[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005257161A - Heat pump type hot water supply heater - Google Patents

Heat pump type hot water supply heater Download PDF

Info

Publication number
JP2005257161A
JP2005257161A JP2004068708A JP2004068708A JP2005257161A JP 2005257161 A JP2005257161 A JP 2005257161A JP 2004068708 A JP2004068708 A JP 2004068708A JP 2004068708 A JP2004068708 A JP 2004068708A JP 2005257161 A JP2005257161 A JP 2005257161A
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
water
heat exchanger
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004068708A
Other languages
Japanese (ja)
Inventor
Hideki Ito
英樹 伊藤
Shigeo Tsukue
重男 机
Kiyoshi Koyama
清 小山
Satoshi Hoshino
聡 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Air Conditioners Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004068708A priority Critical patent/JP2005257161A/en
Publication of JP2005257161A publication Critical patent/JP2005257161A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further improve the heat exchanging effectiveness in the case where a refrigerant pipe and a hot water pipe of a first water refrigerant heat exchanger in a heat pump unit are formed as a double-pipe structure. <P>SOLUTION: The heat-pump type hot water supply heater comprises a heat pump unit A comprising a compressor 21, a parallel circuit of a first water refrigerant heat exchanger 9 and a second water refrigerant heat exchanger 22 to which expansion valves 26 and 27 are connected, and a refrigerant circuit R configured to sequentially connect an air heat exchanger 28 cyclically; and a tank unit B having a first hot water circulating path C1 for circulating hot water by the operation of a circulating pump 7 among an expansion tank 8, the first water refrigerant heat exchanger 9 and a hot water heater, and a second hot water circulating path C2 for circulating hot water by a circulating pump 32 between the second water refrigerant heat exchanger 22 and a hot water storage tank 31. A refrigerant pipe 64 and a hot water pipe 63 of the first water refrigerant heat exchanger 9 are formed as a double-pipe structure in which the refrigerant pipe 64 is positioned inward. A coil 77 is wound around the outer periphery of the refrigerant pipe 64 so that the hot water flowing through the hot water pipe 63 causes turbulent flow. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ヒートポンプユニットを熱源としたヒートポンプ式給湯暖房装置に関する。詳述すれば、圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯暖房装置に関する。   The present invention relates to a heat pump hot water supply / room heating apparatus using a heat pump unit as a heat source. Specifically, a compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a pressure reducing device, and an air heat exchanger are sequentially connected in an annular shape. A heat pump unit provided with a refrigerant circuit, an expansion tank, a first hot water circulation path for circulating hot water between the first water refrigerant heat exchanger and the hot water heating device by operation of the first circulation pump, and the first The present invention relates to a heat pump hot water supply and heating device including a tank unit having a second hot water circulation path for circulating hot water between a two-water refrigerant heat exchanger and a hot water storage tank by a second circulation pump.

従来のこの種のヒートポンプ式給湯暖房装置は、例えば特許文献1に開示されているが、膨張タンク内の水とヒートポンプユニットで使用する冷媒とを熱交換させるため、第1水冷媒熱交換器が必要不可欠であるが、この第1水冷媒熱交換器の冷媒管及び温水管を冷媒管を内側とする二重管構造として、コスト削減を図っている。
特願2003−5942の願書に添付した明細書及び図面
A conventional heat pump hot water supply and heating device of this type is disclosed in, for example, Patent Document 1, but in order to exchange heat between water in the expansion tank and refrigerant used in the heat pump unit, a first water refrigerant heat exchanger is provided. Although essential, the refrigerant pipe and hot water pipe of the first water-refrigerant heat exchanger have a double-pipe structure with the refrigerant pipe inside, thereby reducing costs.
Description and drawings attached to application for Japanese Patent Application No. 2003-5942

しかし、単に冷媒管及び温水管を冷媒管を内側とする二重管構造としても、熱交換率に限界があり、尚一層の熱交換率の向上が望まれる。   However, even if the refrigerant pipe and the hot water pipe have a double pipe structure with the refrigerant pipe inside, the heat exchange rate is limited, and further improvement in the heat exchange rate is desired.

そこで本発明は、ヒートポンプユニットにおける第1水冷媒熱交換器の冷媒管及び温水管を冷媒管を内側とする二重管構造とした場合に、尚一層の熱交換率の向上を図ることを目的とする。   Therefore, the present invention aims to further improve the heat exchange rate when the refrigerant pipe and the hot water pipe of the first water refrigerant heat exchanger in the heat pump unit have a double pipe structure with the refrigerant pipe inside. And

このため第1の発明は、圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯暖房装置において、前記ヒートポンプユニットの前記第1水冷媒熱交換器の冷媒管及び温水管を冷媒管を内側とする二重管構造とし、且つ前記温水管内に流れる温水が乱流を起こすように前記冷媒管の外周に乱流発生手段を設けたことを特徴とする。   Therefore, according to the first aspect of the present invention, a compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a decompression device, and an air heat exchanger are sequentially provided. A heat pump unit having a refrigerant circuit connected in an annular shape, a first hot water circulation path for circulating hot water between the expansion tank, the first water refrigerant heat exchanger and the hot water heater by operating the first circulation pump And a heat pump hot water supply and heating device comprising a tank unit having a second hot water circulation path for circulating hot water by a second circulation pump between the second water refrigerant heat exchanger and the hot water storage tank. The refrigerant pipe and hot water pipe of the first water refrigerant heat exchanger have a double pipe structure with the refrigerant pipe inside, and turbulent flow is generated on the outer periphery of the refrigerant pipe so that the hot water flowing in the hot water pipe causes turbulent flow. Provided means And wherein the door.

また第2の発明は、第1の発明において、前記乱流発生手段は前記冷媒管外周に巻回されるコイルであることを特徴とする。   According to a second aspect, in the first aspect, the turbulent flow generating means is a coil wound around the outer periphery of the refrigerant pipe.

更に第3の発明は、第1の発明において、前記ヒートポンプユニットの前記第1水冷媒熱交換器の冷媒管及び温水管に流れる冷媒及び温水の流れ方向を逆にしたことを特徴とする。   Furthermore, a third invention is characterized in that, in the first invention, the flow directions of the refrigerant and hot water flowing in the refrigerant pipe and the hot water pipe of the first water refrigerant heat exchanger of the heat pump unit are reversed.

本発明によれば、ヒートポンプユニットにおける第1水冷媒熱交換器の冷媒管及び温水管を冷媒管を内側とする二重管構造とした場合に、尚一層の熱交換率の向上を図ることができる。   According to the present invention, when the refrigerant pipe and the hot water pipe of the first water refrigerant heat exchanger in the heat pump unit have a double pipe structure with the refrigerant pipe inside, it is possible to further improve the heat exchange rate. it can.

