JP2005108589A - Separator for fuel cell - Google Patents
Separator for fuel cell Download PDFInfo
- Publication number
- JP2005108589A JP2005108589A JP2003339470A JP2003339470A JP2005108589A JP 2005108589 A JP2005108589 A JP 2005108589A JP 2003339470 A JP2003339470 A JP 2003339470A JP 2003339470 A JP2003339470 A JP 2003339470A JP 2005108589 A JP2005108589 A JP 2005108589A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- cell separator
- separator
- mass
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本発明は燃料電池用セパレータに関する。 The present invention relates to a fuel cell separator.
近年、燃料の有する化学的エネルギーを電気的エネルギーに直接変換する燃料電池に対する需要が高まっている。一般に燃料電池は、電解質膜を挟んで電極板が配置され、更にその外側にセパレータが配置された単位セルを、多数積層した構造になっている。 In recent years, there is an increasing demand for fuel cells that directly convert chemical energy of fuel into electrical energy. In general, a fuel cell has a structure in which a large number of unit cells each having an electrode plate sandwiched between electrolyte membranes and a separator disposed outside the electrode plate are stacked.
図1は、一般的な燃料電池用セパレータの外観を示す概略図であるが、平板部6の両面に所定の間隔で複数の隔壁7を設立して形成されている。燃料電池とするには、多数の燃料電池セパレータ5を、隔壁の突出方向(図中、上下方向)に積層する。そして、この積層により、隣接する一対の隔壁7で形成されるチャネル8に反応ガス(水素や酸素)を流通させる構成となる。そのため、燃料電池セパレータ5は両反応ガスが混合しないように、気体不透過性に優れることが必要である。また、単位セルを積層しているので、燃料電池用セパレータ5は高い導電性を有し、かつ強度にも優れていることが要求される。 FIG. 1 is a schematic view showing the external appearance of a general fuel cell separator, which is formed by establishing a plurality of partition walls 7 at predetermined intervals on both surfaces of a flat plate portion 6. In order to obtain a fuel cell, a large number of fuel cell separators 5 are stacked in the protruding direction of the partition walls (vertical direction in the figure). And by this lamination | stacking, it becomes the structure which distribute | circulates reaction gas (hydrogen and oxygen) to the channel 8 formed of a pair of adjacent partition 7. Therefore, the fuel cell separator 5 needs to be excellent in gas impermeability so that both reaction gases are not mixed. In addition, since the unit cells are stacked, the fuel cell separator 5 is required to have high conductivity and excellent strength.
例えば、自動車のように高電圧を必要とする分野では、各単位セルを数百枚積層してスタックを構成させる。また、このスタックは一般に約80℃の条件下で使用されるため、熱的寸法安定性(低熱膨張)が求められる。高熱膨張であると、熱によりスタック全体が大きくなるために、締め付け荷重の増大により燃料電池用セパレータ本体、電解質膜の破損が生じる。また、スタック組み付け時に、セパレータの強度、板厚寸法精度、反り等により組み付けの困難、破損などが発生することがある。特に燃料電池用セパレータの反りは、スタックの組み付けを困難にするだけでなく、組み付け後の各セルの密着性が不十分となり、接触電気抵抗にムラが生じ、それによる発電性能の低下、さらに偏荷重により燃料電池用セパレータが破損することがある。 For example, in a field that requires a high voltage like an automobile, a stack is formed by stacking several hundred unit cells. In addition, since this stack is generally used under conditions of about 80 ° C., thermal dimensional stability (low thermal expansion) is required. When the thermal expansion is high, the entire stack becomes large due to heat, and therefore the fuel cell separator body and the electrolyte membrane are damaged due to an increase in tightening load. Further, when assembling the stack, it may be difficult to assemble or break due to the strength, dimensional accuracy, warpage, etc. of the separator. In particular, the warpage of the separator for the fuel cell not only makes it difficult to assemble the stack, but also the adhesion of each cell after assembly becomes insufficient, resulting in uneven contact electrical resistance, resulting in a decrease in power generation performance and further unevenness. The fuel cell separator may be damaged by the load.
燃料電池用セパレータは、生産性の点で有利なことから、樹脂に膨張黒鉛や炭素繊維などの導電性フィラーを分散させた導電性樹脂組成物を所定の形状にプレス成形して得られるのが一般的である。そのため、導電性樹脂組成物における配合物の分散が十分でないと、燃料電池用セパレータ内で配合物が偏在して、局所的な熱膨張差による反りやうねりが発生し、更に局所的な強度不足も起こる。そのため、燃料電池用セパレータの表裏(集電面、水路面)の形状差に由来して厚さ方向(図1、上下方向)と水平方向(図1、左右方向)とで導電性フィラーの配向状態に差が生じ、その結果熱膨張差により局部的に伸びに差が生じて反りやうねりが発生する。 Since the separator for a fuel cell is advantageous in terms of productivity, it can be obtained by press-molding a conductive resin composition in which a conductive filler such as expanded graphite or carbon fiber is dispersed in a resin into a predetermined shape. It is common. Therefore, if the dispersion of the composition in the conductive resin composition is not sufficient, the composition is unevenly distributed in the fuel cell separator, causing warpage and undulation due to local thermal expansion difference, and further insufficient local strength Also happens. Therefore, the orientation of the conductive filler in the thickness direction (FIG. 1, vertical direction) and the horizontal direction (FIG. 1, horizontal direction) due to the difference in shape between the front and back surfaces (current collection surface, water channel surface) of the fuel cell separator. A difference occurs in the state, and as a result, a difference in elongation occurs locally due to a difference in thermal expansion, and warping and undulation occur.
反りを抑えるために、例えば、電極部と接触する面に含まれる樹脂の含有量を、電極部と接触しない面に含まれる樹脂の含有量よりも少なくした燃料電池用セパレータ(特許文献1参照)、外周または外表面の少なくとも一部を金属材料や繊維補強樹脂材料等からなる補強材で強化した燃料電池セパレータ(特許文献2参照)等が知られている。 In order to suppress warpage, for example, a fuel cell separator in which the content of the resin contained in the surface in contact with the electrode portion is less than the content of the resin contained in the surface not in contact with the electrode portion (see Patent Document 1) A fuel cell separator (see Patent Document 2) in which at least a part of the outer periphery or outer surface is reinforced with a reinforcing material made of a metal material, a fiber-reinforced resin material, or the like is known.
