JP2005013985A - Method for forming film pattern, device and its production method, electro-optic apparatus, and electronic component, production method of active matrix substrate, active matrix substrate - Google Patents
Method for forming film pattern, device and its production method, electro-optic apparatus, and electronic component, production method of active matrix substrate, active matrix substrate Download PDFInfo
- Publication number
- JP2005013985A JP2005013985A JP2004112064A JP2004112064A JP2005013985A JP 2005013985 A JP2005013985 A JP 2005013985A JP 2004112064 A JP2004112064 A JP 2004112064A JP 2004112064 A JP2004112064 A JP 2004112064A JP 2005013985 A JP2005013985 A JP 2005013985A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- forming
- film pattern
- bank
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Thin Film Transistor (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
本発明は、膜パターン形成方法、デバイス及びその製造方法、電気光学装置、並びに電子機器、アクティブマトリクス基板の製造方法、アクティブマトリクス基板に関するものである。 The present invention relates to a film pattern forming method, a device and a manufacturing method thereof, an electro-optical device, an electronic apparatus, an active matrix substrate manufacturing method, and an active matrix substrate.
電子回路または集積回路などに使われる配線などの膜パターンを形成する方法としては、例えばフォトリソグラフィ法が用いられる。このフォトリソグラフィ法は、真空装置などの大掛かりな設備と複雑な工程を必要とし、また材料使用効率も数%程度でそのほとんどを廃棄せざるを得ず、製造コストが高い。 As a method for forming a film pattern such as a wiring used in an electronic circuit or an integrated circuit, for example, a photolithography method is used. This photolithography method requires large-scale equipment such as a vacuum apparatus and a complicated process, and the material use efficiency is about several percent, and most of it must be discarded, and the manufacturing cost is high.
これに対して、液体吐出ヘッドから液体材料を液滴状に吐出する液滴吐出法、いわゆるインクジェット法を用いて基板上に膜パターンを形成する方法が提案されている(例えば、特許文献1、特許文献2参照)。この方法では、膜パターン用の液体材料(機能液)を基板に直接パターン配置し、その後熱処理やレーザー照射を行って膜パターンに変換する。この方法によれば、フォトリソグラフィが不要となり、プロセスが大幅に簡略化されるとともに、原材料の使用量も少なくてすむというメリットがある。
近年、デバイスを構成する回路の高密度化が進み、例えば配線についてもさらなる微細化、細線化が要求されている。上述した液滴吐出法を用いた膜パターン形成方法では、吐出した液滴が着弾後に基板上で広がるため、微細な膜パターンを安定的に形成するのが困難であった。 In recent years, the density of circuits constituting a device has been increased, and for example, further miniaturization and thinning of wiring have been required. In the film pattern forming method using the above-described droplet discharge method, the discharged droplet spreads on the substrate after landing, and thus it is difficult to stably form a fine film pattern.
本発明は、以上のような点を考慮してなされたもので、微細化や細線化が図られた膜パターンを、精度よく安定して形成することができる薄膜パターン形成方法、デバイス及びその製造方法、電気光学装置、並びに電子機器、アクティブマトリクス基板の製造方法、アクティブマトリクス基板を提供することを目的とする。 The present invention has been made in consideration of the above points, and a thin film pattern forming method, a device, and a manufacturing method thereof capable of forming a finely and thinned film pattern accurately and stably. It is an object to provide a method, an electro-optical device, an electronic apparatus, a method for manufacturing an active matrix substrate, and an active matrix substrate.
上記の目的を達成するために、本発明は、以下の構成を採用している。
本発明の膜パターン形成方法は、機能液を基板上に配置して膜パターンを形成する方法であって、前記基板上にバンクを形成する工程と、前記バンクによって区画された領域に前記機能液を配置する工程と、前記基板上に配置された前記機能液を乾燥させる工程とを有し、前記バンクの形成材料は、無機質の材料を含むことを特徴とする。
本発明の膜パターン形成方法では、バンクによって区画された領域に機能液が配置され、この機能液が乾燥することにより、基板上に膜パターンが形成される。この場合、バンクによって膜パターンの形状が規定されることから、例えば隣接するバンク間の幅を狭くするなど、バンクを適切に形成することにより、膜パターンの微細化や細線化を図ることができる。
また、本発明の膜パターン形成方法では、バンクの形成材料が無機質の材料を含むことから、バンクの耐熱性が高く、しかもバンクと基板との間の熱膨張率の差が小さい。そのため、機能液の乾燥時の熱などによるバンクの劣化が抑制され、膜パターンが良好な形状で形成される。
つまり、本発明の膜パターン形成方法では、微細化や細線化が図られた膜パターンを、精度よく安定して形成することができる。
In order to achieve the above object, the present invention adopts the following configuration.
The film pattern forming method of the present invention is a method of forming a film pattern by disposing a functional liquid on a substrate, the step of forming a bank on the substrate, and the functional liquid in a region partitioned by the bank And a step of drying the functional liquid disposed on the substrate, wherein the bank forming material includes an inorganic material.
In the film pattern forming method of the present invention, the functional liquid is disposed in the area partitioned by the bank, and the functional liquid is dried to form a film pattern on the substrate. In this case, since the shape of the film pattern is defined by the bank, the film pattern can be miniaturized or thinned by appropriately forming the bank, for example, by narrowing the width between adjacent banks. .
In the film pattern forming method of the present invention, since the bank forming material contains an inorganic material, the heat resistance of the bank is high, and the difference in thermal expansion coefficient between the bank and the substrate is small. Therefore, deterioration of the bank due to heat or the like during drying of the functional liquid is suppressed, and the film pattern is formed in a good shape.
That is, in the film pattern forming method of the present invention, a film pattern that is miniaturized or thinned can be formed with high accuracy and stability.
また、上記の膜パターン形成方法において、前記バンクに前記基板よりも高い撥液性を付与する工程を有するとよい。
この形成方法によれば、バンクは機能液をはじくため、バンク間に機能液を良好に配置できる。
The film pattern forming method may include a step of imparting higher liquid repellency to the bank than the substrate.
According to this forming method, since the bank repels the functional liquid, the functional liquid can be favorably disposed between the banks.
また、上記の膜パターン形成方法において、前記機能液を、液滴吐出法を用いて前記バンクによって区画された領域に配置するとよい。
この形成方法によれば、液滴吐出法を用いることにより、スピンコート法などの他の塗布技術に比べて、液体材料の消費に無駄が少なく、基板上に配置する機能液の量や位置の制御を行いやすい。
なお、隣接するバンク間の幅は液滴の直径より狭くしてもよい。この場合、液滴状の機能液は、毛管現象などによりバンク間に入り込む。これにより、吐出する液滴の直径より狭い線幅の膜パターンが形成される。
In the film pattern forming method, the functional liquid may be disposed in a region partitioned by the bank using a droplet discharge method.
According to this forming method, by using the droplet discharge method, compared with other coating techniques such as a spin coating method, the consumption of the liquid material is less, and the amount and position of the functional liquid disposed on the substrate are reduced. Easy to control.
The width between adjacent banks may be narrower than the diameter of the droplet. In this case, the droplet-like functional liquid enters between the banks by capillary action or the like. As a result, a film pattern having a line width narrower than the diameter of the droplet to be discharged is formed.
また、前記機能液が導電性微粒子を含むことにより、導電性を有する膜パターンが形成される。そのため、この膜パターンは、配線として、各種デバイスに適用される。 The functional liquid contains conductive fine particles, whereby a conductive film pattern is formed. Therefore, this film pattern is applied to various devices as wiring.
また、前記機能液が、熱処理または光処理により導電性を発現する材料を含むことによっても、導電性を有する膜パターンが形成される。そのため、この膜パターンは、配線として、各種デバイスに適用される。 Moreover, the conductive liquid pattern also includes a conductive film pattern by including a material that exhibits conductivity by heat treatment or light treatment. Therefore, this film pattern is applied to various devices as wiring.
本発明のデバイスの製造方法は、基板に膜パターンが形成されてなるデバイスの製造方法であって、上記の膜パターン形成方法により、前記基板に前記膜パターンを形成することを特徴とする。
本発明のデバイス製造方法では、デバイスに形成される膜パターンの微細化や細線化が安定して図られる。そのため、高精度なデバイスを安定して製造することができる。
特に、前記膜パターンが前記基板上に設けられたTFT(膜トランジスタ)等のスイッチング素子の一部を構成する場合には、高集積化されたスイッチング素子を安定的に得ることができる。
The device manufacturing method of the present invention is a device manufacturing method in which a film pattern is formed on a substrate, wherein the film pattern is formed on the substrate by the film pattern forming method described above.
In the device manufacturing method of the present invention, the film pattern formed on the device can be stably miniaturized and thinned. Therefore, a highly accurate device can be manufactured stably.
In particular, when the film pattern constitutes a part of a switching element such as a TFT (film transistor) provided on the substrate, a highly integrated switching element can be stably obtained.
本発明のデバイスは、上記のデバイス製造方法を用いて製造されることを特徴とすることにより、高い精度を有する。 The device of the present invention is manufactured using the above-described device manufacturing method, and thus has high accuracy.
また、本発明の電気光学装置は、上記のデバイスを備えることを特徴とする。
電気光学装置としては、例えば、液晶表示装置、有機エレクトロルミネッセンス表示装置、プラズマ型表示装置などを例示できる。
また、本発明の電子機器は、上記の電気光学装置を備えることを特徴とする。
これらの発明によれば、高精度なデバイスを有することから、品質や性能の向上が図られる。
An electro-optical device according to the present invention includes the above-described device.
Examples of the electro-optical device include a liquid crystal display device, an organic electroluminescence display device, and a plasma display device.
According to another aspect of the invention, there is provided an electronic apparatus including the above electro-optical device.
According to these inventions, since a high-precision device is provided, quality and performance can be improved.
本発明のアクティブマトリクス基板の製造方法は、基板上にゲート配線を形成する第1の工程と、前記ゲート配線上にゲート絶縁膜を形成する第2の工程と、前記ゲート絶縁膜を介して半導体層を積層する第3の工程と、前記ゲート絶縁層の上にソース電極及びドレイン電極を形成する第4の工程と、前記ソース電極及び前記ドレイン電極上に絶縁材料を配置する第5の工程と、前記ドレイン電極と電気的に接続する画素電極を形成する第6の工程と、を有し、前記第1の工程、前記第4の工程及び前記第6の工程の少なくとも1つの工程では上記記載の膜パターン形成方法を用いることを特徴とする。
また本発明のアクティブマトリクス基板は、上記記載のアクティブマトリクス基板の製造方法を用いて製造されたことを特徴とする。
The active matrix substrate manufacturing method of the present invention includes a first step of forming a gate wiring on the substrate, a second step of forming a gate insulating film on the gate wiring, and a semiconductor through the gate insulating film. A third step of stacking layers; a fourth step of forming a source electrode and a drain electrode on the gate insulating layer; a fifth step of disposing an insulating material on the source electrode and the drain electrode; Forming a pixel electrode that is electrically connected to the drain electrode, and at least one of the first step, the fourth step, and the sixth step is described above. The film pattern forming method is used.