以下、本発明の実施の形態を図面に基づき説明する。図1はヒートポンプ式給湯暖房装置の全体システムを示す系統図である。図1において、Aはヒートポンプユニット、Bはタンクユニット、C1は温水暖房用の第1温水循環路、C2は貯湯用の第2温水循環路、Rは前記ヒートポンプユニットAに内蔵された冷媒回路である。この冷媒回路Rには、HFCやCO等の冷媒を用いることができるが、本実施形態ではCOを用いる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing an overall system of a heat pump hot water supply / room heating system. In FIG. 1, A is a heat pump unit, B is a tank unit, C1 is a first hot water circuit for hot water heating, C2 is a second hot water circuit for hot water storage, and R is a refrigerant circuit built in the heat pump unit A. is there. In the refrigerant circuit R, a refrigerant such as HFC or CO 2 can be used, but CO 2 is used in the present embodiment.

1及び2は前記第1温水循環路C1に設けられた床暖房パネル、3及び4は床暖房パネル1及び2に対応して設けられた床暖房リモートコントローラ(以下、「床暖房リモコン」という)であり、前記第1温水循環路C1には、熱動弁5及び6、循環ポンプ7、膨張タンク8、暖房用の第1水冷媒熱交換器9の水流路9B、バイパス管10の途中に設けられた流量調整弁であるバイパス弁11などが設けられている。   1 and 2 are floor heating panels provided in the first hot water circulation path C1, and 3 and 4 are floor heating remote controllers provided corresponding to the floor heating panels 1 and 2 (hereinafter referred to as "floor heating remote control"). In the first hot water circulation path C1, thermal valves 5 and 6, a circulation pump 7, an expansion tank 8, a water flow path 9B of the first water refrigerant heat exchanger 9 for heating, and a bypass pipe 10 are provided. A bypass valve 11 which is a provided flow rate adjusting valve is provided.

前記バイパス管10は前記第1温水循環路C1のバイパス路となるもので、例えば電動弁で構成されたバイパス弁11が開いた場合には、前記第1水冷媒熱交換器9の水流路9Bを介する戻り温水がバイパス管10を介して膨張タンク8に戻ることとなる。この膨張タンク8には水位検出センサを構成する水位電極19、20が配設されている。   The bypass pipe 10 serves as a bypass path of the first hot water circulation path C1, and when the bypass valve 11 configured by, for example, an electric valve is opened, the water flow path 9B of the first water refrigerant heat exchanger 9 is opened. The return warm water passing through is returned to the expansion tank 8 via the bypass pipe 10. The expansion tank 8 is provided with water level electrodes 19 and 20 constituting a water level detection sensor.

また、前記温水循環路C1には、暖房用の第1水冷媒熱交換器9の水流路9Bから流出した暖房用温水の温度を検出するサーミスタ12、浴室暖房装置としてのファンコイル13が設けられている。14は浴室暖房リモートコントローラ(以下、「浴室暖房リモコン」という)、15は前記ファンコイル13の入口部に設けられた熱動弁、16は前記循環ポンプ7によって膨張タンク8から流出した温水の一部を床暖房パネル1、2に供給するための混合熱動弁、18は床暖房パネル1、2に流入する温水温度を検知するサーミスタである。   The hot water circuit C1 is provided with a thermistor 12 for detecting the temperature of the hot water flowing out from the water flow path 9B of the first water refrigerant heat exchanger 9 for heating, and a fan coil 13 as a bathroom heating device. ing. 14 is a bathroom heating remote controller (hereinafter referred to as “bathroom heating remote controller”), 15 is a thermal valve provided at the inlet of the fan coil 13, and 16 is one of hot water flowing out from the expansion tank 8 by the circulation pump 7. The mixing heat operated valve 18 for supplying a part to the floor heating panels 1 and 2 is a thermistor 18 for detecting the temperature of hot water flowing into the floor heating panels 1 and 2.

前記冷媒回路Rは、CO冷媒を用いた能力調整が可能な2段圧縮式の圧縮機21と、共に一端が前記圧縮機21に接続される暖房用の第1開閉弁23及び貯湯用の第2開閉弁24と、前記第1開閉弁23の他端に接続される前記第1水冷媒熱交換器9の冷媒流路9A、前記第2開閉弁24の他端に接続される貯湯用の第2水冷媒熱交換器22の一次流路22A、冷媒流路9Aが接続される内部熱交換器25の一次流路25A、この一次流路25Aの他端が接続される暖房用の流量調整弁である膨張弁(減圧装置)26、一次流路22Aの他端が接続される流量調整弁である貯湯用の膨張弁(減圧装置)27、空気熱交換器28と、内部熱交換器25の二次流路25Bと、アキュムレーター29とが順次環状に配管接続されている。 The refrigerant circuit R includes a two-stage compression compressor 21 capable of capacity adjustment using a CO 2 refrigerant, a heating first on-off valve 23 whose one end is connected to the compressor 21, and a hot water storage For the hot water storage connected to the second on-off valve 24, the refrigerant passage 9A of the first water refrigerant heat exchanger 9 connected to the other end of the first on-off valve 23, and the other end of the second on-off valve 24. The primary flow path 22A of the second water refrigerant heat exchanger 22, the primary flow path 25A of the internal heat exchanger 25 to which the refrigerant flow path 9A is connected, and the heating flow rate to which the other end of the primary flow path 25A is connected. An expansion valve (pressure reducing device) 26 that is a regulating valve, an expansion valve (pressure reducing device) 27 for hot water storage that is a flow rate regulating valve to which the other end of the primary flow path 22A is connected, an air heat exchanger 28, and an internal heat exchanger The 25 secondary flow paths 25B and the accumulator 29 are sequentially connected in a circular pipe.

前記第2温水循環路C2において、第2水冷媒熱交換器22の水流路22Bの一端と貯湯タンク31の下部とが循環ポンプ32を介して接続されると共に、水流路22Bの他端と貯湯タンク31の上部とが接続されており、また第2水冷媒熱交換器22の水流路22Bから流出した温水の温度を検知するサーミスタ33が水流路22Bの他端と貯湯タンク31の上部との間の第2温水循環路C2に設けられている。   In the second hot water circulation path C2, one end of the water flow path 22B of the second water refrigerant heat exchanger 22 and the lower part of the hot water storage tank 31 are connected via a circulation pump 32, and the other end of the water flow path 22B and the hot water storage capacity. The thermistor 33 is connected to the upper part of the tank 31 and detects the temperature of the hot water flowing out from the water flow path 22B of the second water refrigerant heat exchanger 22 between the other end of the water flow path 22B and the upper part of the hot water storage tank 31. It is provided in the 2nd warm water circulation path C2.

前記貯湯タンク31には追焚用の水々熱交換器34の一次流路34Aが循環ポンプ35を介して接続されている。また、水々熱交換器34の二次流路34Bには循環ポンプ36を介して浴槽37が接続されている。40は貯湯タンク31の上部に接続された給湯管であり、この給湯管40にはミキシングバルブ41が設けられている。42は減圧弁43が配設され水道管に接続された給水管であり、この給水管42は貯湯タンク31の下部とミキシングバルブ41とに分岐接続され、更に補給水開閉弁44を介して前記膨張タンク8に接続されている。   The hot water storage tank 31 is connected with a primary flow path 34 </ b> A for reheating water heat exchanger 34 through a circulation pump 35. A bathtub 37 is connected to the secondary flow path 34 </ b> B of the water heat exchanger 34 via a circulation pump 36. A hot water supply pipe 40 is connected to the upper part of the hot water storage tank 31, and a mixing valve 41 is provided in the hot water supply pipe 40. 42 is a water supply pipe provided with a pressure reducing valve 43 and connected to a water pipe. This water supply pipe 42 is branched and connected to the lower part of the hot water storage tank 31 and the mixing valve 41, and further via the replenishing water opening / closing valve 44. It is connected to the expansion tank 8.

そして、前記貯湯タンク31には、湯温検出センサ45が設けられ、沸き上げ可能温度が85℃までのため、前記湯温検出センサ45の検出湯温が55℃以上の場合には残湯ありと判断し、55℃未満の場合には湯切れ寸前の緊急事態と判断される。このとき、湯温検出センサ45の配置箇所は使用できる残湯量が例えば50リットルの位置である。   The hot water storage tank 31 is provided with a hot water temperature detection sensor 45. Since the boiling temperature is up to 85 ° C., there is residual hot water when the hot water temperature detected by the hot water temperature detection sensor 45 is 55 ° C. or higher. If the temperature is lower than 55 ° C., it is determined that the emergency is about to run out. At this time, the location where the hot water temperature detection sensor 45 is disposed is a position where the amount of remaining hot water that can be used is, for example, 50 liters.

なお、部屋が暖まってくると、床暖房パネル1、2ではそれほど放熱されなくなり、膨張タンク8から第1水冷媒熱交換器9へは50〜60℃の高温水が供給されることとなるため、第1水冷媒熱交換器9ではそれほど熱交換されず、冷媒温度も高温となり、圧縮機21に高負荷が掛かることとなる。そこで、高温となった冷媒の冷却機構として前記第1水冷媒熱交換器9の他に設けたのが前記内部熱交換器25である。この内部熱交換器25での放熱分は同じ冷媒回路R内の空気熱交換器28を通過した後の冷媒に取込まれるので、冷媒回路Rの吸熱効率をも向上させている。さらに、サーミスタ50は冷媒が所定の高温度に達したことを検知すると、圧縮機21の保護のため、この圧縮機21を停止させるように制御するためのものである。   When the room is warmed up, the floor heating panels 1 and 2 do not radiate much heat, and high temperature water of 50 to 60 ° C. is supplied from the expansion tank 8 to the first water refrigerant heat exchanger 9. The first water refrigerant heat exchanger 9 does not exchange much heat, the refrigerant temperature becomes high, and a high load is applied to the compressor 21. Therefore, the internal heat exchanger 25 is provided in addition to the first water refrigerant heat exchanger 9 as a cooling mechanism for the refrigerant having reached a high temperature. Since the heat radiation in the internal heat exchanger 25 is taken into the refrigerant after passing through the air heat exchanger 28 in the same refrigerant circuit R, the heat absorption efficiency of the refrigerant circuit R is also improved. Further, the thermistor 50 is for controlling the compressor 21 to be stopped in order to protect the compressor 21 when detecting that the refrigerant has reached a predetermined high temperature.

なお、46は台所リモートコントローラ(以下、「台所リモコン」という)、47は風呂リモートコントローラ(以下、「風呂リモコン」という)である。   Reference numeral 46 is a kitchen remote controller (hereinafter referred to as “kitchen remote control”), and 47 is a bath remote controller (hereinafter referred to as “bath remote control”).

また、ヒートポンプユニットAとタンクユニットBにはそれぞれプリント基板K1、K2が配設され、このプリント基板K1にはマイクロコンピュータから成る制御装置(制御手段)S1が搭載され、またプリント基板K2にはタイマTが接続されたマイクロコンピュータから成る制御装置(制御手段)S2が搭載されている。   The heat pump unit A and the tank unit B are provided with printed circuit boards K1 and K2, respectively. The printed circuit board K1 is equipped with a control device (control means) S1 composed of a microcomputer, and the printed circuit board K2 has a timer. A control device (control means) S2 comprising a microcomputer to which T is connected is mounted.

次に、図2において、ヒートポンプユニットAの前記ヒートポンプユニット本体51内の空間は、仕切板により左右に仕切られており、大きく分けて右の空間内には下から前記第2水冷媒熱交換器22、第1水冷媒熱交換器9及びプリント基板K1を収納する電装ボックス54などが配設され、左の空間内には前記内部熱交換器25及び空気熱交換器28などが配設される。   Next, in FIG. 2, the space in the heat pump unit main body 51 of the heat pump unit A is divided into left and right by a partition plate, and is roughly divided into the second water refrigerant heat exchanger from below in the right space. 22, the first water refrigerant heat exchanger 9 and an electrical box 54 for storing the printed circuit board K1 are disposed, and the internal heat exchanger 25 and the air heat exchanger 28 are disposed in the left space. .

55は前記ヒートポンプユニット本体51の裏面に設けられたタンクユニットBとの間で前記第2温水循環路C2を形成するための温水入口継手で、56は同じく温水出口継手である。また、57は前記ヒートポンプユニット本体51の裏面に設けられたタンクユニットBとの間で前記第1温水循環路C1を形成するための温水入口継手で、58は同じく温水出口継手である。   55 is a hot water inlet joint for forming the second hot water circulation path C2 with the tank unit B provided on the back surface of the heat pump unit main body 51, and 56 is also a hot water outlet joint. Reference numeral 57 denotes a hot water inlet joint for forming the first hot water circulation path C1 with the tank unit B provided on the back surface of the heat pump unit main body 51, and 58 denotes a hot water outlet joint.

次に、前記第1水冷媒熱交換器9について、図3乃至図5に基づき説明する。前記温水入口継手57に連通する温水往き管60は、下分岐温水往き管61と上分岐温水往き管62とに分岐され、この下分岐温水往き管61と上分岐温水往き管62とはそれぞれ温水管63とその内部に配設される冷媒管64との二重管で構成された第1水冷媒熱交換器9の各水流路9Bを構成する温水管63に連通する。   Next, the first water refrigerant heat exchanger 9 will be described with reference to FIGS. The warm water outlet pipe 60 communicating with the warm water inlet joint 57 is branched into a lower branch warm water forward pipe 61 and an upper branch warm water forward pipe 62. The pipe 63 communicates with the hot water pipe 63 constituting each water flow path 9B of the first water-refrigerant heat exchanger 9 constituted by a double pipe with a refrigerant pipe 64 disposed therein.

この各温水管63の他端部は、それぞれ下分岐温水戻り管65、上分岐温水戻り管66を介して温水戻り管67に合流し、その後前記温水出口継手58に連通する。   The other end of each hot water pipe 63 joins the hot water return pipe 67 via the lower branch hot water return pipe 65 and the upper branch hot water return pipe 66, respectively, and then communicates with the hot water outlet joint 58.

一方、前記第1開閉弁23を介して圧縮機21に一端が連通する冷媒往き管70は、下分岐冷媒往き管71と上分岐冷媒往き管72とに分岐され、この下分岐冷媒往き管71と上分岐冷媒往き管72とはそれぞれ温水管63とその内部に配設される冷媒管64との二重管で構成された第1水冷媒熱交換器9の各冷媒流路9Aを構成する前記冷媒管64に連通する。   On the other hand, the refrigerant forward pipe 70 whose one end communicates with the compressor 21 via the first on-off valve 23 is branched into a lower branch refrigerant forward pipe 71 and an upper branch refrigerant forward pipe 72, and the lower branch refrigerant forward pipe 71. And the upper branch refrigerant forward pipe 72 constitute each refrigerant flow path 9A of the first water refrigerant heat exchanger 9 constituted by a double pipe of a hot water pipe 63 and a refrigerant pipe 64 disposed therein. The refrigerant pipe 64 communicates.

この各冷媒管64の他端部は、それぞれ下分岐冷媒戻り管74、上分岐冷媒戻り管75を介して冷媒戻り管76に合流し、その後内部熱交換器25の一次流路25Aに連通する。   The other end of each refrigerant pipe 64 merges with the refrigerant return pipe 76 via the lower branch refrigerant return pipe 74 and the upper branch refrigerant return pipe 75, and then communicates with the primary flow path 25A of the internal heat exchanger 25. .

次に、図5に示すように、各水流路9Bを構成する銅製の温水管63とその内部に配設される各冷媒流路9Aを構成する同じく銅製の冷媒管64との二重管で第1水冷媒熱交換器9が構成されるが、冷媒の流れと温水の流れは逆であって向流(対向流)である。この場合、並流(平行流)とすると冷媒と温水との平均温度差が対向流よりも小さく過熱部が長くなり、熱交換率が向流(対向流)に対して良好でないため、向流(対向流)としたものである。   Next, as shown in FIG. 5, a double pipe composed of a copper hot water pipe 63 constituting each water flow path 9 </ b> B and a copper refrigerant pipe 64 constituting each refrigerant flow path 9 </ b> A disposed therein. Although the 1st water refrigerant | coolant heat exchanger 9 is comprised, the flow of a refrigerant | coolant and the flow of warm water are reverse and are countercurrent (counterflow). In this case, if the parallel flow (parallel flow) is used, the average temperature difference between the refrigerant and the hot water is smaller than the counter flow and the superheated part becomes longer. (Opposite flow).

なお、以上のように第1水冷媒熱交換器9は二重管構造とされて、螺旋状に巻回され、全体形状として中空の略角筒状に形成される。そして、前記冷媒管64の外周には、熱交換率の向上を図るために冷媒管64外の温水管63内に流れる温水が乱流を起こすように乱流発生手段が設けられる。この乱流発生手段は、例えばコイルスプリングなどのコイル77を使用して、前記冷媒管64の外周に巻回する。これにより、温水の流れが層流から乱流となり、温水が攪拌されて均一な温度となり、熱交換が尚一層促進されることとなる。   In addition, as mentioned above, the 1st water refrigerant | coolant heat exchanger 9 is made into a double tube structure, and is wound helically, and is formed in the hollow substantially rectangular tube shape as a whole shape. A turbulent flow generating means is provided on the outer periphery of the refrigerant pipe 64 so that the hot water flowing in the hot water pipe 63 outside the refrigerant pipe 64 causes a turbulent flow in order to improve the heat exchange rate. The turbulent flow generating means is wound around the outer periphery of the refrigerant pipe 64 using a coil 77 such as a coil spring. Thereby, the flow of warm water changes from a laminar flow to a turbulent flow, the warm water is stirred to a uniform temperature, and heat exchange is further promoted.

また、以上のように、第1水冷媒熱交換器9を上下2段の水流路9B及び冷媒流路9Aを形成したのは、これらが相当の長さを有する関係上、前記スプリングコイル77を冷媒管64に巻回するのに作業性が悪くなるので、複数に分割したものである。   In addition, as described above, the first water refrigerant heat exchanger 9 is formed with the two upper and lower water flow passages 9B and 9A because the spring coil 77 is formed due to the fact that they have a considerable length. Since the workability deteriorates when wound around the refrigerant pipe 64, it is divided into a plurality of parts.

そして、前記制御装置S1、S2は床暖房リモコン3、4、浴室暖房リモコン14、台所リモコン46、風呂リモコン47からの運転信号やサーミスタ12、17、18、33、50の温度信号とに応じて、圧縮機21の運転及び周波数制御、循環ポンプ7、32の運転制御、熱動弁5、6、16の開閉制御、膨張弁26、27の開度制御などを行うものであり、以下その動作を説明する。   The control devices S1 and S2 correspond to the operation signals from the floor heating remote controllers 3 and 4, the bathroom heating remote controller 14, the kitchen remote controller 46 and the bath remote controller 47 and the temperature signals of the thermistors 12, 17, 18, 33 and 50. The operation and frequency control of the compressor 21, the operation control of the circulation pumps 7 and 32, the opening and closing control of the thermal valves 5, 6 and 16, the opening control of the expansion valves 26 and 27, etc. Will be explained.

〈給湯運転〉
台所リモコン46や風呂リモコン47からの運転信号が制御装置S2に入力されると、その信号が制御装置S2から制御装置S1に伝達され、貯湯タンク31への貯湯が行なわれる。即ち、制御装置S1により循環ポンプ32が運転し、第2温水循環路C2では、貯湯タンク31→循環ポンプ32→第2水冷媒熱交換器22の水流路22B→貯湯タンク31の順に給湯用の温水が流れ、貯湯タンク31内に貯湯される。
<Hot-water supply operation>
When an operation signal from the kitchen remote controller 46 or the bath remote controller 47 is input to the control device S2, the signal is transmitted from the control device S2 to the control device S1, and hot water is stored in the hot water storage tank 31. That is, the circulation pump 32 is operated by the control device S1, and in the second hot water circulation path C2, the hot water storage tank 31 → the circulation pump 32 → the water flow path 22B of the second water refrigerant heat exchanger 22 → the hot water storage tank 31 in this order. Hot water flows and the hot water is stored in the hot water storage tank 31.

一方、ヒートポンプユニットAでは制御装置S1が圧縮機21を運転させて、第2開閉弁24及び貯湯用の膨張弁27を開かせ、冷媒回路Rでは、圧縮機21→第2開閉弁24→貯湯用の第2水冷媒熱交換器22の冷媒流路22A→貯湯用の膨張弁27→空気熱交換器28→内部熱交換器25のニ次流路25B→アキュムレーター29→圧縮機21の順に冷媒が流れる。このとき、暖房は行われないので、第1開閉弁23及び暖房用の膨張弁26は閉じている。   On the other hand, in the heat pump unit A, the control device S1 operates the compressor 21 to open the second opening / closing valve 24 and the hot water storage expansion valve 27. In the refrigerant circuit R, the compressor 21 → second opening / closing valve 24 → hot water storage. Refrigerant flow path 22A of the second water refrigerant heat exchanger 22 for hot water → expansion valve 27 for hot water storage → air heat exchanger 28 → secondary flow path 25B of the internal heat exchanger 25 → accumulator 29 → compressor 21 in this order. The refrigerant flows. At this time, since heating is not performed, the first on-off valve 23 and the heating expansion valve 26 are closed.

貯湯タンク31へ供給される温水温度は65℃〜85℃であるが、サーミスタ33が検知する温度がこの温度になるように、圧縮機21の周波数制御、貯湯用の膨張弁27の弁開度制御が制御装置S1により行われる。   The temperature of the hot water supplied to the hot water storage tank 31 is 65 ° C. to 85 ° C. The frequency control of the compressor 21 and the valve opening of the expansion valve 27 for hot water storage are set so that the temperature detected by the thermistor 33 becomes this temperature. Control is performed by the control device S1.

貯湯タンク31に貯湯された高温水は給水管42からの15℃程度の水道水が加えられミキシングバルブ41にて適度な温度に調整され、給湯管40から台所や浴槽37へのお湯張り等に利用される。そして、給湯が行われると、給水管42から貯湯タンク31に給水が行われる。また、循環ポンプ35、36を運転することにより、貯湯タンク31の高温水と浴槽37の温水を追焚用の水々熱交換器34で熱交換し、浴槽37の温水の追焚きを行うこともできる。   The hot water stored in the hot water storage tank 31 is added with tap water of about 15 ° C. from the water supply pipe 42, adjusted to an appropriate temperature by the mixing valve 41, and filled with hot water from the hot water supply pipe 40 to the kitchen or bathtub 37. Used. When hot water is supplied, water is supplied from the water supply pipe 42 to the hot water storage tank 31. In addition, by operating the circulation pumps 35 and 36, the hot water in the hot water storage tank 31 and the hot water in the bathtub 37 are exchanged by the water heat exchanger 34 for replenishment, and the hot water in the bathtub 37 is replenished. You can also.

以上のような通常の給湯運転動作の場合では、9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば効率の良い6.0kW程度となるように、圧縮機21の周波数制御、貯湯用の膨張弁27の弁開度制御が制御装置S1により行われる。しかし、使用できる残湯量が50リットルとなって、前記湯温検出センサ45による検出湯温が55℃未満となって湯切れ寸前の緊急事態と判断され場合には、ヒートポンプユニットAの圧縮機21の能力が、9.0kWとなるように、圧縮機21の周波数制御、貯湯用の膨張弁27の弁開度制御が制御装置S1により行われる。   In the case of the normal hot water supply operation as described above, the frequency control of the compressor 21 is performed so that the capacity of the compressor 21 of the heat pump unit A having the capacity of 9.0 kW becomes, for example, about 6.0 kW which is efficient. The valve opening control of the hot water storage expansion valve 27 is performed by the control device S1. However, if the amount of remaining hot water that can be used is 50 liters, the hot water temperature detected by the hot water temperature detection sensor 45 is less than 55 ° C., and it is determined that there is an emergency just before the hot water runs out, the compressor 21 of the heat pump unit A The control device S1 performs frequency control of the compressor 21 and control of the opening degree of the expansion valve 27 for hot water storage so that the capacity becomes 9.0 kW.

〈床暖房運転〉
次に、床暖房パネル1又は2による床暖房を行う場合、その部屋の壁面等に取り付けられた床暖房リモコン3又は4の運転スイッチをオンにする。すると、運転信号を受けた制御装置S2によりこれに対応した熱動弁5又は6が徐々に開かれ、循環ポンプ7が運転する。従って、この熱動弁5又は6が完全に開かれるまでの間は(全開までの間)、制御装置S2はバイパス弁11を例えば半開状態となるように制御する。
<Floor heating operation>
Next, when performing floor heating by the floor heating panel 1 or 2, the operation switch of the floor heating remote control 3 or 4 attached to the wall surface or the like of the room is turned on. Then, the control valve S2 that has received the operation signal gradually opens the corresponding thermal valve 5 or 6 and the circulation pump 7 operates. Therefore, until the thermal valve 5 or 6 is fully opened (until fully opened), the control device S2 controls the bypass valve 11 to be in a half-open state, for example.

即ち、前記熱動弁5又は6は開き動作を開始してから全開状態となるのに所定時間が掛かるので、タイマTにその時間を設定して、この設定された所定時間経過をタイマTが計時したら、前記バイパス弁11を半開状態から閉状態となるように制御装置S2が制御する。   That is, since it takes a predetermined time for the thermal valve 5 or 6 to be fully opened after starting the opening operation, the time is set in the timer T, and the timer T determines the elapse of the set predetermined time. When the time is counted, the control device S2 controls the bypass valve 11 so as to be changed from the half-open state to the closed state.

このため、前記タイマTが計時を開始して所定時間を経過するまでの間は、制御装置S2はバイパス弁11を半開状態となるように制御し、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→バイパス弁(半開状態)11→膨張タンク8の順に温水が流れる。   For this reason, the control device S2 controls the bypass valve 11 to be in a half-open state until the predetermined time elapses after the timer T starts counting, and in the first hot water circulation path C1, the expansion tank 8 The hot water flows in the order of the circulation pump 7, the water flow path 9 B of the first water refrigerant heat exchanger 9, the bypass valve (half-open state) 11, and the expansion tank 8.

そして、設定された所定時間経過をタイマTが計時したら、前記バイパス弁11を半開状態から閉状態となるように制御装置S2が制御する。このため、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→熱動弁5又は6→床暖房パネル1又は2→膨張タンク8の順に温水が流れ、高温水全てを床暖房パネル1又は2に供給することができる。   Then, when the timer T counts the set predetermined time, the control device S2 controls the bypass valve 11 so as to change from the half-open state to the closed state. Therefore, in the first hot water circulation path C1, the expansion tank 8 → the circulation pump 7 → the water flow path 9B of the first water refrigerant heat exchanger 9 → the thermal valve 5 or 6 → the floor heating panel 1 or 2 → the expansion tank 8 Hot water flows in sequence, and all of the hot water can be supplied to the floor heating panel 1 or 2.

一方、前記床暖房リモコン3又は4の運転スイッチをオンにした際に、制御装置S2から運転信号が伝達された制御装置S1によりヒートポンプユニットAの圧縮機21が運転すると共に第1開閉弁23が開き、冷媒回路Rでは、圧縮機21→第1開閉弁23→暖房用の第1水冷媒熱交換器9の冷媒流路9A→内部熱交換器25の一次流路25A→暖房用の膨張弁26→空気熱交換器28→内部熱交換器25の二次流路25B→アキュムレーター29→圧縮機21の順に冷媒が流れる。このとき、貯湯は行われないので、第2開閉弁24及び貯湯用の膨張弁27は閉じており、貯湯用の水冷媒熱交換器22の一次流路22Aには冷媒は流れない。   On the other hand, when the operation switch of the floor heating remote controller 3 or 4 is turned on, the compressor 21 of the heat pump unit A is operated by the control device S1 to which the operation signal is transmitted from the control device S2, and the first on-off valve 23 is In the refrigerant circuit R, the compressor 21 → the first on-off valve 23 → the refrigerant flow path 9A of the first water / refrigerant heat exchanger 9 for heating → the primary flow path 25A of the internal heat exchanger 25 → the expansion valve for heating The refrigerant flows in the order of 26 → air heat exchanger 28 → secondary flow path 25B of internal heat exchanger 25 → accumulator 29 → compressor 21. At this time, since hot water is not stored, the second on-off valve 24 and the hot water expansion valve 27 are closed, and no refrigerant flows through the primary flow path 22A of the hot water water refrigerant heat exchanger 22.

上記の場合、前記第1水冷媒熱交換器9において、乱流発生手段としてのスプリングコイル77が冷媒管64の外周に巻回しているので、温水管63内を流れる温水の流れが層流から乱流となり、温水が攪拌されて均一な温度となり、熱交換が尚一層促進されることとなる。結果として、前記循環ポンプ7の消費電力が減少し、省エネとなる。   In the above case, in the first water refrigerant heat exchanger 9, the spring coil 77 as the turbulent flow generating means is wound around the outer periphery of the refrigerant pipe 64, so that the flow of hot water flowing in the hot water pipe 63 starts from the laminar flow. It becomes a turbulent flow, the hot water is agitated to a uniform temperature, and heat exchange is further promoted. As a result, the power consumption of the circulation pump 7 is reduced and energy is saved.

前記床暖房パネル1又は2に供給される温水の温度は60〜70℃であるが、サーミスタ12が検知する温水温度がこの温度になるように圧縮機21の周波数制御、暖房用の膨張弁26の弁開度制御が制御装置S1により行われる。   The temperature of the hot water supplied to the floor heating panel 1 or 2 is 60 to 70 ° C., but the frequency control of the compressor 21 and the heating expansion valve 26 are performed so that the temperature of the hot water detected by the thermistor 12 becomes this temperature. Is controlled by the control device S1.

また、床暖房制御は、床暖房リモコン3又は4に搭載された室温サーミスタ(図示せず)により室温を検知し、設定温度と室温との偏差に基づき熱動弁5又は6を開閉制御し、床暖房パネル1又は2への温水量を制御装置S2が制御する。   In addition, the floor heating control detects the room temperature by a room temperature thermistor (not shown) mounted on the floor heating remote controller 3 or 4, and controls the opening or closing of the thermal valve 5 or 6 based on the deviation between the set temperature and the room temperature. The control device S2 controls the amount of hot water to the floor heating panel 1 or 2.

また、床暖房パネル1及び2で同時に床暖房を行う場合、床暖房リモコン3及び4の運転スイッチをオンにすることにより、同様に熱動弁5及び6が開閉制御され、床暖房パネル1及び2に温水が供給され、床暖房パネル1及び2への温水量を個別に制御することにより、床暖房の個別制御が可能となっている。   In addition, when floor heating is simultaneously performed on the floor heating panels 1 and 2, the operation valves of the floor heating remote controllers 3 and 4 are turned on to similarly control the opening and closing of the thermal valves 5 and 6, so that the floor heating panel 1 and Warm water is supplied to 2 and individual control of floor heating is possible by individually controlling the amount of warm water to the floor heating panels 1 and 2.

このような床暖房運転を行う場合、床暖房する部屋が暖まってくると、床暖房パネル1、2からの放熱量が小さくなり、膨張タンク8から水冷媒熱交換器9の水流路9Bへは50〜60℃の温水が供給されることとなる。このため、水冷媒熱交換器9ではそれほど熱交換されず、冷媒温度も高温となって圧縮機21に負荷がかかる。このような場合の冷媒の冷却機構として設けたのが内部熱交換器25であり、内部熱交換器25の一次流路25Aでの放熱分は同じ冷媒回路Rにある内部熱交換器25の二次流路25Bで再度吸収されるため、無駄なく、効率を落とすことなく、冷媒回路Rを構成できる。   When such a floor heating operation is performed, when the floor heating room is warmed, the amount of heat released from the floor heating panels 1 and 2 is reduced, and the expansion tank 8 to the water flow path 9B of the water refrigerant heat exchanger 9 50-60 degreeC warm water will be supplied. For this reason, the water refrigerant heat exchanger 9 does not exchange much heat, and the refrigerant temperature becomes high and a load is applied to the compressor 21. The internal heat exchanger 25 is provided as a cooling mechanism for the refrigerant in such a case, and the heat release in the primary flow path 25A of the internal heat exchanger 25 is two of the internal heat exchanger 25 in the same refrigerant circuit R. Since it is absorbed again by the next flow path 25B, the refrigerant circuit R can be configured without waste and without reducing efficiency.

〈浴室暖房運転〉
次に、ファンコイル13による浴室の温風暖房を行う場合、浴室暖房リモコン14の運転スイッチをオンにする。すると、制御装置S2はファンコイル13入口部の熱動弁15を開くと共に前記バイパス弁11を半開状態となるように制御し、循環ポンプ7を運転させるように制御する。従って、第1温水循環路C1では、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→バイパス弁11(半開状態)→膨張タンク8の順に温水が流れると共に、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→熱動弁15→ファンコイル13→膨張タンク8の順に温水が流れる。
<Bathroom heating operation>
Next, when performing hot air heating of the bathroom by the fan coil 13, the operation switch of the bathroom heating remote controller 14 is turned on. Then, the control device S2 opens the thermal valve 15 at the inlet of the fan coil 13 and controls the bypass valve 11 to be in a half-open state, thereby controlling the circulation pump 7 to operate. Accordingly, in the first hot water circulation path C1, the hot water flows in the order of the expansion tank 8, the circulation pump 7, the water flow path 9B of the first water refrigerant heat exchanger 9 for heating, the bypass valve 11 (half-open state), and the expansion tank 8. At the same time, the hot water flows in the order of the expansion tank 8 → the circulation pump 7 → the water flow path 9B of the first water-refrigerant heat exchanger 9 for heating → the thermal valve 15 → the fan coil 13 → the expansion tank 8.

ヒートポンプユニットAの動作と冷媒循環は床暖房運転と同様であり、貯湯は行われないので、第2開閉弁24及び熱動弁27は閉じており、水冷媒熱交換器22の一次流路22Aには冷媒は流れない。   The operation of the heat pump unit A and the refrigerant circulation are the same as in the floor heating operation, and hot water is not stored. Therefore, the second on-off valve 24 and the thermal valve 27 are closed, and the primary flow path 22A of the water-refrigerant heat exchanger 22 is closed. Does not flow refrigerant.

前記ファンコイル21に供給される温水の温度は80℃であるが、そのための温水制御は床暖房運転の場合と同様である。また、制御装置S2による浴室暖房制御はファンコイル13に搭載された室温サーミスタ(図示せず)により室温を検知し、ファン回転数を制御し、熱動弁15を開閉制御することにより行われる。   The temperature of the hot water supplied to the fan coil 21 is 80 ° C., and the hot water control for that is the same as in the floor heating operation. Further, the bathroom heating control by the control device S2 is performed by detecting the room temperature by a room temperature thermistor (not shown) mounted on the fan coil 13, controlling the fan rotational speed, and controlling the opening and closing of the thermal valve 15.

以上のような床暖房運転又は浴室暖房運転動作の場合では、9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば7.0kW程度となるように、圧縮機21の周波数制御、暖房用の膨張弁26の弁開度制御が制御装置S1により行われる。   In the case of floor heating operation or bathroom heating operation as described above, the frequency control of the compressor 21 is performed so that the capacity of the compressor 21 of the heat pump unit A having the capacity of 9.0 kW is, for example, about 7.0 kW. The valve opening control of the heating expansion valve 26 is performed by the control device S1.

〈床暖房と浴室暖房の同時運転〉
床暖房パネル1、2による床暖房と、ファンコイル13による浴室温風暖房を同時に行う場合、それぞれのリモコン3、4、14の運転スイッチをオンにする。すると、運転信号を受けた制御装置S2によりこれに対応した熱動弁5又は6が徐々に開かれると共に熱動弁15が開き、循環ポンプ7が運転する。従って、制御装置S2は前記熱動弁5又は6が完全に開かれるまでの間、即ち前記タイマTによる所定時間が経過するまでの間はバイパス弁11を半開状態となるように制御する。
<Simultaneous operation of floor heating and bathroom heating>
When floor heating by the floor heating panels 1 and 2 and bath room temperature heating by the fan coil 13 are performed simultaneously, the operation switches of the respective remote controllers 3, 4 and 14 are turned on. Then, the control valve S2 that has received the operation signal gradually opens the corresponding thermal valve 5 or 6 and opens the thermal valve 15 so that the circulation pump 7 operates. Therefore, the control device S2 controls the bypass valve 11 to be in a half-open state until the thermal valve 5 or 6 is completely opened, that is, until a predetermined time by the timer T elapses.

このため、前記タイマTが計時を開始して所定時間を経過するまでの間は、制御装置S2はバイパス弁11を半開状態となるように制御し、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→バイパス弁(半開状態)11→膨張タンク8の順に温水が流れると共に、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→熱動弁15→ファンコイル13→膨張タンク8の順に温水が流れる。   For this reason, the control device S2 controls the bypass valve 11 to be in a half-open state until the predetermined time elapses after the timer T starts counting, and in the first hot water circulation path C1, the expansion tank 8 The hot water flows in the order of the circulation pump 7 → the water flow path 9B of the first water / refrigerant heat exchanger 9 → the bypass valve (half-open state) 11 → the expansion tank 8 and the expansion tank 8 → the circulation pump 7 → the first water for heating. Hot water flows in the order of the water flow path 9B of the refrigerant heat exchanger 9 → the thermal valve 15 → the fan coil 13 → the expansion tank 8.

そして、設定された所定時間経過をタイマTが計時したら、前記バイパス弁11を半開状態から閉状態となるように制御装置S2が制御する。このため、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→熱動弁5又は6→床暖房パネル1又は2→膨張タンク8の順に温水が流れると共に、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→熱動弁15→ファンコイル13→膨張タンク8の順に温水が流れる。   Then, when the timer T counts the set predetermined time, the control device S2 controls the bypass valve 11 so as to change from the half-open state to the closed state. Therefore, in the first hot water circulation path C1, the expansion tank 8 → the circulation pump 7 → the water flow path 9B of the first water refrigerant heat exchanger 9 → the thermal valve 5 or 6 → the floor heating panel 1 or 2 → the expansion tank 8 While warm water flows in order, the warm water flows in the order of the expansion tank 8 → the circulation pump 7 → the water flow path 9 </ b> B of the first water refrigerant heat exchanger 9 for heating → the thermal valve 15 → the fan coil 13 → the expansion tank 8.

このときのサーミスタ12による温水温度制御は80℃であるが、これでは床暖房パネル1、2用の温水としては温度が高すぎることになる。これを解決するために、混合熱動弁16を開くことで80℃の温水に膨張タンク8からの中温水を混ぜ、サーミスタ18にて検知される温水の温度が60〜70℃になるように制御している。また、中温水を混ぜすぎて低温になった場合は混合熱動弁16を閉じ、サーミスタ18の検知温度に基づく熱動弁16の開閉制御を制御装置S2が行う。   Although the hot water temperature control by the thermistor 12 at this time is 80 ° C., the temperature is too high as hot water for the floor heating panels 1 and 2. In order to solve this problem, the mixing heat valve 16 is opened to mix the warm water from the expansion tank 8 with the warm water at 80 ° C. so that the temperature of the warm water detected by the thermistor 18 is 60 to 70 ° C. I have control. Further, when the temperature of the medium temperature water becomes excessively low and the temperature becomes low, the mixing heat valve 16 is closed, and the control device S2 performs opening / closing control of the heat valve 16 based on the temperature detected by the thermistor 18.

ヒートポンプユニットAの動作と冷媒循環は床暖房運転又は浴室暖房運転と同様であり、貯湯は行われないので、第2開閉弁24及び貯湯用の熱動弁27は閉じており、貯湯用の水冷媒熱交換器22の一次流路22Aには冷媒は流れない。   The operation of the heat pump unit A and the refrigerant circulation are the same as the floor heating operation or the bathroom heating operation, and no hot water is stored. Therefore, the second on-off valve 24 and the thermal valve 27 for hot water storage are closed, and the hot water storage water is stored. The refrigerant does not flow in the primary flow path 22A of the refrigerant heat exchanger 22.

以上のような床暖房及び浴室暖房の同時運転動作の場合では、9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば7.0kW程度となるように、圧縮機21の周波数制御、貯湯用の膨張弁26の弁開度制御が制御装置S1により行われる。   In the case of the simultaneous operation of floor heating and bathroom heating as described above, the frequency of the compressor 21 is set so that the capacity of the compressor 21 of the heat pump unit A having the capacity of 9.0 kW is, for example, about 7.0 kW. Control and control of the opening degree of the expansion valve 26 for hot water storage are performed by the control device S1.

なお、本実施形態では、第1水冷媒熱交換器9について、上述した構成にしたが、これに限らず第2水冷媒熱交換器22も同様な構成にすることができる。   In the present embodiment, the first water refrigerant heat exchanger 9 is configured as described above. However, the present invention is not limited to this, and the second water refrigerant heat exchanger 22 can be configured in the same manner.

以上のように、本発明は、各水流路9Bを構成する温水管63とその内部に配設される各冷媒流路9Aを構成する同じく冷媒管64との二重管で第1水冷媒熱交換器9を構成し、乱流発生手段としてのコイル77を前記冷媒管64の外周に巻回したから、温水の流れが乱流となり、温水が攪拌されて均一な温度となり、熱交換が尚一層促進されることとなる。また、前記冷媒管64に流れる冷媒の流れと温水管63に流れる温水の流れは逆であって向流(対向流)としたから、冷媒と温水との平均温度差が並流(平行流)よりも大きく過熱部が短くなり、熱交換率が良好である。   As described above, according to the present invention, the first water refrigerant heat is formed by a double pipe including the hot water pipe 63 constituting each water flow path 9B and the refrigerant pipe 64 constituting each refrigerant flow path 9A disposed therein. Since the exchanger 9 is configured and the coil 77 serving as a turbulent flow generating means is wound around the outer periphery of the refrigerant pipe 64, the flow of hot water becomes turbulent, the hot water is stirred to a uniform temperature, and heat exchange is not yet performed. It will be further promoted. Further, since the flow of the refrigerant flowing through the refrigerant pipe 64 and the flow of the hot water flowing through the hot water pipe 63 are opposite to each other and countercurrent (opposite flow), the average temperature difference between the refrigerant and the hot water is parallel flow (parallel flow). The overheated part is larger than that and the heat exchange rate is good.

以上本発明の実施態様について説明したが、上述の説明に基づいて当業者にとって種々の代替例、修正又は変形が可能であり、本発明の趣旨を逸脱しない範囲で前述の種々の代替例、修正又は変形を包含するものである。   Although the embodiments of the present invention have been described above, various alternatives, modifications, and variations can be made by those skilled in the art based on the above description, and the various alternatives and modifications described above are within the scope of the present invention. Or a modification is included.

ヒートポンプ式給湯暖房装置の全体系統図である。It is a whole system diagram of a heat pump type hot water supply and heating device. 扉体を外した状態のヒートポンプユニットの側面図である。It is a side view of a heat pump unit in the state where a door was removed. 第1水冷媒熱交換器の正面図である。It is a front view of the 1st water refrigerant heat exchanger. 第1水冷媒熱交換器の右側面図である。It is a right view of a 1st water refrigerant | coolant heat exchanger. 図3の円Xの縦断面図である。It is a longitudinal cross-sectional view of the circle X of FIG.

符号の説明Explanation of symbols

7 循環ポンプ
9 第1水冷媒熱交換器
21 圧縮機
22 第2水冷媒熱交換器
26 暖房用の膨張弁
27 貯湯用の膨張弁
31 貯湯タンク
32 循環ポンプ
63 温水管
64 冷媒管
77 コイル
A ヒートポンプユニット
B タンクユニット
C1 温水暖房用の第1温水循環路
C2 貯湯用の第2温水循環路
R 冷媒回路
DESCRIPTION OF SYMBOLS 7 Circulation pump 9 1st water refrigerant heat exchanger 21 Compressor 22 2nd water refrigerant heat exchanger 26 Expansion valve for heating 27 Expansion valve for hot water storage 31 Hot water storage tank 32 Circulation pump 63 Hot water pipe 64 Refrigerant pipe 77 Coil A Heat pump Unit B Tank unit C1 First hot water circuit for hot water heating C2 Second hot water circuit for hot water storage R Refrigerant circuit

Claims (3)

圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯暖房装置において、前記ヒートポンプユニットの前記第1水冷媒熱交換器の冷媒管及び温水管を冷媒管を内側とする二重管構造とし、且つ前記温水管内に流れる温水が乱流を起こすように前記冷媒管の外周に乱流発生手段を設けたことを特徴とするヒートポンプ式給湯暖房装置。   A compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a decompressor, and a refrigerant circuit formed by sequentially connecting an air heat exchanger in an annular shape A heat pump unit comprising: an expansion tank; a first hot water circulation path for circulating hot water between the first water refrigerant heat exchanger and the hot water heating device by operating a first circulation pump; and the second water refrigerant heat exchange A heat pump hot water supply / heater apparatus comprising: a tank unit having a second hot water circulation path that circulates hot water between a water heater and a hot water storage tank by a second circulation pump, the first water refrigerant heat exchanger of the heat pump unit The refrigerant pipe and the hot water pipe have a double pipe structure with the refrigerant pipe inside, and turbulent flow generating means is provided on the outer periphery of the refrigerant pipe so that the hot water flowing in the hot water pipe causes turbulent flow. Heat Pump type hot-water supply heating system. 前記乱流発生手段は前記冷媒管外周に巻回されるコイルであることを特徴とする請求項1に記載のヒートポンプ式給湯暖房装置。   The heat pump hot water supply / room heating apparatus according to claim 1, wherein the turbulent flow generating means is a coil wound around the refrigerant pipe. 前記ヒートポンプユニットの前記第1水冷媒熱交換器の冷媒管及び温水管に流れる冷媒及び温水の流れ方向を逆にしたことを特徴とする請求項1に記載のヒートポンプ式給湯暖房装置。   The heat pump type hot water supply and heating device according to claim 1, wherein the flow directions of the refrigerant and hot water flowing in the refrigerant pipe and the hot water pipe of the first water refrigerant heat exchanger of the heat pump unit are reversed.
JP2004068708A 2004-03-11 2004-03-11 Heat pump type hot water supply heater Pending JP2005257161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068708A JP2005257161A (en) 2004-03-11 2004-03-11 Heat pump type hot water supply heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068708A JP2005257161A (en) 2004-03-11 2004-03-11 Heat pump type hot water supply heater

Publications (1)

Publication Number Publication Date
JP2005257161A true JP2005257161A (en) 2005-09-22

Family

ID=35083055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068708A Pending JP2005257161A (en) 2004-03-11 2004-03-11 Heat pump type hot water supply heater

Country Status (1)

Country Link
JP (1) JP2005257161A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588331A (en) * 2014-12-09 2016-05-18 海信(山东)空调有限公司 Water tank for heat-pump water heater, heat-pump water heater and use method
JP2016085029A (en) * 2014-10-28 2016-05-19 ダイキン工業株式会社 Outdoor unit
JP2021528620A (en) * 2018-04-18 2021-10-21 カーボン−クリーン テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Operation method of regenerative heat storage device and heat storage device
WO2021225425A1 (en) * 2020-05-08 2021-11-11 Kim Hyung Gon Heating pipe for boiler using double pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085029A (en) * 2014-10-28 2016-05-19 ダイキン工業株式会社 Outdoor unit
CN105588331A (en) * 2014-12-09 2016-05-18 海信(山东)空调有限公司 Water tank for heat-pump water heater, heat-pump water heater and use method
JP2021528620A (en) * 2018-04-18 2021-10-21 カーボン−クリーン テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Operation method of regenerative heat storage device and heat storage device
JP7159346B2 (en) 2018-04-18 2022-10-24 カーボン-クリーン テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of operating regenerative heat storage device and heat storage device
WO2021225425A1 (en) * 2020-05-08 2021-11-11 Kim Hyung Gon Heating pipe for boiler using double pipe

Similar Documents

Publication Publication Date Title
JP4893070B2 (en) Return hot water recovery method and hot water supply system
JP5305714B2 (en) Hot water heating system
JP4436771B2 (en) Heat exchanger, heat pump type hot water supply device and heat pump type hot water supply and heating device
JP4215699B2 (en) Heat pump water heater / heater
JP2005345006A (en) Heat pump type hot water heating device
JP3977382B2 (en) Hot water storage water heater
JP2004218912A (en) Heat pump type hot water heating device
JP4114930B2 (en) Heat pump water heater / heater
JP3869804B2 (en) Heat pump water heater / heater
JP2006046877A (en) Heat pump type hot water supply/heating system
JP3869798B2 (en) Heat pump water heater / heater
JP2005257161A (en) Heat pump type hot water supply heater
JP2004333000A (en) Hot water storage type water heater
JP3869801B2 (en) Heat pump water heater / heater
JP4215661B2 (en) Heat pump water heater / heater
JP4279725B2 (en) Heat pump water heater / heater
JP2009264714A (en) Heat pump hot water system
JP4101198B2 (en) Heat pump water heater / heater
JP2005273958A (en) Hot-water supply and heating apparatus
JP4052206B2 (en) Hot water storage hot water supply system
JP4148909B2 (en) Heat pump water heater / heater
JP2004218911A (en) Heat pump type hot-water supply heating device
JP4515883B2 (en) Hot water storage water heater
JP3970221B2 (en) Heat pump water heater
JP4133593B2 (en) Hot water storage hot water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219