また、使用する樹脂や導電性フィラーを特定して熱膨張率差を抑えることも行われており、例えば、特定のアスペクト比や平均粒径の黒鉛粉末と、ノボラック型フェノール樹脂と、炭素繊維とを含有し、隔壁と溝との間に密度差を設けた燃料電池用セパレータ(特許文献3参照)も知られている。
しかし、上記特許文献1及び特許文献2は、反りの原因である熱膨張差について検討されておらず、根本的な解決には至っていない。また、特許文献3の燃料電池用セパレータも、セパレータ全体としての熱膨張率を抑えているものの、セパレータ部位間における熱膨張率差について検討されていない。 However, Patent Document 1 and Patent Document 2 have not studied the difference in thermal expansion that is the cause of warping, and have not yet reached a fundamental solution. Moreover, although the fuel cell separator of Patent Document 3 also suppresses the coefficient of thermal expansion of the separator as a whole, the difference in the coefficient of thermal expansion between the separator parts has not been studied.
本発明はこのような状況に鑑みてなされたものであり、従来品に比べて反りが格段に少なく、組み付け性に優れ、また破損も無く、更にはセル間の密着性に優れ、接触電気抵抗ムラも無い、高性能の燃料電池用セパレータを提供することを目的とする。 The present invention has been made in view of such a situation, and has less warpage than conventional products, excellent assemblability, no breakage, and excellent adhesion between cells, and contact electrical resistance. An object is to provide a high-performance fuel cell separator that is free from unevenness.
本発明は、上記の目的を達成するために、下記に示す燃料電池用セパレータを提供する。
(1)導電性樹脂組成物を所定形状に成形してなり、厚さ方向における熱膨張係数と厚さに垂直な方向における熱膨張係数との差が20×10−6・K−1以下であることを特徴とする燃料電池用セパレータ。
(2)導電性フィラー20〜60質量%、熱硬化性樹脂20〜40質量%、球状フィラー15〜30質量%及び炭素繊維5〜10質量%の組成比率からなることを特徴とする上記(1)記載の燃料電池用セパレータ。
(3)導電性フィラーが膨張黒鉛であることを特徴とする上記(2)記載の燃料電池用セパレータ。
(4)球状フィラーが球状シリカおよび球状黒鉛の一種類以上を含むことを特徴とする上記(2)または(3)記載の燃料電池用セパレータ。
(5)球状フィラーの平均粒径が、燃料電池用セパレータの最薄部の厚さに対して75%以下であることを特徴とする上記(2)〜(4)の何れか1項に記載の燃料電池用セパレータ。
(6)曲げ強度が40MPa以上、かつ曲げ弾性率が12GPa以下であることを特徴とする上記(1)〜(5)の何れか1項に記載の燃料電池用セパレータ。
In order to achieve the above object, the present invention provides a fuel cell separator described below.
(1) The conductive resin composition is molded into a predetermined shape, and the difference between the thermal expansion coefficient in the thickness direction and the thermal expansion coefficient in the direction perpendicular to the thickness is 20 × 10 −6 · K −1 or less. There is a separator for a fuel cell.
(2) The above (1), comprising a composition ratio of 20 to 60% by mass of conductive filler, 20 to 40% by mass of thermosetting resin, 15 to 30% by mass of spherical filler and 5 to 10% by mass of carbon fiber. ) Fuel cell separator.
(3) The fuel cell separator as described in (2) above, wherein the conductive filler is expanded graphite.
(4) The fuel cell separator as described in (2) or (3) above, wherein the spherical filler contains one or more kinds of spherical silica and spherical graphite.
(5) The average particle diameter of the spherical filler is 75% or less with respect to the thickness of the thinnest part of the separator for a fuel cell, any one of the above (2) to (4), Fuel cell separator.
(6) The fuel cell separator as described in any one of (1) to (5) above, wherein the bending strength is 40 MPa or more and the flexural modulus is 12 GPa or less.
本発明によれば、反りが小さく、組み付け性に優れ、また破損も無く、更にはセル間の密着性に優れ、接触電気抵抗ムラも無い、高性能の燃料電池用セパレータが得られる。 According to the present invention, it is possible to obtain a high-performance fuel cell separator that has low warpage, excellent assemblability, no breakage, excellent adhesion between cells, and no uneven contact electric resistance.
以下、本発明の燃料電池用セパレータに関して詳細に説明する。 Hereinafter, the fuel cell separator of the present invention will be described in detail.
本発明の燃料電池用セパレータは、導電性樹脂組成物を例えば図1に示したような所定形状に成形してなり、かつ厚さ方向における熱膨張係数と水平方向における熱膨張係数との差が20×10−6・K−1以下であることを特徴とする。このような熱膨張係数差を満足できる範囲であれば、その形状並びに導電性樹脂組成物には制限がないが、導電性樹脂組成物としては、導電性フィラー20〜60質量%、熱硬化性樹脂20〜40質量%、球状フィラー15〜30質量%及び炭素繊維5〜10質量%からなる導電性樹脂組成物が好ましい。以下に導電性フィラー、熱硬化性樹脂、球状フィラー及び炭素繊維について詳細に説明する。
(熱硬化性樹脂)
熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、フラン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂等が挙げられ、それぞれ単独で、あるいはこれらを混合して用いることができる。得られる特性、生産性等考慮すると、エポキシ樹脂とポリイミド樹脂とを混合して用いるのが好ましい。
The separator for a fuel cell of the present invention is formed by molding a conductive resin composition into a predetermined shape as shown in FIG. 1, for example, and there is a difference between the thermal expansion coefficient in the thickness direction and the thermal expansion coefficient in the horizontal direction. It is 20 × 10 −6 · K −1 or less. As long as such a difference in thermal expansion coefficient can be satisfied, the shape and the conductive resin composition are not limited. However, as the conductive resin composition, the conductive filler is 20 to 60% by mass, thermosetting. A conductive resin composition comprising 20 to 40% by mass of resin, 15 to 30% by mass of spherical filler and 5 to 10% by mass of carbon fiber is preferable. The conductive filler, thermosetting resin, spherical filler and carbon fiber will be described in detail below.
(Thermosetting resin)
Examples of the thermosetting resin include an epoxy resin, a phenol resin, a furan resin, an unsaturated polyester resin, a polyimide resin, and the like. These can be used alone or in combination. In consideration of the obtained characteristics, productivity, and the like, it is preferable to use a mixture of an epoxy resin and a polyimide resin.
ここで、エポキシ樹脂とは、多官能性エポキシ化合物と硬化剤との反応で形成される構造体、並びに該構造体を与えるエポキシ化合物及び硬化剤すべてを含包する。以後、反応前のエポキシ化合物をエポキシ樹脂前駆体、反応により生じた構造体をエポキシ化合物と言うことがある。また、エポキシ樹脂量は、エポキシ硬化物の質量に等しい。 Here, the epoxy resin includes a structure formed by a reaction between a polyfunctional epoxy compound and a curing agent, and all of the epoxy compound and the curing agent that give the structure. Hereinafter, the epoxy compound before the reaction may be referred to as an epoxy resin precursor, and the structure produced by the reaction may be referred to as an epoxy compound. The amount of epoxy resin is equal to the mass of the epoxy cured product.
エポキシ樹脂前駆体としては、種々の公知の化合物を使用することができる。例えば、ビスフェノールAジグリシジルエーテル型、ビスフェノールFジグリシジルエーテル型、ビスフェノールSジグリシジルエーテル型、ビスフェノールADジグリシジルエーテル型、レゾルシノールジグリシジルエーテル型等の2官能性エポキシ化合物;フェノールノボラック型、クレゾールノボラック型等の多官能性エポキシ化合物;更には、エポキシ化大豆油のような線状脂肪族エポキシ化合物、環式脂肪族エポキシ化合物、複素環式エポキシ化合物、グリシジルエステル系エポキシ化合物、グリシジルアミン系エポキシ化合物等が挙げられるが、これらに限定されない。ハロゲン等の置換基を有する化合物、芳香環が水素化された化合物をも使用することができる。また、そのエポキシ当量、分子量、エポキシ基数等にも、特に制限はない。しかしながら、エポキシ樹脂前駆体として、エポキシ当量が約400以上、特に約700以上のエポキシ化合物を主に使用すると、可使時間を長くすることができる。また、これらの化合物は、常温で固体であるため、粉体成形を行う場合には取り扱いが容易となる。複数のエポキシ化合物を併用することも可能である。例えばエポキシ当量200程度の、網目密度の高い硬化物を与えるエポキシ樹脂前駆体を、エポキシ当量900程度の、可使時間の長い前駆体を混入させ、粉体として、あるいは可使時間のやや長い液状物として取り扱うことができる。 Various known compounds can be used as the epoxy resin precursor. For example, bifunctional epoxy compounds such as bisphenol A diglycidyl ether type, bisphenol F diglycidyl ether type, bisphenol S diglycidyl ether type, bisphenol AD diglycidyl ether type, resorcinol diglycidyl ether type; phenol novolac type, cresol novolac type Polyfunctional epoxy compounds such as: linear aliphatic epoxy compounds such as epoxidized soybean oil, cyclic aliphatic epoxy compounds, heterocyclic epoxy compounds, glycidyl ester epoxy compounds, glycidyl amine epoxy compounds, etc. However, it is not limited to these. A compound having a substituent such as halogen or a compound in which an aromatic ring is hydrogenated can also be used. Moreover, there is no restriction | limiting in particular also in the epoxy equivalent, molecular weight, the number of epoxy groups. However, when an epoxy compound having an epoxy equivalent of about 400 or more, particularly about 700 or more is mainly used as the epoxy resin precursor, the pot life can be extended. Moreover, since these compounds are solid at normal temperature, handling becomes easy when performing powder molding. It is also possible to use a plurality of epoxy compounds in combination. For example, an epoxy resin precursor that gives a cured product having a high network density with an epoxy equivalent of about 200 is mixed with a precursor with an epoxy equivalent of about 900 that has a long usable time, and is used as a powder or a liquid with a slightly long usable time. It can be handled as a thing.
これらエポキシ樹脂前駆体は、硬化剤と反応することによって、エポキシ硬化物を生成する。硬化物も各種公知の化合物を使用することができる。例えばジメチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、メンセンジアミン、イソホロンジアミン等の脂肪族、脂環族、芳香族のポリアミンまたはその炭酸塩;無水フタル酸、メチルテトラヒドロ無水フタル酸、無水トリメリット酸等の酸無水物;フェノールノボラックのようなポリフェノール;ポリメルカプタン;トリス(ジメチルアミノメチル)フェノール、イミダゾール、エチルメチルイミダゾール等のアニオン重合触媒;BF3やその錯体のようなカチオン重合触媒;更には熱分解や光分解によって上記化合物を生成する潜在性硬化剤等が挙げられるが、これらに限定されない。複数の硬化剤を併用することもできる。 These epoxy resin precursors react with a curing agent to produce an epoxy cured product. Various known compounds can also be used for the cured product. For example, dimethylenetriamine, triethylenetetramine, tetraethylenepentamine, mensendiamine, isophoronediamine, and other aliphatic, alicyclic, and aromatic polyamines or carbonates thereof; phthalic anhydride, methyltetrahydrophthalic anhydride, trihydric anhydride Acid anhydrides such as merit acid; polyphenols such as phenol novolac; polymercaptan; anionic polymerization catalysts such as tris (dimethylaminomethyl) phenol, imidazole, ethylmethylimidazole; cationic polymerization catalysts such as BF 3 and its complexes; Includes, but is not limited to, a latent curing agent that generates the above compound by thermal decomposition or photolysis. A plurality of curing agents can be used in combination.
また、ポリイミドとは、分子内にイミド基((−CO−)2N−)を有するポリマーの総てを包含する。例としてポリアミドイミド、ポリエーテルイミド等の熱可塑性ポリイミド;(全)芳香族ポリイミド等の非熱可塑性ポリイミド;熱硬化性ポリイミド、例えばビスマレイミド型ポリイミド、アリルナジイミド等のナジック酸型ポリイミド、アセチレン型ポリイミド等が挙げられるが、これらに限定されない。複数のポリイミドを併用することもできる。中でも熱硬化性ポリイミドの使用が特に好ましい。熱硬化性ポリイミドは、熱可塑性ポリイミドや非熱可塑性(芳香族)ポリイミドに比べ、加工が容易であるという利点を有する。高温特性は非熱可塑性ポリイミドと比べれば劣るものの、各種有機ポリマーの内では極めて良好な部類である。しかも硬化の際にボイドやクラックをほとんど発生しないので、本発明の導電性樹脂組成物の成分として好適である。 Polyimide includes all polymers having an imide group ((—CO—) 2 N—) in the molecule. Examples include thermoplastic polyimide such as polyamideimide and polyetherimide; non-thermoplastic polyimide such as (all) aromatic polyimide; thermosetting polyimide such as nadic acid type polyimide such as bismaleimide polyimide and allyl nadiimide, acetylene type Although polyimide etc. are mentioned, it is not limited to these. A plurality of polyimides can be used in combination. Of these, the use of thermosetting polyimide is particularly preferred. Thermosetting polyimide has the advantage that it is easier to process than thermoplastic polyimide or non-thermoplastic (aromatic) polyimide. Although the high temperature characteristics are inferior to those of non-thermoplastic polyimides, it is a very good class among various organic polymers. In addition, since voids and cracks hardly occur during curing, it is suitable as a component of the conductive resin composition of the present invention.
また、エポキシ樹脂とポリイミド樹脂との配合比は、エポキシ樹脂が5〜95重量部%で、ポリイミド樹脂が95〜5重量部%が好ましい。何れの樹脂も、配合比が5質量%未満では両樹脂を併用にすることにより生じる利点が僅かである。エポキシ樹脂:ポリイミド樹脂の配合比は、より好ましくは、95:5〜30:70、更に好ましくは85:15〜60:40である。 Moreover, the compounding ratio of the epoxy resin and the polyimide resin is preferably 5 to 95 parts by weight for the epoxy resin and 95 to 5 parts by weight for the polyimide resin. In any resin, when the blending ratio is less than 5% by mass, the advantages produced by using both resins in combination are slight. The compounding ratio of epoxy resin: polyimide resin is more preferably 95: 5 to 30:70, and still more preferably 85:15 to 60:40.
熱硬化性樹脂の配合量は、燃料電池用セパレータ全量に対して20〜40質量%であるが、20質量%未満では、材料流動性の低下により形状成形が困難になり、バインダーとして効果が薄くなり、燃料電池用セパレータの厚さ復元量が増大し、所望の厚さが得られない等の問題が生じる。また、熱硬化性樹脂の配合量が40質量%を超えると、強度不足、導電性低下、流動性が高くなることで成形時のバリ量の増加、金型へのハリツキ等の問題が生じる。これらの点を考慮すると、熱硬化性樹脂の配合量は20〜30質量%が好ましい。
(導電性フィラー)
導電性フィラーとしては、例えば膨張黒鉛、人造黒鉛、カーボンブラック等が挙げられ、それぞれ単独で、あるいはこれらを混合して用いることができる。中でも、成形性や経済性を考慮すると膨張黒鉛が好ましい。膨張黒鉛は、黒鉛結晶構造の層間を拡張処理したもので、極めて嵩高いものとなっている。膨張黒鉛としては、好ましくは嵩比重が0.3程度以下、より好ましくは0.1程度以下、特に好ましくは0.05程度以下のものを使用する。これらの膨張黒鉛を用いると、強度、導電性、潤滑性が特に良好となる。
The blending amount of the thermosetting resin is 20 to 40% by mass with respect to the total amount of the separator for the fuel cell. However, if it is less than 20% by mass, shape molding becomes difficult due to a decrease in material fluidity, and the effect as a binder is thin. Thus, the amount of restoration of the thickness of the separator for the fuel cell increases, and there arises a problem that a desired thickness cannot be obtained. On the other hand, when the blending amount of the thermosetting resin exceeds 40% by mass, problems such as an increase in the amount of burrs during molding due to insufficient strength, a decrease in electrical conductivity, and fluidity, and a problem with the mold are caused. Considering these points, the blending amount of the thermosetting resin is preferably 20 to 30% by mass.
(Conductive filler)
Examples of the conductive filler include expanded graphite, artificial graphite, and carbon black. These can be used alone or in combination. Among these, expanded graphite is preferable in view of moldability and economy. Expanded graphite is obtained by expanding the layers of the graphite crystal structure and is extremely bulky. The expanded graphite preferably has a bulk specific gravity of about 0.3 or less, more preferably about 0.1 or less, and particularly preferably about 0.05 or less. When these expanded graphites are used, the strength, conductivity and lubricity are particularly good.
導電性フィラーの配合量は、燃料電池用セパレータ全量に対して20〜60質量%であるが、20質量%未満では満足できる導電性を得られず、60質量%を超えると強度あるいは成形上の問題が生じる。これらを考慮すると、導電性フィラーの配合量は、25〜60質量%が好ましく、30〜60質量%がより好ましい。
(球状フィラー)
一般に、膨張黒鉛を含有する導電性樹脂組成物を板状に成形すると、膨張黒鉛が成形体の水平方向に多く配向するようになり、水平方向と厚さ方向の熱膨張率差が生じ、反り発生の要因となる。そこで、このような異方性を低減させるために球状フィラーを添加する。
The blending amount of the conductive filler is 20 to 60% by mass with respect to the total amount of the separator for the fuel cell. However, if it is less than 20% by mass, satisfactory conductivity cannot be obtained. Problems arise. Considering these, the blending amount of the conductive filler is preferably 25 to 60% by mass, and more preferably 30 to 60% by mass.