The active matrix substrate of the present invention is manufactured using the above-described method for manufacturing an active matrix substrate.
本発明によれば、バンク間に液滴を円滑に配置でき、所望のパターン形状を有する膜パターンを形成できるので、所望性能を有するアクティブマトリクス基板を製造することができる。 According to the present invention, droplets can be smoothly arranged between banks and a film pattern having a desired pattern shape can be formed, so that an active matrix substrate having desired performance can be manufactured.
以下、本発明について図面を参照して説明する。
図1は、本発明の膜パターン形成方法を概念的に示す図である。
本発明の膜パターン形成方法は、基板P上にバンクBを形成するバンク形成工程、バンクBによって区画された領域に機能液Lを配置する材料配置工程、及び基板P上に配置された機能液Lを乾燥させる乾燥(焼成)工程を有している。
The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram conceptually showing the film pattern forming method of the present invention.
The film pattern forming method of the present invention includes a bank forming process for forming a bank B on a substrate P, a material arranging process for arranging a functional liquid L in a region partitioned by the bank B, and a functional liquid arranged on the substrate P. It has a drying (firing) step for drying L.
本発明の膜パターン形成方法では、バンクBによって区画された領域に機能液Lが配置され、この機能液Lが乾燥することにより、基板P上に膜パターンFが形成される。この場合、バンクBによって膜パターンFの形状が規定されることから、例えば隣接するバンクB、B間の幅を狭くするなど、バンクBを適切に形成することにより、膜パターンFの微細化や細線化が図られる。なお、膜パターンFが形成された後、基板PからバンクBを除去してもよく、そのまま基板P上に残してもよい。 In the film pattern forming method of the present invention, the functional liquid L is disposed in an area partitioned by the bank B, and the functional liquid L is dried, whereby the film pattern F is formed on the substrate P. In this case, since the shape of the film pattern F is defined by the bank B, the film pattern F can be made finer by appropriately forming the bank B, for example, by narrowing the width between the adjacent banks B and B. Thinning is achieved. Note that after the film pattern F is formed, the bank B may be removed from the substrate P or may be left on the substrate P as it is.
また、本発明の膜パターン形成方法では、バンクBの形成材料として、無機質の材料が用いられる。無機質の材料によってバンクBを形成する方法としては、例えば、各種コート法やCVD法(化学的気相成長法)等を用いて基板P上に無機質の材料からなる層を形成した後、エッチングやアッシング等によりパターニングして所定の形状のバンクBを得ることができる。また、感光性無機材料を使用し、リソグラフイ法により薄膜パターンに応じたバンクBを形成することができる。なお、基板Pとは別の物体上でバンクBを形成し、それを基板P上に配置してもよい。 In the film pattern forming method of the present invention, an inorganic material is used as the bank B forming material. As a method of forming the bank B with an inorganic material, for example, after forming a layer made of an inorganic material on the substrate P using various coating methods, CVD methods (chemical vapor deposition methods), etc., etching, A bank B having a predetermined shape can be obtained by patterning by ashing or the like. Moreover, the bank B according to a thin film pattern can be formed by a lithographic method using a photosensitive inorganic material. Note that the bank B may be formed on an object different from the substrate P and disposed on the substrate P.
無機質のバンク材料としては、例えば、ポリシラザン、ポリシロキサン、シロキサン系レジスト、ポリシラン系レジスト等の骨格にケイ素を含む高分子無機材料や感光性無機材料、シリカガラス、アルキルシロキサンポリマー、アルキルシルセスキオキサンポリマー、水素化アルキルシルセスキオキサンポリマー、ポリアリールエーテルのうちいずれかを含むスピンオングラス膜、ダイヤモンド膜、及びフッ素化アモルファス炭素膜、などが挙げられる。 Inorganic bank materials include, for example, polysilazanes, polysiloxanes, siloxane resists, polysilane inorganic resists such as high molecular inorganic materials and photosensitive inorganic materials, silica glass, alkylsiloxane polymers, and alkylsilsesquioxanes. Examples thereof include spin-on-glass films, diamond films, and fluorinated amorphous carbon films containing any of polymers, hydrogenated alkylsilsesquioxane polymers, and polyaryl ethers.
さらに、無機質のバンク材料として、例えば、エアロゲル、多孔質シリカ、などを用いてもよい。 Furthermore, as an inorganic bank material, for example, airgel, porous silica, or the like may be used.
また、基板Pとしては、ガラス、石英ガラス、Siウエハ、プラスチックフィルム、金属板など各種のものが挙げられる。さらに、これら各種の素材基板の表面に半導体膜、金属膜、誘電体膜、有機膜などが下地層として形成されたものも含む。 Examples of the substrate P include various types such as glass, quartz glass, Si wafer, plastic film, and metal plate. Further, it includes those in which a semiconductor film, a metal film, a dielectric film, an organic film or the like is formed as a base layer on the surface of these various material substrates.
本発明の膜パターン形成方法では、バンクBの形成材料が無機質の材料を含むことにより、バンクBの耐熱性が高くなり、しかもバンクBと基板Pとの間の熱膨張率の差が小さくなる。そのため、機能液の乾燥時の熱などによるバンクBの劣化が抑制され、膜パターンFが良好な形状で形成される。 In the film pattern forming method of the present invention, the bank B forming material contains an inorganic material, whereby the heat resistance of the bank B is increased, and the difference in thermal expansion coefficient between the bank B and the substrate P is reduced. . Therefore, the deterioration of the bank B due to heat or the like when the functional liquid is dried is suppressed, and the film pattern F is formed in a good shape.
例えば、バンクB及び機能液の上に低融点ガラスなどを予め塗布するなどして、機能液Lを焼成する際、焼成温度が300℃以上の高温になる場合がある。こうした場合にも、バンクBが無機質の材料から形成されていることにより、十分な耐久性が得られる。 For example, when the functional liquid L is fired by previously applying a low melting point glass or the like on the bank B and the functional liquid, the firing temperature may be as high as 300 ° C. or higher. Even in such a case, sufficient durability can be obtained because the bank B is formed of an inorganic material.
なお、バンクBの形成材料として、無機質の材料の他に、金属系の物質や、有機系の物質が含まれてもよい。少なくとも基板P上に形成されるバンクBが無機の骨格を有することにより、上述したバンクBの熱特性の向上が得られる。
また、バンクBを多層状に形成し、少なくとも一つの層を無機質の材料から形成してもよい。
Note that as a material for forming the bank B, in addition to an inorganic material, a metal material or an organic material may be included. Since at least the bank B formed on the substrate P has an inorganic skeleton, the above-described improvement in the thermal characteristics of the bank B can be obtained.
Further, the bank B may be formed in a multilayer shape, and at least one layer may be formed from an inorganic material.
ここで、本発明における機能液Lとしては、各種のものが適用されるが、例えば、導電性微粒子を含む配線パターン用インクが用いられる。
また、機能液Lを、バンクBによって区画された領域に配置する方法としては、液滴吐出法、いわゆるインクジェット法を用いるのが好ましい。液滴吐出法を用いることにより、スピンコート法などの他の塗布技術に比べて、液体材料の消費に無駄が少なく、基板上に配置する機能液の量や位置の制御を行いやすいという利点がある。
Here, various types of functional liquid L are used as the functional liquid L in the present invention. For example, wiring pattern ink containing conductive fine particles is used.
Further, as a method of disposing the functional liquid L in the region partitioned by the bank B, it is preferable to use a droplet discharge method, a so-called ink jet method. Compared to other coating technologies such as spin coating, the use of the droplet discharge method has the advantage that less liquid material is consumed and the amount and position of the functional liquid placed on the substrate can be easily controlled. is there.
配線パターン用インクは、導電性微粒子を分散媒に分散させた分散液からなるものである。
導電性微粒子としては、例えば、金、銀、銅、パラジウム、及びニッケルのうちのいずれかを含有する金属微粒子の他、これらの酸化物、並びに導電性ポリマーや超電導体の微粒子などが用いられる。
これらの導電性微粒子は、分散性を向上させるために表面に有機物などをコーティングして使うこともできる。導電性微粒子の表面にコーティングするコーティング材としては、例えばキシレン、トルエン等の有機溶剤やクエン酸等が挙げられる。
導電性微粒子の粒径は1nm以上0.1μm以下であることが好ましい。0.1μmより大きいと、後述する液体吐出ヘッドのノズルに目詰まりが生じるおそれがある。また、1nmより小さいと、導電性微粒子に対するコーテイング剤の体積比が大きくなり、得られる膜中の有機物の割合が過多となる。
The wiring pattern ink is made of a dispersion liquid in which conductive fine particles are dispersed in a dispersion medium.
Examples of the conductive fine particles include metal fine particles containing any one of gold, silver, copper, palladium, and nickel, oxides thereof, and fine particles of conductive polymers and superconductors.
These conductive fine particles can be used by coating the surface with an organic substance or the like in order to improve dispersibility. Examples of the coating material that coats the surface of the conductive fine particles include organic solvents such as xylene and toluene, citric acid, and the like.
The particle diameter of the conductive fine particles is preferably 1 nm or more and 0.1 μm or less. If it is larger than 0.1 μm, there is a possibility that clogging may occur in the nozzle of the liquid discharge head described later. On the other hand, if it is smaller than 1 nm, the volume ratio of the coating agent to the conductive fine particles becomes large, and the ratio of organic substances in the obtained film becomes excessive.
分散媒としては、上記の導電性微粒子を分散できるもので、凝集を起こさないものであれば特に限定されない。例えば、水の他に、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、n−ヘプタン、n−オクタン、デカン、ドデカン、テトラデカン、トルエン、キシレン、シメン、デュレン、インデン、ジペンテン、テトラヒドロナフタレン、デカヒドロナフタレン、シクロヘキシルベンゼンなどの炭化水素系化合物、またエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、p−ジオキサンなどのエーテル系化合物、さらにプロピレンカーボネート、γ−ブチロラクトン、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサノンなどの極性化合物を例示できる。これらのうち、微粒子の分散性と分散液の安定性、また液滴吐出法(インクジェット法)への適用の容易さの点で、水、アルコール類、炭化水素系化合物、エーテル系化合物が好ましく、より好ましい分散媒としては、水、炭化水素系化合物を挙げることができる。 The dispersion medium is not particularly limited as long as it can disperse the conductive fine particles and does not cause aggregation. For example, in addition to water, alcohols such as methanol, ethanol, propanol, butanol, n-heptane, n-octane, decane, dodecane, tetradecane, toluene, xylene, cymene, durene, indene, dipentene, tetrahydronaphthalene, decahydro Hydrocarbon compounds such as naphthalene and cyclohexylbenzene, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, 1,2-dimethoxyethane, bis (2- Methoxyethyl) ether, ether compounds such as p-dioxane, propylene carbonate, γ- Butyrolactone, N- methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, can be exemplified polar compounds such as cyclohexanone. Of these, water, alcohols, hydrocarbon compounds, and ether compounds are preferred from the viewpoints of fine particle dispersibility and dispersion stability, and ease of application to the droplet discharge method (inkjet method). More preferred dispersion media include water and hydrocarbon compounds.
上記導電性微粒子の分散液の表面張力は0.02N/m以上0.07N/m以下の範囲内であることが好ましい。液滴吐出法にて液体を吐出する際、表面張力が0.02N/m未満であると、インク組成物のノズル面に対する濡れ性が増大するため飛行曲りが生じやすくなり、0.07N/mを超えるとノズル先端でのメニスカスの形状が安定しないため吐出量や、吐出タイミングの制御が困難になる。表面張力を調整するため、上記分散液には、基板との接触角を大きく低下させない範囲で、フッ素系、シリコーン系、ノニオン系などの表面張力調節剤を微量添加するとよい。ノニオン系表面張力調節剤は、液体の基板への濡れ性を向上させ、膜のレベリング性を改良し、膜の微細な凹凸の発生などの防止に役立つものである。上記表面張力調節剤は、必要に応じて、アルコール、エーテル、エステル、ケトン等の有機化合物を含んでもよい。 The surface tension of the conductive fine particle dispersion is preferably in the range of 0.02 N / m to 0.07 N / m. When the liquid is discharged by the droplet discharge method, if the surface tension is less than 0.02 N / m, the wettability of the ink composition with respect to the nozzle surface increases, and thus flight bending easily occurs, resulting in 0.07 N / m. If it exceeds the upper limit, the shape of the meniscus at the nozzle tip is unstable, and it becomes difficult to control the discharge amount and the discharge timing. In order to adjust the surface tension, a small amount of a surface tension regulator such as a fluorine-based, silicone-based, or nonionic-based material may be added to the dispersion within a range that does not significantly reduce the contact angle with the substrate. The nonionic surface tension modifier improves the wettability of the liquid to the substrate, improves the leveling property of the film, and helps prevent the occurrence of fine irregularities in the film. The surface tension modifier may contain an organic compound such as alcohol, ether, ester, or ketone, if necessary.
上記分散液の粘度は1mPa・s以上50mPa・s以下であることが好ましい。液滴吐出法を用いて液体材料を液滴として吐出する際、粘度が1mPa・sより小さい場合にはノズル周辺部がインクの流出により汚染されやすく、また粘度が50mPa・sより大きい場合は、ノズル孔での目詰まり頻度が高くなり円滑な液滴の吐出が困難となる。 The viscosity of the dispersion is preferably 1 mPa · s to 50 mPa · s. When the liquid material is ejected as droplets using the droplet ejection method, if the viscosity is less than 1 mPa · s, the nozzle periphery is easily contaminated by the outflow of ink, and if the viscosity is greater than 50 mPa · s, The frequency of clogging in the nozzle holes increases, and it becomes difficult to smoothly discharge droplets.
液滴吐出法の吐出技術としては、帯電制御方式、加圧振動方式、電気機械変換式、電気熱変換方式、静電吸引方式などが挙げられる。帯電制御方式は、材料に帯電電極で電荷を付与し、偏向電極で材料の飛翔方向を制御してノズルから吐出させるものである。また、加圧振動方式は、材料に30kg/cm2程度の超高圧を印加してノズル先端側に材料を吐出させるものであり、制御電圧をかけない場合には材料が直進してノズルから吐出され、制御電圧をかけると材料間に静電的な反発が起こり、材料が飛散してノズルから吐出されない。また、電気機械変換方式は、ピエゾ素子(圧電素子)がパルス的な電気信号を受けて変形する性質を利用したもので、ピエゾ素子が変形することによって材料を貯留した空間に可撓物質を介して圧力を与え、この空間から材料を押し出してノズルから吐出させるものである。 Examples of the discharge technique of the droplet discharge method include a charge control method, a pressure vibration method, an electromechanical conversion method, an electrothermal conversion method, and an electrostatic suction method. In the charge control method, a charge is applied to a material by a charging electrode, and the flight direction of the material is controlled by a deflection electrode and discharged from a nozzle. In addition, the pressurized vibration method is a method in which an ultra-high pressure of about 30 kg / cm 2 is applied to the material and the material is discharged to the nozzle tip side. When no control voltage is applied, the material goes straight and is discharged from the nozzle. When a control voltage is applied, electrostatic repulsion occurs between the materials, and the materials are scattered and are not discharged from the nozzle. The electromechanical conversion method utilizes the property that a piezoelectric element (piezoelectric element) is deformed by receiving a pulse-like electric signal. The piezoelectric element is deformed through a flexible substance in a space where material is stored. Pressure is applied, and the material is extruded from this space and discharged from the nozzle.
また、電気熱変換方式は、材料を貯留した空間内に設けたヒータにより、材料を急激に気化させてバブル(泡)を発生させ、バブルの圧力によって空間内の材料を吐出させるものである。静電吸引方式は、材料を貯留した空間内に微小圧力を加え、ノズルに材料のメニスカスを形成し、この状態で静電引力を加えてから材料を引き出すものである。また、この他に、電場による流体の粘性変化を利用する方式や、放電火花で飛ばす方式などの技術も適用可能である。液滴吐出法は、材料の使用に無駄が少なく、しかも所望の位置に所望の量の材料を的確に配置できるという利点を有する。なお、液滴吐出法により吐出される液状材料(流動体)の一滴の量は、例えば1〜300ナノグラムである。 In the electrothermal conversion method, a material is rapidly vaporized by a heater provided in a space in which the material is stored to generate bubbles, and the material in the space is discharged by the pressure of the bubbles. In the electrostatic attraction method, a minute pressure is applied in a space in which the material is stored, a meniscus of the material is formed on the nozzle, and an electrostatic attractive force is applied in this state before the material is drawn out. In addition to this, techniques such as a system that uses a change in the viscosity of a fluid due to an electric field and a system that uses a discharge spark are also applicable. The droplet discharge method has an advantage that the use of the material is less wasteful and a desired amount of the material can be accurately disposed at a desired position. The amount of one drop of the liquid material (fluid) discharged by the droplet discharge method is, for example, 1 to 300 nanograms.
本発明の膜パターン形成方法では、上述した配線パターン用インクを用いることにより、導電性を有する膜パターンを形成することができる。この導電性の膜パターンは、配線として、各種デバイスに適用される。 In the film pattern forming method of the present invention, a conductive film pattern can be formed by using the wiring pattern ink described above. This conductive film pattern is applied to various devices as wiring.
図2は、本発明の膜パターン形成方法に用いられる装置の一例として、液滴吐出法によって基板上に液体材料を配置する液滴吐出装置(インクジェット装置)IJの概略構成を示す斜視図である。 FIG. 2 is a perspective view showing a schematic configuration of a droplet discharge device (inkjet device) IJ that arranges a liquid material on a substrate by a droplet discharge method as an example of an apparatus used in the film pattern forming method of the present invention. .
液滴吐出装置IJは、液滴吐出ヘッド1と、X軸方向駆動軸4と、Y軸方向ガイド軸5と、制御装置CONTと、ステージ7と、クリーニング機構8と、基台9と、ヒータ15とを備えている。
ステージ7は、この液滴吐出装置IJによりインク(液体材料)を設けられる基板Pを支持するものであって、基板Pを基準位置に固定する不図示の固定機構を備えている。
The droplet discharge device IJ includes a
The stage 7 supports the substrate P on which ink (liquid material) is provided by the droplet discharge device IJ, and includes a fixing mechanism (not shown) that fixes the substrate P at a reference position.
液滴吐出ヘッド1は、複数の吐出ノズルを備えたマルチノズルタイプの液滴吐出ヘッドであり、長手方向とY軸方向とを一致させている。複数の吐出ノズルは、液滴吐出ヘッド1の下面にY軸方向に並んで一定間隔で設けられている。液滴吐出ヘッド1の吐出ノズルからは、ステージ7に支持されている基板Pに対して、上述した導電性微粒子を含むインクが吐出される。
The
X軸方向駆動軸4には、X軸方向駆動モータ2が接続されている。X軸方向駆動モータ2はステッピングモータ等であり、制御装置CONTからX軸方向の駆動信号が供給されると、X軸方向駆動軸4を回転させる。X軸方向駆動軸4が回転すると、液滴吐出ヘッド1はX軸方向に移動する。
Y軸方向ガイド軸5は、基台9に対して動かないように固定されている。ステージ7は、Y軸方向駆動モータ3を備えている。Y軸方向駆動モータ3はステッピングモータ等であり、制御装置CONTからY軸方向の駆動信号が供給されると、ステージ7をY軸方向に移動する。
An X-axis direction drive
The Y-axis direction guide shaft 5 is fixed so as not to move with respect to the
制御装置CONTは、液滴吐出ヘッド1に液滴の吐出制御用の電圧を供給する。また、X軸方向駆動モータ2に液滴吐出ヘッド1のX軸方向の移動を制御する駆動パルス信号を、Y軸方向駆動モータ3にステージ7のY軸方向の移動を制御する駆動パルス信号を供給する。
クリーニング機構8は、液滴吐出ヘッド1をクリーニングするものである。クリーニング機構8には、図示しないY軸方向の駆動モータが備えられている。このY軸方向の駆動モータの駆動により、クリーニング機構8は、Y軸方向ガイド軸5に沿って移動する。クリーニング機構8の移動も制御装置CONTにより制御される。
ヒータ15は、ここではランプアニールにより基板Pを熱処理する手段であり、基板P上に塗布された液体材料に含まれる溶媒の蒸発及び乾燥を行う。このヒータ15の電源の投入及び遮断も制御装置CONTにより制御される。
The control device CONT supplies the
The cleaning mechanism 8 cleans the
Here, the
液滴吐出装置IJは、液滴吐出ヘッド1と基板Pを支持するステージ7とを相対的に走査しつつ基板Pに対して液滴を吐出する。ここで、以下の説明において、X軸方向を走査方向、X軸方向と直交するY軸方向を非走査方向とする。したがって、液滴吐出ヘッド1の吐出ノズルは、非走査方向であるY軸方向に一定間隔で並んで設けられている。なお、図2では、液滴吐出ヘッド1は、基板Pの進行方向に対し直角に配置されているが、液滴吐出ヘッド1の角度を調整し、基板Pの進行方向に対して交差させるようにしてもよい。このようにすれば、液滴吐出ヘッド1の角度を調整することで、ノズル間のピッチを調節することが出来る。また、基板Pとノズル面との距離を任意に調節することが出来るようにしてもよい。
The droplet discharge device IJ discharges droplets onto the substrate P while relatively scanning the
図3は、ピエゾ方式による液体材料の吐出原理を説明するための図である。
図3において、液体材料(配線パターン用インク、機能液)を収容する液体室21に隣接してピエゾ素子22が設置されている。液体室21には、液体材料を収容する材料タンクを含む液体材料供給系23を介して液体材料が供給される。
ピエゾ素子22は駆動回路24に接続されており、この駆動回路24を介してピエゾ素子22に電圧を印加し、ピエゾ素子22を変形させることにより、液体室21が変形し、ノズル25から液体材料が吐出される。この場合、印加電圧の値を変化させることにより、ピエゾ素子22の歪み量が制御される。また、印加電圧の周波数を変化させることにより、ピエゾ素子22の歪み速度が制御される。
ピエゾ方式による液滴吐出は材料に熱を加えないため、材料の組成に影響を与えにくいという利点を有する。
FIG. 3 is a view for explaining the discharge principle of the liquid material by the piezo method.
In FIG. 3, a piezo element 22 is installed adjacent to a
The piezo element 22 is connected to a
Since the droplet discharge by the piezo method does not apply heat to the material, it has an advantage of hardly affecting the composition of the material.
次に、本発明の膜パターン形成方法の実施形態の一例として、基板上に導電膜配線を形成する方法について図4を参照して詳しく説明する。
本実施形態に係る膜パターン形成方法は、上述した配線パターン用のインク(配線パターン形成材料)を基板上に配置し、その基板上に配線用の導電膜パターンを形成するものであり、バンク形成工程、残渣処理工程、撥液化処理工程、材料配置工程及び中間乾燥工程、焼成工程から概略構成される。
以下、各工程毎に詳細に説明する。
Next, as an example of an embodiment of the film pattern forming method of the present invention, a method for forming a conductive film wiring on a substrate will be described in detail with reference to FIG.
In the film pattern forming method according to the present embodiment, the above-described wiring pattern ink (wiring pattern forming material) is disposed on a substrate, and a conductive film pattern for wiring is formed on the substrate. It is roughly composed of a process, a residue treatment process, a liquid repellency treatment process, a material placement process, an intermediate drying process, and a firing process.
Hereinafter, each process will be described in detail.
(バンク形成工程)
バンクは、仕切部材として機能する部材であり、バンクの形成はリソグラフィ法や印刷法等、任意の方法で行うことができる。例えば、仕切り部材として感光性無機材料をリソグラフィ法にて使用する場合は、スピンコート、スプレーコート、ロールコート、ダイコート、ディップコート等所定の方法で、図4(a)に示すように、基板P上にバンクの高さに合わせてバンクの形成材料31を塗布する。そして、配線パターンに応じたマスクを介しレジストを露光、現像することにより配線を形成すべき領域の周辺に所望のバンクパターンが得られる。
(Bank formation process)
The bank is a member that functions as a partition member, and the bank can be formed by an arbitrary method such as a lithography method or a printing method. For example, when a photosensitive inorganic material is used as a partition member by a lithography method, the substrate P is formed by a predetermined method such as spin coating, spray coating, roll coating, die coating, dip coating, as shown in FIG. A
バンク材料としては、無機質の材料を含むものが用いられる。本例では、例えば、ケイ素、すなわちシリカを主体とした材料が用いられる。 As the bank material, a material containing an inorganic material is used. In this example, for example, silicon, that is, a material mainly composed of silica is used.
これにより、図4(b)に示されるように、配線パターンを形成すべき領域の周辺を囲むように、例えば10〜15μm幅でバンクB、Bが突設される。 As a result, as shown in FIG. 4B, banks B and B with a width of, for example, 10 to 15 μm are provided so as to surround the periphery of the region where the wiring pattern is to be formed.
(残渣処理工程(親液化処理工程))
次に、バンク間におけるバンク形成時のレジスト(有機物)残渣を除去するために、基板Pに対して残渣処理を施す。
残渣処理としては、紫外線を照射することにより残渣処理を行う紫外線(UV)照射処理や大気雰囲気中で酸素を処理ガスとするO2プラズマ処理等を選択できるが、ここではO2プラズマ処理を実施する。
(Residue treatment process (lyophilic treatment process))
Next, in order to remove a resist (organic matter) residue at the time of bank formation between banks, the substrate P is subjected to a residue treatment.
As the residue treatment, an ultraviolet (UV) irradiation treatment for performing a residue treatment by irradiating ultraviolet rays, an O 2 plasma treatment using oxygen as a treatment gas in the air atmosphere, or the like can be selected. Here, the O 2 plasma treatment is performed. To do.
具体的には、基板Pに対しプラズマ放電電極からプラズマ状態の酸素を照射することで行う。O2プラズマ処理の条件としては、例えばプラズマパワーが50〜1000W、酸素ガス流量が50〜100ml/min、プラズマ放電電極に対する基板Pの板搬送速度が0.5〜10mm/sec、基板温度が70〜90℃とされる。
なお、基板Pがガラス基板の場合、その表面は配線パターン形成材料に対して親液性を有しているが、本実施の形態のように残渣処理のためにO2プラズマ処理や紫外線照射処理を施すことで、基板表面の親液性を高めることができる。
Specifically, the substrate P is irradiated with oxygen in a plasma state from a plasma discharge electrode. As conditions for the O 2 plasma treatment, for example, the plasma power is 50 to 1000 W, the oxygen gas flow rate is 50 to 100 ml / min, the plate conveyance speed of the substrate P with respect to the plasma discharge electrode is 0.5 to 10 mm / sec, and the substrate temperature is 70. ˜90 ° C.
When the substrate P is a glass substrate, its surface is lyophilic with respect to the wiring pattern forming material. However, as in the present embodiment, O 2 plasma treatment or ultraviolet irradiation treatment is used for residue treatment. The lyophilicity of the substrate surface can be increased by applying
(撥液化処理工程)
続いて、バンクBに対し撥液化処理を行い、その表面に撥液性を付与する。
撥液化処理としては、例えば大気雰囲気中でテトラフルオロメタンを処理ガスとするプラズマ処理法(CF4プラズマ処理法)を採用することができる。CF4プラズマ処理の条件は、例えばプラズマパワーが50〜1000W、4フッ化メタンガス流量が50〜100ml/min、プラズマ放電電極に対する基体搬送速度が0.5〜1020mm/sec、基体温度が70〜90℃とされる。
なお、処理ガスとしては、テトラフルオロメタン(四フッ化炭素)に限らず、他のフルオロカーボン系のガスを用いることもできる。
(Liquid repellency treatment process)
Subsequently, the bank B is subjected to a liquid repellency treatment to impart liquid repellency to the surface thereof.
As the lyophobic treatment, for example, a plasma treatment method (CF 4 plasma treatment method) using tetrafluoromethane as a treatment gas in an air atmosphere can be employed. The conditions of the CF 4 plasma treatment are, for example, a plasma power of 50 to 1000 W, a tetrafluoromethane gas flow rate of 50 to 100 ml / min, a substrate transport speed to the plasma discharge electrode of 0.5 to 1020 mm / sec, and a substrate temperature of 70 to 90. ℃.
The processing gas is not limited to tetrafluoromethane (carbon tetrafluoride), and other fluorocarbon gases can also be used.
このような撥液化処理を行うことにより、例えば感光性無機材料を採用した場合のバンクB、Bにはこれを構成する樹脂中にフッ素基が導入され、高い撥液性が付与される。なお、上述した親液化処理としてのO2プラズマ処理は、バンクBの形成前に行ってもよいが、O2プラズマによる前処理がなされると、バンクBがフッ素化(撥液化)されやすいという性質があるため、バンクBを形成した後にO2プラズマ処理することが好ましい。
なお、バンクB、Bに対する撥液化処理により、先に親液化処理した基板P表面に対し多少は影響があるものの、特に基板Pがガラス等からなる場合には、撥液化処理によるフッ素基の導入が起こらないため、基板Pはその親液性、すなわち濡れ性が実質上損なわれることはない。
また、バンクB、Bについては、撥液性を有する材料(例えばフッ素基を有する樹脂材料)によって形成することにより、その撥液処理を省略するようにしてもよい。
By performing such a liquid repellency treatment, for example, in the banks B and B when a photosensitive inorganic material is employed, a fluorine group is introduced into the resin constituting the bank B and B, and high liquid repellency is imparted. Incidentally, the O 2 plasma treatment as lyophilic process described above may be performed before formation of the bank B, but if pretreatment with O 2 plasma is made, that the bank B is easily fluorinated (liquid repellent) Because of the nature, it is preferable to perform O 2 plasma treatment after the bank B is formed.
Although the lyophobic treatment for banks B and B has some influence on the surface of the substrate P previously lyophilicized, the introduction of fluorine groups by the lyophobic treatment is particularly effective when the substrate P is made of glass or the like. Therefore, the lyophilicity, that is, the wettability of the substrate P is not substantially impaired.
Further, the banks B and B may be formed of a material having liquid repellency (for example, a resin material having a fluorine group), so that the liquid repellency treatment may be omitted.
(材料配置工程及び中間乾燥工程)
次に、先の図2に示した液滴吐出装置IJによる液滴吐出法を用いて、配線パターン形成材料を、基板P上のバンクB、Bによって区画された領域、すなわちバンクB、B間に配置する。なお、本例では、配線パターン用インク(機能液)として、導電性微粒子を溶媒(分散媒)に分散させた分散液を吐出する。ここで用いられる導電性微粒子は、金、銀、銅、パラジウム、ニッケルの何れかを含有する金属微粒子の他、導電性ポリマーや超電導体の微粒子などが用いられる。
(Material placement process and intermediate drying process)
Next, using the droplet discharge method by the droplet discharge device IJ shown in FIG. 2, the wiring pattern forming material is divided into the regions partitioned by the banks B and B on the substrate P, that is, between the banks B and B. To place. In this example, as the wiring pattern ink (functional liquid), a dispersion liquid in which conductive fine particles are dispersed in a solvent (dispersion medium) is discharged. The conductive fine particles used here include fine particles of conductive polymer or superconductor in addition to metal fine particles containing any of gold, silver, copper, palladium, and nickel.
すなわち、材料配置工程では、図4(c)に示すように、液体吐出ヘッド1から配線パターン形成材料を含む液体材料Lを液滴にして吐出し、その液滴を基板P上のバンクB、B間に配置する。液滴吐出の条件としては、例えば、インク重量4〜7ng/dot、インク速度(吐出速度)5〜7m/secで行う。
That is, in the material arrangement step, as shown in FIG. 4C, the liquid material L including the wiring pattern forming material is discharged from the
このとき、バンクB、Bによって液体材料の配置領域が仕切られていることから、その液体材料Lが基板P上で拡がることが阻止される。
また、図4(c)に示すように、隣接するバンクB、B間の幅Wが液滴の直径Dより狭い場合(すなわち、液滴の直径DがバンクB、B間の幅Wより大きい場合)、図4(d)の二点鎖線で示すように、液滴の一部がバンクB、B上にのるものの、毛管現象などにより液体材料LはバンクB、B間に入り込む。本例では、バンクB、Bは撥液性が付与されていることから、液体材料がバンクBにはじかれ、バンクB、B間により確実に流れ込む。
また、基板Pの表面は親液性を付与されているため、バンクB、B間に流れ込んだ液体材料Lがその区画された領域内で均一に広がる。これにより、吐出する液滴の直径Dより狭い線幅Wの塗膜が形成される。
At this time, since the arrangement area of the liquid material is partitioned by the banks B and B, the liquid material L is prevented from spreading on the substrate P.
Further, as shown in FIG. 4C, when the width W between adjacent banks B and B is narrower than the diameter D of the droplet (that is, the diameter D of the droplet is larger than the width W between the banks B and B). In this case, as shown by a two-dot chain line in FIG. 4D, although a part of the liquid droplets is on the banks B and B, the liquid material L enters between the banks B and B due to capillary action or the like. In this example, since the banks B and B have liquid repellency, the liquid material is repelled by the bank B and flows more reliably between the banks B and B.
Further, since the surface of the substrate P is given lyophilicity, the liquid material L that has flowed between the banks B and B spreads uniformly in the partitioned area. As a result, a coating film having a line width W narrower than the diameter D of the droplet to be discharged is formed.
(中間乾燥工程)
基板Pに液体材料を配置した後、分散媒の除去及び膜厚確保のため、必要に応じて乾燥処理をする。乾燥処理は、例えば基板Pを加熱する通常のホットプレート、電気炉などによる処理の他、ランプアニールによって行なうこともできる。
ランプアニールに使用する光の光源としては、特に限定されないが、赤外線ランプ、キセノンランプ、YAGレーザー、アルゴンレーザー、炭酸ガスレーザー、XeF、XeCl、XeBr、KrF、KrCl、ArF、ArClなどのエキシマレーザーなどを光源として使用することができる。これらの光源は一般には、出力10W以上5000W以下の範囲のものが用いられるが、本実施形態では100W以上1000W以下の範囲で十分である。
(Intermediate drying process)
After disposing the liquid material on the substrate P, a drying process is performed as necessary to remove the dispersion medium and secure the film thickness. The drying process can be performed by lamp annealing, for example, in addition to a process using a normal hot plate or an electric furnace for heating the substrate P.
The light source used for lamp annealing is not particularly limited, but excimer laser such as infrared lamp, xenon lamp, YAG laser, argon laser, carbon dioxide laser, XeF, XeCl, XeBr, KrF, KrCl, ArF, ArCl, etc. Can be used as a light source. In general, these light sources have an output in the range of 10 W to 5000 W, but in the present embodiment, a range of 100 W to 1000 W is sufficient.
(焼成工程)
吐出工程後の乾燥膜は、微粒子間の電気的接触をよくするために、分散媒を完全に除去する必要がある。また、導電性微粒子の表面に分散性を向上させるために有機物などのコーティング材がコーティングされている場合には、このコーティング材も除去する必要がある。そのため、吐出工程後の基板には熱処理及び/又は光処理が施される。
(Baking process)
The dried film after the discharging process needs to completely remove the dispersion medium in order to improve the electrical contact between the fine particles. Further, when a coating material such as an organic material is coated on the surface of the conductive fine particles in order to improve dispersibility, it is also necessary to remove this coating material. For this reason, the substrate after the discharge process is subjected to heat treatment and / or light treatment.
熱処理及び/又は光処理は通常大気中で行なわれるが、必要に応じて、窒素、アルゴン、ヘリウムなどの不活性ガス雰囲気中で行なうこともできる。熱処理及び/又は光処理の処理温度は、分散媒の沸点(蒸気圧)、雰囲気ガスの種類や圧力、微粒子の分散性や酸化性等の熱的挙動、コーティング材の有無や量、基材の耐熱温度などを考慮して適宜決定される。
例えば、有機物からなるコーティング材を除去するためには、約300℃で焼成することが必要である。この場合、例えば、バンクB及び液体材料の乾燥膜の上に低融点ガラスなどを予め塗布してもよい。
以上の工程により吐出工程後の乾燥膜は微粒子間の電気的接触が確保され、図4(e)に示すように、導電性膜(膜パターンF)に変換される。
The heat treatment and / or light treatment is usually performed in the air, but may be performed in an inert gas atmosphere such as nitrogen, argon, helium, etc., if necessary. The treatment temperature of heat treatment and / or light treatment depends on the boiling point (vapor pressure) of the dispersion medium, the type and pressure of the atmospheric gas, the thermal behavior such as fine particle dispersibility and oxidation, the presence and amount of coating material, It is determined appropriately in consideration of the heat resistant temperature.
For example, in order to remove the coating material made of organic matter, it is necessary to bake at about 300 ° C. In this case, for example, low melting point glass or the like may be applied in advance on the bank B and the dry film of the liquid material.
Through the above steps, the dry film after the discharge process ensures electrical contact between the fine particles and is converted into a conductive film (film pattern F) as shown in FIG.
本実施の形態例では、無機質の材料を用いてバンクBが形成されていることから、バンクBの耐熱性が高く、しかもバンクBと基板Pとの間の熱膨張率の差が小さい。そのため、焼成時の高温処理にあっても、バンクBの劣化が抑制され、膜パターンFが良好な形状で形成される。 In the present embodiment, since the bank B is formed using an inorganic material, the heat resistance of the bank B is high, and the difference in coefficient of thermal expansion between the bank B and the substrate P is small. Therefore, even in the high temperature treatment during firing, the deterioration of the bank B is suppressed, and the film pattern F is formed in a good shape.
次に、本発明の電気光学装置の一例である液晶表示装置について説明する。
図5は、本発明に係る液晶表示装置について、各構成要素とともに示す対向基板側から見た平面図であり、図6は図1のH−H’線に沿う断面図である。図7は、液晶表示装置の画像表示領域においてマトリクス状に形成された複数の画素における各種素子、配線等の等価回路図で、図8は、液晶表示装置の部分拡大断面図である。なお、以下の説明に用いた各図においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に縮尺を異ならせてある。
Next, a liquid crystal display device which is an example of the electro-optical device of the invention will be described.
FIG. 5 is a plan view of the liquid crystal display device according to the present invention as seen from the counter substrate side shown together with each component, and FIG. 6 is a cross-sectional view taken along the line HH ′ of FIG. FIG. 7 is an equivalent circuit diagram of various elements and wirings in a plurality of pixels formed in a matrix in the image display region of the liquid crystal display device, and FIG. 8 is a partial enlarged cross-sectional view of the liquid crystal display device. In each drawing used in the following description, the scale is different for each layer and each member so that each layer and each member can be recognized on the drawing.
図5及び図6において、本実施の形態の液晶表示装置(電気光学装置)100は、対をなすTFTアレイ基板10と対向基板20とが光硬化性の封止材であるシール材52によって貼り合わされ、このシール材52によって区画された領域内に液晶50が封入、保持されている。シール材52は、基板面内の領域において閉ざされた枠状に形成されてなり、液晶注入口を備えず、封止材にて封止された痕跡がない構成となっている。
5 and 6, the liquid crystal display device (electro-optical device) 100 according to the present embodiment is bonded to a pair of
シール材52の形成領域の内側の領域には、遮光性材料からなる周辺見切り53が形成されている。シール材52の外側の領域には、データ線駆動回路201及び実装端子202がTFTアレイ基板10の一辺に沿って形成されており、この一辺に隣接する2辺に沿って走査線駆動回路204が形成されている。TFTアレイ基板10の残る一辺には、画像表示領域の両側に設けられた走査線駆動回路204の間を接続するための複数の配線205が設けられている。また、対向基板20のコーナー部の少なくとも1箇所においては、TFTアレイ基板10と対向基板20との間で電気的導通をとるための基板間導通材206が配設されている。
A
なお、データ線駆動回路201及び走査線駆動回路204をTFTアレイ基板10の上に形成する代わりに、例えば、駆動用LSIが実装されたTAB(Tape Automated Bonding)基板とTFTアレイ基板10の周辺部に形成された端子群とを異方性導電膜を介して電気的及び機械的に接続するようにしてもよい。なお、液晶表示装置100においては、使用する液晶50の種類、すなわち、TN(Twisted Nematic)モード、STN(Super Twisted Nematic)モード等の動作モードや、ノーマリホワイトモード/ノーマリブラックモードの別に応じて、位相差板、偏光板等が所定の向きに配置されるが、ここでは図示を省略する。
また、液晶表示装置100をカラー表示用として構成する場合には、対向基板20において、TFTアレイ基板10の後述する各画素電極に対向する領域に、例えば、赤(R)、緑(G)、青(B)のカラーフィルタをその保護膜とともに形成する。
Instead of forming the data line driving
Further, when the liquid
このような構造を有する液晶表示装置100の画像表示領域においては、図7に示すように、複数の画素100aがマトリクス状に構成されているとともに、これらの画素100aの各々には、画素スイッチング用のTFT(スイッチング素子)30が形成されており、画素信号S1、S2、…、Snを供給するデータ線6aがTFT30のソースに電気的に接続されている。データ線6aに書き込む画素信号S1、S2、…、Snは、この順に線順次で供給してもよく、相隣接する複数のデータ線6a同士に対して、グループ毎に供給するようにしてもよい。また、TFT30のゲートには走査線3aが電気的に接続されており、所定のタイミングで、走査線3aにパルス的に走査信号G1、G2、…、Gmをこの順に線順次で印加するように構成されている。
In the image display region of the liquid
画素電極19は、TFT30のドレインに電気的に接続されており、スイッチング素子であるTFT30を一定期間だけオン状態とすることにより、データ線6aから供給される画素信号S1、S2、…、Snを各画素に所定のタイミングで書き込む。このようにして画素電極19を介して液晶に書き込まれた所定レベルの画素信号S1、S2、…、Snは、図6に示す対向基板20の対向電極121との間で一定期間保持される。なお、保持された画素信号S1、S2、…、Snがリークするのを防ぐために、画素電極19と対向電極121との間に形成される液晶容量と並列に蓄積容量60が付加されている。例えば、画素電極19の電圧は、ソース電圧が印加された時間よりも3桁も長い時間だけ蓄積容量60により保持される。これにより、電荷の保持特性は改善され、コントラスト比の高い液晶表示装置100を実現することができる。
The
図8はボトムゲート型TFT30を有する液晶表示装置100の部分拡大断面図であって、TFTアレイ基板10を構成するガラス基板Pには、上記膜パターン形成方法により、導電性膜としてのゲート配線61が形成されている。
FIG. 8 is a partial enlarged cross-sectional view of the liquid
ゲート配線61上には、SiNxからなるゲート絶縁膜62を介してアモルファスシリコン(a−Si)層からなる半導体層63が積層されている。このゲート配線部分に対向する半導体層63の部分がチャネル領域とされている。半導体層63上には、オーミック接合を得るための例えばn+型a−Si層からなる接合層64a及び64bが積層されており、チャネル領域の中央部における半導体層63上には、チャネルを保護するためのSiNxからなる絶縁性のエッチストップ膜65が形成されている。なお、これらゲート絶縁膜62、半導体層63、及びエッチストップ膜65は、蒸着(CVD)後にレジスト塗布、感光・現像、フォトエッチングを施されることで、図示されるようにパターニングされる。
A
さらに、接合層64a、64b及びITOからなる画素電極19も同様に成膜するとともに、フォトエッチングを施されることで、図示するようにパターニングされる。そして、画素電極19、ゲート絶縁膜62及びエッチストップ膜65上にそれぞれバンク66…を突設し、これらバンク66…間に上述した液滴吐出装置IJを用いて、銀化合物の液滴を吐出することでソース線、ドレイン線を形成することができる。
Further, the
本実施の形態の液晶表示装置は、上記膜パターン形成方法により、微細化や細線化が図られた導電膜が、精度よく安定して形成されることから、高い品質や性能が得られる。 In the liquid crystal display device according to the present embodiment, the conductive film which is miniaturized and thinned by the above-described film pattern forming method is formed with high accuracy and stability, so that high quality and performance can be obtained.
また、上述した実施形態においては、本発明に係る膜パターン形成方法を使って、TFT(薄膜トランジスタ)のゲート配線を形成しているが、ソース電極、ドレイン電極、画素電極などの他の構成要素を製造することも可能である。以下、TFTを製造する方法について図9〜図12を参照しながら説明する。 In the above-described embodiment, the gate wiring of the TFT (Thin Film Transistor) is formed by using the film pattern forming method according to the present invention. However, other components such as a source electrode, a drain electrode, and a pixel electrode are formed. It is also possible to manufacture. Hereinafter, a method for manufacturing a TFT will be described with reference to FIGS.
図9に示すように、まず、洗浄したガラス基板610の上面に、1画素ピッチの1/20〜1/10の溝611aを設けるための第1層目のバンク611が、フォトリソグラフィ法に基づいて形成される。このバンク611としては、形成後に光透過性と撥液性を備える必要があり、その素材としては、アクリル樹脂、ポリイミド樹脂、オレフィン樹脂、メラミン樹脂などの高分子材料が好適に用いられる。
As shown in FIG. 9, first, a first-
この形成後のバンク611に撥液性を持たせるために、CF4プラズマ処理等(フッ素成分を有するガスを用いたプラズマ処理)を施す必要があるが、代わりに、バンク611の素材自体に予め撥液成分(フッ素基等)を充填しておいても良い。この場合には、CF4プラズマ処理等を省略することができる。
In order to impart liquid repellency to the
以上のようにして撥液化されたバンク611の、吐出インクに対する接触角としては、40°以上、またガラス面の接触角としては、10°以下を確保することが好ましい。すなわち、本発明者らが試験により確認した結果、例えば導電性微粒子(テトラデカン溶媒)に対する処理後の接触角は、バンク611の素材としてアクリル樹脂系を採用した場合には約54.0°(未処理の場合には10°以下)を確保することができる。なお、これら接触角は、プラズマパワー550Wのもと、4フッ化メタンガスを0.1L/minで供給する処理条件下で得たものである。
The contact angle of the
上記第1層目のバンク形成工程に続くゲート走査電極形成工程(第1回目の導電性パターン形成工程)では、バンク611で区画された描画領域である前記溝611a内を満たすように、導電性材料を含む液滴をインクジェットで吐出することでゲート走査電極612を形成する。そして、ゲート走査電極612を形成するときに、本発明に係るパターンの形成方法が適用される。
In the gate scanning electrode formation step (first conductive pattern formation step) subsequent to the first layer bank formation step, the conductive layer is formed so as to fill the
この時の導電性材料としては、Ag,Al,Au,Cu,パラジウム、Ni,W−si,導電性ポリマーなどが好適に採用可能である。このようにして形成されたゲート走査電極612は、バンク611に十分な撥液性が予め与えられているので、溝611aからはみ出ることなく微細な配線パターンを形成することが可能となっている。
As the conductive material at this time, Ag, Al, Au, Cu, palladium, Ni, W-si, a conductive polymer, or the like can be suitably used. Since the
以上の工程により、基板610上には、バンク611とゲート走査電極612からなる平坦な上面を備えた第1の導電層A1が形成される。
Through the above steps, the first conductive layer A1 having a flat upper surface including the
また、溝611a内における良好な吐出結果を得るためには、図9に示すように、この溝611aの形状として準テーパ(吐出元に向かって開く向きのテーパ形状)を採用するのが好ましい。これにより、吐出された液滴を十分に奥深くまで入り込ませることが可能となる。
In order to obtain a good discharge result in the
次に、図10に示すように、プラズマCVD法によりゲート絶縁膜613、活性層610、コンタクト層609の連続成膜を行う。ゲート絶縁膜613として窒化シリコン膜、活性層610としてアモルファスシリコン膜、コンタクト層609としてn+シリコン膜を原料ガスやプラズマ条件を変化させることにより形成する。CVD法で形成する場合、300℃〜350℃の熱履歴が必要になるが、無機系の材料をバンクに使用することで、透明性、耐熱性に関する問題を回避することが可能である。
Next, as shown in FIG. 10, a
上記半導体層形成工程に続く第2層目のバンク形成工程では、図11に示すように、ゲート絶縁膜613の上面に、1画素ピッチの1/20〜1/10でかつ前記溝611aと交差する溝614aを設けるための2層目のバンク614を、フォトリソグラフィ法に基づいて形成する。このバンク614としては、形成後に光透過性と撥液性を備える必要があり、その素材としては、アクリル樹脂、ポリイミド樹脂、オレフィン樹脂、メラミン樹脂などの高分子材料が好適に用いられる。
In the second bank forming step subsequent to the semiconductor layer forming step, as shown in FIG. 11, the upper surface of the
この形成後のバンク614に撥液性を持たせるためにCF4プラズマ処理等(フッ素成分を有するガスを用いたプラズマ処理)を施す必要があるが、代わりに、バンク614の素材自体に予め撥液成分(フッ素基等)を充填しておくものとしても良い。この場合には、CF4プラズマ処理等を省略することができる。
In order to impart liquid repellency to the formed
以上のようにして撥液化されたバンク614の、吐出インクに対する接触角としては、40°以上を確保することが好ましい。
The contact angle of the
上記第2層目のバンク形成工程に続くソース・ドレイン電極形成工程(第2回目の導電性パターン形成工程)では、バンク614で区画された描画領域である前記溝614a内を満たすように、導電性材料を含む液滴をインクジェットで吐出することで、図12に示すように、前記ゲート走査電極612に対して交差するソース電極615及びソース電極616が形成される。そして、ソース電極615及びドレイン電極616を形成するときに、本発明に係るパターンの形成方法が適用される。
In the source / drain electrode formation step (second conductive pattern formation step) subsequent to the second layer bank formation step, the conductive layer is formed so as to fill the
この時の導電性材料としては、Ag,Al,Au,Cu,パラジウム、Ni,W−si,導電性ポリマーなどが好適に採用可能である。このようにして形成されたソース電極615及びドレイン電極616は、バンク614に十分な撥液性が予め与えられているので、溝614aからはみ出ることなく微細な配線パターンを形成することが可能となっている。
As the conductive material at this time, Ag, Al, Au, Cu, palladium, Ni, W-si, a conductive polymer, or the like can be suitably used. Since the
また、ソース電極615及びドレイン電極616を配置した溝614aを埋めるように絶縁材料617が配置される。以上の工程により、基板610上には、バンク614と絶縁材料617からなる平坦な上面620が形成される。
In addition, an insulating
そして、絶縁材料617にコンタクトホール619を形成するとともに、上面620上にパターニングされた画素電極(ITO)618を形成し、コンタクトホール619を介してドレイン電極616と画素電極618とを接続することで、TFTが形成される。
Then, a
なお、上記実施形態では、TFT30を液晶表示装置100の駆動のためのスイッチング素子として用いる構成としたが、液晶表示装置以外にも例えば有機EL(エレクトロルミネッセンス)表示デバイスに応用が可能である。有機EL表示デバイスは、蛍光性の無機および有機化合物を含む薄膜を、陰極と陽極とで挟んだ構成を有し、前記薄膜に電子および正孔(ホール)を注入して励起させることにより励起子(エキシトン)を生成させ、このエキシトンが再結合する際の光の放出(蛍光・燐光)を利用して発光させる素子である。そして、上記のTFT30を有する基板上に、有機EL表示素子に用いられる蛍光性材料のうち、赤、緑および青色の各発光色を呈する材料すなわち発光層形成材料及び正孔注入/電子輸送層を形成する材料をインクとし、各々をパターニングすることで、自発光フルカラーELデバイスを製造することができる。本発明におけるデバイス(電気光学装置)の範囲にはこのような有機ELデバイスをも含むものである。
In the above embodiment, the
図13は、前記液滴吐出装置IJにより一部の構成要素が製造された有機EL装置の側断面図である。図13を参照しながら、有機EL装置の概略構成を説明する。
図13において、有機EL装置401は、基板411、回路素子部421、画素電極431、バンク部441、発光素子451、陰極461(対向電極)、および封止基板471から構成された有機EL素子402に、フレキシブル基板(図示略)の配線および駆動IC(図示略)を接続したものである。回路素子部421は、アクティブ素子であるTFT60が基板411上に形成され、複数の画素電極431が回路素子部421上に整列して構成されたものである。そして、TFT30を構成するゲート配線61が、上述した実施形態の配線パターンの形成方法により形成されている。
FIG. 13 is a side sectional view of an organic EL device in which some components are manufactured by the droplet discharge device IJ. The schematic configuration of the organic EL device will be described with reference to FIG.
In FIG. 13, an
各画素電極431間にはバンク部441が格子状に形成されており、バンク部441により生じた凹部開口444に、発光素子451が形成されている。なお、発光素子451は、赤色の発光をなす素子と緑色の発光をなす素子と青色の発光をなす素子とからなっており、これによって有機EL装置401は、フルカラー表示を実現するものとなっている。陰極461は、バンク部441および発光素子451の上部全面に形成され、陰極461の上には封止用基板471が積層されている。
有機EL素子を含む有機EL装置401の製造プロセスは、バンク部441を形成するバンク部形成工程と、発光素子451を適切に形成するためのプラズマ処理工程と、発光素子451を形成する発光素子形成工程と、陰極461を形成する対向電極形成工程と、封止用基板471を陰極461上に積層して封止する封止工程とを備えている。
The manufacturing process of the
発光素子形成工程は、凹部開口444、すなわち画素電極431上に正孔注入層452および発光層453を形成することにより発光素子451を形成するもので、正孔注入層形成工程と発光層形成工程とを具備している。そして、正孔注入層形成工程は、正孔注入層452を形成するための液状体材料を各画素電極431上に吐出する第1吐出工程と、吐出された液状体材料を乾燥させて正孔注入層452を形成する第1乾燥工程とを有している。また、発光層形成工程は、発光層453を形成するための液状体材料を正孔注入層452の上に吐出する第2吐出工程と、吐出された液状体材料を乾燥させて発光層453を形成する第2乾燥工程とを有している。なお、発光層453は、前述したように赤、緑、青の3色に対応する材料によって3種類のものが形成されるようになっており、したがって前記の第2吐出工程は、3種類の材料をそれぞれに吐出するために3つの工程からなっている。
The light emitting element forming step is to form the
この発光素子形成工程において、正孔注入層形成工程における第1吐出工程と、発光層形成工程における第2吐出工程とで前記の液滴吐出装置IJを用いることができる。 In the light emitting element forming step, the droplet discharge device IJ can be used in the first discharging step in the hole injection layer forming step and the second discharging step in the light emitting layer forming step.
また、本発明に係るデバイス(電気光学装置)としては、上記の他に、PDP(プラズマディスプレイパネル)や、基板上に形成された小面積の薄膜に膜面に平行に電流を流すことにより、電子放出が生ずる現象を利用する表面伝導型電子放出素子等にも適用可能である。 Moreover, as a device (electro-optical device) according to the present invention, in addition to the above, a current is passed in parallel to the film surface through a PDP (plasma display panel) or a small-area thin film formed on a substrate, The present invention can also be applied to a surface conduction electron-emitting device that utilizes a phenomenon in which electron emission occurs.
次に、本発明の膜パターンの形成方法によって形成される膜パターンを、プラズマ型表示装置に適用した例について説明する。
図14は、本実施形態のプラズマ型表示装置500の分解斜視図を示している。
プラズマ型表示装置500は、互いに対向して配置された基板501、502、及びこれらの間に形成される放電表示部510を含んで構成される。
放電表示部510は、複数の放電室516が集合されたものである。複数の放電室516のうち、赤色放電室516(R)、緑色放電室516(G)、青色放電室516(B)の3つの放電室516が対になって1画素を構成するように配置されている。
Next, an example in which the film pattern formed by the film pattern forming method of the present invention is applied to a plasma display device will be described.
FIG. 14 is an exploded perspective view of the
The
The
基板501の上面には所定の間隔でストライプ状にアドレス電極511が形成され、アドレス電極511と基板501の上面とを覆うように誘電体層519が形成されている。誘電体層519上には、アドレス電極511、511間に位置しかつ各アドレス電極511に沿うように隔壁515が形成されている。隔壁515は、アドレス電極511の幅方向左右両側に隣接する隔壁と、アドレス電極511と直交する方向に延設された隔壁とを含む。また、隔壁515によって仕切られた長方形状の領域に対応して放電室516が形成されている。
また、隔壁515によって区画される長方形状の領域の内側には蛍光体517が配置されている。蛍光体517は、赤、緑、青の何れかの蛍光を発光するもので、赤色放電室516(R)の底部には赤色蛍光体517(R)が、緑色放電室516(G)の底部には緑色蛍光体517(G)が、青色放電室516(B)の底部には青色蛍光体517(B)が各々配置されている。
In addition, a
一方、基板502には、先のアドレス電極511と直交する方向に複数の表示電極512がストライプ状に所定の間隔で形成されている。さらに、これらを覆うように誘電体層513、及びMgOなどからなる保護膜514が形成されている。
基板501と基板502とは、前記アドレス電極511…と表示電極512…を互いに直交させるように対向させて相互に貼り合わされている。
上記アドレス電極511と表示電極512は図示略の交流電源に接続されている。各電極に通電することにより、放電表示部510において蛍光体517が励起発光し、カラー表示が可能となる。
On the other hand, a plurality of
The
The
本実施形態では、上記アドレス電極511、及び表示電極512がそれぞれ、上述した配線パターン形成方法に基づいて形成されているため、小型・薄型化が実現され、断線等の不良が生じない高品質のプラズマ型表示装置を得ることができる。
In the present embodiment, since the
図15は、液晶表示装置の別の実施形態を示す図である。
図15に示す液晶表示装置(電気光学装置)901は、大別するとカラーの液晶パネル(電気光学パネル)902と、液晶パネル902に接続される回路基板903とを備えている。また、必要に応じて、バックライト等の照明装置、その他の付帯機器が液晶パネル902に付設されている。
FIG. 15 is a diagram showing another embodiment of the liquid crystal display device.
A liquid crystal display device (electro-optical device) 901 illustrated in FIG. 15 includes a color liquid crystal panel (electro-optical panel) 902 and a
液晶パネル902は、シール材904によって接着された一対の基板905a及び基板905bを有し、これらの基板905bと基板905bとの間に形成される間隙、いわゆるセルギャップには液晶が封入されている。これらの基板905a及び基板905bは、一般には透光性材料、例えばガラス、合成樹脂等によって形成されている。基板905a及び基板905bの外側表面には偏光板906a及び偏光板906bが貼り付けられている。なお、図15においては、偏光板906bの図示を省略している。
The
また、基板905aの内側表面には電極907aが形成され、基板905bの内側表面には電極907bが形成されている。これらの電極907a、907bはストライプ状または文字、数字、その他の適宜のパターン状に形成されている。また、これらの電極907a、907bは、例えばITO(Indium Tin Oxide:インジウムスズ酸化物)等の透光性材料によって形成されている。基板905aは、基板905bに対して張り出した張り出し部を有し、この張り出し部に複数の端子908が形成されている。これらの端子908は、基板905a上に電極907aを形成するときに電極907aと同時に形成される。従って、これらの端子908は、例えばITOによって形成されている。これらの端子908には、電極907aから一体に延びるもの、及び導電材(不図示)を介して電極907bに接続されるものが含まれる。
An
回路基板903には、配線基板909上の所定位置に液晶駆動用ICとしての半導体素子900が実装されている。なお、図示は省略しているが、半導体素子900が実装される部位以外の部位の所定位置には抵抗、コンデンサ、その他のチップ部品が実装されていてもよい。配線基板909は、例えばポリイミド等の可撓性を有するベース基板911の上に形成されたCu等の金属膜をパターニングして配線パターン912を形成することによって製造されている。
On the
本実施形態では、液晶パネル902における電極907a、907b及び回路基板903における配線パターン912が上記デバイス製造方法によって形成されている。
本実施形態の液晶表示装置によれば、電気特性の不均一が解消された高品質の液晶表示装置を得ることができる。
In this embodiment, the
According to the liquid crystal display device of the present embodiment, it is possible to obtain a high-quality liquid crystal display device in which nonuniformity in electrical characteristics is eliminated.
なお、前述した例はパッシブ型の液晶パネルであるが、アクティブマトリクス型の液晶パネルとしてもよい。すなわち、一方の基板に薄膜トランジスタ(TFT)を形成し、各TFTに対し画素電極を形成する。また、各TFTに電気的に接続する配線(ゲート配線、ソース配線)を上記のようにインクジェット技術を用いて形成することができる。一方、対向する基板には対向電極等が形成されている。このようなアクティブマトリクス型の液晶パネルにも本発明を適用することができる。 Note that the above-described example is a passive liquid crystal panel, but an active matrix liquid crystal panel may be used. That is, a thin film transistor (TFT) is formed on one substrate, and a pixel electrode is formed for each TFT. In addition, wirings (gate wirings and source wirings) that are electrically connected to the TFTs can be formed using the inkjet technique as described above. On the other hand, a counter electrode or the like is formed on the opposing substrate. The present invention can also be applied to such an active matrix liquid crystal panel.
次に、本発明の電子機器の具体例について説明する。
図16(a)は、携帯電話の一例を示した斜視図である。図16(a)において、600は携帯電話本体を示し、601は上記実施形態の液晶表示装置を備えた液晶表示部を示している。
図16(b)は、ワープロ、パソコンなどの携帯型情報処理装置の一例を示した斜視図である。図16(b)において、700は情報処理装置、701はキーボードなどの入力部、703は情報処理本体、702は上記実施形態の液晶表示装置を備えた液晶表示部を示している。
図16(c)は、腕時計型電子機器の一例を示した斜視図である。図16(c)において、800は時計本体を示し、801は上記実施形態の液晶表示装置を備えた液晶表示部を示している。
図16(a)〜(c)に示す電子機器は、上記実施形態の液晶表示装置を備えたものであるので、高い品質や性能が得られる。
なお、本実施形態の電子機器は液晶装置を備えるものとしたが、有機エレクトロルミネッセンス表示装置、プラズマ型表示装置等、他の電気光学装置を備えた電子機器とすることもできる。
Next, specific examples of the electronic device of the present invention will be described.
FIG. 16A is a perspective view showing an example of a mobile phone. In FIG. 16A,
FIG. 16B is a perspective view illustrating an example of a portable information processing apparatus such as a word processor or a personal computer. In FIG. 16B,
FIG. 16C is a perspective view illustrating an example of a wristwatch type electronic device. In FIG. 16C,
Since the electronic apparatus shown in FIGS. 16A to 16C includes the liquid crystal display device of the above-described embodiment, high quality and performance can be obtained.
In addition, although the electronic device of this embodiment shall be provided with a liquid crystal device, it can also be set as the electronic device provided with other electro-optical apparatuses, such as an organic electroluminescent display apparatus and a plasma type display apparatus.
次に、本発明の膜パターンの形成方法によって形成される膜パターンを、アンテナ回路に適用した例について説明する。
図17は、本実施形態例に係る非接触型カード媒体を示しており、非接触型カード媒体1400は、カード基体1402とカードカバー1418から成る筐体内に、半導体集積回路チップ1408とアンテナ回路1412を内蔵し、図示されない外部の送受信機と電磁波または静電容量結合の少なくとも一方により電力供給あるいはデータ授受の少なくとも一方を行うようになっている。
Next, an example in which the film pattern formed by the film pattern forming method of the present invention is applied to an antenna circuit will be described.
FIG. 17 shows a non-contact type card medium according to this embodiment. The non-contact type card medium 1400 includes a semiconductor integrated circuit chip 1408 and an antenna circuit 1412 in a casing made up of a card base 1402 and a card cover 1418. And at least one of power supply and data transmission / reception by at least one of electromagnetic waves or capacitive coupling with an external transceiver (not shown).
本実施形態では、上記アンテナ回路1412が、本発明の膜パターン形成方法に基づいて形成されている。そのため、上記アンテナ回路1412の微細化や細線化が図られ、高い品質や性能を得ることができる。 In the present embodiment, the antenna circuit 1412 is formed based on the film pattern forming method of the present invention. Therefore, the antenna circuit 1412 can be miniaturized and thinned, and high quality and performance can be obtained.
以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 As described above, the preferred embodiments according to the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
B…バンク、P…基板(ガラス基板)、F…膜パターン(導電性膜)、30…TFT(スイッチング素子)、100…液晶表示装置(電気光学装置)、400…非接触型カード媒体(電子機器)。
B ... bank, P ... substrate (glass substrate), F ... film pattern (conductive film), 30 ... TFT (switching element), 100 ... liquid crystal display device (electro-optical device), 400 ... non-contact type card medium (electronic) machine).
Claims (12)
前記基板上にバンクを形成する工程と、
前記バンクによって区画された領域に前記機能液を配置する工程と、
前記基板上に配置された前記機能液を乾燥させる工程とを有し、
前記バンクの形成材料は、無機質の材料を含むことを特徴とする膜パターン形成方法。 A method of forming a film pattern by placing a functional liquid on a substrate,
Forming a bank on the substrate;
Disposing the functional liquid in an area partitioned by the bank;
Drying the functional liquid disposed on the substrate,
The film pattern forming method, wherein the bank forming material includes an inorganic material.
