[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005142659A - エコーキャンセラ - Google Patents

エコーキャンセラ Download PDF

Info

Publication number
JP2005142659A
JP2005142659A JP2003374632A JP2003374632A JP2005142659A JP 2005142659 A JP2005142659 A JP 2005142659A JP 2003374632 A JP2003374632 A JP 2003374632A JP 2003374632 A JP2003374632 A JP 2003374632A JP 2005142659 A JP2005142659 A JP 2005142659A
Authority
JP
Japan
Prior art keywords
echo
signal
unit
component
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003374632A
Other languages
English (en)
Other versions
JP4457639B2 (ja
Inventor
Shinsuke Takada
真資 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2003374632A priority Critical patent/JP4457639B2/ja
Priority to CN200480030098XA priority patent/CN1868137B/zh
Priority to PCT/JP2004/015891 priority patent/WO2005043772A1/ja
Priority to US10/577,989 priority patent/US7564964B2/en
Priority to GB0608300A priority patent/GB2422280B/en
Publication of JP2005142659A publication Critical patent/JP2005142659A/ja
Application granted granted Critical
Publication of JP4457639B2 publication Critical patent/JP4457639B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/20Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other
    • H04B3/23Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other using a replica of transmitted signal in the time domain, e.g. echo cancellers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Telephone Function (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

【課題】従来帯域よりも通信帯域が広い音声信号を利用し得る音声通話で、オフセット成分を効率的に除去して通信品質が高く安定した通話を提供できるエコーキャンセラを提供する。
【課題手段】本発明のエコーキャンセラは、適応アルゴリズムを用いてエコー成分を除去するエコーキャンセラにおいて、擬似エコー信号を生成する擬似エコー生成部と、タップ係数を更新する係数更新部とを有する擬似エコー形成手段と、近端入力信号成分に含まれる低域周波数成分を除去する送信用フィルタ手段と、擬似エコー形成手段からの擬似エコー信号に含まれる低域周波数成分を除去する擬似エコー用フィルタ手段と、送信用フィルタ手段を経由した近端入力信号成分に含まれるエコー成分と、擬似エコー用フィルタ手段を経由した擬似エコー信号に基づいて、エコー成分を除去するエコー除去手段とを備えることを特徴とする。
【代表図面】 図1