(Spherical filler)
In general, when a conductive resin composition containing expanded graphite is molded into a plate shape, expanded graphite is oriented in the horizontal direction of the molded body, resulting in a difference in thermal expansion coefficient between the horizontal direction and the thickness direction. It becomes a factor of occurrence. Therefore, a spherical filler is added to reduce such anisotropy.
球状フィラーとしては、例えば低熱膨張材である球状シリカ、中空シリカ、球状黒鉛(人造黒鉛)等が挙げられ、それぞれ単独で、あるいはこれらを混合して用いることができる。中でも、導電性を考慮するとシリカよりも導電性フィラーとしても使用可能な球状黒鉛が望ましい。導電性樹脂組成物中に球状フィラーが混在することによって、球状フィラーの周囲で膨張黒鉛が成形体の厚さ方向にも配向しやすくなり、水平方向と厚さ方向とで熱膨張率の差が少なくなる。また、球状フィラーの粒径が大きい程、膨張黒鉛が厚さ方向にも配向しやすくなる。 Examples of the spherical filler include spherical silica, hollow silica, and spherical graphite (artificial graphite), which are low thermal expansion materials, and these can be used alone or in combination. Among these, in view of conductivity, spherical graphite that can be used as a conductive filler is more preferable than silica. When the spherical filler is mixed in the conductive resin composition, the expanded graphite is easily oriented in the thickness direction of the molded body around the spherical filler, and there is a difference in the coefficient of thermal expansion between the horizontal direction and the thickness direction. Less. Further, the larger the particle size of the spherical filler, the easier the expanded graphite is oriented in the thickness direction.
しかし、球状フィラーの粒径が大き過ぎると、燃料電池用セパレータの表面から球状フィラーの一部が露出し、接触抵抗の低下を引き起こすことがある。そのため球状フィラーの粒径としては、燃料電池用セパレータの最薄部の厚さの75%以下とすることが望ましい。例えば、燃料電池用セパレータの最薄部が0.5mmであるとすると、球状フィラーの粒径は125μm以下が望ましく、更に好ましくは50μm以下が望ましい。 However, when the particle size of the spherical filler is too large, part of the spherical filler is exposed from the surface of the fuel cell separator, which may cause a decrease in contact resistance. Therefore, the particle size of the spherical filler is desirably 75% or less of the thickness of the thinnest part of the fuel cell separator. For example, when the thinnest part of the fuel cell separator is 0.5 mm, the spherical filler preferably has a particle size of 125 μm or less, more preferably 50 μm or less.
球状フィラーの配合量は、燃料電池用セパレータ全量に対して15〜30質量%であるが、5質量%未満では、満足する膨張黒鉛の配向制御ができないことから熱膨張の低下がみられず、燃料電池用セパレータに反りが生じる。30質量%を超えると、燃料電池用セパレータの表面から突出することがあり、接触抵抗の低下や、成形体の強度及び気体不透過性の低下を起こすおそれがある。これらを考慮すると、球状フィラーの配合量は15〜25質量%が好ましい。
(炭素繊維)
炭素繊維としては、例えばPAN系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維等が挙げられ、それぞれ単独で、あるいはこれらを混合して用いることができる。炭素繊維を添加することにより燃料電池用セパレータの強度、特に耐衝撃性を改善することができ、また導電性や熱膨張に殆ど影響を与えずに強度を改善することができる。炭素繊維の形状には特に制限はないが、導電性樹脂組成物とするときに好ましくは繊維長が約0.01〜100mm、特に0.1〜20mmのものを使用する。繊維長が100mmを超えると成形が難しく、また表面を平滑にし難くなり、0.01mmを下回ると補強効果が期待できなくなる。
The blending amount of the spherical filler is 15 to 30% by mass with respect to the total amount of the separator for the fuel cell, but if it is less than 5% by mass, there is no reduction in thermal expansion because satisfactory orientation control of the expanded graphite is not possible. Warpage occurs in the fuel cell separator. When it exceeds 30 mass%, it may protrude from the surface of the fuel cell separator, which may cause a decrease in contact resistance and a decrease in strength and gas impermeability of the molded article. Considering these, the blending amount of the spherical filler is preferably 15 to 25% by mass.
(Carbon fiber)
Examples of the carbon fiber include PAN-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, and the like, and these can be used alone or in combination. By adding carbon fiber, the strength of the fuel cell separator, particularly impact resistance, can be improved, and the strength can be improved with little influence on conductivity and thermal expansion. Although there is no restriction | limiting in particular in the shape of carbon fiber, When using it as an electroconductive resin composition, Preferably, the fiber length is about 0.01-100 mm, Especially 0.1-20 mm is used. If the fiber length exceeds 100 mm, it is difficult to mold and the surface is difficult to smooth, and if it is less than 0.01 mm, the reinforcing effect cannot be expected.
炭素繊維の配合量は、燃料電池用セパレータ全量に対して5〜10質量%であるが、5質量%未満では満足できる耐衝撃性が得られず、10質量%を超えると成形上の問題が生じる。これらを考慮すると、炭素繊維の配合量は7〜9質量%が好ましい。 The blending amount of the carbon fiber is 5 to 10% by mass with respect to the total amount of the separator for the fuel cell, but if it is less than 5% by mass, satisfactory impact resistance cannot be obtained, and if it exceeds 10% by mass, there is a problem in molding. Arise. Considering these, the blending amount of the carbon fiber is preferably 7 to 9% by mass.
本発明の燃料電池用セパレータを製造するには、例えば以下のようにして行うことができる。 The fuel cell separator of the present invention can be produced, for example, as follows.
先ず、上記の配合比にて導電性フィラー、熱硬化性樹脂、球状フィラー及び炭素繊維をヘンシェルミキサーやシェイカー等を用いて常温にて乾式混合し、混合粉体を得る。次いで、混合粉体を熱硬化性樹脂が完全硬化しない温度で溶融混合する。この溶融混合には加圧ニーダー、ブラベンダー、短軸または二軸スクリュー等の混合機を用いることができる。溶融混合により、導電性フィラー、球状フィラー及び炭素繊維が破砕もしくは切断されて微細物となり、更には熱硬化性樹脂が軟化、流動して導電性フィラー、球状フィラー及び炭素繊維の隙間に入り込み、導電性樹脂組成物中における配合物の分散性が向上し、特に導電性フィラーである膨張黒鉛の異方性を低減することが可能となる。次いで、得られた溶融混合物を自然冷却して固化させた後、固化物を金型に充填しやすいように、ヘンシェルミキサーやミキサー、ボールミル等で粉砕する。この溶融混合物の粉体は、金型への充填のし易さや成形性を考慮すると、平均粒径が500μm以下であるのが好ましい。 First, the conductive filler, thermosetting resin, spherical filler, and carbon fiber are dry-mixed at room temperature using a Henschel mixer, shaker, or the like at the above blending ratio to obtain a mixed powder. Next, the mixed powder is melt-mixed at a temperature at which the thermosetting resin is not completely cured. A mixer such as a pressure kneader, a brabender, a short shaft or a twin screw can be used for this melt mixing. By melt mixing, the conductive filler, spherical filler, and carbon fiber are crushed or cut into fine particles, and the thermosetting resin softens and flows into the gaps between the conductive filler, spherical filler, and carbon fiber, and becomes conductive. The dispersibility of the compound in the conductive resin composition is improved, and in particular, the anisotropy of expanded graphite which is a conductive filler can be reduced. Next, the obtained molten mixture is naturally cooled and solidified, and then pulverized by a Henschel mixer, a mixer, a ball mill, or the like so that the solidified product can be easily filled in a mold. The powder of the molten mixture preferably has an average particle size of 500 μm or less in consideration of ease of filling into the mold and moldability.
溶融混合物の粉体をそのまま燃料電池用セパレータ用の金型に充填し、熱硬化性樹脂が完全硬化する温度にてプレス成形して燃料電池用セパレータを得ることもできるが、一旦、溶融混合粉体を熱硬化性樹脂が完全硬化しない温度でプレス成形にて仮成形してシート化し、作製したシート状仮成形体を燃料電池用セパレータ用金型に収容し、熱硬化性樹脂が完全硬化する温度にて本成形することが好ましい。 The molten mixture powder can be filled in a mold for a fuel cell separator as it is and press-molded at a temperature at which the thermosetting resin is completely cured to obtain a fuel cell separator. The body is temporarily formed into a sheet by press molding at a temperature at which the thermosetting resin is not completely cured, and the produced sheet-like temporary molded body is accommodated in a mold for a fuel cell separator, and the thermosetting resin is completely cured. It is preferable to perform the main molding at a temperature.
本発明の燃料電池用セパレータは、厚さ方向における熱膨張係数と水平方向における熱膨張係数との差が20×10−6・K−1以下と従来の燃料電池用セパレータに比べて格段に小さく、後述する実施例に示すように、反り量が2mm以下と寸法精度に優れ、更に曲げ強度が40MPa以上、曲げ弾性率が12GPa以下と機械的強度にも優れたものとなる。 In the fuel cell separator of the present invention, the difference between the coefficient of thermal expansion in the thickness direction and the coefficient of thermal expansion in the horizontal direction is 20 × 10 −6 · K −1 or less, which is much smaller than conventional fuel cell separators. As shown in the examples described later, the amount of warpage is 2 mm or less and excellent in dimensional accuracy, and the bending strength is 40 MPa or more and the bending elastic modulus is 12 GPa or less and the mechanical strength is also excellent.
以下に、実施例を挙げて本発明をより更に詳しく説明するが、本発明は以下の実施例に限定されるものではない。
(サンプル作製)
膨張黒鉛、エポキシ樹脂、ポリイミド樹脂、平均繊維径13μmで平均繊維長370μmの炭素繊維、平均粒径が約50μmの球径シリカおよび球状黒鉛を用い、表1に示す配合比でヘンシェルミキサーに投入し、室温で乾式混合した。得られた混合粉体を加圧ニーダーに投入し、100℃にて溶融混合した後、自然冷却して固化させた。次いで、固化物を粉砕して平均粒径100μmの溶融混合物粉体を得た。そして、溶融混合粉体を金型に充填して100℃でプレス成形して厚さ3mmのシート状仮成形品を作製し、次いで金型温度200℃、プレス圧100MPaで10分間本成形して厚さ2mmのシート状のサンプルを作製した(実施例1〜4及び比較例1)。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(Sample preparation)
Using expanded graphite, epoxy resin, polyimide resin, carbon fiber having an average fiber diameter of 13 μm and an average fiber length of 370 μm, spherical silica having an average particle diameter of about 50 μm and spherical graphite, the mixture ratio shown in Table 1 is put into a Henschel mixer. And dry mixed at room temperature. The obtained mixed powder was put into a pressure kneader, melted and mixed at 100 ° C., and then naturally cooled to solidify. Next, the solidified product was pulverized to obtain a molten mixture powder having an average particle size of 100 μm. Then, the molten mixed powder is filled into a mold and press-molded at 100 ° C. to produce a sheet-like temporary molded product having a thickness of 3 mm, followed by main molding at a mold temperature of 200 ° C. and a press pressure of 100 MPa for 10 minutes. A sheet-like sample having a thickness of 2 mm was produced (Examples 1 to 4 and Comparative Example 1).
また、上記配合物を用い、表1に示す配合比でヘンシェルミキサーに投入し、室温で乾式混合した。そして、得られた混合粉体を金型に充填して常温でプレス成形してシート化し、それを金型温度200℃、プレス圧100MPaで10分間本成形して厚さ2mmのシート状のサンプルを作製した(比較例2〜4)。
(サンプルの物性の測定)
熱膨張係数は、得られたサンプルから5mm角、厚さ10mmの試験片を切り出し、試験片の厚さ方向及び水平方向について、理学製「MA8310」を用い、0.1Nの荷重をφ3mmのプローブにかけて1℃/minで昇温した時の28〜100℃における熱膨張率を測定した。
Moreover, using the said mixture, it injected | thrown-in to the Henschel mixer with the compounding ratio shown in Table 1, and dry-mixed at room temperature. Then, the obtained mixed powder is filled into a mold and press-molded at room temperature to form a sheet, which is then molded at a mold temperature of 200 ° C. and a press pressure of 100 MPa for 10 minutes to form a sheet-like sample having a thickness of 2 mm. (Comparative Examples 2 to 4).
(Measurement of sample physical properties)
The coefficient of thermal expansion was 5 mm square and 10 mm thick test piece cut out from the obtained sample, and using a “MA8310” made by Rigaku in the thickness direction and horizontal direction of the test piece, a 0.1 N load with a φ3 mm probe The coefficient of thermal expansion at 28 to 100 ° C. was measured when the temperature was raised at 1 ° C./min.
曲げ強度および曲げ弾性率は、得られたサンプルから幅20mm、長さ100mm、厚さ2mmの試験片を切り出し、島津製作所製「オートグラフAG−100kND」を用い、JIS K7171に準じて100℃雰囲気で測定した。
(燃料電池用セパレータの反りの測定)
上記サンプルの作製手順及び成形条件に従い、図1に示した形状の燃料電池用セパレータを作製した。尚、各部の形状及び寸法は、平板部が全長300mm、全横250mmであり、その一方の面に冷却水流路溝(幅2mm、深さ0.5mm)を60本、他方の面にガス流路溝(幅1mm、深さ0.5mm)を120本設け、最薄部である平板部の厚さを0.5mmとし、一方の面の隔壁の上端面から他方の面の隔壁の上端面まで(全厚)を1.5mmとした。
Bending strength and flexural modulus were obtained by cutting a test piece having a width of 20 mm, a length of 100 mm, and a thickness of 2 mm from the obtained sample, and using “Autograph AG-100kND” manufactured by Shimadzu Corporation at 100 ° C. in accordance with JIS K7171. Measured with
(Measurement of warpage of fuel cell separator)
A fuel cell separator having the shape shown in FIG. 1 was prepared in accordance with the sample preparation procedure and molding conditions. The shape and dimensions of each part are such that the flat plate part has a total length of 300 mm and a total width of 250 mm, 60 cooling water channel grooves (width 2 mm, depth 0.5 mm) on one side, and gas flow on the other side. 120 road grooves (width 1 mm, depth 0.5 mm) are provided, the thickness of the flat plate portion, which is the thinnest part, is 0.5 mm, and the upper end surface of the partition wall on one surface to the upper end surface of the partition wall on the other surface (Total thickness) was 1.5 mm.
そして、三次元レーザー測定機(コムス製)を用い、燃料電池用セパレータを定板上に置き、表面を35点測定し、その最大値と最小値との差を反り量として求めた。 Then, using a three-dimensional laser measuring machine (manufactured by COMS), the fuel cell separator was placed on a plate, the surface was measured at 35 points, and the difference between the maximum value and the minimum value was obtained as the amount of warpage.
表1に、混合方法及び配合比とともに上記の各測定結果を示す。 Table 1 shows the above measurement results together with the mixing method and the mixing ratio.
表1より、本発明で規定する配合材料及び配合比を満足し、厚さ方向における熱膨張係数と水平方向における熱膨張係数との差が20×10−6・K−1以下であれば、反り量が2mm以下に抑えられ、更に曲げ強度が40MPa以上で、曲げ弾性率も12GPa以下と優れることがわかる。
(配合材料の分散性の検証)
実施例1及び比較例4で作製したサンプルについて、その断面を光学顕微鏡にて撮影した。図2に実施例1のサンプル、図3に比較例4のサンプルの光学顕微鏡写真を示すが、実施例1のサンプルでは微細な膨張黒鉛、炭素繊維及び球状シリカが均一に分散しているのに対し、比較例4のサンプルでは炭素繊維が当初の長繊維のままであり、更に膨張黒鉛及び球状シリカの分散性も悪いことがわかる。このような配合材料の分散性が熱膨張率差に反映し、更に反り量となって現われてくるといえる。
From Table 1, if the blending material and blending ratio specified in the present invention are satisfied, and the difference between the thermal expansion coefficient in the thickness direction and the thermal expansion coefficient in the horizontal direction is 20 × 10 −6 · K −1 or less, It can be seen that the amount of warpage is suppressed to 2 mm or less, the bending strength is 40 MPa or more, and the bending elastic modulus is 12 GPa or less.
(Verification of dispersibility of compounding materials)
About the sample produced in Example 1 and Comparative Example 4, the cross section was image | photographed with the optical microscope. FIG. 2 shows an optical micrograph of the sample of Example 1 and FIG. 3 shows the sample of Comparative Example 4. In the sample of Example 1, fine expanded graphite, carbon fiber, and spherical silica are uniformly dispersed. On the other hand, in the sample of Comparative Example 4, it can be seen that the carbon fibers remain the original long fibers, and the dispersibility of the expanded graphite and spherical silica is also poor. It can be said that the dispersibility of such a compounded material reflects the difference in thermal expansion coefficient and appears as a warp amount.
5 燃料電池用セパレータ
6 平板部
7 隔壁
8 チャネル
5 Fuel Cell Separator 6 Flat Plate 7 Bulkhead 8 Channel
Claims (6)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003339470A JP4660082B2 (en) | 2003-09-30 | 2003-09-30 | Fuel cell separator |
EP04023238.1A EP1521320B8 (en) | 2003-09-30 | 2004-09-29 | Separator for fuel cell |
US10/953,473 US20050118483A1 (en) | 2003-09-30 | 2004-09-30 | Separator for fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003339470A JP4660082B2 (en) | 2003-09-30 | 2003-09-30 | Fuel cell separator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005108589A true JP2005108589A (en) | 2005-04-21 |
JP4660082B2 JP4660082B2 (en) | 2011-03-30 |
Family
ID=34534656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003339470A Expired - Fee Related JP4660082B2 (en) | 2003-09-30 | 2003-09-30 | Fuel cell separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4660082B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007005263A (en) * | 2005-06-27 | 2007-01-11 | Matsushita Electric Works Ltd | Composition for molding separator for fuel cell and separator for fuel cell |
WO2008016041A1 (en) * | 2006-07-31 | 2008-02-07 | Seikoh Giken Co., Ltd. | Process for producing separator for fuel cell and separator for fuel cell |
KR101041697B1 (en) * | 2008-11-21 | 2011-06-14 | 한국타이어 주식회사 | Molding material for fuel cell separator and fuel cell separator prepared therefrom |
CN112993277A (en) * | 2019-12-17 | 2021-06-18 | 上海神力科技有限公司 | Baffle for graphite electrode and dipping device comprising same |
WO2022158600A1 (en) * | 2021-01-25 | 2022-07-28 | 積水テクノ成型株式会社 | Resin composition and resin molded article |
CN116745364A (en) * | 2021-01-25 | 2023-09-12 | 积水技术成型株式会社 | Resin composition and resin molded body |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01311570A (en) * | 1988-06-08 | 1989-12-15 | Hitachi Chem Co Ltd | Separator for fuel cell |
JPH1040938A (en) * | 1996-07-18 | 1998-02-13 | Toyota Motor Corp | Manufacture of collector for fuel cell |
JP2000082476A (en) * | 1998-06-25 | 2000-03-21 | Hitachi Chem Co Ltd | Fuel cell, fuel cell separator and its manufacture |
JP2001335695A (en) * | 2000-05-26 | 2001-12-04 | Sumitomo Bakelite Co Ltd | Thermosettable resin molding material and molded article using the same |
JP2003170459A (en) * | 2001-12-06 | 2003-06-17 | Sumitomo Bakelite Co Ltd | Compression mold and fuel cell separator molded by using the same |
JP2003203643A (en) * | 2002-01-07 | 2003-07-18 | Sumitomo Bakelite Co Ltd | Molding material for fuel cell separator and its manufacturing method and fuel cell separator |
-
2003
- 2003-09-30 JP JP2003339470A patent/JP4660082B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01311570A (en) * | 1988-06-08 | 1989-12-15 | Hitachi Chem Co Ltd | Separator for fuel cell |
JPH1040938A (en) * | 1996-07-18 | 1998-02-13 | Toyota Motor Corp | Manufacture of collector for fuel cell |
JP2000082476A (en) * | 1998-06-25 | 2000-03-21 | Hitachi Chem Co Ltd | Fuel cell, fuel cell separator and its manufacture |
JP2001335695A (en) * | 2000-05-26 | 2001-12-04 | Sumitomo Bakelite Co Ltd | Thermosettable resin molding material and molded article using the same |
JP2003170459A (en) * | 2001-12-06 | 2003-06-17 | Sumitomo Bakelite Co Ltd | Compression mold and fuel cell separator molded by using the same |
JP2003203643A (en) * | 2002-01-07 | 2003-07-18 | Sumitomo Bakelite Co Ltd | Molding material for fuel cell separator and its manufacturing method and fuel cell separator |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007005263A (en) * | 2005-06-27 | 2007-01-11 | Matsushita Electric Works Ltd | Composition for molding separator for fuel cell and separator for fuel cell |
WO2008016041A1 (en) * | 2006-07-31 | 2008-02-07 | Seikoh Giken Co., Ltd. | Process for producing separator for fuel cell and separator for fuel cell |
KR101041697B1 (en) * | 2008-11-21 | 2011-06-14 | 한국타이어 주식회사 | Molding material for fuel cell separator and fuel cell separator prepared therefrom |
CN112993277A (en) * | 2019-12-17 | 2021-06-18 | 上海神力科技有限公司 | Baffle for graphite electrode and dipping device comprising same |
WO2022158600A1 (en) * | 2021-01-25 | 2022-07-28 | 積水テクノ成型株式会社 | Resin composition and resin molded article |
CN116745364A (en) * | 2021-01-25 | 2023-09-12 | 积水技术成型株式会社 | Resin composition and resin molded body |
Also Published As
Publication number | Publication date |
---|---|
JP4660082B2 (en) | 2011-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1686638B1 (en) | Fuel cell separator | |
US6746792B2 (en) | Fuel cell separator composition, fuel cell separator and method of manufacture, and solid polymer fuel cell | |
JP2008027925A (en) | Fuel cell separator | |
US7063914B2 (en) | Fuel cell separator, process for producing the same and material therefor | |
JP2005108616A (en) | Separator for fuel cell, and its manufacturing method | |
JP4660082B2 (en) | Fuel cell separator | |
JP4111506B2 (en) | Conductive resin composition, fuel cell separator and method for producing the same | |
JP5321465B2 (en) | Fuel cell separator | |
KR20130076307A (en) | Separator for fuel cell, method for manufacturing the same and fuel cell comprising the same | |
JP2005108591A (en) | Molding material for fuel cell separator | |
JP2001216976A (en) | Fuel cell separator and its production method | |
KR101428551B1 (en) | Epoxy-Carbon Composition for Bipolar Plate of PEMFC and Manufacturing Method for Bipolar Plate Using the Same | |
JP2005108590A (en) | Method of manufacturing fuel cell separator | |
Mathew et al. | Development of novel composite bipolar plates using surface‐modified conductive carbon filler materials for polymer electrolyte membrane fuel cells | |
JP2006260956A (en) | Fuel cell separator | |
US9048010B2 (en) | Method for preparing an electrically conducting article | |
JP2006210222A (en) | Separator for fuel cell and its manufacturing method | |
JP4989880B2 (en) | Fuel cell separator, resin composition therefor and method for producing the same | |
KR101399352B1 (en) | Separator for fuel cell, method for manufacturing the same and fuel cell comprising the same | |
EP1521320B1 (en) | Separator for fuel cell | |
JP2006338908A (en) | Separator for fuel cell | |
KR101041034B1 (en) | Composition for bipolar plate of fuel cell, manufacturing method thereof, and bipolar plate and fuel cell comprising the same | |
JP2005276771A (en) | Manufacturing method of composition for fuel cell separator, composition for fuel cell separator, and separator for fuel cell | |
JP2005339899A (en) | Resin composite for fuel cell separator | |
KR101227900B1 (en) | Novel compositie material having enhanced mechanical and electrical property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050421 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050421 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060306 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060424 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091015 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20091111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101214 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101228 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4660082 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |