[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001335695A - Thermosettable resin molding material and molded article using the same - Google Patents

Thermosettable resin molding material and molded article using the same

Info

Publication number
JP2001335695A
JP2001335695A JP2000155985A JP2000155985A JP2001335695A JP 2001335695 A JP2001335695 A JP 2001335695A JP 2000155985 A JP2000155985 A JP 2000155985A JP 2000155985 A JP2000155985 A JP 2000155985A JP 2001335695 A JP2001335695 A JP 2001335695A
Authority
JP
Japan
Prior art keywords
molding material
graphite
spherical silica
conductivity
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000155985A
Other languages
Japanese (ja)
Inventor
Shunsuke Fujii
俊介 藤井
Takayuki Suzuki
孝之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000155985A priority Critical patent/JP2001335695A/en
Publication of JP2001335695A publication Critical patent/JP2001335695A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermosettable resin molding material having excellent moldability and electric conductivity, and to provide a molded article for a separator for a fuel cell or the like which has excellent formability, electric conductivity, mechanical strength and gas impermeability, to be more precise. SOLUTION: This thermosettable resin molding material comprises 10 to 25 wt.% of a thermoset resin, 70 to 85 wt.% of graphite and 0.1 to 3 wt.% of spherical silica having an average particle size of 1/20 or smaller than the average particle size of the graphite each based on the total weight of the molding material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱硬化性樹脂に黒
鉛とともに粒径の小さい球状シリカを添加混合してな
る、成形性に優れた高電導性の熱硬化性樹脂成形材料及
びその成形体に関するものである。この成形材料は水
素、アルコール等を燃料とする燃料電池のセパレーター
等に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly conductive thermosetting resin molding material excellent in moldability, which is obtained by adding a spherical silica having a small particle size together with graphite to a thermosetting resin, and a molded product thereof. It is about. This molding material is suitable for a separator of a fuel cell using hydrogen, alcohol, or the like as a fuel.

【0002】[0002]

【従来の技術】燃料電池のセパレーターは大型で薄肉の
成形品であり、従来この種の材料としては黒鉛粉末に熱
硬化性樹脂等の結合剤を加え、混練、成形、焼成し、さ
らに気体透過性、導電性を向上させるため前記結合剤を
含浸し、高温焼成したあと、切削加工して必要形状を得
ていた。このような炭素素材に2次加工を施す方法は高
温焼成しているため耐熱性が良好である利点はあるが、
その反面気孔が生じやすく、液状の熱硬化性樹脂等を含
浸する工程が必要となり、また切削加工工程が必須条件
であるため加工費が高くなる。
2. Description of the Related Art A separator for a fuel cell is a large and thin molded article. Conventionally, as a material of this type, a binder such as a thermosetting resin is added to graphite powder, kneaded, molded, calcined, and then gas-permeable. In order to improve the properties and conductivity, the binder was impregnated with the binder, fired at a high temperature, and then cut to obtain a required shape. The method of subjecting such a carbon material to secondary processing has the advantage of good heat resistance because it is fired at a high temperature.
On the other hand, pores are likely to be generated, and a step of impregnating with a liquid thermosetting resin or the like is required. Further, since a cutting step is an essential condition, processing cost increases.

【0003】更に黒鉛粉末、熱硬化性樹脂、機械的強度
の補強材等を混練した材料を成形し、その成形体を製品
とする方法も提案されている。このように結合材として
樹脂を用いる方法では前記炭素素材に2次加工を施す方
法に比べ加工費を大幅に低減できるが、成形体の導電性
が劣るという欠点がある。そのため黒鉛粒度・形状を最
適化することにより黒鉛粉末の充填量を増やし、この成
形体の導電性を高める手法がとられている。しかし、黒
鉛粒度・形状を調整するために、黒鉛の粉砕、分級が必
要となり工程が複雑になるだけでなく、黒鉛粉末充填量
の増加は成形材料の流動性を低下させるため、燃料電池
のセパレーターのような大型かつ薄肉で複雑な形状を有
した成形体を得ることは難しくなる。従って、揮発性有
機溶媒を混和し材料をペースト化したり、樹脂の粘度、
不揮発分を調整したりして成形体を得る手法がとられて
いる。これらの手法は効果的ではあるが、成形体の硬化
時に気泡が生じたり、硬化不足により形状保持が困難に
なったりするため、予熱工程や硬化時間の延長が必要に
なり、成形性、生産性が悪い。
Further, there has been proposed a method in which a material obtained by kneading a graphite powder, a thermosetting resin, a reinforcing material having mechanical strength, and the like is molded, and the molded product is used as a product. As described above, the method using a resin as the binder can greatly reduce the processing cost as compared with the method of performing the secondary processing on the carbon material, but has a drawback that the conductivity of the molded body is inferior. Therefore, a method of increasing the filling amount of the graphite powder by optimizing the graphite particle size and shape to increase the conductivity of the compact has been adopted. However, in order to adjust the graphite particle size and shape, it is necessary to grind and classify the graphite, which not only complicates the process, but also increases the graphite powder loading, which decreases the fluidity of the molding material. It is difficult to obtain a compact having a large, thin, and complicated shape as described above. Therefore, the volatile organic solvent is mixed and the material is made into a paste, the viscosity of the resin,
A method of obtaining a molded body by adjusting the nonvolatile content has been adopted. Although these methods are effective, air bubbles are generated at the time of curing of the molded body, and it is difficult to maintain the shape due to insufficient curing, so a preheating step and extension of the curing time are required, and moldability and productivity are increased. Is bad.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記のよう
な欠点を改良するものであり、成形性及び導電性に優れ
た熱硬化性樹脂成形材料を提供することを目的とするも
のである。更には、成形性及び導電性に優れていること
から、複雑な形状を有し大型で薄肉な導電性成形体、例
えば、燃料電池のセパレーター等の成形品を提供するこ
とを目的とするものである。燃料電池のセパレーターで
は、導電性を示す体積固有抵抗が10-3〜10-1Ω・c
m、あるいはより小さい値が要求され、表面に多数の溝
を有する複雑な形状であり、精密な寸法精度が要求され
る。
SUMMARY OF THE INVENTION The object of the present invention is to improve the above-mentioned drawbacks and to provide a thermosetting resin molding material having excellent moldability and conductivity. . Furthermore, since it is excellent in moldability and conductivity, it is an object to provide a large and thin conductive molded body having a complicated shape, for example, a molded product such as a fuel cell separator. is there. In the fuel cell separator, the volume resistivity indicating conductivity is 10 −3 to 10 −1 Ω · c.
m or a smaller value, a complicated shape having a large number of grooves on the surface, and precise dimensional accuracy is required.

【0005】[0005]

【課題を解決する手段】本発明は、上記目的を達成すべ
く鋭意検討を行った結果、完成されたものであり、成形
材料全体に対して、熱硬化性樹脂10〜25重量%、黒
鉛70〜85重量%及び平均粒子径が黒鉛の平均粒子径
の1/20以下である球状シリカ0.1〜3重量%を含
有してなることを特徴とする熱硬化性樹脂成形材料に関
するものであり、成形時の流動性に優れていることか
ら、成形性に優れた高電導性の熱硬化性樹脂成形材料に
関するものである。
Means for Solving the Problems The present invention has been completed as a result of intensive studies to achieve the above object, and 10 to 25% by weight of a thermosetting resin, 70% by weight of graphite, based on the whole molding material. A thermosetting resin molding material containing 0.1 to 3% by weight of spherical silica having an average particle diameter of not more than 1/20 of the average particle diameter of graphite; The present invention relates to a highly conductive thermosetting resin molding material having excellent moldability due to its excellent fluidity during molding.

【0006】以下、本発明について詳細に説明する。本
発明において、球状シリカは黒鉛の平均粒子径に対して
1/20以下の平均粒子径であることを必要とする。黒
鉛粒子は通常アスペクト比(長径と短径の比)を持ち、
この異方性が黒鉛の流動を妨げ成形材料の成形性を阻害
する要因の一つとなっているが、上記範囲の平均粒子径
である球状シリカが存在すると、成形材料が溶融し流動
するとき、黒鉛粒子は球状シリカを支点とし球状シリカ
の流動に併せて滑るため、黒鉛粒子間の摩擦を押さえ、
黒鉛の流動を円滑にするため成形時の成形材料の流動性
が向上する。一方、成形後においては球状シリカは黒鉛
粒子間に形成される空隙に存在し、粒子間の接触面での
導電性を下げることがない。また、黒鉛のモース硬度
(1〜3)が球状シリカ(モース硬度5〜8)に比べて
低く、球状シリカの粒径が小さいため、球状シリカが黒
鉛粒子間の接触面に存在しても、黒鉛表面に埋没し黒鉛
粒子間の接触を阻害しないため導電性を著しく妨げるこ
とはない。球状シリカの平均粒子径が黒鉛の平均粒子径
に対して1/20より大きいと黒鉛表面に球状シリカが
完全に埋没せず、また黒鉛粒子間の空隙に収まらず黒鉛
同士の接触を阻害するため導電性の維持が困難になる。
Hereinafter, the present invention will be described in detail. In the present invention, the spherical silica needs to have an average particle diameter of 1/20 or less of the average particle diameter of graphite. Graphite particles usually have an aspect ratio (ratio of major axis to minor axis),
This anisotropy is one of the factors that hinder the flow of graphite and hinder the moldability of the molding material.However, when spherical silica having an average particle diameter in the above range is present, when the molding material melts and flows, Since the graphite particles slide on the spherical silica as the fulcrum along with the flow of the spherical silica, the friction between the graphite particles is suppressed,
Since the flow of graphite is smooth, the flowability of the molding material during molding is improved. On the other hand, after molding, the spherical silica exists in the voids formed between the graphite particles, and does not lower the conductivity at the contact surface between the particles. Further, since the Mohs hardness (1 to 3) of graphite is lower than that of spherical silica (Mohs hardness of 5 to 8) and the particle diameter of spherical silica is small, even if spherical silica exists on the contact surface between graphite particles, Since it is buried in the graphite surface and does not hinder contact between graphite particles, the conductivity is not significantly impaired. If the average particle size of the spherical silica is larger than 1/20 of the average particle size of the graphite, the spherical silica will not be completely buried in the graphite surface, and will not fit in the voids between the graphite particles, thus impeding the contact between graphite. It becomes difficult to maintain conductivity.

【0007】組成物中の各成分の割合は、熱硬化性樹脂
10〜25重量%、黒鉛70〜85重量%及び球状シリ
カ0.1〜3重量%である。熱硬化性樹脂が10重量%
未満であると、流動性が低下するため成形性が厳しくな
り、25重量%を超えると実用的な導電性を得られな
い。黒鉛が70重量%未満では導電性に乏しく、85重
量%を超えると流動性が低下するため成形性に難点が生
じる。また、球状シリカが0.1重量%未満では導電性
に影響は無いが流動性の向上に乏しく成形性が改善され
ない。3重量%を超えると黒鉛もしくは樹脂の配合量が
押さえられ、実用レベルの導電性と成形性が維持できな
い。本発明においては、10-3 〜10-1Ω・cmの高
伝導性と優れた成形性を得るために、黒鉛と球状シリカ
との合計配合量が成形材料全体の75〜85重量%の範
囲であることが好ましい。
The proportion of each component in the composition is 10 to 25% by weight of a thermosetting resin, 70 to 85% by weight of graphite and 0.1 to 3% by weight of spherical silica. 10% by weight of thermosetting resin
If the amount is less than the above, the fluidity is reduced, so that the moldability becomes severe. If the amount exceeds 25% by weight, practical conductivity cannot be obtained. If the graphite content is less than 70% by weight, the conductivity is poor, and if it exceeds 85% by weight, the fluidity is reduced, so that the moldability is disadvantageous. If the content of the spherical silica is less than 0.1% by weight, the conductivity is not affected, but the fluidity is poorly improved and the moldability is not improved. If it exceeds 3% by weight, the compounding amount of graphite or resin is suppressed, and a practical level of conductivity and moldability cannot be maintained. In the present invention, in order to obtain high conductivity of 10 −3 to 10 −1 Ω · cm and excellent moldability, the total blending amount of graphite and spherical silica is in the range of 75 to 85% by weight of the whole molding material. It is preferable that

【0008】本発明で使用できる黒鉛としては特に限定
されない。例えば鱗片状、塊状、土状等の天然黒鉛や人
造黒鉛が使用できる。黒鉛の平均粒径は成形材料に必要
な性能に併せて選択可能であるが、通常10〜400μ
mのものが使用できる。好ましくは、成形性及び導電性
の点から20〜200μmである。球状シリカとしては
黒鉛の平均粒子径に対して1/20以下の平均粒子径で
あれば使用可能であるが、効果的に成形時の成形材料の
流動性を向上させ、且つ導電性を維持するために通常
0.01〜20μmのものが使用でき、更には上記黒鉛
の平均粒径の好ましい範囲から0.5〜5μmのものが
好ましい。
[0008] The graphite that can be used in the present invention is not particularly limited. For example, natural graphite or artificial graphite such as scaly, massive, or earth-like can be used. The average particle size of the graphite can be selected according to the performance required for the molding material.
m can be used. Preferably, it is 20 to 200 μm from the viewpoint of moldability and conductivity. As the spherical silica, any average particle diameter of 1/20 or less with respect to the average particle diameter of graphite can be used, but it effectively improves the fluidity of the molding material at the time of molding and maintains conductivity. For this reason, those having a particle size of usually 0.01 to 20 μm can be used, and those having a graphite average particle size of 0.5 to 5 μm are more preferable.

【0009】本発明で使用できる熱硬化性樹脂として
は、常温で固体であるものが使用できる。液状である
と、例えば加圧ロールでの混練性が著しく低下し、均一
な分散が得られない。例えばフェノール樹脂、エポキシ
樹脂、不飽和ポリエルテル樹脂等が用いられる。特に耐
熱性のよいフェノール樹脂、エポキシ樹脂が好ましく、
フェノール樹脂では、成形時にアンモニアが発生せず成
形品中に残存しないという点でレゾール型フェノール樹
脂が好ましい。
As the thermosetting resin that can be used in the present invention, a resin that is solid at room temperature can be used. When it is liquid, for example, the kneading property with a pressure roll is significantly reduced, and uniform dispersion cannot be obtained. For example, a phenol resin, an epoxy resin, an unsaturated polyester resin, or the like is used. Particularly preferred are phenolic resins and epoxy resins having good heat resistance,
The phenol resin is preferably a resol-type phenol resin in that ammonia is not generated during molding and does not remain in the molded product.

【0010】次に、本発明の熱硬化性樹脂成形材料を製
造する方法について、その一例を詳しく説明すると、黒
鉛、球状シリカ、微粉砕した熱硬化性樹脂、及び離型剤
をヘンシェルミキサーにて均一に混合する。この混合組
成物はこのままでも成形でき高導電性を有しているが、
更に均一な導電性と実用的な機械的強度、気体不透過性
を付与すると同時に成形性を高めるために加熱ロールで
成形材料化し破砕する。必要により顆粒状にすることも
できる。導電性、成形性を損なわない範囲で、黒鉛の代
わりにカーボンブラック、炭素繊維等の導電性の充填材
を一部使用することも可能であり、シリカ以外の無機充
填材も一部併用使用することができる。
Next, one example of the method for producing the thermosetting resin molding material of the present invention will be described in detail. Graphite, spherical silica, finely pulverized thermosetting resin, and a release agent are mixed with a Henschel mixer. Mix evenly. This mixed composition can be molded as it is and has high conductivity,
Further, in order to impart uniform conductivity, practical mechanical strength, and gas impermeability, the material is formed into a molding material by a heating roll and crushed to enhance moldability. If necessary, it can be granulated. It is also possible to partially use conductive fillers such as carbon black and carbon fiber instead of graphite, as long as the conductivity and moldability are not impaired, and to use some inorganic fillers other than silica together. be able to.

【0011】このようにして得られた熱硬化性樹脂成形
材料は通常の熱硬化性樹脂の成形機で成形できる。特
に、従来成形が困難であった厚みが0.5〜5.0mm
程度の薄板状の導電性成形体を首尾よく成形することが
できる。例えば、220角×2mmの溝付き成形品を、
金型温度130〜200℃、成形圧力200〜800k
g/cm2 、硬化時間5分の条件で得ることができる。
The thermosetting resin molding material thus obtained can be molded by a usual thermosetting resin molding machine. In particular, the thickness, which was conventionally difficult to form, is 0.5 to 5.0 mm.
A thin plate-shaped conductive molded body can be formed successfully. For example, a molded product with a groove of 220 squares x 2 mm,
Mold temperature 130-200 ° C, molding pressure 200-800k
g / cm 2 and a curing time of 5 minutes.

【0012】[0012]

【実施例】以下本発明を実施例により詳しく説明する。
しかし本発明はこれらの実施例によって限定されるもの
ではない。また、実施例及び比較例に記載されている
「部」及び「%」は、すべて「重量部」及び「重量%」
を示す。
The present invention will be described in more detail with reference to the following examples.
However, the present invention is not limited by these examples. Further, “parts” and “%” described in Examples and Comparative Examples are all “parts by weight” and “% by weight”.
Is shown.

【0013】実施例1〜3,比較例1〜3 表1に示した人造黒鉛と球状シリカ、離型剤としてステ
アリン酸及びフェノール樹脂としてジメチレンエーテル
型レゾールフェノール樹脂(数平均分子量700、融点
80℃)をヘンシェルミキサーにて混合して組成物を得
た。得られた組成物を80℃の加熱ロールで溶融混練し
た後取り出し、顆粒状に粉砕してフェノール成形材料を
得た。この成形材料を金型温度170℃、成形圧力20
0kg/cm2、硬化時間3分で圧縮成形し220角×
2mmの大きさの溝付き成形品を得た。得られた成形品
の特性を表1下段に示す。
Examples 1-3, Comparative Examples 1-3 Artificial graphite and spherical silica shown in Table 1, stearic acid as a release agent, and dimethylene ether type resole phenol resin as a phenol resin (number average molecular weight 700, melting point 80 C.) with a Henschel mixer to obtain a composition. The obtained composition was melt-kneaded with a heating roll at 80 ° C. and then taken out and pulverized into granules to obtain a phenol molding material. This molding material is molded at a mold temperature of 170 ° C. and a molding pressure of 20
0 kg / cm 2, compression molded 220 square × curing time of 3 minutes
A grooved molded product having a size of 2 mm was obtained. The properties of the obtained molded product are shown in the lower part of Table 1.

【0014】[0014]

【表1】 各実施例で得られた成形品は良好な導電性と成形性を有
している。比較例1で得られた成形品は良好な成形性を
有しているが、球状シリカの粒子径が大きいため導電性
がやや低下している。比較例2は球状シリカの量が多い
ため導電性が低下し、成形性も低下している。比較例3
は球状シリカを使用していないことから、成形性が劣っ
ている。
[Table 1] The molded product obtained in each of the examples has good conductivity and moldability. Although the molded article obtained in Comparative Example 1 has good moldability, the conductivity is slightly lowered due to the large particle diameter of the spherical silica. In Comparative Example 2, since the amount of the spherical silica was large, the conductivity was lowered, and the moldability was also lowered. Comparative Example 3
Since spherical silica is not used, the moldability is inferior.

【0015】(測定方法) 体積固有抵抗:JIS K 7194により測定した。 成形性:充填性及び外観が良好なものを○、外観にフク
レ・溝凸部の割れが生じるものを△、未充填部やフク
レ、溝凸部の割れがあるものを×とした。
(Measurement method) Volume resistivity: Measured according to JIS K 7194. Formability: Good for filling and appearance were rated as good, Good for cracking of blisters / grooves in appearance, and Bad for unfilled parts, blisters and cracks in groove protruding.

【0016】[0016]

【発明の効果】以上の説明から明らかなように、本発明
の熱硬化性樹脂成形材料は、成形性に優れた高電導性の
熱硬化性樹脂成形材料であり、複雑な形状を有する薄肉
の成形体を得ることができる。従って、水素、アルコー
ル等を燃料とする燃料電池のセパレーター等の成形品を
容易に製造することが出来るため、工業的な導電性樹脂
成形材料として好適である。
As is apparent from the above description, the thermosetting resin molding material of the present invention is a highly conductive thermosetting resin molding material having excellent moldability, and is a thin-walled material having a complicated shape. A molded article can be obtained. Therefore, a molded article such as a separator of a fuel cell using hydrogen, alcohol, or the like as a fuel can be easily produced, and thus is suitable as an industrial conductive resin molding material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/02 H01M 8/02 B Fターム(参考) 4F071 AA41 AA42 AA49 AB03 AB26 AD02 AD06 AE15 AH15 4J002 CC031 CD001 CF211 DA026 DJ016 GQ02 5G301 DA19 DA33 DA42 DA55 DD08 DD10 5H026 AA02 EE06 EE18 HH00 HH01 HH03 HH05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/02 H01M 8/02 B F term (Reference) 4F071 AA41 AA42 AA49 AB03 AB26 AD02 AD06 AE15 AH15 4J002 CC031 CD001 CF211 DA026 DJ016 GQ02 5G301 DA19 DA33 DA42 DA55 DD08 DD10 5H026 AA02 EE06 EE18 HH00 HH01 HH03 HH05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 成形材料全体に対して、熱硬化性樹脂1
0〜25重量%、黒鉛70〜85重量%及び平均粒子径
が黒鉛の平均粒子径の1/20以下である球状シリカ
0.1〜3重量%を含有してなることを特徴とする熱硬
化性樹脂成形材料。
1. A thermosetting resin 1 for the whole molding material.
Thermosetting characterized by comprising 0 to 25% by weight, 70 to 85% by weight of graphite, and 0.1 to 3% by weight of spherical silica having an average particle size of 1/20 or less of the average particle size of graphite. Resin molding material.
【請求項2】 請求項1記載の成形材料を成形してな
り、成形体の厚みが0.5〜5.0mmであることを特
徴とする導電性成形体。
2. A conductive molded article obtained by molding the molding material according to claim 1, wherein the molded article has a thickness of 0.5 to 5.0 mm.
【請求項3】 燃料電池セパレーター用である請求項1
記載の熱硬化性樹脂成形材料。
3. The fuel cell separator according to claim 1, wherein
The thermosetting resin molding material according to the above.
【請求項4】 請求項3記載の成形材料を成形してなる
燃料電池セパレーター。
4. A fuel cell separator obtained by molding the molding material according to claim 3.
JP2000155985A 2000-05-26 2000-05-26 Thermosettable resin molding material and molded article using the same Pending JP2001335695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000155985A JP2001335695A (en) 2000-05-26 2000-05-26 Thermosettable resin molding material and molded article using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000155985A JP2001335695A (en) 2000-05-26 2000-05-26 Thermosettable resin molding material and molded article using the same

Publications (1)

Publication Number Publication Date
JP2001335695A true JP2001335695A (en) 2001-12-04

Family

ID=18660837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000155985A Pending JP2001335695A (en) 2000-05-26 2000-05-26 Thermosettable resin molding material and molded article using the same

Country Status (1)

Country Link
JP (1) JP2001335695A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1521320A2 (en) 2003-09-30 2005-04-06 Nichias Corporation Separator for fuel cell
JP2005108589A (en) * 2003-09-30 2005-04-21 Nichias Corp Separator for fuel cell
KR100577608B1 (en) 2004-11-18 2006-05-10 한국에너지기술연구원 Mixed powder material for separators of fuel cell
KR100612306B1 (en) * 2004-06-24 2006-08-11 삼성에스디아이 주식회사 A composite material for bipolar plate of fuel cell
JP2006310021A (en) * 2005-04-27 2006-11-09 Jfe Chemical Corp Conductive material and separator for fuel cell
JP2007005263A (en) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Composition for molding separator for fuel cell and separator for fuel cell
DE112007002922T5 (en) 2006-12-01 2010-01-07 Yong Hun Lee Nickel-coated fuel cell separator and manufacturing method therefor
KR20170013611A (en) 2015-07-28 2017-02-07 서준택 Thin bipolar plate for fuel cell containing non-woven glass fiber and manufacturing method thereof
KR20180059048A (en) 2016-11-25 2018-06-04 에이스산업 주식회사 Seperator for thin type fuel cell containing graphite sheet and method for manufacturing the same
KR101986783B1 (en) 2017-11-29 2019-06-07 에이스크리에이션(주) Thin separator plate with tape attached to part except active area for fuel cell and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1521320A3 (en) * 2003-09-30 2011-03-16 Nichias Corporation Separator for fuel cell
JP2005108589A (en) * 2003-09-30 2005-04-21 Nichias Corp Separator for fuel cell
JP4660082B2 (en) * 2003-09-30 2011-03-30 ニチアス株式会社 Fuel cell separator
EP1521320A2 (en) 2003-09-30 2005-04-06 Nichias Corporation Separator for fuel cell
KR100612306B1 (en) * 2004-06-24 2006-08-11 삼성에스디아이 주식회사 A composite material for bipolar plate of fuel cell
KR100577608B1 (en) 2004-11-18 2006-05-10 한국에너지기술연구원 Mixed powder material for separators of fuel cell
JP2006310021A (en) * 2005-04-27 2006-11-09 Jfe Chemical Corp Conductive material and separator for fuel cell
JP4657000B2 (en) * 2005-04-27 2011-03-23 Jfeケミカル株式会社 Conductive molding material and fuel cell separator
JP2007005263A (en) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Composition for molding separator for fuel cell and separator for fuel cell
DE112007002922T5 (en) 2006-12-01 2010-01-07 Yong Hun Lee Nickel-coated fuel cell separator and manufacturing method therefor
KR20170013611A (en) 2015-07-28 2017-02-07 서준택 Thin bipolar plate for fuel cell containing non-woven glass fiber and manufacturing method thereof
KR20180059048A (en) 2016-11-25 2018-06-04 에이스산업 주식회사 Seperator for thin type fuel cell containing graphite sheet and method for manufacturing the same
KR101986783B1 (en) 2017-11-29 2019-06-07 에이스크리에이션(주) Thin separator plate with tape attached to part except active area for fuel cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2001335695A (en) Thermosettable resin molding material and molded article using the same
JP5257497B2 (en) Porous separator for fuel cell
JP2002201257A (en) Electroconductive epoxy resin molding material
KR101733461B1 (en) Fuel cell separator
KR102476009B1 (en) Resin composition for fuel cell dense separator
CA2960454C (en) Fuel cell separator
JP5120748B2 (en) Method for producing carbon molding material
JP2001216976A (en) Fuel cell separator and its production method
JP2001261967A (en) Thermosetting resin molding material and molded article produced by using the material
JP2003213137A (en) Thermosetting resin molding material and molded article obtained by molding the same
JP2000331690A (en) Manufacture of separator for fuel cell
JP2005048009A (en) Phenolic resin molding compound
JP3705211B2 (en) Carbonaceous powder molding material and carbonaceous molded product
JP2001106831A (en) Thermosetting resin molding material and molded product using the same
JP2009057262A (en) Method of manufacturing carbon material
JP2001181519A (en) Thermosetting resin molding material and molded article produced by using same
JP4657000B2 (en) Conductive molding material and fuel cell separator
JP2001123081A (en) Thermosetting resin molding material and molding made therefrom
JP2002294079A (en) Thermosetting resin molding material and molded product
JP2009102596A (en) Phenolic resin molding material and molded article using the same
JP2003242995A (en) Molding material for fuel cell separator and its manufacturing method, and fuel cell separator
JP2004134159A (en) Molding material for fuel cell separator and fuel cell separator molded from the same
JP3925806B2 (en) Fuel cell separator material, fuel cell separator using the material, and fuel cell
JP2001261935A (en) Epoxy resin compound
JP2005047971A (en) Phenolic resin molding material