Description

本発明は、エコーキャンセラに関し、例えば、広い音声帯域を利用し得る音声通話で、低い周波数帯域成分を除去するエコーキャンセラに適用し得る。
近年、急速に普及しているVoIP(Voice Over IP)通信(以下、VoIP、IP電話等という)では、通話品質を劣化させる原因として音声信号に含まれるエコー成分がある。
これは、VoIP通信が従来のアナログ回線を利用した音声通信よりも遅延が大きく、しかもこの遅延が不可避的に発生してしまうため、従来のアナログ回線を利用した音声通信よりもエコー感を際立たせるという特性を持っているからである。
従って、VoIP通信においてエコー除去処理は音声品質を良くする上でますます重要なものになってきている。そのため、VoIP通信装置の多くは、エコー成分を除去の為に「エコーキャンセラ」を採用しているものがほとんどである。
ここで、図2を参照して、従来のVoIP通信におけるエコーキャンセラによるエコー成分除去について説明する。
図2に示すように、従来のエコーキャンセラ13は、遠方通話者(以下、遠端という)からのディジタル音声信号を入力する入力端子Rin1、入力端子Rin1からのディジタル音声信号を受信者(以下、近端という)側に与える出力端子Rout2、近端からのディジタル音声信号を入力する入力端子Sin7、入力端子Sin7からのディジタル音声信号を遠端に与える出力端子Sout9、加算器8、双方向通信検出器10、係数更新部14及びフィルタ部12を有する適応フィルタ14を備える。
なお、図2では、近端側の電話機5、電話機5と接続するハイブリッド回路4、出力端子Rout2からのディジタル音声信号をアナログ信号に変換してハイブリッド回路4に与えるD/A変換器3、ハイブリッド回路4からのアナログ信号をディジタル音声信号に変換して入力端子Sin7に与えるA/D変換器6を示す。
図2において、入力端子Rin1に入力した広帯域信号(ディジタル音声信号)は、出力端子Rout2に与えられ、D/A変換器3を経由しアナログ信号に変換され、更にハイブリッド回路4を経由して電話機5に与えられる。これにより、受信者(近端)は遠端の音声を聞き入れることができる。
その一方で、出力端子Rout2からの出力は、ハイブリッド回路4で信号の一部が反射され、A/D変換器6でディジタル信号に変換され、入力端子Sin7に入力される。これにより、出力端子Sout9からの出力に、入力端子Sin7が捉えた信号を遠端話者(図示しない)に与えることとなり、遠端話者は自身の声がエコー成分yとして聞こえるようになり耳障りになる。
一方、入力端子Rin1に入力した広帯域信号(ディジタル音声信号)は、適応フィルタ14に与えられ、フィルタ部12が、エコー成分yを打ち消すためのエコーレプリカ(擬似エコー)信号y’を生成して加算器8に与える。
そして、加算器8において、入力端子Sin7からのエコー成分yと、フィルタ部12からのエコーレプリカ信号y’とを減算することでエコー成分yを除去することができる。
ここで、フィルタ部12によるエコーレプリカ信号y’の生成方法の従来例を説明する。ここでは、エコーレプリカ信号y’の生成アルゴリズムで最も良く用いられる公知のアルゴリズムである”学習同定法(NLMS法:Normalized LMS)”を用いて説明する。
入力端子Rin1から入力された信号xはフィルタ部12に入力される。フィルタ部12は、公知のFIR(有限インパルス応答長)フィルタで構成されている。適応フィルタ14のタップ係数(以下単に「係数」ともいう。)hは後述するように時間と共に変化する。
次に、タップ係数hの変化の様子を説明する。いまフィルタ部12において、時刻kで、第m番目のタップ係数をh(k,m)とする。入力端子Rin1からの時刻kでの入力をx(k)とすると、フィルタ部12では(1)式のようにエコーレプリカ信号y’を作成する。
Figure 2005142659
ここで、Mはフィルタ部12のタップ長であり、設計者がエコー経路の応答長を考慮してあらかじめ適当に定める定数であり、タップ長が大きければ長いエコー長に対応できるがエコーキャンセラ13の収束がおそくなり、タップ長が小さければ収束は早いが短いエコー長にしか対応できない。
次に、適応フィルタ14の係数制御方法を説明する。フィルタ部12のタップ係数は(2)式を用いて制御され時間と共に変化する。
Figure 2005142659
hやxの初期値は0である。(2)式でμはエコーキャンセラ13の追従速度を決める定数であり、0≦μ≦1の定数であり、μが大きければ収束は早いが定常状態でのエコー消去の精度が悪く、μが小さければ収束が遅い半面、定常状態でのエコー消去の精度がよい。
ここで、e(k)は加算器8の出力であり、時刻kでのyをy(k)、同様にy’をy’(k)とすると(3)式のようになる。
e(k)=y(k)−y’(k) …(3)
(1)式、(2)式及び(3)式を用いて行うタップ係数更新制御が、いわゆる公知の”学習同定法”であり、タップ係数h(k,m)は、(3)式のe(k)、又はe(k)のパワーが徐々に0になるように変化していく。つまり、フィルタ部12のタップ係数は、エコー成分yが時間と共に加算器8で徐々に除去されるように更新されていく(適応フィルタ14が収束するという)。
以上のようにして、エコー経路であるハイブリッド回路4の特性をフィルタ部12のタップ係数として推定し、エコー成分yの除去を行う。
しかし、上述したような係数更新制御は、入力端子Sin7にエコー以外に近端話者信号sが入り込むと、(3)式の右辺に近端話者信号sが混入してしまい、その結果、下記の(4)式のようになってしまい係数の更新がうまくいかない。
なお、下記の(4)におけるs(k)は、例えば時刻kでの近端話者の発声や、大きな背景雑音を発生する雑音源によって入力端子Sin7に入力された信号(以後、近端話者信号)である。
e(k)=y(k)−y’(k)+s(k) …(4)
したがって、(4)式のように近端話者信号s(k)がある時は係数更新を停止する必要がある。あるいは、別法として、あらかじめ定めた初期収束期間の後、係数の更新を止めて、信号s(k)の影響がないようにしてしまうなどの方法が取られる。
図2では、双方向通信検出器10が、近端話者信号sがある時に係数更新を停止させるものとして示す。双方向通信検出器10の検出動作は、入力端子Sin7から出力端子Sout9への経路上の話者信号を検出して、(4)式の時に係数更新を止められる方法であればどのような方法でも良く、ここでは詳細を述べない。
図2では、双方向通信検出器10の入力に加算器8の後の信号eを用いる従来例を図示したが、双方向検出器10の入力は送信経路、受信経路上であればどこからとってもよい。
以上が、VoIP通信におけるエコーキャンセラによるエコー除去の動作である。
また、従来のエコーを除去する装置、方法として下記の特許文献1及び2並びに非特許文献1がある。
特開2003−198434号公報 特開2000−115033号公報 国際勧告ITU−T G.722 7kHz AUDIO−CODING WITHIN64 KBIT/S
ところで、従来のアナログ回線を利用した音声通信では、音声信号の通信帯域に制限(300〜3400Hz、以下、従来帯域という)があったが、VoIP通信においては、VoIP回線での音声信号の帯域制限が取り払われたことから、より高品質の音質を提供することが可能であり、需要者からも求められている。
非特許文献1等では、従来帯域(300〜3400Hz)よりも広帯域(50〜7000Hz)の音声符号化技術の勧告が公布されており、実際、専用回線を敷設した上、ヘッドホンとマイクを装着した特殊な端末同士でなら、広帯域の音声符号化を採用した高品位通話装置が実用化されている。
しかし、いわゆる電話機型の広帯域VoIP電話は、次のような理由により、エコーが発生し音質を劣化してしまうので、高品位通話の実用化を図ることが困難である。
つまり、既存の通信設備との兼ね合いから、電話型の広帯域VoIP電話を設置する場合、通信経路中に2線4線変換器であるハイブリッド回路を介在させることがほとんどであるが、上述したように、ハイブリッド回路はエコーを発生源であるから、このような回線系では、不可避的にエコーが発生してしまう。
従って、いわゆる電話型の広帯域VoIP電話に、エコーを除去するエコーキャンセラ技術を適用することが必要となるが、上述したような従来のエコーキャンセラ技術は、はじめから広帯域音声を扱うことを意図していないため、従来のエコーキャンセラ技術を広帯域VoIP電話に適用してもエコーをうまく除去できないという問題点があった。
かかる問題について、本願特許出願人等は、広帯域VoIP電話に適用したエコーキャンセラの性能劣化の要因として次のような要因を見出した。
一般的に、エコーキャンセラは、入力信号に直流オフセット成分が加わると、この直流オフセット成分が信号波形に重畳する固定の直流値として現れ、エコー経路の線形性が失われることから、エコー除去性能が劣化することと知られている。このオフセット成分は専ら、アナログ−ディジタル変換器の特性や、背景ノイズ(例えば、入力端子Sin7からのノイズ成分)が原因であるとされていた。
しかし、広帯域で通信を行う場合においては、A/D変換器などが正常であっても、広帯域信号自体の特性によって、エコーキャンセラが、オフセット成分又はオフセットとみなせる成分の影響を受けるように振る舞うことがあり、これによりエコーキャンセラの性能が発揮できない場合がある。
これは、広帯域VoIP通信が従来の音声通話に比べて音声信号の周波数帯域が広くなったことによる。広帯域VoIP通信における音声信号は、50Hz〜300Hzの非常に低い周波数帯域成分を含むものとなる。そして、この低い周波数帯域成分がエコーキャンセラの性能に影響を与えることとなる。
本願特許出願人等が見出した、上記の低い周波数帯域成分がエコーキャンセラの性能に与える影響について、図2及び図3を参照して説明する。
図3は、広帯域信号(音声信号)の低い周波数帯域成分(すなわち長周期波形)がエコーキャンセラに与える影響を説明する説明図である。
エコーキャンセラ13におけるフィルタ部12のタップ係数(図示せず)は係数更新が進行すると真のエコー経路関数を模擬するように収束する。
しかし、入力信号に直流成分、又は、ほとんど直流とみなせるような低周波数成分がある場合、収束性能が劣化するのは上述したとおりである。
このような低域周波数による振幅オフセット成分(以下、単に「オフセット」という)は、一定区間の信号サンプルの平均値で表現できる。従来技術が対象にした直流オフセット成分は、A/D変換器が加える時間不変の固定値の直流オフセット成分であったが、広帯域音声信号では、エコーキャンセラが処理するデータ区間において、重畳値が時刻で変動するオフセット成分としてエコーキャンセラに影響を与える。(図3における区間a及び区間c)。
図3の区間bでは、運良く、オフセット成分(平均値)が無くなるのでエコーキャンセラ13のフィルタ部12のタップ係数は真のエコー経路関数にうまく収束する。
さらに具体例を挙げて説明する。広帯域VoIPにおいて、国際勧告ITU
−T G.722(非特許文献1)に開示されるように、サンプリング周波数16kHzとする。
このとき、エコーキャンセラ13のタップ長を256タップとすると、波形がフィルタタップ長に収まる波形の周波数までであり、それより長い周期の波形(周波数)は表現できない。具体的には、この場合、下限周波数は、1/(256×(1/16000))=62.5Hzであり、これ以下の周波数成分は、フィルタ部12は表現できない。
また、広帯域VoIP電話では、より臨場感を再現するために、更に低い周波数帯域(20Hz〜70Hz)の成分も、その他の周波数帯域と同様に通信に用いられる場合がしばしばであり、固定値の直流オフセット成分しか処理できない従来のエコーキャンセラ13では低域周波数を表現することができず、あたかも信号にオフセット成分がのったと同様になり、エコーキャンセラの性能が著しく劣化してしまうこととなる。
かかる課題を解決する方法として、エコーキャンセラ13(フィルタ部12)のタップ長を大きくしてエコーキャンセラ13が表現できる周波数をさらに低域側に拡大することが考えられる。
しかし、フィルタ部12のタップ長を大きくすることは、(1)式及び(2)式に示したように、即座に積和演算量の増大を意味しているから、エコーキャンセラ13をたとえば図示しないディジタルシグナルプロセッサ(DSP)で実現する場合などでは、演算量の増大を招いたり、ハードウエア規模が大きくなるなどの弊害が生じてしまうという問題が生じてしまう。
また、エコーキャンセラは、適応フィルタにおいて、(1)式〜(3)式に示した係数更新アルゴリズムに従うように、信号x(k)、信号e(k)及びエコー成分y(k)の時間タイミングを一致させることが、高品質の音声を提供するためには重要である。
そのため、従来帯域よりも通信帯域が広い音声信号を利用し得る音声通話で、オフセット成分を効率的に除去することができると共に、エコー除去に係る時間タイミングのずれをなくし、通信品質が高く安定した通話を提供できるエコーキャンセラが求められている。
かかる課題を解決するために、本発明のエコーキャンセラは、適応アルゴリズムを用いてエコー成分を除去するエコーキャンセラにおいて、タップ係数と遠端入力信号とに基づいて擬似エコー信号を生成する擬似エコー生成部と、タップ係数を更新する係数更新部とを有する擬似エコー形成手段と、近端入力信号成分に含まれる低域周波数成分を除去する送信用フィルタ手段と、擬似エコー形成手段からの擬似エコー信号に含まれる低域周波数成分を除去する擬似エコー用フィルタ手段と、送信用フィルタ手段を経由した近端入力信号成分に含まれるエコー成分と、擬似エコー用フィルタ手段を経由した擬似エコー信号に基づいて、エコー成分を除去するエコー除去手段とを備えることを特徴とする。
本発明のエコーキャンセラによれば、従来帯域よりも通信帯域が広い音声信号を利用し得る音声通話で、発生し得る非固定的なオフセット成分を効率的に除去することができると共に、エコー除去に係る時間タイミングのずれをなくし、通信品質が高く安定した通話を提供できる。
また、本発明のエコーキャンセラによれば、既存する従来電話機を利用する通話に対しても、エコー除去処理を効率的に行なうことができる。
以下では、本発明のエコーキャンセラを実施するための最良の形態について説明する。
以下の実施形態は、広帯域音声信号を利用し得る通話において、広帯域通信の場合にオフセット成分の影響力が少なく、精度よくエコーを除去でき、通話品質の優れた高品位電話用エコーキャンセラについて説明する。
また、以下で説明する実施形態は、音声符号化技術の国際勧告である非特許文献1が勧告する50Hz〜7000Hzの周波数帯域を持つ音声信号の通信を取り扱う場合について説明するが、これに限定されることなく、音声信号の周波数帯域の拡大に伴う、低い周波数帯域成分の除去に広く適用できる。
また、以下で説明する実施形態では、次のような点を考慮する。
以下で説明する実施形態は、上述した課題で説明したオフセット成分によるエコーキャンセラの性能劣化を解決するために、近端入力端子と加算器の間に低域周波数成分を除去するHPFを備える。従って、低域周波数成分のみを強力に除去するHPFをエコー経路に実装するエコーキャンセラも有効である。
しかし、以下の実施形態では、低域周波数成分を強力に除去するHPFを用いるのではなく、従来のHPFを用いて効率的にオフセット成分によるエコーキャンセラの性能劣化を防止する方法を考慮した。
これは、強力なHPFエコー経路に実装する場合、強力なHPF自体の構成規模が大きくなるので、エコー経路の応答長をHPF分の応答長だけ延長することとなり、エコーキャンセラがエコー経路のHPFのフィルタ特性をも同時に推測することが必要となるので、エコーキャンセラのタップ長がHPFまでもカバーするように大きくする必要があり、エコーキャンセラとしての装置規模が大きくなることが考えられるからである。
これを回避するために、特許文献2のように、エコー経路が長いとき、エコーキャンセラの演算を節約する技術があるが、遠端出力端子からハイブリッド回路までの純遅延を検出して、当該純遅延に当たる処理を節約するに過ぎず、上述のように近端入力端子と加算器の間に「実応答を有する」フィルタを挿入した場合のように、実際にエコー経路のサンプル長が延長してしまった場合には効果がない。
また、特許文献1のように、エコー経路中に波形加工機能ブロックを挿入しつつ、その波形加工機能ブロックがエコーキャンセラのタップに影響を与えないようにした技術があるが、波形加工機能は、その仕組み上、信号増幅器のように処理遅延がないものに限定される。つまり、HPFのように波形加工機能が処理遅延を伴うものに関しては効果がない。なぜなら、前述したエコーキャンセラ13の係数更新アルゴリズムは(1)式〜(3)式に示したように、信号x(k)、信号e(k)、エコー成分y(k)の時間的タイミングが一致していなければ成立しないからである。
具体的には、従来技術の場合、近端入力端子と加算器の間に増幅器を設け、フィルタ部と加算器の間に同様の増幅器を設けてエコーレプリカを増幅し、加算器でエコー減算したのち、こんどは減算後信号を減衰器で減衰して振幅を元に戻してから係数更新部に入力するので、同定アルゴリズム(例えば、学習同同定法)を用いても時間の食い違いは発生しない。したがってこのような場合に限って、エコーキャンセラはうまく動作する。
しかし、もしも波形加工機能がHPFのように遅延がある処理だと、フィルタ部から出力された信号がHPFで遅延(時間的におくれ)をうけ、加算器でエコー減算したのち、こんどは係数更新部に入力する際に、減算後信号の時間を逆方向(時間を進ませる)に上げる必要があり、実現不可能である。
従って、以下の実施形態では、従来のHPFを用いて、低域周波数オフセット成分を効率的に除去することができると共に、エコー除去に係る時間タイミングのずれをなくし、通信品質が高く安定した通話を提供できるエコーキャンセラについて説明する。
(A)第1の実施形態
以下では、本発明のエコーキャンセラの第1の実施形態について図面を参照して説明する。
(A−1)第1の実施形態の構成
図1は、本実施形態のエコーキャンセラを含む全体構成を示すブロック図である。なお、図1では遠端側の話者は図示しない。
図1に示すように、エコーキャンセラを含む全体構成は、入力端子Rin1、出力端子Rout2、D/A変換器3、ハイブリッド回路4、A/D変換器6、入力端子Sin7、加算器8、出力端子Sout9、適応フィルタ15、通話状態判定部18、受信ハイパスフィルタ19a(以下、受信HPFという)、レプリカ用ハイパスフィルタ19b(以下レプリカHPFという)、送信ハイパスフィルタ19c(以下、送信HPFという)を備える。また、ハイブリッド回路4は、電話機5と接続している。
なお、受信HPF19a、レプリカHPF19b及び送信HPF19c(以下、これらをまとめて説明する場合、単に「HPF19a〜19c」ともいう)は、同じタイプのHPFを適用することが望ましく、本実施形態では、これらHPF19a〜19cのゲインは1.0として説明する。
また、HPF19a〜19cがゲインを持つフィルタを備える場合には、例えば、加算器8と係数更新部16の間に減衰器を設け、ゲインとはちょうど逆の減衰を加えるような構成であってもよい。
入力端子Rin1は、遠端からのディジタル音声信号を入力し、入力したディジタル音声信号を、受信HPF19aを介して、通話状態判定部18、適応フィルタ15及び出力端子Rout2に与えるものである。
受信HPF19aは、入力端子Rin1からのディジタル音声信号について、所定の周波数以下(例えば、50Hz以下)の低域周波数成分を除去し、通話状態判定部18、適応フィルタ15及び出力端子Rout2に与えるものである。なお、本実施形態では受信HPF19aから出力されるディジタル音声信号をx(以下では、単に「信号x」ともいう)として説明する。
出力端子Rout2は、ディジタル音声信号xを受け取り、D/A変換器3に与えるものである。
D/A変換器3は、出力端子Rout2からのディジタル音声信号をアナログ信号に変換して、そのアナログ信号をハイブリッド回路4に与えるものである。
ハイブリッド回路4は、2線4線変換機能を持つ回路である。ハイブリッド回路4は、電話機5との接続回線(2線)での信号の整合性を図りつつ、D/A変換器3からのアナログ信号を電話機5に与えたり、又は電話機5からの音声信号(アナログ信号)をA/D変換器6に与えるものである。
A/D変換器6は、ハイブリッド回路4からの音声信号をディジタル信号に変換して入力端子Sin7に与えるものである。
入力端子Sin7は、A/D変換器6からのディジタル音声信号を、送信HPF19cに与えるものである。
送信HPF19cは、入力端子19cからのディジタル音声信号について、所定の周波数以下(例えば、50Hz以下)の低周波数帯域成分を除去し、加算器8に与えるものである。なお、本実施形態では、送信HPF19cから出力されるエコー成分をyとする。
加算器8は、送信HPF19cからのエコー成分yと、後述するレプリカHPF19bにより所定の低周波数成分が除去されたエコーレプリカ信号(以下では、レプリカともいう)y’とを受け取り、エコー成分yとエコーレプリカ信号y’とを減算し、その結果エコー成分が除去された信号eを、適応フィルタ15、通話状態判定部18及び出力端子Sout9に与えるものである。
出力端子Sout9は、加算器8からのエコー成分が除去された信号eを、図示しない遠端話者の電話機に向けて送出するものである。
通話状態判定部18は、受信経路(入力端子Rin1から出力端子Rout2に至る信号経路)と送信経路(入力端子Sin7から出力端子Sout9に至るまでの信号経路)を監視し、受信経路にのみ音声信号がある状態を検出するものである。
また、通話状態判定部18は、受信経路にのみ音声信号がある状態を検出した場合には、係数更新停止信号ntを適応フィルタ15に出力せず、それ以外の状態の場合(すなわち、送信経路にのみ音声信号がある状態、受信経路及び送信経路の両者に音声信号がない状態、又は、受信経路及び送信経路の両者に音声信号がある状態)、係数更新停止信号ntを適応フィルタ15に出力するものである。
通話状態判定部18が、受信経路及び送信経路の両者に音声信号がない状態でも係数更新停止信号ntを出力するのは、受信経路に音声信号がなければエコー成分自体も発生しないから、適応フィルタ15の係数更新をする必要がないからである。
ここで、通話状態判定部18が、受信経路及び送信経路に音声信号がある状態を検出する通話状態検出方法、及び、受信経路にのみ音声信号がある状態を検出する通話状態判定方法について説明する。
まず、通話状態判定部18における通話状態検出方法について説明する。
通話状態判定部18は、受信HPF19aを介し入力端子Rin1からのディジタル音声信号xと、加算器8からエコー成分が除去された信号eとを受け取り、サンプル毎に、受信経路と送信経路とのいずれかに音声信号があるかを検出する。
通話状態判定部18は、受け取った入力端子Rin1の出力(ディジタル音声信号x)と加算器8の出力(信号e)とに基づいて、下記の(5)式及び(6)式のようにして、これらの音声信号のパワー平均値を求める。
pow_x(k)=(pow_x(k−1)×δ)+(x(k)×(1−δ))
…(5)
pow_e(k)=(pow_e(k−1)×δ)+(e(k)×(1−δ))…(6)
なお、kはサンプル番号を表し、x(k)及びe(k)は第kサンプル番目の信号x及びeを意味する。また、δは平滑の滑らかさを表わす定数であり、1≧δ≧0なる定数である(なお、本実施形態では、δ=0.5とするがこれに限定されない)。
(5)式及び(6)式より、δが大きければディジタル音声信号x及びeの大まかな変化を反映するようになり、背景雑音の影響が小さくなる。一方、δが小さければ信号x、eの急峻な変化に敏感に反応するが、背景雑音の影響も受けやすくなる。
次に、通話状態判定部18における通話状態判定方法について説明する。
通話状態判定部18は、上記の(5)式及び(6)式により求めたPow_x(k)とPow_e(k)とに基づいて通話状態判定を行ない、その結果受信経路にのみ音声信号がある状態を判定することで、係数更新停止信号ntの出力を行なわないようにする。
つまり、通話状態判定部18は、Pow_x(k)とPow_e(k)とに基づいて、「pow_x(k)>無音閾値、かつ、pow_x(k)>pow_e(k)+マージン値」という条件が成立するときは、「受信経路にのみ音声信号がある状態」と判定する。本実施形態では、無音閾値=−38dBm0とし、マージン値=6dBとするが、勿論これに限定しない。
なお、本実施形態では、通話状態判定部18が、x(k)及びe(k)のパワー平滑を用いて入力端子Rin1の出力信号と入力端子Sin7の出力信号との検出を行ったが、x(k)及びe(k)のパワー絶対値を用いて通話状態を判定してもよい。つまり、通話状態判定部18は、入力端子Rin1からの出力信号と入力端子Sin7からの出力信号の有無を検出し、通話状態の判定が行える方法であれば、広く適用できる。
続いて、適応フィルタ15の構成について説明する。適応フィルタ15は、受信HPF19aからのディジタル音声信号xと、加算器8からエコー成分が除去された残差信号eとを受け取り、後述する方法によりエコーレプリカ信号y’’を作成して、レプリカHPF19bに与えるものである。
適応フィルタ15は、係数更新部16とフィルタ部17とを有し、その詳細な構成を図4に示す。なお、図4では、図1に対応する構成については対応する符号を付して示す。
図4に示すように、適応フィルタ15は、積和加算部20、フィルタ係数21、乗算器22、遅延レジスタ23を備える。
ここで、図4においては、受信HPF19aからの信号x、エコー成分y及びエコーが除去された信号eの時間タイミングが重要になるので、必要に応じて各信号を時間タイミングが明確になるように説明する。
まず、フィルタ部17に関して説明する。図4において、フィルタ部17は、加算器8、積和加算部20、係数レジスタ21、乗算器22、遅延レジスタ23を構成する。
遅延レジスタ23は、受信HPF19aから信号x(k)をサンプル毎に受け取り、遅延を与えて、乗算器22に与えるものである。なお、遅延レジスタ23の段数は、係数レジスタ21の段数に、後述するフィルタ処理による遅延応じた分の段数(d段数)を余分に有する。すなわち、本実施形態では、遅延レジスタ23は(n+d)段数を有する。
係数レジスタ21は、各サンプル毎の係数を格納するものであって、係数更新部16によりその係数を更新し得るものである。なお、図4では、係数レジスタ21が格納する係数をh(k,n)のように示し、kはサンプル番号、nは第n番目の係数を意味する。
乗算器22は、遅延レジスタ23からの各サンプル毎の出力信号を受け取り、また各サンプル毎の係数を係数レジスタ21から受け取り、各サンプル毎の出力信号に遅延に応じた係数を乗算するものである。また、乗算器22は、各サンプル毎の乗算結果を積和加算部20に与えるものである。
積和加算部20は、乗算部22からの各サンプル毎の乗算結果を受け取り、積和加算して、第1のエコーレプリカ信号y’’(k)を生成するものである。また、積和加算部22は、生成した第1のエコーレプリカ信号y’’(k)をレプリカHPF19bに与えるものである。
ここで、乗算器22及び積和加算部20で行なう演算は、下記の(7)式に基づいて行ない、第1のエコーレプリカ信号y’’(k)が生成される。
Figure 2005142659
レプリカHPF19bは、積和加算部20から第1のエコーレプリカ信号y’’(k)を受け取り、所定の周波数以下(例えば50Hz以下)の低周波数成分を除去し、第2のエコーレプリカ信号y’を加算器8に与えるものである。
ここで、レプリカHPF19bから出力信号は、第1のエコーレプリカ信号y’’に対するフィルタ処理により、あるサンプル時間の遅延が生じる。本実施形態では、この遅延をdサンプルとして説明する。
この遅延により、加算器8が、第2のエコーレプリカ信号y’(k)を受け取るのは、積和加算部20からの第1のエコーレプリカ信号y’’(k)の出力に対してdサンプル後である。
ここで、加算器8は、第1のエコーレプリカ信号y’’(k)に対してdサンプル遅延が生じた第2のエコーレプリカ信号y’(k−d)と、送信HPF19cによるフィルタ処理で同一の遅延が生じたエコー成分y(k−d)とが入力され、これら第2のエコーレプリカ信号y’(k−d)とエコー成分y(k−d)とに基づいて、下記の(8)式のようにして、エコー成分が除去された信号e(k−d)を出力する。
e(k−d)=y(k−d)−y’(k−d) …(8)
当然のこととして、信号eも送信HPF19c、レプリカHPF19bがない時よりもdサンプル遅れることになるため(8)式のようになるのである。
なお、受信HPF19aによるフィルタ処理によっても遅延は生じるが、加算器8でエコー成分yと第2のエコーレプリカ信号y’との減算処理で問題となる時間タイミングは、フィルタ部17及び通話状態判定部18が信号xを取り込み、処理を開始する時間が基準となるから、受信HPF19aで生じる遅延については無視することができる。
次に、係数更新部16について説明する。係数更新部16は、通話状態判定部18からの係数更新停止信号ntに応じて、フィルタ部17の係数を更新するものである。具体的には、係数更新部16は、通話状態判定部18から、係数更新信号ntを受けた場合にはフィルタ部17の係数を更新せず、係数更新信号ntを受けない場合にはフィルタ部17の係数を更新するものである。
また図4において、係数更新部16は、通話状態判定部18から係数更新信号ntを受けない場合(すなわち係数更新を行なう場合)、加算器8からエコー成分が除去された信号e(k−d)を受け取り、下記の(9)式のようにして係数レジスタ21の係数を更新するものである。
Figure 2005142659
なお、図4では、説明便宜上、複数の係数レジスタ21を備え、それぞれの係数レジスタ21が、h(k+1,m(0≦m≦n))又はh(k,m(0≦m≦n))のように、サンプル別の係数を別々に格納するもののように示すが、実際は同一の係数レジスタ21が格納する係数である。つまり、係数レジスタ21の実際の動作は、格納する係数h(k,m)に対して、上記(9)式に従って更新したh(k+1,m)を上書きするものである。
また、上記(9)式において、(k−d)をLとして書き直すと、(9)式は下記の(10)式のようになる。
Figure 2005142659
上記(10)式を(2)式と比較すると、エコー成分が除去された信号e、信号x及びエコー成分yの時間タイミングが完全に一致していることからも、同定アルゴリズムの時間的な整合性がとれているのがわかる。
(A−2)第1の実施形態の動作
次に、本実施形態のエコーキャンセラの動作について説明する。
入力端子Rin1に入力したディジタル音声信号(広帯域音声信号)は、受信HPF19aにより所定の低周波数帯域が除去されて、通話状態判定部18、フィルタ部17及び出力端子Rout2に与えられる。なお、通話状態判定部18、フィルタ部17の動作に関しては後述する。
出力端子Rout2に与えられたディジタル音声信号xは、出力端子Rout2からD/A変換器3に与えられ、アナログ信号に変換される。D/A変換器3からのアナログ信号は、ハイブリッド4を経由して、電話機5に与えられる。
その一方で、D/A変換器3から出力されるアナログ信号は、ハイブリッド回路4で反射し、一部の信号(アナログ信号)がA/D変換器6によりディジタル信号に変換され入力端子Sin7に与えられる。
入力端子Sin7から出力するディジタル音声信号は、加算器8及び出力端子Sout9を経由して遠端にいる図示しない遠端話者に至る。
また、入力端子Sin7に入力しエコー成分として発生したエコー成分yは、送信HPF19cにより、所定の低域カットオフ周波数以下(例えば50Hz以下)が除去されて加算器8に与えられる。
加算器8において、エコー成分yは、レプリカHPF19bから第2のエコーレプリカ信号y’と減算され、そのエコー成分が除去された残差信号eが、出力端子Sout9に与えられて、図示しないIP網などの信号経路を通り、これも図示しない遠端の話者電話に向かって出力される。このようにしてエコー成分を除去された音声信号が遠端話者に到達する。
ここで、第2のエコーレプリカ信号y’は、フィルタ部17で作成された第1のエコーレプリカ信号y’’が、レプリカHPF19bによって低域カットオフ周波数以下(例えば50Hz以下)の周波数が除去された信号である。なお、第1のエコーレプリカ信号y’’の作成方法に関しては後述する。
また、加算器8によりエコー成分が除去された信号eは、通話状態判定部18及び係数更新部16に与えられる。
通話状態判定部18では、加算器8からエコー成分が除去された信号eと、入力端子Rin1から信号xとが入力し、受信経路と送信経路との音声信号があるか否かの検出が行なわれる。
通話状態判定部18において、入力端子Rin1からの信号xと加算器8からの信号eはそれぞれ、(5)式及び(6)式に従って、サンプル毎のパワー平滑値が求められる。
通話状態判定部18により、信号x及び信号eのそれぞれの平滑値pow_x(k)及びpow_e(k)が求められると、通話状態判定部18において、pow_x(k)及びpow_e(k)が所定条件を満たしているか否かが判断される。
この所定条件とは、「pow_x(k)>無音閾値、かつ、pow_x(k)>pow_e(k)+マージン値」とする。
所定条件を満たしている場合、通話状態判定部18により「受信経路にのみ音声信号がある状態」と判定されて、係数更新部16に係数更新停止信号ntが出力しないようにする。また、所定条件を満たしていない場合には、係数更新部16に係数更新停止信号ntが出力される。
係数更新停止信号ntが係数更新部16に出力されない場合、係数更新部16により、フィルタ部17の係数レジスタ21で格納している係数が更新される。
また、係数更新停止信号ntが係数更新部16に出力される場合、係数更新部16による係数更新が実行されず、フィルタ部17の係数レジスタ21で格納している係数が保持される。なお、係数更新部16における係数更新の動作に関しては後述する。
ところで、上述したように、入力端子Rin1からのディジタル音声信号xは、適応フィルタ15のフィルタ部17にも与えられる。フィルタ部17に信号xが入力し、エコーレプリカ信号y’を生成する動作については図4も参照して説明する。
信号x(k)が適応フィルタ15に入力すると、フィルタ部17の遅延レジスタ23に与えられ、遅延レジスタ23により遅延を受ける。
遅延レジスタ23により遅延を受けた信号x(k)は、各サンプル毎の乗算器22に与えられる。
また、係数レジスタ21が格納している各サンプル毎の各係数は、遅延レジスタの遅延に応じてそれぞれ対応する乗算器22に与えられる。
乗算器22において、遅延レジスタ23からの各信号x(k)は、それぞれ対応する係数レジスタ21からの各係数と乗算され、その乗算結果が各サンプル毎に積和加算部20に与えられる。
乗算器22からの各乗算結果は、積和加算部20において、積和加算されて第1のエコーレプリカ信号y’’(k)として生成されて、レプリカHPF19bに与えられる。
なお、このとき、加算器22及び積和加算部20において生成される第1のエコーレプリカ信号y’’(k)は、(7)式に従って求められる。
積和加算部20からの第1のエコーレプリカ信号y’’(k)は、レプリカHPF19bにより、所定の周波数以下(例えば50Hz以下)の低周波数成分が除去され、その低周波数成分が除去された第2のエコーレプリカ信号y’(k)が加算器8与えられる。
ここで、レプリカHPF19bのフィルタ処理により、第2のエコーレプリカ信号y’(k)は、積和加算部20から出力される第1のエコーレプリカ信号y’’(k)に対し、dサンプル時間だけ遅延が生じたものとなる。
しかし、加算器8においては、エコー成分yについても、送信HPF19cのフィルタ処理による同一のdサンプル時間だけの遅延が生じており、(8)式に示すように、エコー成分が除去された残差信号e(k−d)を得ることができる。
また、上述したように、加算器8から出力する信号e(k−d)は、係数更新部16に与えられる。
以下では、係数更新部16における動作について説明する。また、ここでは係数更新部16が、通話状態判定部18から係数更新停止信号ntを受けていない場合(すなわち係数更新を実行する場合)について説明する。
加算器8からの信号e(k−d)が係数更新部16に与えられると、係数更新部16により係数レジスタ21の係数がサンプル周期毎に更新される。
係数更新部16において係数レジスタ21が格納する係数の更新は、(9)式に従って行われる。
また、(10)式に示されるように、係数更新部16における係数の更新は、信号e、信号x及びエコー成分yとの関係において、時間タイミングが完全に一致しており、同定アルゴリズムの時間的な整合性をとることができる。
すなわち、係数レジスタ21の係数更新にだけは時間後れをさせた信号を用い、一方でフィルタ部17のエコーレプリカ作成には時間後れのない信号を用いるという時間的な2段構造を適用することで、遅延が生じてしまうHPFを、レプリカ経路と、エコー経路の両方に備えても、同定アルゴリズム上のx(k)、e(k)のタイミングを狂わすことなく、公知の学習同定法を用いてエコーキャンセラを駆動するできることができる。
(A−3)第1の実施形態の効果
以上、本実施形態によれば、受信経路に受信HPF19aを設け、送信経路(入力端子Sin7と加算器8との間)に送信HPF19cを設けることで、エコーキャンセラの性能劣化の原因となる低域周波数成分を除去すると共に、適応フィルタ15と加算器8との間にレプリカHPF19bを設けることにより、送信フィルタ19cのフィルタ処理に係る遅延をエコーキャンセラに影響がないように補償することができ、フィルタ部17のフィルタ処理サンプルと係数更新部16の処理サンプルとを異なる時間のサンプル列を使うようにしたので、広帯域音声信号が入力しても、低い周波数成分が原因で発生する、あたかもオフセット成分のごとき擾乱を受けることがなく、安定にエコー成分の除去を行い、通話品質を良好にすることができるのである。
(B)第2の実施形態
次に、本発明のエコーキャンセラの第2の実施形態について説明する。
第1の実施形態では、通話経路の両端に広帯域電話機が繋がっていることを想定して説明したが、実際の利用では、発呼側と着呼側の電話機が広帯域電話機であるか又は従来電話機(通信帯域が300〜3400Hz対応の電話機をいう)であるかを知ることができない。通信端の一端又は両端が従来電話機である場合もある。
第2の実施形態は、かかる点を考慮したものであり、通信端の一端又は両端に従来電話機が繋がった場合でも、フィルタ処理の遅延による時間的整合性を維持しつつ、従来電話機に繋がった場合には無用な処理を軽減させ得るエコーキャンセラについて説明する。
本実施形態のように、通信端に繋がる電話機に応じて無用の処理を軽減することは、例えば、エコーキャンセラをディジタルシグナルプロセッサ(DSP:図示せず)で実現する場合、DSPの演算処理量、メモリ量、消費電力を節約する上で有効である。
(B−1)第2の実施形態の構成
図5は、第2の実施形態のエコーキャンセラを含む全体構成を示すブロック図である。
図5に示す第2の実施形態の構成が、図1に示す第1の実施形態の構成と異なる点は、第2の実施形態が、スイッチ31、スイッチ32、スイッチ35、受信LPF34、送信LPF30、電話機判定部33を新たに備えると共に、適応フィルタ36、係数更新部37、スイッチ部38の動作である。
なお、図5では、図1の第1の実施形態の構成と対応する構成については対応する符号を付し、これら対応する構成についての詳細な説明は省略する。
受信LPF34は、予め定められた所定の周波数以下(例えば、300Hz以下)の低域周波数成分を通過させる低域通過フィルタである。受信LPF34は、入力端子Rin1から入力したディジタル音声信号を受け取り、その入力したディジタル音声信号について、予め定めされた所定の周波数以下(例えば、300Hz以下)の低域周波数成分を通過させて、電話機判定部34に与えるものである。これにより、遠端側からの従来帯域よりも通信帯域が広い受話音声がある場合には、所定以上のパワーを持つ低域周波数成分を電話機判定部33に与えることができる。
また、送信LPF30も、予め定められた所定の周波数以下(例えば、300Hz)の低域周波数成分を通過させるフィルタであり、入力端子Sin7からのディジタル音声信号についての低域周波数成分を通過させて、電話機判定部34に与えるものである。これにより、近端(電話機5側)からの従来帯域よりも通信帯域が広い送話音声がある場合には、所定以上のパワーを持つ低域周波数成分を電話機判定部33に与えることができる。
電話機判定部33は、受信LPF34及び送信LPF30から入力した信号のパワーに基づいて、通信端に繋がっている電話機が広帯域電話機であるか又は従来電話機であるかを判定し、その判定結果に応じたスイッチの切替え信号を、スイッチ31、32及び35並びに適応フィルタ36のスイッチ部38に与えるものである。
具体的には、電話機判定部33は、電話機判定をするための検出閾値(例えば、−40dBm0)が予め定められており、受信LPF34及び送信LPF30から入力した信号のパワーと検出閾値とを比較し、いずれかの信号パワーが検出閾値を超えている場合、検出閾値を超えている側の通信端に広帯域電話機が繋がっていると判定し、その判定結果に応じて切替え信号を出力する。
つまり、電話機判定部33は、通信端のいずれか一方又は両端に広帯域電話機が繋がっていると判定した場合、スイッチ31、32及び35並びに適応フィルタ36のスイッチ部38に切替え信号を出力し、それぞれのスイッチを接点b側に切り換えさせる。
また、通信端の両端に従来電話機が繋がっていると判定した場合、スイッチ31、32及び35並びにスイッチ部38には出力しない。すなわち、接点aを閉じるようにさせる。
スイッチ31は、送信経路に設置されており、入力端子Sin7からの信号を加算器8に与えるか又は送信HPF19cからの信号を加算器8に与えるかを切替えるスイッチである。また、スイッチ31は、初期状態では入力端子Sin7側(接点a側)に閉じており、電話機判定部33からの切替え信号の受信により、送信HPF19c側(接点b側)に切替える。
スイッチ32は、レプリカ経路に設置されており、フィルタ部39からの信号を加算器8に与えるか又はレプリカHPF19bからの信号を加算器8に与えるかを切替えるスイッチである。また、スイッチ32は、初期状態ではフィルタ部39側(接点a側)に閉じており、電話機判定部33からの切替え信号の受信により、レプリカHPF19b側(接点b側)に切替える。
スイッチ35は、受信経路に設置されており、入力端子Rin1からの信号を受信経路に出力するか又は受信HPF19aからの信号を受信経路に出力するかを切替えるスイッチである。また、スイッチ35は、初期状態では入力端子Rin1側(接点a側)に閉じており、電話機判定部33からの切替え信号の受信により、受信HPF19a側(接点b側)に切替える。
なお、本実施形態では、電話機判定部33の判定結果に応じて、HPF19a〜19cを介在させる通信経路と、HPF19a〜19cを介在させない通信経路とを切替えることとするが、このような構成に限らず、例えば、HPF19a〜19cが例えば複数のフィルタを備える等の可変フィルタであり、電話機判定部33が、低域周波数成分のパワーに応じて、スイッチ31、32及び35を切替えるように制御してもよい。
次に、適応フィルタ部36の構成について説明する。図6は、適応フィルタの詳細な構成を示す説明図である。
スイッチ部38は、遅延レジスタ23により遅延を受けた信号x(k)をサンプル毎に係数レジスタ21に与えるものである。スイッチ部38は、初期状態は各係数レジスタ21に対応する各遅延レジスタ23側(接点a側)に閉じており、電話機判定部33からの切替え信号の受信により、dサンプル遅延を考慮した各遅延レジスタ23側(接点b側)に切替える。
(B−2)第2の実施形態の動作
スイッチ31、32及び35並びにスイッチ部38の初期状態は、接点a側に閉じている。
入力端子Rin1にディジタル音声信号が入力すると、スイッチ35を介してそれ以降の受信経路に出力される。
一方、入力端子Rin1に入力したディジタル音声信号は、受信LPF34に与えられ、所定の低周波数以下(例えば、300Hz以下)の低周波数成分が電話機判定部33に与えられる。
また、電話機5からの音声は、A/D変換器6によりディジタル変換されて入力端子Sin7に入力し、スイッチ33を介して加算器8に与えられる。
一方、入力端子Sin7に入力したディジタル音声信号は、送信LPF30に与えられ、所定の低周波数以下(例えば、300Hz以下)の低周波数成分が電話機判定部33に与えられる。
電話機判定部33において、受信LPF34からの信号パワー及び送信LPF30からの信号パワーが、予め定められた検出閾値(例えば、−40dBm0)と比較され、その検出閾値を超えている場合、その信号側の通信端に広帯域電話機が繋がっていると判定される。
そして、電話機判定部33により、通信端のいずれか一端又は両端に広帯域電話機が繋がっていると判定された場合、スイッチ31、32及び35並びにスイッチ部38にスイッチを切替えすことを指示する切替え信号が出力される。
また、電話機判定部33により、通信端の両端に従来電話機が繋がっていると判定された場合、スイッチ31、32及び35並びにスイッチ部38に切替え信号は出力されない。
つまり、スイッチ31、32及び35並びにスイッチ部38は、電話機判定部33により、通信端のいずれか一端に広帯域電話機が繋がっていると判断した場合、接点bを閉じるように切替え、第1の実施形態で説明した動作が行われる。
なお、スイッチ31、32及び35並びにスイッチ部38のスイッチが接点bに閉じた後、一度呼が切断されるまでの通話中、スイッチは固定され、呼が終了した後、スイッチ31、32及び35並びにスイッチ部38は、初期状態に戻る。
スイッチ31、32及び35が接点bに閉じた場合の動作は、第1の実施形態で説明したので、以下では、通信端の両端に従来電話機が繋がる場合について説明する。
電話機判定部33において、受信LPF34及び送信LPF30からの信号パワーと検出閾値との比較により、通信端の両端に従来電話機が繋がっていると判定した場合、電話機判定部33からスイッチ31、32及び35並びにスイッチ部38に切替え信号は出力されず、スイッチ31、32及び35並びにスイッチ部38は接点aを閉じたままとなる。
これにより、入力端子Rin1からの信号x、入力端子Sin7からのエコー成分y及び適応フィルタ36からのエコーレプリカ信号y’’は、それぞれ受信HPF19a、送信HPF19c及びレプリカHPF19bを通過しなくなる。
これは、通信端の両端に従来電話機と繋がっている場合、受信HPF19a、送信HPF19c及びレプリカHPF19bを、それぞれのフィルタ処理の必要性がないばかりでなく、信号経路上に遅延を与えてしまうので、これを回避するためである。
次に、通信端の両端に従来電話機が繋がっていると判断した場合の係数更新部37の動作について図4を参照して説明する。
この場合、スイッチ部38は接点aを閉じている。勿論、上述したスイッチ31、32及び35も接点aに閉じられている。
図4において、スイッチ35から出力した信号x(k)は、フィルタ部39の遅延レジスタ23に入力し、遅延を受ける。
遅延レジスタ23からの信号x(k)は、乗算器22に与えられ、乗算器22において、各サンプル毎に係数レジスタ21からの遅延に応じた係数が乗算され、積和加算部20与えられ、エコーレプリカ信号y’’(k)が生成され、スイッチ32を介して加算器8に与えられる。
加算器8においては、エコーレプリカ信号y’(k)(ここでは、フィルタ処理されないのでy’’(k)に相当する)と、入力端子Sin7からのエコー成分y(k)とが減算され、エコー成分が除去された残差信号e(k)が出力される。
なお、これまでの動作では、レプリカHPF19b及び送信HPF19cを介していないので、時間的遅延は生じていないのでタイミングのずれもない。
係数更新部37において、加算器8からの信号e(k)と、遅延レジスタ23からスイッチ部38(接点aに閉じている)から信号x(k)と受け取り、(2)式に従って、係数更新が行われる。
なお、スイッチ部38と、各スイッチ31、32及び35とは、それぞれ接点a側に閉じられているので、この場合、送信経路、受信経路及びエコーレプリカ出力経路には遅延が存在しないので、時間軸でのタイミングずれが無い。
従って、この場合、エコーキャンセラの同定アルゴリズムは、信号e(k)、エコー成分y(k)の時間タイミングが合っているので、(2)式が実行可能であり、エコー成分を除去できる。
以上のように、電話機判定部23による通信端に繋がっている電話機の判定をし、通信端の両端が従来電話機である場合、自動的に余分な処理を節約して、ディジタルシグナルプロセッサの資源と消費電力を節約するように動作することができる。
(B−3)第2の実施形態の効果
以上、本実施形態によれば、スイッチ31、32及び35により、受信HPF19a、レプリカHPF19b及び送信HPF19cを有する広帯域用信号経路と、これらを有しない従来帯域用信号経路を設け、通信端に接続する電話機の種類を判定する電話機判定部33の判定結果に応じて、広帯域用信号経路と従来帯域用信号経路を選択させると共に、通信端の両端が従来電話機である場合に、遅延のない信号を用いて係数更新させることで、通信端の両端に従来電話機が繋がっている場合であっても、特段の設計変更なしで効率よく、エコー成分を除去でき、しかも、電力、ディジタル処理量などを節約できるのである。
(C)第3の実施形態
次に、本発明のエコーキャンセラの第3の実施形態について説明する。
第1の実施形態では、非特許文献1(国際規格ITU−T,G722)の音声CODEC(広帯域音声符号化:音声帯域50〜7000Hz)に準じた音声帯域を用いた場合について説明した。
しかし、実際の通信経路が独自に敷設された回線である場合も多く、このような場合には、通信帯域の下限周波数が非特許文献1の下限周波数に限定されない場合もなる。つまり、実際の通信帯域の下限周波数は、上記非特許文献1に示されるような下限周波数となることが明確に分かっていない場合も多く、HPFの下限周波数の設定ができない場合もある。
そこで、本実施形態では、回線の許容下限周波数が未知であっても、広帯域周波数成分のうち、エコーキャンセラにオフセット成分の影響を与えるような、望ましくない低域周波数成分を自動的に除去し、優れたエコー成分除去特性をもつエコーキャンセラについて説明する。
(C−1)第3の実施形態の構成
図7は、第3の実施形態のエコーキャンセラを含む全体構成のブロック図である。
図7に示す第3の実施形態の構成が、図1に示す第1の実施形態の構成と異なる点は、HPF特性制御部50を備える点と、フィルタ部19に代えフィルタ部52、受信HPF19aに代え受信HPF53a、送信HPF19cに代え送信HPF53c、レプリカHPF19bに代えレプリカHPF53bを備える点である。なお、図1の第1の実施形態の構成と対応する構成については、対応する符号を付し、ここでの詳細な説明は省略する。
フィルタ部52は、設計者によりタップ長が設定されており、このタップ長がHPF特性制御部50に与えられる。このタップ長は、設計者により自由に設定され得るものであり、ハイブリッド回路4の応答長の予測値等を適当に設定してもよい。
HPF特性制御部50は、フィルタ部52に設定されているタップ長を受け取り、タップ長に基づいて受信HPF53a、レプリカHPF53b及び送信HPF53cのカットオフ周波数(CF)を求め、受信HPF53a、レプリカHPF53b及び送信HPF53cのカットオフ周波数の特性を制御するものである。
HPF特性制御部50は、フィルタ部52のタップ長に基づいて、例えば次のような(11)式の演算を行なうことにより各HPF53a〜53cのカットオフ周波数(CF)を求める。
CF(Hz)=M/sf (11)
なお、Mはフィルタ部52のタップ長であり、sfはサンプリング周波数である。例えば、本実施形態ではsfを16000Hzとして用いたがこれに限定するものではない。
受信HPF53a、レプリカHPF53b及び送信HPF53cは、HPF特性制御部50の制御により、HPF特性制御部50が求めたカットオフ周波数(CF)を持つようにするものである。
例えば、受信HPF53a、レプリカHPF53b及び送信HPF53cはそれぞれ、カットオフ周波数が異なる複数のフィルタを有し、HPF特性制御部50の制御により、それら複数のフィルタの中から1個のフィルタを選択するフィルタ部を適用するようにしてもよい。
また例えば、受信HPF53a、レプリカHPF53b及び送信HPF53cそれぞれ、カットオフ周波数を可変させる可変フィルタを適用するにしてもよい。この場合、例えば、HPFを1個有し、HPFの低域カットオフ周波数を決定する時定数パラメータを可変しておき、HPF特性制御部50からの制御により、その時定数パラメータを変更することで、カットオフ周波数を変更するようにしてもよい。
なお、本実施形態では、フィルタ部52に予め3個のタップ長(128、256、512)を設定し、これら3個のタップ長の中から1個を選択して、HPF特性制御部50がカットオフ周波数を求め、それに対応して、受信HPF53a、レプリカHPF53b及び送信HPF53cのそれぞれが、130Hz、63Hz、35Hzの3個のカットオフ周波数を持つフィルタの中から1個選択するようにする。勿論、フィルタ部50に設定するタップ長、各HPF53a〜53cに設定するカットオフ周波数の組み合せはこれに限られない。
(C−2)第3の実施形態の動作
次に、第3の実施形態のエコーキャンセラの動作について説明する。
入力端子Rin1からの信号xは、適応フィルタ51に与えられる。
適応フィルタ51におけるフィルタ処理に係るタップ長Mが、HPF特性制御部50に与えられる。
タップ長Mは、前述したように、設置者が適当に定められばよく、ハイブリッド回路4の応答長の予測値などを適当に設定すればよい。本実施形態では256としたが、もちろんこれに限定しない。
HPF特性制御部50において、フィルタ部52のタップ長Mから各HPF53a〜53cのカットオフ周波数CFを(11)式のように求める
ここで、sfはサンプリング周波数であり、16000Hzとする。
HPF特性制御部50においてカットオフ周波数(CF)が求められると、各HPF53a〜53cのカットオフ周波数を、求めたカットオフ周波数に対応できるように送信HPF53c、レプリカHPF53b、受信HPF53aの特性が、HPF特性制御部50により制御される。
このようにして、受信HPF53a、レプリカHPF53b及び送信HPF53cのカットオフ周波数が設定され、第1の実施形態で説明した場合と同様に、望ましくない低域周波数成分が除去される。
低域周波数成分の除去後の信号の入出力、係数更新動作は、第1の実施例と同様であるのでここでは説明しない。
(C−3)第3の実施形態の効果
以上、本実施形態によれば、HPF特性制御部50を設け、フィルタ部52のタップ長MをHPF特性制御部50に出力して、HPF特性制御部50が送信HPF53c、受信HPF53a、レプリカHPF53bの低域カットオフ周波数を計算し、送信HPF53c、受信HPF53a、レプリカHPF53bは回線の種別に関係なく、エコーキャンセラのタップ長MをもとにHPF特性制御部50で計算された低域カットオフ周波数になるようにしたので、フィルタ部52で表現できないような低域周波数成分を自動的に除去できるようになり、たとえ回線種類、電話機種類が未知あっても、エコー成分打ち消し特性が劣化することはなく、エコーのない通話品質を提供できるのである。
(D)第4の実施形態
次に、本発明のエコーキャンセラの第4の実施形態について図8を参照して説明する。
第2の実施形態では、電話判定部33が、固定のLPF30、34からの低域成分の検出に基づいて通話経路の両端にある電話の種別を調べることを説明した。
しかし、実際には、通話帯域が、従来帯域であるのか、広帯域であるのか分からないこともしばしばである。また、広帯域であるにしても、上述の広帯域音声符号の非特許文献1(規絡G.722)等に準拠しない独自の帯域回線を用いている場合もある。
このようなとき、第2の実施形態のように、既存の規格を参考にした既知の固定値(例えば50Hz以下など)の低域カットオフ周波数の信号パワーだけでは、両端の電話機種別を判定することができない。
また、図3を用いて説明したように、広帯域信号をそのままエコーキャンセラを駆動すると、フィルタ部39の係数は時間と共にオフセット成分が加えられたかのごとく変化する。
そこで、本実施形態では、上記の点を考慮して、オフセット成分の特性を利用し、係数がオフセット成分を持っているかどうかで通話経路の端に広帯域電話がつながっているかどうかを検出し、自動的にオフセット成分の影響がないように動作する。
(D−1)第4の実施形態の構成及び動作
図8は、本実施形態のエコーキャンセラを含む全体構成を示すブロック図である。
図8に示す第4の実施形態の構成が、図5に示す第2の実施形態の構成と異なる点は、受信LPF34、送信LPF30及び電話機判定部33の代わりに係数オフセット計算部60を備える点である。なお、図8では、図5に示す構成と対応する構成については対応する符号を付し、これら構成についての詳細な説明は省略する。
係数オフセット計算部60は、適応フィルタ部36の係数更新回数をカウントするカウンタ(図示しない)を有し、係数サンプルの平均値を下記の(12)式のようにして求め、その係数サンプルの平均値に基づいて、係数がオフセット成分を含んでいるか否かを判定するものである。
なお、カウンタは、例えば、予め定められた時間(例えば1秒)における係数更新実行回数を計数するカウンタや、又は係数更新回数(例えば1000回)自体を計数するカウンタ等を適用することができる。
Figure 2005142659
また、係数オフセット計算部60は、(12)式で計算したH_AVをあらかじめ定めたレベル閾値th_H_AV(本発明では40dBm0レベル)と比較し、
th_H_AV<H_AV (13)
であれば、係数にオフセットありと判断し、それ以外は係数にオフセット成分なしとする。
係数オフセット計算部60は、オフセット成分ありの時、スイッチ31、32及び35並びにスイッチ部40に対して、スイッチを接点bに閉じるように切替え信号を出力する。なお、スイッチ31、32及び35並びにスイッチ部40が、接点bに閉じたときの動作は第2の実施形態で説明したのでここでは改めて説明しない。
また、係数オフセット計算部60で係数オフセットなしの場合、スイッチ31、32及び35並びにスイッチ部40に対して、スイッチをaに閉じるように信号を出力する。なお、スイッチ31、32及び35並びにスイッチ部40が、接点aに閉じたときの動作は第2の実施形態で説明したのでここでは改めて説明しない。
また、本実施形態では、係数オフセット計算部60の計算結果に応じて、HPF19a〜19cを介在させる通信経路と、HPF19a〜19cを介在させない通信経路とを切替えることとするが、このような構成に限らず、例えば、HPF19a〜19cが例えば複数のフィルタを備える等の可変フィルタであり、係数オフセット計算部60が、係数の平均値の大きさに応じて、スイッチ31、32及び35を切替えるように制御してもよい。
(D−2)第4の実施形態の効果
以上、本実施形態によれば、係数オフセット計算部60を備え、係数オフセット計算部60が、所定時間又は所定係数更新回数後に、フィルタ部39が更新した係数の平均値を求め、その平均値が予め定めた閾値より大きい場合、係数オフセット成分ありと判断し、スイッチ31、32及び35並びにスイッチ部40に対して、スイッチをbに閉じるように信号を出力して、係数にオフセットがある場合は自動的にオフセットの除去を行い、係数オフセット計算部60で係数オフセットなしの場合には、スイッチ31、32及び35並びにスイッチ部40に対して、スイッチをaに閉じるように信号を出力して、自動的に余分なフィルタの処理をなくすようにしたので、あらかじめ回線の種類、両端に接続された電話機の種類などが不明であっても適切にオフセット成分を除去してエコーキャンセラの性能劣化を防ぎ、エコー成分を除去して通話品質を向上することができるのである。
(E)第5の実施形態
次に、本発明のエコーキャンセラの第5の実施形態について図9を参照して説明する。
図9に示すように第5の実施形態の構成は、図8に示す第4の実施形態の構成に、第3の実施形態で説明したHPF特性制御部50を備えることとした点である。
なお、図9において、図8に示す第4の実施形態の構成及び図7に示す第3の実施形態の構成に対応する構成については対応する符号を付す。
このように、第4の実施形態の構成に、HPF特性制御部50を備えることにより、回線種別が不明であっても、HPFの特性を最適にできるので、回線の種類や、電話機の種類に関わりなく、第4の実施形態よりも更に、エコー成分を適切に除去し、エコー感のない優れた音声通話を実現できる。
より具体的には、第3の実施形態に加え、第4の実施形態で計算した(12)式のオフセット成分に応じて、あらかじめ定めた閾値と比較し、第3の実施形態でタップ長から算出したHPFのタップ長をさらに変更(短縮)させるようにするよう演算処理量を最小にするようにもできる、結果、回線の種類、電話機の種類に関わりなく、DSPの演算処理においても最適な処理でエコー感のない優れた音声通話を実現できるのである。
(F)他の実施形態
(F−1)上述した第1〜第5の実施形態は、VoIP通信に対応するIP電話に適用する場合に限らず、既存する従来帯域に対応可能な従来電話機にも適用することができる。
(F−2)上述した第1〜第5の実施形態では、ハイブリッド回路4での処理により生じる回線系エコー成分を除去することとして説明したが、電話機のスピーカとマイクとの間で生じるエコー成分の除去にも適用できる。
第1の実施形態のエコーキャンセラを説明するブロック図である。 従来のエコーキャンセラを説明するブロック図である。 広帯域音声信号の低域周波数カットオフによる影響を説明する説明図である。 第1の実施形態の適応フィルタの構成を説明する構成図である。 第2の実施形態のエコーキャンセラを説明するブロック図である。 第2の実施形態の適応フィルタの構成を説明する構成図である。 第3の実施形態のエコーキャンセラを説明するブロック図である。 第4の実施形態のエコーキャンセラを説明するブロック図である。 第5の実施形態のエコーキャンセラを説明するブロック図である。
符号の説明
1…入力端子(遠端側)、7…入力端子(近端側)、15…適応フィルタ、
16…係数更新部、17…フィルタ部、19b…レプリカHPF、
19c…送信HPF。

Claims (8)

  1. 適応アルゴリズムを用いてエコー成分を除去するエコーキャンセラにおいて、
    タップ係数と遠端入力信号とに基づいて擬似エコー信号を生成する擬似エコー生成部と、タップ係数を更新する係数更新部とを有する擬似エコー形成手段と、
    近端入力信号成分に含まれる低域周波数成分を除去する送信用フィルタ手段と、
    上記擬似エコー形成手段からの上記擬似エコー信号に含まれる低域周波数成分を除去する擬似エコー用フィルタ手段と、
    上記送信用フィルタ手段を経由した近端入力信号成分に含まれるエコー成分と、上記擬似エコー用フィルタ手段を経由した擬似エコー信号に基づいて、エコー成分を除去するエコー除去手段と
    を備えることを特徴とするエコーキャンセラ。
  2. 上記係数更新部が、上記送信用フィルタ手段及び上記擬似エコー用フィルタ手段のフィルタ処理に係る遅延に応じた時間だけ後らせた遠端入力信号に基づいて、タップ係数の更新を実行することを特徴とする請求項1に記載のエコーキャンセラ。
  3. 遠端入力端子と上記擬似エコー形成手段との間に、遠端入力信号成分に含まれる低域周波数成分を除去する受信用フィルタ手段を備えることを特徴とする請求項1又は2に記載のエコーキャンセラ。
  4. 上記送信用フィルタ手段、上記擬似エコー用フィルタ手段及び受信用フィルタ手段は可変フィルタであり、
    第1の音声信号より通信帯域が広い第2の音声信号を通話経路上で検出し、その検出結果に応じて、上記送信用フィルタ手段、上記擬似エコー用フィルタ手段及び受信用フィルタ手段が除去する周波数帯域を制御する切替制御手段を備えることを特徴とする請求項1〜3のいずれかに記載のエコーキャンセラ。
  5. 上記切替制御手段は、遠端入力信号成分及び近端入力信号成分に含まれる低域周波数成分を検知し、検知した低域周波数成分のパワーに応じて、上記送信用フィルタ手段、上記擬似エコー用フィルタ手段及び受信用フィルタ手段が除去する周波数帯域を制御することを特徴とする請求項4に記載のエコーキャンセラ。
  6. 上記切替制御手段は、上記係数更新部により更新されたタップ係数が、遠端入力信号が有する低域周波数成分における非固定的なオフセット成分による影響度に応じて、上記送信用フィルタ手段、上記擬似エコー用フィルタ手段及び受信用フィルタ手段が除去する周波数帯域を制御することを特徴とする請求項4に記載のエコーキャンセラ。
  7. 上記切替制御手段は、上記係数更新部により更新されたタップ係数の平均値を求め、そのタップ係数の平均値と所定値との比較結果に応じて、タップ係数が、遠端入力信号が有する低域周波数成分におけるオフセット成分による影響度を判定することを特徴とする請求項6に記載のエコーキャンセラ。
  8. 上記送信用フィルタ手段、上記擬似エコー用フィルタ手段及び受信用フィルタ手段は可変フィルタであり、
    上記擬似エコー形成手段に設定されるタップ長に基づいて、上記送信用フィルタ手段、上記擬似エコー用フィルタ手段及び受信用フィルタ手段が除去する周波数帯域を制御するフィルタ特性制御手段を備えることを特徴とする請求項1〜7のいずれかに記載のエコーキャンセラ。
JP2003374632A 2003-11-04 2003-11-04 エコーキャンセラ Expired - Fee Related JP4457639B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003374632A JP4457639B2 (ja) 2003-11-04 2003-11-04 エコーキャンセラ
CN200480030098XA CN1868137B (zh) 2003-11-04 2004-10-27 回波消除器
PCT/JP2004/015891 WO2005043772A1 (ja) 2003-11-04 2004-10-27 エコーキャンセラ
US10/577,989 US7564964B2 (en) 2003-11-04 2004-10-27 Echo canceller
GB0608300A GB2422280B (en) 2003-11-04 2004-10-27 Echo canceler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003374632A JP4457639B2 (ja) 2003-11-04 2003-11-04 エコーキャンセラ

Publications (2)

Publication Number Publication Date
JP2005142659A true JP2005142659A (ja) 2005-06-02
JP4457639B2 JP4457639B2 (ja) 2010-04-28

Family

ID=34544216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374632A Expired - Fee Related JP4457639B2 (ja) 2003-11-04 2003-11-04 エコーキャンセラ

Country Status (5)

Country Link
US (1) US7564964B2 (ja)
JP (1) JP4457639B2 (ja)
CN (1) CN1868137B (ja)
GB (1) GB2422280B (ja)
WO (1) WO2005043772A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174343A (ja) * 2005-12-22 2007-07-05 Oki Electric Ind Co Ltd エコーキャンセラ

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403776B2 (ja) * 2003-11-05 2010-01-27 沖電気工業株式会社 エコーキャンセラ
US8457614B2 (en) 2005-04-07 2013-06-04 Clearone Communications, Inc. Wireless multi-unit conference phone
JP4312227B2 (ja) * 2006-11-21 2009-08-12 富士通株式会社 エコー処理方法及び装置
US7881459B2 (en) * 2007-08-15 2011-02-01 Motorola, Inc. Acoustic echo canceller using multi-band nonlinear processing
US7907977B2 (en) * 2007-10-02 2011-03-15 Agere Systems Inc. Echo canceller with correlation using pre-whitened data values received by downlink codec
US8050398B1 (en) 2007-10-31 2011-11-01 Clearone Communications, Inc. Adaptive conferencing pod sidetone compensator connecting to a telephonic device having intermittent sidetone
US8199927B1 (en) 2007-10-31 2012-06-12 ClearOnce Communications, Inc. Conferencing system implementing echo cancellation and push-to-talk microphone detection using two-stage frequency filter
US8432468B2 (en) * 2009-05-28 2013-04-30 Panasonic Corporation Composite low frequency cutoff filter and imaging apparatus using the same
JP5025753B2 (ja) * 2010-03-31 2012-09-12 株式会社東芝 エコーキャンセル装置、方法
US9185233B2 (en) * 2010-05-25 2015-11-10 Intel Deutschland Gmbh Audio communication device and method using fixed echo cancellation filter coefficients
US20120140918A1 (en) * 2010-12-06 2012-06-07 Pagebites, Inc. System and method for echo reduction in audio and video telecommunications over a network
US20120140940A1 (en) * 2010-12-07 2012-06-07 Electronics And Telecommunications Research Institute Method and device for cancelling acoustic echo
JP2012134923A (ja) * 2010-12-24 2012-07-12 Sony Corp 音声処理装置および方法、並びにプログラム
CN102855881B (zh) * 2011-06-27 2014-12-03 华为技术有限公司 一种回声抑制方法和装置
US8526599B2 (en) * 2011-09-22 2013-09-03 Panasonic Corporation Input/output apparatus and communication terminal
US9438308B2 (en) * 2013-08-21 2016-09-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Echo cancellation with quantization compensation
JP6201949B2 (ja) * 2014-10-08 2017-09-27 株式会社Jvcケンウッド エコーキャンセル装置、エコーキャンセルプログラム及びエコーキャンセル方法
CN105847611B (zh) * 2016-03-21 2020-02-11 腾讯科技(深圳)有限公司 一种回声时延检测方法、回声消除芯片及终端设备
TW201743570A (zh) 2016-06-07 2017-12-16 晨星半導體股份有限公司 回波消除電路、用於數位通訊系統之接收器及回波消除方法
US10177810B2 (en) * 2016-09-02 2019-01-08 Marvell World Trade Ltd. Systems and methods for echo or interference cancellation power-saving management in a communication system
CN113965216B (zh) * 2021-12-22 2022-05-17 北京国科天迅科技有限公司 应用于以太网的回波消除和基带漂移消除电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3452341B2 (ja) 1995-12-05 2003-09-29 株式会社リコー エコーキャンセラ
JP2907091B2 (ja) 1996-01-26 1999-06-21 日本電気株式会社 適応型雑音除去自動車電話装置
JP3241328B2 (ja) 1998-09-30 2001-12-25 沖電気工業株式会社 エコーキャンセラ
WO2000019605A2 (en) * 1998-09-30 2000-04-06 House Ear Institute Band-limited adaptive feedback canceller for hearing aids
FI20002902A (fi) * 2000-12-29 2002-06-30 Nokia Corp Viestintälaite ja menetelmä lähettimen ja vastaanottimen kytkemiseksi
EP1300963A4 (en) 2001-05-22 2009-03-04 Mitsubishi Electric Corp APPARATUS FOR TREATING ECHOS
JP2003198434A (ja) 2001-12-26 2003-07-11 Nec Miyagi Ltd エコーキャンセラおよびエコーキャンセラのトレーニング法ならびにadslシステム
US7242762B2 (en) * 2002-06-24 2007-07-10 Freescale Semiconductor, Inc. Monitoring and control of an adaptive filter in a communication system
US7809150B2 (en) * 2003-05-27 2010-10-05 Starkey Laboratories, Inc. Method and apparatus to reduce entrainment-related artifacts for hearing assistance systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174343A (ja) * 2005-12-22 2007-07-05 Oki Electric Ind Co Ltd エコーキャンセラ

Also Published As

Publication number Publication date
CN1868137B (zh) 2012-09-05
GB2422280B (en) 2008-06-25
CN1868137A (zh) 2006-11-22
US20070092074A1 (en) 2007-04-26
WO2005043772A1 (ja) 2005-05-12
JP4457639B2 (ja) 2010-04-28
GB2422280A (en) 2006-07-19
GB0608300D0 (en) 2006-06-07
US7564964B2 (en) 2009-07-21

Similar Documents

Publication Publication Date Title
JP4457639B2 (ja) エコーキャンセラ
US8315380B2 (en) Echo suppression method and apparatus thereof
CN110838300B (zh) 回声消除的处理方法及处理系统
KR101017766B1 (ko) 핸드 프리 장치에서의 스펙트럼 도메인 비선형 반향 제거방법
US7203308B2 (en) Echo canceller ensuring further reduction in residual echo
KR100233077B1 (ko) 반향소거장치
US7856097B2 (en) Echo canceling apparatus, telephone set using the same, and echo canceling method
US8160239B2 (en) Echo canceller and speech processing apparatus
CN101262530B (zh) 一种消除移动终端回音的装置
US20080112568A1 (en) Echo Canceller and Communication Audio Processing Apparatus
JP2008263336A (ja) エコーキャンセラおよびその残留エコー抑制方法
JP5061853B2 (ja) エコーキャンセラ及びエコーキャンセルプログラム
JP2009065699A (ja) 音響エコーの相殺および抑制を実行する利得制御方法
WO1999014868A1 (fr) Procede de suppression d'echo, annuleur d'echo et commutateur vocal
US7813497B2 (en) Echo canceller with interference-level controlled step size
JP4410819B2 (ja) エコーキャンセラ
JPH11331046A (ja) エコー抑圧方法及び装置並びにエコー抑圧プログラムが記憶されたコンピュータに読取り可能な記憶媒体
US6865270B1 (en) Echo cancellation method and apparatus
JP4403776B2 (ja) エコーキャンセラ
KR100272131B1 (ko) 계층적 구조의 적응반향 제거장치
JP2008131378A (ja) エコー処理方法及び装置
JP4544040B2 (ja) エコーキャンセル装置およびそれを用いた電話機、並びにエコーキャンセル方法
JP4877083B2 (ja) 残留エコー抑圧制御装置、方法及びプログラム
JP2006148375A (ja) エコー除去方法、エコーキャンセラ及び電話中継装置
JP2007243829A (ja) 残留エコー抑圧制御装置及び方法、およびエコーキャンセラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Ref document number: 4457639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees