処理に供される。例えば、ビームサンプラ50の後段にビームサンプラ50を透過した光を空間的にフーリエ変換するためのフーリエレンズを配置し、加工ターゲット(図示せず)をフーリエレンズのフーリエ面上に配置する。波面補償装置1により位相変調され理想波面に略近似した波面70を有するようになった光をフーリエレンズにより空間的にフーリエ変換することにより、加工ターゲットの表面を所望のパターンにて加工することができる。
次に、波面変調デバイス40について、図2を参照して説明する。この例では、波面変調デバイス40は、電気アドレス型液晶位相変調モジュール「SLM X7550」(商品名、浜松ホトニクス株式会社製)からなり、コンピュータ制御可能で、高空間分解能を有し、位相を2π以上変調可能である。
より詳しくは、波面変調デバイス40は、書き込み用光源510、コリメートレンズ520、液晶ディスプレイ(以下、LCDという)530、リレーレンズ540、及び、平行配向型ネマティック液晶空間光変調器(PAL−SLM(Parallel−Aligned nematic−Licuid−cristal Spacial Light Modulator):以下、PAL−SLMという)550を有している。コリメートレンズ520の光軸とリレーレンズ540の光軸とは互いに一致している。
書き込み用光源510は、一様な強度分布を有する書き込み光を生成するためのものである。書き込み用光源510は、例えばレーザダイオード(LD)で構成されている。コリメートレンズ520は、書き込み用光源510からの書き込み光をコリメートして、平行光を生成するためのレンズである。
LCD530は、透過型の電気アドレス型強度変調型液晶空間光変調器である。LCD530は、制御装置80から入力される制御信号で電気アドレス駆動される。LCD530は、コリメートレンズ520からの書き込み光を強度変調して、制御信号が示すパターンの強度分布を有する強度変調光を生成する。
LCD530は、光入射層530a、光伝達層530b、画素構造層530c、ツイストネマティック液晶層530d、及び、対向電極層530eを有している。入射層530aおよび光伝達層530bはそれぞれ、透明ガラス基板とその外側表面に設けられた偏光板とを備えている。画素構造層530c、ツイストネマティック液晶層530d、及び、対向電極層530eは、光入射層530aと光伝達層530bとの間に設けられている。
画素構造層530cは、複数の透明画素電極を備えている。画素構造層530cは、所定の画素数の透明画素電極を備えている。例えば、LCD530がVGA(Video Graphics Array)タイプなら、画素構造層530cは640×480画素の透明画素電極を備えている。LCD530がXGA(Extended Graphics Array)タイプなら、画素構造層530cは、1024×768画素の透明画素電極を備えている。これら複数の透明画素電極は、コリメートレンズ520に直交する仮想平面上に2次元マトリックス状に所定のピッチで配列されている。各画素電極は所定のサイズ(幅)P1(VGAタイプの場合にはPl=40(μm))を有している。各画素電極が、LCD530の1つの画素を規定している。
上記構成を有するLCD530は、光入射層530aがコリメートレンズ520に対向し、光伝達層530bがリレーレンズ540に対向するように配置されている。画素構造層530cが制御装置80に接続されている。
画素構造層530cの透明画素電極が制御装置80から入力される制御信号にて電気アドレス駆動されると、ツイストネマティック液晶層530d内の液晶分子の配向状態が制御信号の信号レベルに対応して変化する。コリメートレンズ520からの書き込み光が光入射層530aの偏光板を介してツイストネマティック液晶層530dに入射すると、液晶分子の配向状態に応じてその偏光状態が変化する。偏光状態が変化した光が光伝達層530bの偏光板を介して出射することで、強度変調光に変換される。このようにして、LCD530は、制御装置80から入力した制御信号に応じた強度分布を有する強度変調光を出力する。
リレーレンズ540は、LCD530から出力された強度変調光をPAL−SLM550に伝達するためのレンズである。リレーレンズ540は、この例では、LCD530が表示している強度パターンを1対1の結像倍率にてPAL−SLM550に伝達する。
PAL−SLM550は、反射型の光アドレス型位相変調型液晶空間光変調器である。PAL−SLM550は、リレーレンズ540にて伝達された強度変調光によって光アドレスされ、読み出し光を位相変調して、強度変調光の強度パターンに対応した位相分布を有する位相変調光を生成する。PAL−SLM550は、高空間分解能を有し、位相を2π以上変調可能である。
PAL−SLM550は、書き込み側透明基板550a、読み出し側透明基板550b、透明電極550c、光導電層550d、ミラー層550e、液晶層550f、および、透明電極550gを備えている。
読み出し側透明基板550bは、ガラスなどの透明部材によって形成されている。透明電極550c、550gは、図示しない交流電源に接続されている。光導電層550dは、例えばアモルファスシリコン製である。液晶層550fは、水平配向状態のネマティック液晶で構成されている。液晶分子は、液晶層550fに印加される電圧の変化に応じて所定の面内(この例の場合、図の紙面に平行な面内)で回転することにより、屈折率を変化させる。読み出し光の変調部40sは、読み出し側透明基板550b、透明電極550g、及び、液晶層550fからなる。
上記構成のPAL−SLM550は、書き込み側透明基板550aがリレーレンズ540に対向し、読み出し側透明基板550bが読み出し光の入射側およびビームサンプラ50に対向している。読み出し光は、読み出し側透明基板550bに斜めに入射し、液晶層550f内を伝搬してミラー層550eで反射され、液晶層550f内を再び伝搬して読み出し側透明基板550bから斜めに出射してビームサンプラ50に達する。
LCD530から出射した強度変調光がリレーレンズ540を介して光導電層550dに入射・結像すると、液晶層550fへの印加電圧が変化する。液晶層550fは、印加電圧が変化すると液晶分子が回転して複屈折率が変化するECB(Electrically Controlled Birefringence)効果を生ずる。読み出し側透明基板550bに入射した読み出し光は、液晶層550fを伝搬する際、ECB効果により位相変調される。位相変調された光は、ミラー層550eにて反射し、液晶層550f中を再び伝搬して更に位相変調された後、位相変調光として出射する。
ここで、LCD530の画素は、リレーレンズ540によりPAL−SLM550上に投影され、変調部40sの液晶層550f内に仮想的画素(以下、「PAL−SLM550の画素」という)を形成する。これらPAL−SLM550の画素は、液晶層550f内において、リレーレンズ540の光軸に直交する仮想平面(以下、「変調装置側2次元平面(X、Y)」という)上に、LCD530の画素に対応して2次元状マトリックス状に配列されている。なお、図1及び図2において、変調装置側2次元平面(X、Y)のX方向は紙面を貫通する方向であり、Y方向は紙面に平行な方向とする。ここで、PAL−SLM550の画素数はLCD530の画素数に等しい。リレーレンズ540の結像倍率は1であるため、PAL−SLM550の画素サイズはLCD530の画素サイズP1に等しく、PAL−SLM550の画素ピッチはLCD530の画素ピッチに等しい。こうして、PAL−SLM550の全画素は、LCD530の全画素と等しいサイズ及びピッチにて、変調装置側二次元平面(X、Y)上に配列している。
図3(a)に、変調装置側二次元平面(X、Y)に沿った液晶層550fの断面A、すなわち、図2におけるIII(a)−III(a)線に沿った液晶層550fの断面Aを模式的に示す。図示していないが、PAL−SLM550の全画素が液晶層550fの断面A内に2次元マトリックス状に配列されている。今、読み出し光が液晶層550fに入射すると、略円形状の読み出し光入射領域Bが断面A内に形成される。特に、読み出し光として無歪(平面波)の平行ビーム(以下、基準光という)が液晶層550fに入射すると、図3(a)に示すように、読み出し光入射領域Bとして基準光入射領域B0が断面A内の略中心位置に形成される。本実施の形態では、断面A内の一部に円形の制御点領域Cが設定されている。制御点領域Cの外側には、制御点領域Cを囲む非制御点領域Dが設定されている。制御点領域Cは、基準光入射領域B0より広い大きさを有し、かつ、基準光入射領域B0を完全に包含する位置に設定されている。換言すれば、制御点領域Cは、基準光入射領域B0と基準光入射領域B0を囲む環状の領域Eとからなる。制御点領域Cは位相歪補正を行うための領域である。すなわち、制御点領域C内に位置している画素(以下、制御点という)は、読み出し光の位相変調を行うべく機能する。一方、非制御点領域Dは位相歪補正を行わない領域である。すなわち、非制御点領域D内に位置している画素は位相変調を行わない。
基準光入射領域B0の中心、すなわち、基準光の光軸と液晶層550fとの交差点上に位置する制御点を、特に、制御点原点といい、その2次元座標を(Xcontorg、Ycontorg)で表す。また、PAL−SLM550の各画素の2次元座標を(X、Y)で表す。PAL−SLM550の全画素のうち制御点の2次元座標を、特に、(Xcont、Ycont)で表す。なお、2次元座標(X、Y)、(Xcont、Ycont)、(Xcontorg、Ycontorg)におけるX、Y、Xcont、Ycont、Xcontorg、Ycontorgは、変調装置側2次元平面(X、Y)上において、当該画素が変調装置側2次元平面(X、Y)の原点(0,0)からX方向、Y方向にそれぞれ±何画素分ずれた位置にあるかを示す整数である。
図3(b)に、図3(a)に示す断面Aのうちの一部の領域Fを拡大して示す。領域F内には、基準光入射領域B0と環状領域Eとの境界の一部、及び、環状領域Eと非制御領域Dとの境界の一部が含まれている。図3(b)に示すように、領域F内には、画素(X、Y)が配列している。特に、基準光入射領域B0内と環状領域E内とには、制御点(Xcont、Ycont)が配列している。
読み出し光入射領域Bは、読み出し光が歪みを有していない場合には、上述したように、図3(a)においてB0で示した位置及び大きさを有している。一方、読み出し光が歪を有している場合には、読み出し光入射領域Bの大きさと位置とは、その歪に応じて変動する。例えば、読み出し光入射領域Bは、読み出し光の歪みに応じて、図3(c)に示すように、B1で示す大きさと位置とを有するようになったり、B2で示す大きさと位置とを有するようになったりする。本実施の形態では、図3(a)を参照して説明したように、制御点領域Cは、読み出し光が歪みのない場合に形成する読み出し光入射領域B(B0)に対して十分広く設定している。このため、読み出し光入射領域Bの位置や大きさが図3(c)に示すB1やB2の大きさや位置に変動しても、制御点領域Cは読み出し光入射領域Bを包含し続ける。こうして、読み出し光の歪みの有無に関わらず、読みだし光は常に制御点領域C内に入射して制御点(Xcont、Ycont)により位相変調され続けることが保証されている。
次に、図4を参照しながら、波面検出デバイス60について説明する。
波面検出デバイス60は、シャックハルトマン方式の波面検出器(シャックハルトマン波面センサ(SHS))である。波面検出デバイス60は、ビームサンプラ50(図1)からの反射光を受光する位置に配置されている。波面検出デバイス60は、レンズアレイ610とイメージセンサ620とを有している。レンズアレイ610は、ビームサンプラ50からの反射光の光軸に対して直交する平面(以下、「計測装置側2次元平面(x、y)」という)上に2次元状に配列された複数の小レンズ612から構成されている。この例では、複数の小レンズ612は、マトリクス配列されている。小レンズ612の直径は、この例では、PAL−SLM550の画素サイズP1よりも大きい。なお、図1及び図4において、計測装置側2次元平面(x、y)のx方向は紙面を貫通する方向であり、y方向は紙面に平行な方向とする。
イメージセンサ620は、例えば、CCDカメラ、高速ビジョンセンサ、CMOSセンサ、または、他の光強度分布検出装置からなる。イメージセンサ620の受光面620sは、レンズアレイ610の焦点面上にレンズアレイ610の光軸に対して直交するように配置されている。受光面620sには複数の画素(以下、「計測点」という)が二次元状に配置されている。
図4に示すように、波面変調デバイス40から出力された読み出し光がビームサンプラ50を経てレンズアレイ610に入射すると、その波面630はレンズアレイ610により小レンズ領域601毎に小波面631に分割され、受光面620s上に集光スポットアレイを形成する。イメージセンサ620は、受光面620s上に形成された集光スポットアレイの画像を撮影する。イメージセンサ620は、図示しないアナログ−デジタル変換部を備えており、撮影したアナログの画像信号をデジタル画像信号に変換した後、制御装置80に出力する。なお、歪みのない基準光がPAL−SLM550に入射しPAL−SLM550で変調されないまま波面検出デバイス60に到達した際に得られる多点スポット画像のうち基準光の光軸に最も近い位置に位置するスポット(中心スポット)の重心と受光面620sとの交差点上に位置する計測点を計測点原点という。計測点原点の2次元座標を(xsensorg、ysensorg)と表す。計測点原点(xsensorg、ysensorg)は、制御点原点(Xcontorg、Ycontorg)に対して略共役の位置にある。また、受光面620s上に配列された各計測点の2次元座標を(xsens、ysens)と表す。ここで、画素の2次元座標(xsens、ysens)、(xsensorg、ysensorg)におけるxsens、ysens、xsensorg、ysensorgは、計測装置側2次元平面(x、y)において当該画素がx方向、y方向に計測装置側2次元平面(x、y)の原点(0、0)から±何画素分ずれているかを示す整数である。
本実施の形態では、ビームサンプラ50で反射されレンズアレイ610に入射しようとする読み出し光の波面形状630と理想波面形状との差を、計測装置側2次元平面(x、y)上において、2次元の関数W(x、y)で表す。なお、xy座標値を極座標で表わすと、式1のようになる。
Figure 2005292662
なお、関数W(x、y)をx、yで偏微分することで関数W(x、y)が示す波面の局部の傾きが得られる。ここで、関数W(x、y)のx、y偏微分は、以下の式2で定義される。
Figure 2005292662
"
本実施の形態では、関数W(x、y)を、式3で表される2次元のツェルニケ(Zernike)多項式W(ρ、θ)であると仮定する。
Figure 2005292662
ここで、ρ=r/rである。rは、ツェルニケ(Zernike)多項式の単位円のサイズであり、レンズアレイ610に入射する読み出し光の所定のビーム径に依存した値である。また、Kは、ツェルニケ(Zernike)多項式の項数である。各項の関数Z(ρ、θ)は予め定められた関数である。例えば、第1項目(k=1)〜第10項目(k=10)の関数Z(ρ、θ)は、以下の式4で定義されている。
Figure 2005292662
また、受光面620s上に配列されている全計測点(xsens、ysens)のうち制御点対応計測点(xsens−cont、ysens−cont)が、以下の式5によって、PAL−SLM550上の各制御点(Xcont、Ycont)と対応づけられている。
Figure 2005292662
ここで、Ps=Pl/(r×m)である。なお、PlがPAL−SLM550の画素のサイズ、rがツェルニケ(Zernike)多項式の単位円のサイズ、mがPAL−SLM550とイメージセンサ620の間に設けられているリレーレンズ(図示せず)による結像倍率である。なお、計測点原点(xsensorg、ysensorg)が、制御点原点(Xcontorg、Ycontorg)に対応づけられている。
次に、図1に戻って制御装置80について説明する。
制御装置80は、例えばパーソナルコンピュータからなり、CPU81、RAM82、ハードディスク83、ROM84、ハードディスクやフレキシブルディスク、CD−ROM、DVD等の記録媒体90からデータやパラメータを読み込むための記録媒体読みとり装置85、及び、入出力インターフェース86の他、図示しないネットワーク接続装置等を備えている。LCD530を電気アドレス駆動するための図示しない電子回路が、入出力インターフェース86を介して、制御装置80に接続されている。
ハードディスクには、制御プログラムと、ツェルニケ多項式の65項(k=1〜65)分の関数Z(ρ、θ)のデータからなる波面コードと、制御点原点(Xcontorg、Ycontorg)と、計測点原点(xsensorg、ysensorg)と、ルックアップテーブルTとが、記憶されている。
ルックアップテーブルTは、LCD530に入力すべき制御信号の信号レベルとPAL−SLM550が達成する位相変調量との関係を示している。ルックアップテーブルTの例を以下の表1に示す。
Figure 2005292662
LCD530の輝度値は、0〜255の256階調である。ルックアップテーブルTは、各輝度値を、0〜255のインデクス(I)として表している。ルックアップテーブルTは、各インデクス(I)に対し、0〜1換算位相値(IN)と信号レベル(OUT)とを格納している。信号レベル(OUT)は、対応する輝度(I)の書き込み光を出力させるためにLCD530に与えるべき制御信号の値である。0〜1換算位相値(IN)は、LCD530が対応する輝度(I)の書き込み光を出力した際にPAL−SLM550が達成する位相変調量を1波長(2π)を単位とする0以上1以下の値として示したものである。なお、表1より明らかなように、0〜1換算位相値(IN)と信号レベル(OUT)とは非線形関係にある。
制御装置80は、CPU81が制御プログラムを実行し後述する図10〜図14のフローチャートで示されている処理を行うことにより、波面変調デバイス40及び波面検出デバイス60を制御する。より詳しくは、制御装置80は、波面検出デバイス60から入力される多点スポット画像信号を用いて演算を行ない、演算結果に基づいて帰還制御データを作成し、帰還制御データに基づき波面変調デバイス40を閉ループフィードバック制御する。
ここで、制御プログラムと波面コードとは、予め、フレキシブルディスクやCD−ROM、DVD等の記録媒体90に格納されており、記録媒体読みとり装置85により読み込まれてハードディスク83に格納される。
一方、制御点原点(Xcontorg、Ycontorg)と計測点原点(xsensorg、ysensorg)とルックアップテーブルTとは、セットアップ作業により作成され、ハードディスク83に格納される。なお、セットアップ作業は、波面補償装置1の製造段階や使用現場への設置段階等、波面検出デバイス60や波面変調デバイス40に変更があった場合に行われる。セットアップ作業には、波面変調デバイス40のセットアップと波面検出デバイス60のセットアップとルックアップテーブルTのセットアップとが含まれる。
波面検出デバイス60のセットアップでは、基準光を波面変調デバイス40に入射させる。PAL−SLM550を非駆動状態とするか、もしくは、LCD530に一様なパターンを表示させる。基準光がビームスプリッタ50とレンズアレイ610とを経てイメージセンサ620上に形成する一枚の多点スポット画像中でビーム中心(すなわち、基準光の光軸)に最も近いスポットを中心スポットとして設定する。この中心スポットの重心を調べ、重心が位置している画素(すなわち、重心と受光面620sとの交差点の位置にある画素)を選択する。選択された画素の座標を計測点原点(xsensorg、ysensorg)として設定する。なお、計測点原点(xsensorg、ysensorg)を通る光線を、以下、基準軸光線という。
波面変調デバイス40のセットアップでは、波面検出デバイス60のセットアップにより定められた計測点原点(xsensorg、ysensorg)を通る基準軸光線が液晶層550fと交差する位置にある画素を、制御点原点(Xcontorg、Ycontorg)として設定する。こうして、制御点原点(Xcontorg、Ycontorg)が、計測点原点(xsensorg、ysensorg)と略共役の位置に決定される。
ルックアップテーブルTのセットアップでは、LCD530への入力インデックスを0から255まで順次変化させ,その時のPAL−SLM550による位相変化を計測し,インデックスと位相変化の対応表(表1)を作成しルックアップテーブルTとして設定する。
次に、図5乃至9を参照しながら制御装置80の動作について詳細に説明する。
図5に、制御装置80の動作ブロック図を示す。
図5に示すように、制御装置80では、入力部100が、処理に必要なデータやパラメータを入力する。波面算出部200が、波面検出デバイス60の検出結果と入力部100から入力されたデータとパラメータとを用いて、波面変調デバイス40から出力された光の波面と理想波面との位相差を示す残差波面を計算する。波面算出部200は、その計算結果を制御データ合成部300に出力する。制御データ合成部300は、波面算出部200からの残差波面と入力部100からのデータとパラメータとを用いて帰還制御データを作成する。変換部400が帰還制御データを制御信号に変換し制御部500へ送出する。制御部500は、制御信号を波面変調デバイス40に送出して波面変調デバイス40を駆動制御する。
図6に入力部100の動作ブロック図を示す。
図6に示すように、入力部100では、波面データ入力部110が、理想波面を示す初期制御データI(X、Y)の入力を行なう。初期制御データI(X、Y)は、全画素点領域A内の全画素点(X、Y)における位相値を示している。パラメータ入力部120が、波面補償装置1の駆動に必要な様々なパラメータを入力する。パラメータには、フィードバック係数fの他後述する様々なパラメータが含まれている。メモリ部130がRAM82内に用意されている。波面データ入力部110やパラメータ入力部120によって入力されたデータやパラメータは、メモリ部130内に保存され、必要に応じて波面算出部200や制御データ合成部300に送出される。
図7に、波面算出部200の動作ブロック図を示す。
波面算出部200では、画像入力部210が、波面検出デバイス60からのデジタル画像信号を受け取る。画像メモリ220がRAM82内に用意されている。画像入力部210から入力されたデジタル画像は画像メモリ220に保存され、必要に応じて波面計算部230に送出される。波面計算部230は、画像メモリ220からのデジタル画像とメモリ部130(図6)からのデータ及びパラメータに基づき、波面変調デバイス40から実際に出力されレンズアレイ610に達した光の波面630と理想波面との位相差を示すデータを制御点(Xcont、Ycont)毎に計算し、当該位相差を示すデータを各制御点毎の残差波面R(Xcont、Ycont)として決定する。計算結果メモリ240がRAM82内に用意されている。波面計算部230の計算結果である残差波面R(Xcont、Ycont)のデータは、計算結果メモリ240に保存された後制御データ合成部300に送出される。
図8に制御データ合成部300のブロック図を示す。
制御データ合成部300では、掛け算演算部310が、メモリ部130からのフィードバック係数fと計算結果メモリ240からの制御点毎の残差波面R(Xcont、Ycont)とを掛け算する。収差波面メモリ340がRAM82内に用意されている。制御点毎の収差波面A(Xcont、Ycont)を示すデータが収差波面メモリ340に保存されている。第1の足し算演算部320が、掛け算結果fxR(Xcont、Ycont)と収差波面メモリ340に現在保存されている収差波面A(Xcont、Ycont)とを制御点毎に足し算し、その結果を新たな収差波面A(Xcont、Ycont)として収差波面メモリ340に上書き保存する。第2の足し算演算部330が、第1の足し算演算部320の足し算の結果とメモリ部130からの初期制御データI(X、Y)とを制御点毎に足し算し、制御点毎の帰還制御データB(Xcont、Ycont)を作成する。制御データメモリ350がRAM82内に用意されている。帰還制御データB(Xcont、Ycont)は制御データメモリ350に一時的に保存された後、変換部400に送出される。
なお、波面データ入力部110に入力されメモリ部130に格納されている初期制御データI(X、Y)は、位相値を1波長(2π)に対する比の値に換算して得られた換算位相値を示している。例えば、位相値がπのときには換算位相値は0.5、位相値が−2πのときには換算位相値は−1である。したがって、入力部100と波面算出部200と制御データ合成部300とは、初期制御データI(X、Y)、残差波面R(Xcont、Ycont)、収差波面A(Xcont、Ycont)、帰還制御データB(Xcont、Ycont)とを、それぞれ、1波長(2π)を単位とした換算位相値の形で扱っている。
図9に変換部400の動作ブロック図を示す。
図9に示すように、ルックアップテーブルメモリ420がRAM82内に用意されている。ルックアップテーブルTがハードディスク83から読み出されルックアップテーブルメモリ420に格納されている。変換部410は、ルックアップテーブルTを参照して、制御データメモリ350からの帰還制御データB(Xcont、Ycont)を制御信号S(Xcont、Ycont)へ変換する。制御信号メモリ430がRAM82内に用意されている。制御信号S(Xcont、Ycont)の信号レベルのデータは、制御信号メモリ430に一時的に保存された後、制御部500へ送出される。制御部500は、PAL−SLM550の制御点領域C内の全制御点(Xcont、Ycont)に対応するLCD530上の透明画素電極に制御信号S(Xcont、Ycont)を出力し、LCD530を電気アドレス駆動する。
次に、波面補償装置1の動作を図10乃至図14を参照しながら更に詳しく説明する。
図10に示すように、CPU81は、まず初期処理を実行する(ステップS1)。
初期処理は、図11に示す手順で行われる。
CPU81は、まず、メモリの準備を行う(ステップS11)。具体的には、RAM82内に、メモリ130、画像メモリ220、計算結果メモリ240、収差波面メモリ340、制御データメモリ350、帰還制御データメモリ430等、処理に必要な様々なメモリの領域を確保する。また、計算結果メモリ240、収差波面メモリ340、制御データメモリ350等のメモリに対して必要なリセットが行なわれる。具体的には、計算結果メモリ240、収差波面メモリ340、制御データメモリ350等のメモリの値が「0」に初期設定される。また、制御信号メモリ430のリセットも行なわれる。具体的には、LCD530内の全画素へ最初に印加すべき制御信号S(X、Y)が、制御信号メモリ430に格納される。この例では、理想波面が平面波であるため、制御信号S(X、Y)は、全画素(X、Y)に対しゼロ(0)となっている。
次に、CPU81は、パラメータの読み込み(ステップS12)を行なう。
具体的には、CPU81は、まず、計測点原点(xsensorg、ysensorg)と制御点原点(Xcontorg、Ycontorg)のデータを、ハードディスク83から読み出してメモリ130内に格納する。また、ルックアップテーブルTのデータを、ハードディスク83から読み出してルックアップテーブルメモリ420内に格納する。
なお、波面補償装置1の製造段階や設置段階等、波面検出デバイス60や波面変調デバイス40に変更があった場合には、S12においては、計測点原点(xsensorg、ysensorg)、制御点原点(Xcontorg、Ycontorg)、及び、ルックアップテーブルTのデータをハードディスク83から読み出す代わりに、波面検出デバイス60、波面変調デバイス40、及び、ルックアップテーブルTのセットアップを行い、これらのデータを作成する。
S12では、更に、CPU81は、初期制御データI(X、Y)を記録媒体90から読み込みメモリ130に格納する。なお、CPU81は図示しないネットワーク接続装置を制御することにより、初期制御データI(X、Y)をネットワークからダウンロードしても良い。
なお、この例では、理想波面は平面波であるため、初期制御データI(X、Y)は全画素点(X、Y)に対して0を有している。
次に、CPU81は、記録媒体90に記憶されているパラメータファイルからパラメータを読み込み、メモリ130に格納する。なお、CPU81は図示しないネットワーク接続装置を制御することにより、パラメータをネットワークからダウンロードしても良い。
パラメータには、読み出し光の波長λ及び所定のビーム径、レンズアレイ610のピッチPr、小レンズ612の焦点距離Fr、イメージセンサ620の画素サイズPcと画素ピッチPs、LCD530の画素サイズP1と画素ピッチと画素数、波面変調デバイス40と波面検出デバイス60との空間位置関係、波面変調デバイス40と波面検出デバイス60との間に配置された図示しないリレーレンズ系の結像倍率m、バイアスシフト用閾値、評価用閾値、重心計算範囲サイズ、重心有効性評価パラメータVMAX、VPV、VAREA、VEFF、多項式データ(具体的には、使用するツェルニケ(Zernike)多項式の項数K、及び、ツェルニケ(Zernike)単位円のサイズr)、及び、フィードバック係数fが含まれている。
重心計算範囲サイズは、後述する重心計算において使用される重心計算範囲CAのサイズである。重心計算範囲CAは、小レンズ612の直径より小さい辺を有する四角形領域、あるいは、小レンズ612の直径より小さい直径を有する円形領域である。したがって、重心計算範囲サイズとは、重心計算範囲CAが四角形領域である場合にはその辺の長さであり、重心計算範囲CAが円形領域である場合にはその直径の長さである。なお、重心計算範囲サイズは、(1.22・Fr・λ)/(Pr・Ps)を四捨五入した整数以上で、Pr/Psを四捨五入して得られた整数値以下の画素数で表される。
ツェルニケ(Zernike)多項式の項数Kは、制御したい収差の次数に依存した値として設定されている。項数Kは、この例では、65以下の自然数である。具体的には、I次(なお、Iは自然数)までの収差を制御したい場合には、項数Kは式K=I(I+3)/2を満足するように設定されている。
次に、CPU81は、セットアップデータ処理を行う(ステップS13)。
セットアップデータ処理とは、S12でメモリ130に格納されたパラメータに基づいて必要な各種のデータを算出する処理である。ここで、必要な各種のデータには、PAL−SLM550の全画素(X、Y)、制御点領域C内に位置する全制御点(Xcont、Ycont)、受光面620s上に配列されている全計測点(xsens、ysens)、全制御点対応計測点(xsens−cont、ysens−cont)、レンズ領域データLA、参照重心データRC(x、y)、及び、偏微分データQ(ρ、θ)、R(ρ、θ)等が含まれている。
PAL−SLM550の全画素(X、Y)は、制御点原点(Xcontorg、Ycontorg)を基準として設定される。制御点領域Cが、制御点原点(Xcontorg、Ycontorg)を中心とし、基準光入射領域B0を包含し基準光入射領域B0より環状部Eだけ大きい領域として設定される。そして、制御点領域C内に位置する全制御点(Xcont、Ycont)が制御点原点(Xcontorg、Ycontorg)を基準として設定される。なお、基準光入射領域B0は、制御点原点(Xcontorg、Ycontorg)を中心とし所定のビーム径に等しい直径を有する円形状領域として設定される。
受光面620s上に配列されている全計測点の座標(xsens、ysens)は、計測点原点(xsensorg、ysensorg)を基準として設定される。全計測点(xsens、ysens)のうち式5を満足する計測点が、制御点対応計測点(xsens−cont、ysens−cont)として設定される。
レンズ領域LAは各小レンズ612に対応して受光面620s上に設定される。具体的には、レンズ領域LAは、各小レンズ612に対応して、当該小レンズ612の光軸と受光面620sとの交点を中心とし、幅が小レンズ612の直径、もしくは、小レンズ612のピッチに略等しい領域である。レンズ領域LAの形状はレンズアレイ610の配列形状に対応して設定される。この例では、小レンズ612はマトリクス配列されているため、レンズ領域LAの形状は四角形である。各小レンズ612に対応するレンズ領域LAは、当該レンズ領域LAに含まれている複数の計測点座標(xsens、ysens)により設定される。
参照重心データRC(x、y)も各小レンズ612に対応して規定されている。各小レンズ612に対する参照重心RC(x、y)とは、当該小レンズ612が理想波面を有する読み出し光を受光面620s上に集光して形成する光スポットの重心の位置である。参照重心RC(x、y)も、計測点原点(xsensorg、ysensorg)を基準とした座標として設定される。この例では、理想波面は平面波であるため、各小レンズ612に対応する参照重心データRC(x、y)は、当該小レンズ612の光軸と受光面620sとの交点の座標である。
偏微分データQ(ρ、θ)、R(ρ、θ)は、式3の関数W(ρ、θ)をx、yにより偏微分すると得られる多項式の各項k(k=1〜K)の関数であり、以下の式6によって定義されている。なお、x、yは、計測点原点(xsensorg、ysensorg)を基準として設定されており、ρ、θは、このx、yに対し、式1、及び、ρ=r/rを満足する値として定義されている。
Figure 2005292662
偏微分データQ(ρ、θ)、R(ρ、θ)は、波面コードの関数Z(ρ、θ)のデータに基づいて、以下の式7を演算することにより、求められる。
Figure 2005292662
次に、CPU81は、PAL−SLM550を動作可能な状態にするための駆動処理を行なう(ステップS14)。
次に、CPU81は、イメージセンサ620を、画像撮影が可能で、かつ、制御装置80に画像データを送出可能な状態にする(ステップS15)。
上記手順によりS1の初期処理が終了すると、CPU81は、フィードバック処理を開始する。
まず、CPU81は、ステップS2(図10)において、波面計測を行なう。
波面計測は、図12に示す手順で行われる。
CPU81は、まず、画像を撮影・保存する処理を行う(ステップS21)。
具体的には、CPU81は、LCD530の全画素に対し、制御信号メモリ430の制御信号S(X、Y)を出力する。LCD530は書き込み光を制御信号S(X、Y)に応じて強度変調して出射し、PAL−SLM550に入射する。PAL−SLM550には、位相歪み30(図1)を有し所定のビーム径を有する読み出し光が入射している。PAL−SLM550は、この読み出し光を書き込み光の強度パターンに応じて位相変調する。PAL−SLM550から出射した位相変調光は、ビームサンプラ50により分割され、一部は透過し、残りは反射して波面検出デバイス60に入射する。ここで、波面検出デバイス60に入射した位相変調光は波面630を有している。波面630は、理想波面(初期制御データI(X、Y)=0)と、乱れ要因20等により生じた位相歪み30と、他の乱れ要因(例えばPAL−SLM550の位相変調特性の時間的変動)による位相歪とが足し合わされて形成された波面である。
波面検出デバイス60に導かれた光はレンズアレイ610に入射する。レンズアレイ610は入射した光を小領域601毎に収束し、多点スポット画像をイメージセンサ620の受光面620s上に形成する。イメージセンサ620は、入射した画像を撮影し画像データを作成して制御装置80に送出する。CPU81は、画像データを画像メモリ220に保存する。
次に、CPU81は、波面計測のための初期処理として、画像メモリ210に取り込んだ画像にバイアスシフト処理を行う(ステップS22)。
具体的には、CPU81は、受光面620sの各画素で得られた画素値(輝度)とバイアスシフト用の閾値とを比較する。画素値が閾値より小さい場合には当該画素値を「0」に変更し、画素値が閾値より大きい場合には画素値と閾値との差をその位置の画素値に設定しなおす。なお、CPUは、バイアスシフトされた画素値に対し、更に、平滑化処理を施しても良い。
次に、CPU81は、S22で計算した画素値を用いて、各小レンズ612に対し、重心計算を行なう(ステップS23)。
具体的には、CPU81は、まず、各小レンズ612に対応するレンズ領域LA内において、画素値の極大位置を求める。次に、CPU81は、各小レンズ612に対して求めた極大位置と重心計算範囲サイズデータとに基づき、受光面620s上に、各極大位置を中心とし重心計算範囲サイズを有する四角形もしくは円形の重心計算範囲(以下、「重心計算範囲CA」という)を設定する。さらに、CPU81は、各小レンズ612に対して求めた重心計算範囲CA内に位置する複数の画素の画素値の重心位置を計算する。
具体的には、以下のようにして、各小レンズ612(第j(jは1以上の自然数)番目の小レンズ612(j))により結像された集光スポットの重心を求める。
まず、小レンズ612(j)に対応するレンズ領域LA(j)内に位置する画素の中で画素値が極大となっている画素を選択する。なお、レンズ領域LA(j)とは、対応する小レンズ612(j)の光軸が受光面620sに交差している点を中心とした四角形領域である。次に、極大値の位置を中心とした重心計算範囲CA(j)内に位置している画素を選択する。なお、重心計算範囲CA(j)は、極大値の位置を中心とし重心計算範囲サイズを有する円形もしくは四角形状の領域である。次に、重心計算範囲CA(j)内に位置している画素の画素値の重心位置を計算する。こうして、第j番の小レンズ612(j)に対する重心C(j)(x、y)を求める。
なお、レンズ領域LA(j)内に極大値が2つ以上存在する場合には、極大値を持つ2つ以上の画素の幾何中心に相当する画素を按分計算にて算出し、この画素を極大位置として決定する。具体的には、例えば、レンズ領域LA(j)内の5つの画素(240, 250)、(241, 250)、(239, 250)、(240, 251)、(240, 252)で極大値が得られているとする。この場合、これら5つの幾何中心は(240, 250.6)と算出できる。このため、250.6を四捨五入処理して得られる値251に基づき、画素(240, 251)が極大値位置として決定される。画素(240, 251)を中心とし重心計算範囲サイズを有する円形もしくは四角形領域が重心計算範囲CA(j)として設定され、重心計算範囲CA(j)内の画素値に対して重心が演算される。
次に、CPU81は、重心有効性の評価を行なう(ステップS24)。
すなわち、CPU81は、S23において各小レンズ612に対し設定された重心計算範囲CAの有効性を評価する。ここで、CPU81は、各小レンズ612に対し、重心計算範囲CA内の画素の画素値の最大値と、最大値と最小値との差(以下、最大最小差という)、重心計算範囲CA内の画素のうち画素値が評価用閾値を超えている画素の総数(以下、閾値面積という)、及び、重心計算範囲CA内の中心付近の画素値分布(以下、中心画素値分布)を計算する。ここで、中心画素値分布とは、重心計算範囲CAの中心に位置する画素(すなわち、極大値画素)を中心とする3×3の正方形領域内に位置する9個の画素値の平均値を重心計算範囲CA内の中心の画素値(すなわち、極大値)で割った値である。CPU81は、また、重心有効性評価パラメータVMAX、VPV、VAREA、VEFFをメモリ130から読み出す。ここで、VMAXは最大値に対するしきい値、VPVは最大最小差に対するしきい値、VAREAは閾値面積に対するしきい値、VEFFは中心画素値分布に対するしきい値である。CPU81は、計算した最大値、最大最小差、閾値面積、及び、中心画素値分布を、それぞれ、VMAX、VPV、VAREA、VEFFと比較する。CPU81は、比較結果に基づき、当該小レンズ612に対し設定された重心計算範囲CAが有効か否かを判定する。
具体的には、CPU81は、各小レンズ612(j番目の小レンズ612(j))に対する重心計算範囲CA(j)について、重心計算範囲CA(j)内の画素値の最大値Vmax(j)、最大値Vmax(j)と最小値Vmin(j)との差Vmax(j)−Vmin(j)、閾値面積Varea(j)、及び、中心画素値分布Veff(j)を計算する。CPU81は、Vmax(j)とVMAX、Vmax(j)−Vmin(j)とVPV、Varea(j)とVAREA、Veff(j)とVEFFとを比較し、以下の4つの条件(1)〜(4)の少なくとも1つの条件が満たされているか否かを判断する:
(1)Vmax(j)<VMAX;
(2)Vmax(j)−Vmin<VPV;
(3)Varea(j)<VAREA;及び
(4)Veff(j)<VEFF。
(1)〜(4)のうちの少なくとも1つの条件が満たされている場合、CPU81は、当該j番目の小レンズ612jに対する重心計算範囲CA(j)は無効である、したがって、重心C(j)(x、y)は無効であると判定する。一方、(1)〜(4)のうちのいずれの条件も満たされていない場合には、当該j番目の小レンズ612jの重心計算範囲CA(j)は有効である、したがって、重心C(j)(x、y)は有効であると判定する。
次に、CPU81は、各小レンズ612に対する参照重心データRC(x、y)をメモリ部130から読み出し、各小レンズ612に対して重心シフト(δx、δy)を演算する(ステップS25)。ここで、各小レンズ612に対する重心シフト(δx、δy)とは、当該小レンズ612に対してS23で計算された重心位置C(x、y)と、当該小レンズ612に対する参照重心位置RC(x、y)とのx軸方向およびy軸方向におけるずれ量である。なお、S24で重心が無効であると判定された小レンズ612に対しては、強制的に、重心シフト(δx、δy)=(0,0)と設定する。
次に、CPU81は、波面方程式算出処理を行う(ステップS26)。本実施の形態では、レンズアレイ610に入射した波面630と理想波面との位相差の波面形状を示す波面方程式が式3のツェルニケ(Zernike)多項式W(ρ、θ)の形式を有していると仮定する。ただし、式3のツェルニケ(Zernike)多項式W(ρ、θ)のうち重み係数A(ここで、k=1〜K)が未知である。そこで、本ステップでは、重み係数Aを重心シフト(δx、δy)に基づいて決定し、式3のツェルニケ(Zernike)多項式W(ρ、θ)を決定する。
以下、ツェルニケ(Zernike)多項式W(ρ、θ)を決定する方法について、詳しく説明する。
ここで、波面方程式W(ρ、θ)の各小レンズ612の光軸上の位置における局部傾きは、当該小レンズ612に対する重心シフト(δx、δy)と比例する。したがって、各小レンズ612に対して、波面方程式W(ρ、θ)のx、y偏微分と重心シフト(δx、δy)とは式8の関係にあるはずである。
Figure 2005292662
なお、比例定数cは、システムの構成によって決まるパラメータであり、c=r・Pc/(λ・Fr)で表される。なお、rはツェルニケ(Zernike)多項式が定義される単位円のサイズ、Pcはイメージセンサ620の画素サイズ、Frは小レンズ612の焦点距離、λは読み出し光の波長である。
そこで、CPU81は、以下のように、式8に最小2乗法を適用してフィッティングを行ない、ツェルニケ(Zernike)多項式W(ρ、θ)の各項の重み係数Aを計算する。
具体的には、評価式を式9のように規定する。
Figure 2005292662
ここで、Nは小レンズ612の総数であり、n(n=1〜N)は各小レンズ612を示している。式9は、式6に従い、以下の式10のように書き直される。
Figure 2005292662
式10の評価式が最小値になるためには、式10の偏微分式が全A(ここで、k=1、2、…、K)に対して0となる必要がある。換言すれば、評価式10が最小値になる条件は、以下の連立方程式11で表される。
Figure 2005292662
なお、式11の各式δΔ/δA=0(ここで、k=1、2、…、または、K)は、以下の式12で表される。
Figure 2005292662
ここで、k=1、2、…、または、Kである。換言すれば、連立方程式11は、kの値が互いに異なる総計K個の式12(すなわち、k=1である式12,k=2である式12、k=3である式12、…、及び、k=Kである式12)からなる。こうして、全K個の重み係数A〜Aを未知数とするK次連立方程式が得られる。
次に、CPU81は、連立方程式11の解A〜Aを求める。具体的には、CPU81は、コンピュータによる数値計算にて、2つの演算を行う。第1の演算は、式12の左辺のQk1(ρ、θ)Q(ρ、θ)とRk1(ρ、θ)R(ρ、θ)とから構成されるK×K行列の逆行列を計算する演算である。第2の演算は、第1の演算により得られた逆行列と式12の右辺のQ(ρ、θ)、R(ρ、θ)から構成されるベクトルとの掛け算を計算する演算である。このようにして、全K個の重み係数A〜Aを決定する。
こうして得られた重み係数A〜Aを式3に代入することにより、レンズアレイ610に入射した波面630と理想波面との位相差の波面形状を表わす関数W(ρ、θ)を決定する。なお、この例では、理想波面は平面波であるので、関数W(ρ、θ)は、レンズアレイ610に入射した波面630の位相そのものを示している。ここで、関数W(ρ、θ)はρ、θに対して定義されているため、式1とρ=r/rとに基づいて、関数W(ρ、θ)を、x、yに対して定義された関数W(x、y)に変換する。
次に、CPU81は、波面方程式W(x、y)を用いて制御点領域C内の全制御点(Xcont、Ycont)における残差波面R(Xcont、Ycont)を求める計算を行なう(ステップS27)。
具体的には、CPU81は、各制御点対応計測点(xsens−cont、ysens−cont)を波面方程式W(x、y)に代入して、各制御点対応計測点(xsens−cont、ysens−cont)における位相値W(xsens−cont、ysens−cont)を計算する。計算された位相値W(xsens−cont、ysens−cont)は、PAL−SLM550上の対応する制御点(Xcont、Ycont)で変調されレンズアレイ610に到達した読み出し光の位相パターンと理想波面との位相差を示している。なお、この例では、理想波面は平面波であるので、位相値W(xsens−cont、ysens−cont)は、PAL−SLM550上の対応する制御点(Xcont、Ycont)で変調されレンズアレイ610に到達した読み出し光の位相パターン自体を示している。CPU81は、位相値W(xsens−cont、ysens−cont)を、対応するPAL−SLM制御点(Xcont、Ycont)についての残差波面データR(Xcont、Ycont)として設定し、計算結果メモリ240に保存する。以上により、ステップS2の波面計測の手順が終了する。
こうして、波面方程式W(ρ、θ)を用いて制御点領域C内の全制御点(Xcont、Ycont)での残差波面R(Xcont、Ycont)を算出することができる。ここで、制御点領域C内のうち読み出し光が実際に入射している読み出し光入射領域内の制御点(Xcont、Ycont)に対しては、得られた残差波面R(Xcont、Ycont)は、PAL−SLM550に実際に入射し変調された読み出し光の波面と理想波面との位相差を示している。一方、制御点領域C内のうち読み出し光入射領域を囲む領域内の制御点(Xcont、Ycont)に対して得られた残差波面R(Xcont、Ycont)は、読み出し光が制御点領域C全体にわたって入射し変調されたと仮定した場合に読み出し光が有すると推定される波面と理想波面との位相差を示している。
次に、CPU81は、図10に示すように、制御データの合成を行なう(ステップS3)。
S3の制御データ合成処理は、図13に示す手順で行われる。
図13に示すように、CPU81は、計算結果メモリ240に保存された各制御点毎の残差波面R(Xcont、Ycont)とフィードバック係数fとを掛け算する(ステップS31)。
ここで、フィードバック係数fとは、1以下の数値であり一種のゲインである。フィードバック係数は、残差波面R(Xcont、Ycont)の何パーセントを対応する制御点(Xcont、Ycont)の初期制御データI(Xcont、Ycont)に加算して波面変調デバイス40にフィードバックすべきかを示している。フィードバック係数fを調整することで、理想波面に近い位相パターンに補正されるまでの収束の度合い、及び、閉ループの帰還回数等を調整することができる。なお、フィードバック係数fの値は、第何回目の帰還ループかによって異ならせてもよく、第何回目の帰還ループかに関わらず一定でもよい。
この例では、第1回目の計測でのフィードバック係数は1である。したがって、計測で得られた残差波面の100%がフィードバックに供される。第2回目のフィードバック係数は0.2であるため、計測で得られた残差波面の20%がフィードバックに供される。なお、第1回目のフィードバック係数は1でなくてもよい。また、第2回目のフィードバック係数も、他の数値、例えば、0.1,0.05,0.32等でも良い。
次に、CPU81は、ステップS31で得られた掛け算結果“fxR(Xcont、Ycont)”と収差波面メモリ340に現在保存されている収差波面A(Xcont、Ycont)とを、制御点(Xcont、Ycont)毎に足しあわせる(ステップS32)。なお、全制御点(Xcont、Ycont)の収差波面A(Xcont、Ycont)として値「0」が初期設定されている。
CPU81は、足し算結果“A(Xcont、Ycont)+fxR(Xcont、Ycont)”を、新たな収差波面A(Xcont、Ycont)として収差波面メモリ340に上書き保存する(ステップS33)。
次に、S34において、CPU81は、各制御点(Xcont、Ycont)についての新たな収差波面A(Xcont、Ycont)を収差波面メモリ340から読み出す。CPU81はまた、各制御点についての理想波面I(Xcont、Ycont)(この例では、I(Xcont、Ycont)=0)をメモリ130から読み出す。CPU81は、制御点毎に、理想波面I(Xcont、Ycont)と新たな収差波面A(Xcont、Ycont)とを足し算する。CPU81は、足し算結果を、制御点(Xcont、Ycont)毎の新たな制御データ、すなわち、帰還制御データB(Xcont、Ycont)として制御データメモリ350に保存する(ステップS35)。
以上で、ステップS3の制御データ合成の手順が終了する。
次に、CPU81は、図10に示すように、ルックアップテーブル処理を行う(ステップS4)。
S4のルックアップテーブル処理は、図14の手順で行われる。
図14に示すように、CPU81は、制御データメモリ350から各制御点の帰還制御データB(Xcont、Ycont)を読み出し、帰還制御データB(Xcont、Ycont)の整数部をゼロに変換することにより、帰還制御データB(Xcont、Ycont)を小数部のみからなる値に変換する(ステップS41)。例えば、制御データメモリ350から読み出された帰還制御データB(Xcont、Ycont)が0.51、1.2,−0.4,もしくは、−2.34の場合には、それぞれ、0.51、0.2,−0.4,−0.34に変換する。
次に、CPU81は、ステップS41で変換された帰還制御データB(Xcont、Ycont)が負の数であるか否かを判断し、負の数である場合には次のような処理を行う(ステップS42)。すなわち、CPU81は、帰還制御データB(Xcont、Ycont)に1を足して正の数に変換し、変換後の値を帰還制御データB(Xcont、Ycont)として設定しなおす。一方、ステップS41で変換された帰還制御データB(Xcont、Ycont)が正である場合には、そのままの値を帰還制御データB(Xcont、Ycont)として設定する。こうしてステップS41とS42とを実行することにより、折り畳み処理を行う。
例えば、ステップS41で変換された帰還制御データB(Xcont、Ycont)が−0.4、もしくは、−0.34の場合には、それぞれ、1+(−0.4)=0.6、1+(−0.34)=0.66に設定し直す。一方、ステップS41で変換された帰還制御データB(Xcont、Ycont)が0.51、もしくは、0.2の場合には、そのままの値0.51,0.2を設定する。こうして、帰還制御データB(Xcont、Ycont)は、0以上1未満の位相値に換算される。
次に、CPU81は、ステップS42で0以上1未満の位相値に変換された帰還制御データB(Xcont、Ycont)の値に基づき、ルックアップテーブルメモリ420内のルックアップテーブルTを参照して、帰還制御データB(Xcont、Ycont)を制御信号S(Xcont、Ycont)に変換する(ステップS43)。ここで、IN(I)、及び、OUT(I)を、ルックアップテーブルT内のインデクスI(=0〜255)における0〜1換算位相値、及び、信号レベルとすると、IN(I)≦B(Xcont、Ycont)<IN(I+1)を満足するインデクスI(0〜255)を選択し、当該インデクスIに対応するOUT(I)の値をS(Xcont、Ycont)の信号レベルとして設定する。
次に、CPU81は、制御信号S(Xcont、Ycont)を、制御点(Xcont、Ycont)毎の新たな制御信号として、制御信号メモリ430に上書き保存する(ステップS44)。
以上により、ステップS4の手順が終了する。
続いて、CPU81は、図10に示すように、制御信号の更新を行なう(ステップS5)。すなわち、CPU81は、入出力インターフェース86を介して図示しない電子回路を制御することにより、制御信号メモリ430に新たに格納された制御点毎の制御信号S(Xcont、Ycont)を、当該制御点(Xcont、Ycont)に対応するLCD530内の透明画素電極に入力する。更新された制御信号S(Xcont、Ycont)がLCD530に入力されると、PAL−SLM550は、更新された帰還制御データB(Xcont、Ycont)に対応した位相変調量で読み出し光を変調する。なお、非制御点領域D内の画素(X、Y)に対応するLCD530上の画素については、相変わらず、制御信号S(X、Y)=0が入力され続ける。したがって、PAL−SLM550の非制御点領域D内の画素(X、Y)は、読み出し光の位相変調を行わない。
以上の手順により波面補償装置1は、閉ループフィードバック制御される。
その後、CPU81は一連の位相変調手順を終了すべきか否かを判断する(ステップS6)。
例えば、ステップS2で計算された残差波面R(Xcont、Ycont)が全制御点において所定値未満となったならば、CPU81は位相変調手順を終了すべきであると判断して(ステップS6でYes)ステップS7に進む。一方、いずれかの制御点(Xcont、Ycont)における残差波面R(Xcont、Ycont)が所定値以上である間はCPU81は位相変調手順を終了すべきではないと判断して(ステップS6でNo)、ステップS2に戻って閉ループフィードバック制御を繰り返すようにしてもよい。
ここで、任意のi回目(なお、iは1以上の正数)に実行される帰還ルーチンS2〜S6において得られる収差波面A(Xcont、Ycont)及び帰還制御データB(Xcont、Ycont)の算出方法を整理すると、以下のようになる。
i回目の収差波面A(Xcont、Ycont)=f×R(Xcont、Ycont)+(i−1)回目の収差波面Ai−1(Xcont、Ycont)、
i回目の帰還制御データB(Xcont、Ycont)=A(Xcont、Ycont)+I(Xcont、Ycont)。
ここで、fはi回目の帰還ルーチンにおけるステップS31で使用されるフィードバック係数、また、R(Xcont、Ycont)はi回目の帰還ルーチンにおけるステップS27で得られる残差波面R(Xcont、Ycont)である。なお、収差波面A(Xcont、Ycont)=0である。
位相変調手順を終了すべきであると判断した場合には(ステップS6でYes)、CPU81は終了処理を行う(ステップS7)。具体的には、メモリ130を開放し、LCD530に制御信号を印加するのを停止し、PAL−SLM550の駆動を終了し、波面検出デバイス60の駆動を終了する。なお、ステップS12でセットアップ作業を行った場合には、セットアップ作業で作成されたデータ(制御点原点(Xcontorg、Ycontorg)と計測点原点(xsensorg、ysensorg)とルックアップテーブルTとのデータ)をハードディスク83に保存する。
なお、S7においては、CPU81は、例えば、外部のスイッチで読み出し光の発生が停止されるまで、最後の帰還ルーチンで得られた帰還制御データB(Xcont、Ycont)に基づく制御信号S(Xcont、Ycont)をLCD530に入力し続けるようにしてもよい。読み出し光の発生が停止されたら、メモリ130を開放すると共に、LCD530、PAL−SLM550、波面検出デバイス60の駆動を終了する。
上記のように動作する波面補償装置1による波面補償の結果を図15乃至16(e)を参照しながら説明する。
図15は、波面補償装置1において上記閉ループフィードバック制御を40回まで繰り返した際に得られた残差波面の平均値を示した図である。横軸は、閉ループフィードバック制御の帰還回数、縦軸は残差波面の平均を波長(2π)に対する比で表した値である。
図15に示すように、帰還回数が増えると、残差波面は次第に一定値に収束していることがわかる。すなわち、閉ループフィードバック制御を繰り返し行なうことで、波面の歪を低減して、理想波面に近い所望の位相変調光を得ることができる。
本発明者らは、以下に示す実験を行い、波面補償により理想的な平面波が得られることを確認した。
まず、LCD530の全画素に対し、初期制御データとして、0もしくは任意の同一の値の制御データを与えた。この場合、LCD530からは、図16(a)に示すような強度が一様なパターンの強度変調光が出射した。ビームサンプラ50の後段にビームサンプラ50を透過した光を集光するための集光レンズを配置した。CCDカメラを集光レンズの焦点面上に配置した。図16(b)は、図16(a)の強度パターンがPAL−SLM550に入力した際にPAL−SLM550から出射しビームサンプラ50を透過し集光レンズで集光された画像を撮影して得られたスポット画像である。ここで、PAL−SLM550から出射した光が理想波面に近い位相のそろった平面波である場合には、この光は集光レンズにより円形のスポット画像に収束されるはずである。しかしながら、図16(b)より明らかなように、CCDカメラにより撮影されたスポット画像は歪によってぼやけてしまっている。
一方、図16(c)は、閉ループフィードバック制御を40回繰り返した後に得られた帰還制御データをLCD530に入力して得られた強度変調光のパターンである。図16(c)のパターンをPAL−SLM550に入力した。PAL−SLM550から出射された光がビームサンプラ50を透過し集光レンズにて集光されて形成された画像をCCDカメラにより撮影した。この場合、PAL−SLM550から出射した光は位相の揃った平面波となっていたため、CCDカメラにより撮影されたスポット画像は、図16(d)のように、ほぼ回折限界のきれいな円形のスポットとなった。比較のために、図16(e)に回折限界でのスポット画像を示す。閉ループフィードバック制御により図16(e)と比較しても遜色のないレベルまで、位相歪が補正されていることが確認できた。
波面補償の結果評価のため、図16(b)、16(d)、16(e)のスポット画像を数値化して、以下の表2に示す。
Figure 2005292662
表2において、最大輝度とは、撮影されたスポット画像の最大輝度値を表す。
また、集光サイズ(ピクセル)とは、集光スポットサイズをCCDカメラの画素(ピクセル)の数で示したものである。すなわち、スポット画像のうちその輝度値が所定の閾値(この例では、最大値の1/e(輝度値の最大が255の場合、35))より大きいと検出された画素の数である。
また、表2の第2行の下段の「M」とは、(集光スポットサイズ)の(回折限界でのスポットサイズ)に対する比である。ここで、回折限界でのスポットサイズとは、回折限界で撮影した図16(e)の集光スポットのスポットサイズである。
平均輝度は、(集光スポットサイズ内の画素値の総和)を(集光スポットサイズ)で割った値である。
エネルギー(上段)は、集光スポットサイズ内の画素値の総和である。
エネルギー(下段)は、最大値を中心した半径Rピクセル内の画素値の総和である。ここで、半径Rとは,ビーム径と同じサイズの開口による回折限界のAiryディスクの半径もしくはその近似値である。
改善倍率とは、各パラメータにおける補償後の値の補償前の値に対する比である。
表2より明らかなように、本実施の形態にかかる波面補償装置1によれば、理想波面を平面波として閉ループフィードバック制御を行なうことで、波面変調デバイス40で変調された光を集光して形成したスポットを回折限界とほぼ同等にすることができる。すなわち、図示しない集光レンズにほぼ垂直に入射するほぼ理想的な平面波を得ることができる。
なお、以上、波面補償装置1の波面補償動作を、理想波面が平面波である場合について説明したが、理想波面は平面波でなくても良い。
理想波面が平面波でない場合には、各小レンズ612に対する参照重心RC(x、y)を、予め、シミュレーション計算で求めておく。具体的には、波面補償装置1の光学的パラメータを用いて光線追跡演算を行なうことにより、理想波面が各小レンズ612により結像されることにより形成されるスポット画像の重心の位置を求める。
もしくは、各小レンズ612に対する参照重心RC(x、y)は、予め光学実験を行って求めても良い。具体的には、基準光を波面変調デバイス40に入射し、LCD530に理想波面に対応した制御信号を入力する。PAL−SLM550から出力した理想波面の位相パターンが各小レンズ612により結像されることにより形成されるスポット画像の重心を求めて、参照重心データとして設定する。
こうして求められた参照重心データを、例えば、理想波面を示す初期制御データI(X、Y)と共に、記録媒体90に予め格納しておけば良い。これらデータを、S12のパラメータ読み込み処理において、記録媒体90から読み出しメモリ130に格納する。
なお、この場合には、S13において制御信号メモリ430をリセットする際、初期制御データI(X、Y)のうち制御点領域C内の各制御点についてのデータI(Xcont、Ycont)に対しS41〜S43と同様な処理を施して制御信号S(Xcont、Ycont)を求め、制御信号メモリ430に格納すれば良い。ただし、PAL−SLM550の非制御点領域D内の画素に対応するLCD530の画素に対しては、制御信号S(X、Y)=0を格納する。
以上説明したように、本発明の実施の形態にかかる波面補償装置1および波面補償方法は、閉ループフィードバック制御を行なう手順として、イメージセンサ620で撮影された多点スポット画像のスポット重心と理想波面によるスポット重心として予め設定された参照重心との差を重心シフトとして計算し、重心シフトと多項式の1次微分式との関係式に最小2乗法を適用するフィッティング処理により多項式の重み係数を算出して波面方程式を求める。その波面方程式に各制御点対応計測点の座標を代入して制御点毎の残差波面を求め、制御点毎に帰還制御データを求める。帰還制御データをルックアップテーブルTにより制御信号に変換する。このように、残差波面を制御点毎に求めることができるので、PAL−SLM550の制御点のピッチとレンズアレイ610のレンズピッチとの間に一定の整合性がなくても、波面変調デバイス40の空間解像度を充分に活用した状態で残差波面を正確に算出できる。
また、処理に必要なパラメータは予め一つのパラメータファイルにまとめられて保存されており、S12で読み出されメモリ130に格納される。また、他の必要なパラメータはS13にて自動的に算出される。したがって、ユーザはパラメータを逐一入力する必要はない。なお、ユーザがいずれのパラメータも変更する必要がない場合には、パラメータを固定値として設定し、制御ソフトと共に予めハードディスク83に格納しておいても良い。
S2でバイアスシフト処理を実行するため、ノイズや背景の影響を抑制でき、しかも、S42で実行される折り畳み処理により発生する位相の不連続線の影響をある程度抑えることができる。
本実施の形態の重心演算アルゴリズムにおいては、重心演算は、極大値の位置を算出する手順と、極大値位置を中心に画素値の重心を計算する手順からなる。ここで、極大値位置をサーチする領域は、小レンズ612の光軸とイメージセンサ620との交点を中心としたレンズ領域LAに固定されている。一方、重心を演算する領域である重心計算範囲CAの中心は極大位置であるため固定されていない。このように重心計算範囲CAが可変であることから、高精度、大ダイナミックレンジでの補正が可能となる。また、極大値位置をイメージセンサ620の全領域内で探すのではなく、各小レンズ612のレンズ領域LA毎に探すので、速度が向上でき、極大値と小レンズ612との対応付けも容易になっている。このため、最終的に得られた重心値と小レンズ612との対応付けも容易になっている。
また、得られたスポット重心の有効性を評価し、特異的な重心以外の有効と評価された重心について重心シフト量を演算し波面方程式を求める。ここで、特異点発生のケースとしては、例えば、読み取り光、書き込み光などのビームの一部が遮断されてしまっている場合、光学素子の周縁部で回折により集光スポットが形成不可能となっている場合、ノイズの影響がある場合、折り返し処理による量子化誤差の影響がある場合等が考えられる。本実施の形態では、重心シフトを算出する際に特異点を除いているので、波面補償装置1が複雑な環境下で使用されているために特異点が発生しても、安定して精密な波面補正動作を続行することができる。
PAL−SLM550は読み出し光を変調するのに必要充分な領域である制御点領域C内の画素において位相変調を行う。波面補償処理にとって不要な非制御点領域D内の画素に対する制御データの計算は行なわれない。したがって、計算速度が向上している。
制御点領域Cのサイズが基準光入射領域B0のサイズより十分大きいため、読み出し光が歪により変動しても読み出し光入射領域Bが制御点領域C内に収まり続けるため、波面補償装置1の安定した動作が可能である。
また、計算された帰還制御データを表1のルックアップテーブルTを用いて制御信号に変換するので、PAL−SLM550が非線形な変調特性を有しているにも関わらず、波面を精密に補正することができる。ルックアップテーブルTを用いることにより、任意の変調特性を有する比較的安価なSLMをPAL−SLM550の代わりに使用しても、波面を精密に補正することができる。
S1の初期処理を、波面変調デバイス40の制御のための閉ループフィードバックS2〜S6の外部で実行しているため、処理速度が向上している。
制御装置80は、パーソナルコンピュータからなり、パーソナルコンピュータ内に備えられた制御プログラムにより制御され、上記のように動作する。このため、プログラムを記録した記録媒体を用いることにより、任意のコンピュータにて制御装置80を実現することが可能である。
なお、上記の実施の形態では、制御装置80を、汎用性のあるパーソナルコンピュータで構成し、格納されたソフトウェアを実行することによって波面補償動作を行っていた。代わりに、制御装置80を、図5に示す機能を達成する専用の電子回路にて構成しても良い。
以上、添付図面を参照しながら本発明による波面補償装置、波面補償方法、プログラムおよび記録媒体の好適な実施形態について説明したが、本発明は上述した実施の形態に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変形や改良が可能である。
例えば、ルックアップテーブルTとしては、表1に示す例を参照して説明したものに限られない。ルックアップテーブルTの別の例を以下の表3に示す。
Figure 2005292662
表3の例におけるルックアップテーブルTでは、換算位相値を、表1の例のように1波長を単位とする0以上1以下の位相値として示す代わりに、1波長を単位とする−1以上+1以下の値として示している。表3の例におけるルックアップテーブルTを用いる場合には、ステップS42を実行せず、ステップS43ではステップS41で求めた小数部のみの位相値に基づいて、信号レベル(OUT)を決定する。
また、ルックアップテーブルTの更に別の例を以下の表4に示す。
Figure 2005292662
なお、表4中、N、kは、負でない整数であり、Kは正もしくは負の整数である。
表4の例におけるルックアップテーブルTは、表1や表3の例とは異なり、換算位相値を、0以上1以下や−1以上+1以下に換算せず、単に、1波長を単位とする任意の値として示している。なお、この例では、インデクスIが1ずれると、換算位相値は1/255ずれている。表4の例におけるルックアップテーブルTを用いる場合には、ステップS41とS42とを両方とも実行せず、ステップS43では、ステップS3の演算結果の1波長を単位とする位相値に基づいて信号レベル(OUT)を決定する。
また、上述の実施の形態では、波面変調デバイス40は、LCDとPAL−SLM550とを備えた電気アドレス型液晶位相変調モジュールから構成されていた。しかしながら、本発明の波面補償装置は、任意の電気アドレス型空間光位相変調装置を採用することができる。すなわち、本発明の波面補償装置が採用する電気アドレス型空間光位相変調装置としては、電気アドレス駆動により位相を変調できるものであれば、その変調部は液晶に限られず任意の構成を採用することができる。
また、レンズアレイ610では、小レンズ612は、2次元状に配列されていればよく、マトリクス配列でなくてもよい。
また、レンズによる結像やミラーによる反射が原因で、イメージセンサ620の計測点原点座標(xsens、ysens)とPAL−SLM550の制御点原点座標(xcont、ycont)との対応関係が取れない場合には、画像を左右・上下反転させる処理を行えばよい。
初期処理(ステップS22)、重心計算(ステップS23)、及び、重心有効性評価(ステップS24)を、制御装置80が実行する代わりに、波面検出デバイス60の内蔵回路が実行しも良い。この場合には、波面検出デバイス60は、集光スポットの重心値および無効と判定された重心のデータを出力する。なお、重心シフト計算(ステップS25)と波面方程式算出(ステップS26)をも、制御装置80が実行する代わりに、波面検出デバイス60の内蔵回路が実行してもよい。この場合、波面検出デバイス60は、入射波面と理想波面との位相差を表す多項式の重み係数を出力することになる。
重心有効性評価(ステップS24)では、無効とされた重心における重心シフトを「0」に設定したが、無効とされた重心をマークし当該無効とされた重心に関する情報を完全に取り除いて波面方程式算出を行うようにしても良い。この場合には、式9のNは、小レンズ612の総数ではなく、有効な重心が得られたと判定された小レンズ612の総数(すなわち、小レンズ612の総数から無効と判定された小レンズ612の数を引いた数)と定義される。また、n(n=1〜N)は有効な重心が得られた各小レンズ612を示している。
帰還制御データを制御信号に変換する際にはルックアップテーブルを利用したが、ルックアップテーブルの代わりに、例えば、帰還制御データと制御信号との関係を示す数式等を用いて制御データを制御信号に変換しても良い。
上述の実施の形態では、ビームサンプラ50を透過したビームを波面70として出力し、ビームサンプラ50で反射したビームを波面検出デバイス60に入射するように配置したが、逆に、ビームサンプラ50で反射したビームを波面70として出力し、ビームサンプラ50を透過したビームを波面検出デバイス60に入射するように配置しても良い。
本発明は電気アドレス型空間光位相変調装置を用いた波面補償装置の構成及び制御方式に関するもので、高エネルギー利用効率のレーザ加工、高空間分解能の撮像・計測光学装置(例えば、顕微鏡、眼底カメラ)等に広く適用可能である。
本発明の実施の形態にかかる波面補償装置の概略構成図である。 図1の波面補償装置が備える波面変調デバイスの概略構成断面図である。 図2のIII(a)−III(a)線に沿った断面内における制御点領域と読み出し光入射領域との関係を示す図である。 図3(a)における部分Fの拡大図である。 読み出し光入射領域の位置及び大きさが制御点領域内で変動する様子を示す図である。 図1の波面補償装置が備える波面検出デバイスの概略部分断面図である。 図1の波面補償装置が備える制御装置の機能ブロック図である。 図5の制御装置における入力部の機能ブロック図である。 図5の制御装置における波面算出部の機能ブロック図である。 図5の制御装置における制御データ合成部の機能ブロック図である。 図5の制御装置における変換部の機能ブロック図である。 図1の波面補償装置の動作を示すフローチャートである。 図10のステップS1の動作を説明するフローチャートである。 図10のステップS2の動作を説明するフローチャートである。 図10のステップS3の動作を説明するフローチャートである。 図10のステップS4の動作を説明するフローチャートである。 図1の波面補償装置による残差波面の帰還回数依存性を示す図である。 図1の波面補償装置による波面補償の実験においてLCDから出射した強度が一様な強度変調光を示す図である。 図16(a)の強度パターンがPAL−SLMに入力した際にPAL−SLMから出射し集光レンズで集光された画像を撮影して得られたスポット画像である。 閉ループフィードバック制御を40回繰り返した後に得られた帰還制御データをLCDに入力して得られた強度変調光のパターンである。 図16(c)の強度パターンがPAL−SLMに入力した際にPAL−SLMから出射し集光レンズで集光された画像を撮影して得られたスポット画像である。 平面波を集光させた場合の回折限界スポットの画像である。
符号の説明
1 波面補償装置
10、30、70 波面
40 波面変調デバイス
50 ビームサンプラ
60 波面検出デバイス
80 制御装置

Claims (14)

  1. 複数の制御点が2次元状に配置された変調部を備え、前記変調部に入射した読み出し光の位相を前記制御点毎に変調する電気アドレス型空間光位相変調装置と、
    複数のレンズが2次元状に配置され、前記電気アドレス型空間光位相変調装置で位相が変調された読み出し光を複数のスポットからなる多点スポット画像に変換するレンズアレイと、
    前記多点スポット画像の光強度分布を検出する画像検出手段と、
    前記検出された光強度分布に基づき前記複数のスポットの重心位置を示す複数のスポット重心を演算し、演算された前記複数のスポット重心と予め設定された複数の参照重心との差を示す複数の重心差を計算する重心差演算手段と、
    演算された前記複数の重心差を最小2乗法を用いて所定の多項式の1次微分式にフィッティングすることより、所定の多項式の重み係数を求める重み係数演算手段と、
    演算された前記重み係数を用いて各制御点の座標に対応する値を前記所定の多項式に代入することにより、前記制御点毎の残差歪を求める残差歪演算手段と、
    演算された各制御点の前記残差歪に基づいて前記制御点用の閉ループ制御データを求める制御データ演算手段と、
    前記電気アドレス型空間光位相変調装置の各制御点を前記閉ループ制御データに基づいて制御する制御手段とを備えることを特徴とする波面補償装置。
  2. 前記電気アドレス型空間光位相変調装置の各制御点は、入射した読み出し光を、入力された前記制御信号に対応した位相変調量にて変調し、
    前記制御手段は信号変換手段を更に備え、前記信号変換手段は、各制御点の残差歪に基づいて各制御点が変調すべき位相変調量を決定し、予め設定されたルックアップテーブルを用いて前記決定した位相変調量を制御信号に変換し、前記制御信号に基づいて前記電気アドレス型空間光位相変調装置の各制御点を制御することを特徴とする請求項1に記載の波面補償装置。
  3. 前記重心差演算手段は、演算された前記複数のスポット重心の評価をし、前記重み係数演算手段は、前記複数のスポット重心のうち、無効なスポット重心として評価されたスポット重心以外のスポット重心に対して演算された重心差に基づいて前記重み係数を演算することを特徴とする請求項1に記載の波面補償装置。
  4. 前記電気アドレス型空間光位相変調装置の前記変調部のうち前記制御点が配列されている制御点領域の大きさが前記変調部に入射する読み出し光の大きさより大きいことを特徴とする請求項1に記載の波面補償装置。
  5. 2次元状に配置された複数の制御点を有する電気アドレス型空間光位相変調装置を閉ループフィードバック制御して読み出し光の波面を補償する波面補償方法であって、
    前記電気アドレス型空間光位相変調装置により制御点毎に位相が変調された読み出し光が複数のレンズが2次元状に配置されたレンズアレイを透過することにより形成する複数のスポットからなる多点スポット画像の光強度分布を検出する画像検出工程と、
    検出された前記光強度分布に基づき前記複数のスポットの重心位置を示す複数のスポット重心を演算し、演算された前記複数のスポット重心と予め設定された複数の参照重心との差を示す複数の重心差を計算する重心差演算工程と、
    演算された前記複数の重心差を最小2乗法を用いて所定の多項式の1次微分式にフィッティングすることより、前記所定の多項式の重み係数を求める重み係数演算工程と、
    演算された前記重み係数を用いて各制御点の座標に対応する値を前記所定の多項式に代入することにより、前記制御点毎の残差歪を求める残差歪演算工程と、
    演算された各制御点の前記残差歪に基づいて前記制御点用の閉ループ制御データを求める制御データ演算工程と、
    前記電気アドレス型空間光位相変調装置の各制御点を前記閉ループ制御データに基づいて制御する制御工程とを有し、
    前記各工程を反復することを特徴とする波面補償方法。
  6. コンピュータに対し、2次元状に配置された複数の制御点を有する電気アドレス型空間光位相変調装置を閉ループフィードバック制御させ、読み出し光の波面を補償させるプログラムであって、
    前記電気アドレス型空間光位相変調装置により制御点毎に位相が変調された読み出し光が複数のレンズが2次元状に配置されたレンズアレイを透過することにより形成する複数のスポットからなる多点スポット画像の光強度分布に基づき複数のスポットの重心位置を示す複数のスポット重心を算出し、算出された前記複数のスポット重心と予め設定された複数の参照重心との差を示す複数の重心差を計算する重心差演算手順と、
    演算された前記複数の重心差を最小2乗法を用いて所定の多項式の1次微分式にフィッティングすることより、前記所定の多項式の重み係数を求める重み係数演算手順と、
    演算された前記重み係数を用いて各制御点の座標に対応する値を所定の多項式に代入することにより、制御点毎の残差歪を求める残差歪演算手順と、
    演算された各制御点の前記残差歪に基づいて前記制御点用の閉ループ制御データを求める制御データ演算手順と、
    前記電気アドレス型空間光位相変調装置の各制御点を前記閉ループ制御データに基づいて制御する制御手順と、
    前記各手順を反復する手順とを有することを特徴とするプログラム。
  7. 請求項6に記載のプログラムを記録した、コンピュータ読み取り可能な記録媒体。
  8. 複数の制御点が2次元状に配列され、読み出し光を制御点毎に制御データに基づいて位相変調して位相パターンを生成する電気アドレス型空間光位相変調装置と、
    複数のレンズが2次元状に配列されたレンズアレイを備え、前記電気アドレス型空間光位相変調装置から出力された位相パターンを複数のスポットからなる多点スポット画像に変換し、前記多点スポット画像の光強度分布を検出する波面検出手段と、
    検出された前記光強度分布に基づき前記複数のスポットの重心位置を示す複数のスポット重心を算出し、前記複数のスポット重心と予め設定された理想波面に対応する複数の参照重心との差を示す複数の重心差に基づき前記電気アドレス型空間光位相変調装置より出力された前記位相パターンと前記理想波面との位相差を表す波面方程式を算出し、前記波面方程式に前記制御点の座標に対応する値を代入して前記制御点毎の位相差を残差波面として算出する算出手段と、
    前記残差波面と収差波面とを前記制御点毎に足し算し、その結果を前記制御点毎の新たな収差波面として記憶する収差波面算出記憶手段と、
    前記新たな収差波面と前記理想波面とを前記制御点毎に足し算し、その結果に基づいて帰還制御データを作成する波面合成手段と、
    前記帰還制御データを前記制御データとして前記電気アドレス型空間光位相変調装置に出力する制御手段とを有し、
    前記電気アドレス型空間光位相変調装置が前記制御手段から入力される前記帰還制御データに基づき読み出し光の位相変調を繰り返すことを特徴とする波面補償装置。
  9. 前記波面方程式は多項式であり、前記算出手段は前記重心差と前記多項式の1次微分式との関係式に最小2乗法を適用して前記多項式の重み係数を算出し、もって、前記波面方程式を求めることを特徴とする請求項8に記載の波面補償装置。
  10. 2次元状に配列された複数の制御点を有する電気アドレス型空間光位相変調装置を閉ループフィードバック制御して、前記電気アドレス型空間光位相変調装置により制御点毎に制御データに基づいて位相変調された読み出し光の波面を補償する波面補償方法であって、
    前記電気アドレス型空間光位相変調装置から出力された読み出し光が複数のレンズが2次元状に配列されたレンズアレイを透過することにより形成する複数のスポットからなる多点スポット画像の光強度分布を検出する波面検出工程と、
    検出された前記光強度分布に基づき前記複数のスポットの重心位置を示す複数のスポット重心を算出し、前記複数のスポット重心と予め設定された理想波面に対応する複数の参照重心との差を示す複数の重心差に基づき前記電気アドレス型空間光位相変調装置より出力された読み出し光の波面と前記理想波面との位相差を表す波面方程式を算出し、前記波面方程式に前記制御点の座標に対応する値を代入して前記制御点毎の位相差を残差波面として算出する算出工程と、
    前記残差波面と収差波面とを前記制御点毎に足し算し、その結果を前記制御点毎の新たな収差波面として記憶する収差波面算出記憶工程と、
    前記新たな収差波面と前記理想波面とを前記制御点毎に足し算し、その結果に基づいて帰還制御データを作成する波面合成工程と、
    前記帰還制御データを前記制御データとして前記電気アドレス型空間光位相変調装置に出力する制御工程と、
    前記各工程を反復する工程とを有することを特徴とする波面補償方法。
  11. 前記波面方程式は多項式であり、前記算出工程は前記重心差と前記多項式の1次微分式との関係式に最小2乗法を適用して前記多項式の重み係数を算出し、もって、前記波面方程式を求めることを特徴とする請求項10に記載の波面補償方法。
  12. コンピュータに対し、2次元状に配列された複数の制御点を有する電気アドレス型空間光位相変調装置を閉ループフィードバック制御させ、前記電気アドレス型空間光位相変調装置により制御点毎に制御データに基づいて位相変調された読み出し光の波面を補償するプログラムであって、
    前記電気アドレス型空間光位相変調装置から出力された読み出し光が複数のレンズが2次元状に配列されたレンズアレイを透過することにより形成する複数のスポットからなる多点スポット画像の光強度分布に基づき前記複数のスポットの重心位置を示す複数のスポット重心を算出し、前記複数のスポット重心と予め設定された理想波面に対応する複数の参照重心との差を示す複数の重心差に基づき前記電気アドレス型空間光位相変調装置より出力された読み出し光の波面と前記理想波面との位相差を表す波面方程式を算出し、前記波面方程式に前記制御点の座標に対応する値を代入して前記制御点毎の位相差を残差波面として算出する算出手順と、
    前記残差波面と収差波面とを前記制御点毎に足し算し、その結果を前記制御点毎の新たな収差波面として記憶する収差波面算出記憶手順と、
    前記新たな収差波面と前記理想波面とを前記制御点毎に足し算し、その結果に基づいて帰還制御データを作成する波面合成手順と、
    前記帰還制御データを前記制御データとして前記電気アドレス型空間光位相変調装置に出力する制御手順と、
    前記各手順を反復する手順とを有することを特徴とするプログラム。
  13. 前記波面方程式は多項式であり、前記算出手順は前記重心差と前記多項式の1次微分式との関係式に最小2乗法を適用して前記多項式の重み係数を算出し、もって、前記波面方程式を求めることを特徴とする請求項12に記載のプログラム。
  14. 請求項12に記載のプログラムを記録した、コンピュータ読み取り可能な記録媒体。
JP2004110303A 2004-04-02 2004-04-02 波面補償装置、波面補償方法、プログラム、及び、記録媒体 Expired - Lifetime JP4531431B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004110303A JP4531431B2 (ja) 2004-04-02 2004-04-02 波面補償装置、波面補償方法、プログラム、及び、記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004110303A JP4531431B2 (ja) 2004-04-02 2004-04-02 波面補償装置、波面補償方法、プログラム、及び、記録媒体

Publications (2)

Publication Number Publication Date
JP2005292662A true JP2005292662A (ja) 2005-10-20
JP4531431B2 JP4531431B2 (ja) 2010-08-25

Family

ID=35325618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004110303A Expired - Lifetime JP4531431B2 (ja) 2004-04-02 2004-04-02 波面補償装置、波面補償方法、プログラム、及び、記録媒体

Country Status (1)

Country Link
JP (1) JP4531431B2 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176150A (ja) * 2007-01-19 2008-07-31 Hamamatsu Photonics Kk 反射型位相変装置及び反射型位相変調装置の設定方法
WO2009020004A1 (ja) 2007-08-03 2009-02-12 Hamamatsu Photonics K.K. レーザ加工方法、レーザ加工装置及びその製造方法
WO2011093111A1 (ja) 2010-01-27 2011-08-04 浜松ホトニクス株式会社 レーザ加工システム
JP2013027930A (ja) * 2012-09-28 2013-02-07 Hamamatsu Photonics Kk レーザ加工装置及びその製造方法
JP2013536581A (ja) * 2010-08-08 2013-09-19 ケーエルエー−テンカー コーポレイション 周波数変換レーザシステムの動的波面制御
WO2013183341A1 (ja) * 2012-06-04 2013-12-12 浜松ホトニクス株式会社 補償光学システムの調整方法および補償光学システム
US8749463B2 (en) 2007-01-19 2014-06-10 Hamamatsu Photonics K.K. Phase-modulating apparatus
WO2014136784A1 (ja) * 2013-03-06 2014-09-12 浜松ホトニクス株式会社 蛍光受光装置および蛍光受光方法
JP2015087198A (ja) * 2013-10-30 2015-05-07 キヤノン株式会社 計測装置及び計測方法
JP2015093169A (ja) * 2013-11-14 2015-05-18 キヤノン株式会社 補償光学系及び撮像装置
CN105264429A (zh) * 2013-06-06 2016-01-20 浜松光子学株式会社 自适应光学系统的对应关系确定方法、波前畸变补偿方法、自适应光学系统及存储自适应光学系统用程序的记录介质
CN105264346A (zh) * 2013-06-06 2016-01-20 浜松光子学株式会社 自适应光学系统及其角度偏离检测方法和成像倍率检测方法
CN105264428A (zh) * 2013-06-06 2016-01-20 浜松光子学株式会社 自适应光学系统的调整方法、自适应光学系统和存储自适应光学系统用程序的记录介质
JP2016028786A (ja) * 2015-12-02 2016-03-03 キヤノン株式会社 眼底撮像装置、眼底撮像装置の制御方法、およびプログラム
JP2016109586A (ja) * 2014-12-08 2016-06-20 浜松ホトニクス株式会社 位相特異点評価方法および位相特異点評価装置
US9510750B2 (en) 2011-04-27 2016-12-06 Canon Kabushiki Kaisha Fundus imaging apparatus, method of controlling fundus imaging apparatus, and storage medium
US9719927B2 (en) 2014-05-16 2017-08-01 Tohoku University Light polarization analyzer
WO2021250993A1 (ja) * 2020-06-07 2021-12-16 ソニーグループ株式会社 信号処理装置、信号処理方法、プログラム、照明装置
CN115220222A (zh) * 2022-07-04 2022-10-21 清华大学 像差矫正方法、装置、计算机设备和存储介质
US12124115B2 (en) 2019-06-28 2024-10-22 Essilor International Optical article

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6116227B2 (ja) * 2012-12-14 2017-04-19 キヤノン株式会社 収差測定装置およびその方法
JP6556179B2 (ja) * 2017-03-22 2019-08-07 キヤノン株式会社 収差測定装置およびその方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102599A (ja) * 1992-09-24 1994-04-15 Fuji Photo Film Co Ltd 放射線画像読取条件および/または画像処理条件決定方法および装置
JP2000056280A (ja) * 1998-08-11 2000-02-25 Trw Inc 位相面制御を有する高平均パワ―・ファイバ・レ―ザ・システム
JP2002207202A (ja) * 1991-05-21 2002-07-26 Seiko Epson Corp 光学装置およびそれを用いた光加工システム
WO2003036368A1 (en) * 2001-10-25 2003-05-01 Hamamatsu Photonics K.K. Phase modulation apparatus and phase modulation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207202A (ja) * 1991-05-21 2002-07-26 Seiko Epson Corp 光学装置およびそれを用いた光加工システム
JPH06102599A (ja) * 1992-09-24 1994-04-15 Fuji Photo Film Co Ltd 放射線画像読取条件および/または画像処理条件決定方法および装置
JP2000056280A (ja) * 1998-08-11 2000-02-25 Trw Inc 位相面制御を有する高平均パワ―・ファイバ・レ―ザ・システム
WO2003036368A1 (en) * 2001-10-25 2003-05-01 Hamamatsu Photonics K.K. Phase modulation apparatus and phase modulation method

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10621936B2 (en) 2007-01-19 2020-04-14 Hamamatsu Photonics K.K. Apparatus having spatial light modulator and converting unit converting input value to control value to control spatial light modulator
US8749463B2 (en) 2007-01-19 2014-06-10 Hamamatsu Photonics K.K. Phase-modulating apparatus
JP2008176150A (ja) * 2007-01-19 2008-07-31 Hamamatsu Photonics Kk 反射型位相変装置及び反射型位相変調装置の設定方法
US10192502B2 (en) 2007-01-19 2019-01-29 Hamamatsu Photonics K.K. Apparatus having spatial light modulator and converting unit converting input value to control value to control spatial light modulator
WO2009020004A1 (ja) 2007-08-03 2009-02-12 Hamamatsu Photonics K.K. レーザ加工方法、レーザ加工装置及びその製造方法
US10622254B2 (en) 2007-08-03 2020-04-14 Hamamatsu Photonics K.K. Laser working method, laser working apparatus, and its manufacturing method
US9428413B2 (en) 2007-08-03 2016-08-30 Hamamatsu Photonics K.K. Laser working method, laser working apparatus, and its manufacturing method
KR20130114761A (ko) 2007-08-03 2013-10-17 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법
KR20150039875A (ko) 2007-08-03 2015-04-13 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법
US8134099B2 (en) 2007-08-03 2012-03-13 Hamamatsu Photonics K.K. Laser working method, laser working apparatus, and its manufacturing method
CN102741011A (zh) * 2010-01-27 2012-10-17 浜松光子学株式会社 激光加工系统
WO2011093111A1 (ja) 2010-01-27 2011-08-04 浜松ホトニクス株式会社 レーザ加工システム
US8755107B2 (en) 2010-01-27 2014-06-17 Hamamatsu Photonics K.K. Laser processing system
JP2013536581A (ja) * 2010-08-08 2013-09-19 ケーエルエー−テンカー コーポレイション 周波数変換レーザシステムの動的波面制御
US9510750B2 (en) 2011-04-27 2016-12-06 Canon Kabushiki Kaisha Fundus imaging apparatus, method of controlling fundus imaging apparatus, and storage medium
JP2013250525A (ja) * 2012-06-04 2013-12-12 Hamamatsu Photonics Kk 補償光学システムの調整方法および補償光学システム
CN104364700A (zh) * 2012-06-04 2015-02-18 浜松光子学株式会社 补偿光学系统的调整方法和补偿光学系统
WO2013183341A1 (ja) * 2012-06-04 2013-12-12 浜松ホトニクス株式会社 補償光学システムの調整方法および補償光学システム
CN104364700B (zh) * 2012-06-04 2017-12-19 浜松光子学株式会社 补偿光学系统的调整方法和补偿光学系统
US9448120B2 (en) 2012-06-04 2016-09-20 Hamamatsu Photonics K.K. Method for adjusting compensating optical system and compensating optical system
JP2013027930A (ja) * 2012-09-28 2013-02-07 Hamamatsu Photonics Kk レーザ加工装置及びその製造方法
US9740166B2 (en) 2013-03-06 2017-08-22 Hamamatsu Photonics K.K. Fluorescence receiving apparatus and fluorescence receiving method
WO2014136784A1 (ja) * 2013-03-06 2014-09-12 浜松ホトニクス株式会社 蛍光受光装置および蛍光受光方法
JPWO2014136784A1 (ja) * 2013-03-06 2017-02-16 浜松ホトニクス株式会社 蛍光受光装置および蛍光受光方法
CN105264428A (zh) * 2013-06-06 2016-01-20 浜松光子学株式会社 自适应光学系统的调整方法、自适应光学系统和存储自适应光学系统用程序的记录介质
CN105264346A (zh) * 2013-06-06 2016-01-20 浜松光子学株式会社 自适应光学系统及其角度偏离检测方法和成像倍率检测方法
CN105264429A (zh) * 2013-06-06 2016-01-20 浜松光子学株式会社 自适应光学系统的对应关系确定方法、波前畸变补偿方法、自适应光学系统及存储自适应光学系统用程序的记录介质
US9927608B2 (en) 2013-06-06 2018-03-27 Hamamatsu Photonics K.K. Correspondence relation specifying method for adaptive optics system, wavefront distortion compensation method, adaptive optics system, and storage medium storing program for adaptive optics system
JP2015087198A (ja) * 2013-10-30 2015-05-07 キヤノン株式会社 計測装置及び計測方法
JP2015093169A (ja) * 2013-11-14 2015-05-18 キヤノン株式会社 補償光学系及び撮像装置
US9719927B2 (en) 2014-05-16 2017-08-01 Tohoku University Light polarization analyzer
JP2016109586A (ja) * 2014-12-08 2016-06-20 浜松ホトニクス株式会社 位相特異点評価方法および位相特異点評価装置
JP2016028786A (ja) * 2015-12-02 2016-03-03 キヤノン株式会社 眼底撮像装置、眼底撮像装置の制御方法、およびプログラム
US12124115B2 (en) 2019-06-28 2024-10-22 Essilor International Optical article
WO2021250993A1 (ja) * 2020-06-07 2021-12-16 ソニーグループ株式会社 信号処理装置、信号処理方法、プログラム、照明装置
JP7578139B2 (ja) 2020-06-07 2024-11-06 ソニーグループ株式会社 信号処理装置、信号処理方法、プログラム、照明装置
CN115220222A (zh) * 2022-07-04 2022-10-21 清华大学 像差矫正方法、装置、计算机设备和存储介质
CN115220222B (zh) * 2022-07-04 2024-04-19 清华大学 像差矫正方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
JP4531431B2 (ja) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4531431B2 (ja) 波面補償装置、波面補償方法、プログラム、及び、記録媒体
JP5167274B2 (ja) 位相変調装置及び位相変調方法
KR102128642B1 (ko) 보상 광학 시스템의 조정 방법, 보상 광학 시스템, 및 보상 광학 시스템용 프로그램을 기억하는 기록 매체
US20160124221A1 (en) Correspondence relation specifying method for adaptive optics system, adaptive optics system, and storage medium storing program for adaptive optics system
JP5802110B2 (ja) 光変調制御方法、制御プログラム、制御装置、及びレーザ光照射装置
JP5919100B2 (ja) 補償光学システムの調整方法および補償光学システム
Bowman et al. An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers
JP5809420B2 (ja) 空間光変調装置および空間光変調方法
CN109343077A (zh) 一种液晶相控阵鬼成像系统及其成像方法
US20160124222A1 (en) Correspondence relation specifying method for adaptive optics system, wavefront distortion compensation method, adaptive optics system, and storage medium storing program for adaptive optics system
JP2013544377A (ja) 光学顕微鏡において空間光学モジュレータを較正するための方法とシステム
Fang et al. Particle swarm optimization to focus coherent light through disordered media
JP5779359B2 (ja) 空間光変調装置および空間光変調方法
Fedrigo et al. High performance adaptive optics system with fine tip/tilt control
Liu et al. Calibration of phase-only liquid-crystal spatial light modulators by diffractogram analysis
Akondi et al. Multi-faceted digital pyramid wavefront sensor
Wang et al. Megapixel adaptive optics: towards correcting large-scale distortions in computational cameras
CN207833105U (zh) 光束偏转装置及其空间光调制器的驱动装置
Gerard et al. Laboratory demonstration of real-time focal plane wavefront control of residual atmospheric speckles
US20230175893A1 (en) Conformal imaging vibrometer using adaptive optics with scene-based wave-front sensing
Engler et al. A digital prism wavefront sensor for ground-based astronomical image correction
JP6596527B2 (ja) 空間光変調器、光変調装置、及び空間光変調器の駆動方法
Vorontsov et al. Advanced phase-contrast techniques for wavefront sensing and adaptive optics
Mansell et al. Development of an adaptive optics test-bed for relay mirror applications
CN118348681B (zh) 一种像差校正方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4531431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

EXPY Cancellation because of completion of term