前記バンクに前記基板よりも高い撥液性を付与する工程を有することを特徴とする薄膜パターン形成方法。 In the film | membrane pattern formation method of Claim 1,
A method of forming a thin film pattern, comprising the step of imparting higher liquid repellency to the bank than the substrate.
前記機能液を、液滴吐出法を用いて前記バンクによって区画された領域に配置することを特徴とする膜パターン形成方法。 In the film | membrane pattern formation method of Claim 1 or Claim 2,
A film pattern forming method, wherein the functional liquid is disposed in a region partitioned by the bank using a droplet discharge method.
前記機能液は、導電性微粒子を含むことを特徴とする膜パターン形成方法。 In the film | membrane pattern formation method in any one of Claims 1-3,
The method for forming a film pattern, wherein the functional liquid contains conductive fine particles.
前記機能液には、熱処理または光処理により導電性を発現する材料が含まれることを特徴とする膜パターン形成方法。 In the film | membrane pattern formation method in any one of Claims 1-3,
The method of forming a film pattern, wherein the functional liquid includes a material that exhibits conductivity by heat treatment or light treatment.
請求項1から請求項5のいずれかに記載の膜パターン形成方法により、前記基板に前記膜パターンを形成することを特徴とするデバイス製造方法。 A device manufacturing method in which a film pattern is formed on a substrate,
A device manufacturing method, wherein the film pattern is formed on the substrate by the film pattern forming method according to claim 1.
前記膜パターンは、前記基板上に設けられたスイッチング素子の一部を構成することを特徴とするデバイス製造方法。 The device manufacturing method according to claim 6,
The device manufacturing method, wherein the film pattern constitutes a part of a switching element provided on the substrate.
基板上にゲート配線を形成する第1の工程と、
前記ゲート配線上にゲート絶縁膜を形成する第2の工程と、
前記ゲート絶縁膜を介して半導体層を積層する第3の工程と、
前記ゲート絶縁層の上にソース電極及びドレイン電極を形成する第4の工程と、
前記ソース電極及び前記ドレイン電極上に絶縁材料を配置する第5の工程と、
前記ドレイン電極と電気的に接続する画素電極を形成する第6の工程と、を有し、
前記第1の工程、前記第4の工程及び前記第6の工程の少なくとも1つの工程では請求項1〜5いずれかに記載の膜パターン形成方法を用いることを特徴とするアクティブマトリクス基板の製造方法。 In the manufacturing method of the active matrix substrate,
A first step of forming a gate wiring on the substrate;
A second step of forming a gate insulating film on the gate wiring;
A third step of laminating a semiconductor layer via the gate insulating film;
A fourth step of forming a source electrode and a drain electrode on the gate insulating layer;
A fifth step of disposing an insulating material on the source electrode and the drain electrode;
Forming a pixel electrode electrically connected to the drain electrode,
6. The method of manufacturing an active matrix substrate, wherein the film pattern forming method according to claim 1 is used in at least one of the first step, the fourth step, and the sixth step. .
An active matrix substrate manufactured using the method for manufacturing an active matrix substrate according to claim 11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004112064A JP2005013985A (en) | 2003-05-30 | 2004-04-06 | Method for forming film pattern, device and its production method, electro-optic apparatus, and electronic component, production method of active matrix substrate, active matrix substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003155859 | 2003-05-30 | ||
JP2004112064A JP2005013985A (en) | 2003-05-30 | 2004-04-06 | Method for forming film pattern, device and its production method, electro-optic apparatus, and electronic component, production method of active matrix substrate, active matrix substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005013985A true JP2005013985A (en) | 2005-01-20 |
JP2005013985A5 JP2005013985A5 (en) | 2006-08-17 |
Family
ID=34196629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004112064A Pending JP2005013985A (en) | 2003-05-30 | 2004-04-06 | Method for forming film pattern, device and its production method, electro-optic apparatus, and electronic component, production method of active matrix substrate, active matrix substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005013985A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060089660A (en) * | 2005-02-04 | 2006-08-09 | 세이코 엡슨 가부시키가이샤 | Method for forming film pattern, device and method for manufacturing the same, electro-optical device, and electronic apparatus |
JP2006215305A (en) * | 2005-02-04 | 2006-08-17 | Seiko Epson Corp | Method for manufacturing active matrix substrate, active matrix substrate, electro-optic device, and electronic appliance |
JP2006237402A (en) * | 2005-02-25 | 2006-09-07 | Semiconductor Energy Lab Co Ltd | Semiconductor device and method for fabricating the same |
JP2006352057A (en) * | 2005-05-16 | 2006-12-28 | Seiko Epson Corp | Film pattern forming method, semiconductor device, electro-optical device, and electronic apparatus |
JP2007027588A (en) * | 2005-07-20 | 2007-02-01 | Seiko Epson Corp | Method of forming film pattern, device, electrooptical apparatus, and electronic equipment |
JP2007053334A (en) * | 2005-07-20 | 2007-03-01 | Seiko Epson Corp | Method of forming film pattern, device, electro-optical device, electronic equipment, and method of manufacturing active matrix substrate |
JP2007053333A (en) * | 2005-07-20 | 2007-03-01 | Seiko Epson Corp | Method of forming film pattern, device, electro-optical device, electronic equipment, and method of manufacturing active matrix substrate |
WO2007145103A1 (en) * | 2006-06-14 | 2007-12-21 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
JP2008012384A (en) * | 2006-07-03 | 2008-01-24 | Advanced Pdp Development Corp | Method of forming fine line |
JP2008021640A (en) * | 2006-06-14 | 2008-01-31 | Semiconductor Energy Lab Co Ltd | Method of manufacturing semiconductor device |
JP2008129303A (en) * | 2006-11-21 | 2008-06-05 | Hitachi Displays Ltd | Liquid crystal display device and method for manufacturing the same |
CN100411100C (en) * | 2005-05-11 | 2008-08-13 | 精工爱普生株式会社 | Film pattern, method of forming the film pattern, electric apparatus,and method of manufacturing active matrix substrate |
US7556991B2 (en) | 2005-05-13 | 2009-07-07 | Seiko Epson Corporation | Method for manufacturing thin film transistor, electro-optical device, and electronic apparatus |
US7628667B2 (en) | 2005-12-07 | 2009-12-08 | Seiko Epson Corporation | Method for manufacturing display, display, and electronic device |
JP2010147027A (en) * | 2005-07-06 | 2010-07-01 | Samsung Mobile Display Co Ltd | Flat panel display device, and manufacturing method thereof |
US7847903B2 (en) | 2005-05-27 | 2010-12-07 | Seiko Epson Corporation | Pixel electrode, method for forming the same, electrooptical device, and electronic apparatus |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000187111A (en) * | 1998-12-21 | 2000-07-04 | Seiko Epson Corp | Color filter substrate |
JP2000353594A (en) * | 1998-03-17 | 2000-12-19 | Seiko Epson Corp | Board for patterning thin film |
JP2001130141A (en) * | 1999-10-29 | 2001-05-15 | Three M Innovative Properties Co | Donor sheet, color filter, organic el element and method for manufacturing them |
JP2002131735A (en) * | 2000-10-20 | 2002-05-09 | Canon Inc | Liquid crystal device and method for manufacturing the same |
JP2003058077A (en) * | 2001-08-08 | 2003-02-28 | Fuji Photo Film Co Ltd | Substrate for microfabrication, fabrication method therefor and image-like thin-film forming method |
JP2003318192A (en) * | 2002-04-22 | 2003-11-07 | Seiko Epson Corp | Method for manufacturing device, device using the same, electrooptical device, and electronic device |
JP2004302392A (en) * | 2003-04-01 | 2004-10-28 | Seiko Epson Corp | Display device, electronic apparatus and manufacturing method of the display device |
-
2004
- 2004-04-06 JP JP2004112064A patent/JP2005013985A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000353594A (en) * | 1998-03-17 | 2000-12-19 | Seiko Epson Corp | Board for patterning thin film |
JP2000187111A (en) * | 1998-12-21 | 2000-07-04 | Seiko Epson Corp | Color filter substrate |
JP2001130141A (en) * | 1999-10-29 | 2001-05-15 | Three M Innovative Properties Co | Donor sheet, color filter, organic el element and method for manufacturing them |
JP2002131735A (en) * | 2000-10-20 | 2002-05-09 | Canon Inc | Liquid crystal device and method for manufacturing the same |
JP2003058077A (en) * | 2001-08-08 | 2003-02-28 | Fuji Photo Film Co Ltd | Substrate for microfabrication, fabrication method therefor and image-like thin-film forming method |
JP2003318192A (en) * | 2002-04-22 | 2003-11-07 | Seiko Epson Corp | Method for manufacturing device, device using the same, electrooptical device, and electronic device |
JP2004302392A (en) * | 2003-04-01 | 2004-10-28 | Seiko Epson Corp | Display device, electronic apparatus and manufacturing method of the display device |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006215305A (en) * | 2005-02-04 | 2006-08-17 | Seiko Epson Corp | Method for manufacturing active matrix substrate, active matrix substrate, electro-optic device, and electronic appliance |
KR20060089660A (en) * | 2005-02-04 | 2006-08-09 | 세이코 엡슨 가부시키가이샤 | Method for forming film pattern, device and method for manufacturing the same, electro-optical device, and electronic apparatus |
US7691654B2 (en) | 2005-02-04 | 2010-04-06 | Seiko Epson Corporation | Method for manufacturing active matrix substrate, active matrix substrate, electro-optical device and electronic apparatus |
JP2006237402A (en) * | 2005-02-25 | 2006-09-07 | Semiconductor Energy Lab Co Ltd | Semiconductor device and method for fabricating the same |
CN100411100C (en) * | 2005-05-11 | 2008-08-13 | 精工爱普生株式会社 | Film pattern, method of forming the film pattern, electric apparatus,and method of manufacturing active matrix substrate |
US7556991B2 (en) | 2005-05-13 | 2009-07-07 | Seiko Epson Corporation | Method for manufacturing thin film transistor, electro-optical device, and electronic apparatus |
JP2006352057A (en) * | 2005-05-16 | 2006-12-28 | Seiko Epson Corp | Film pattern forming method, semiconductor device, electro-optical device, and electronic apparatus |
US7847903B2 (en) | 2005-05-27 | 2010-12-07 | Seiko Epson Corporation | Pixel electrode, method for forming the same, electrooptical device, and electronic apparatus |
JP2010147027A (en) * | 2005-07-06 | 2010-07-01 | Samsung Mobile Display Co Ltd | Flat panel display device, and manufacturing method thereof |
JP2007027588A (en) * | 2005-07-20 | 2007-02-01 | Seiko Epson Corp | Method of forming film pattern, device, electrooptical apparatus, and electronic equipment |
JP2007053333A (en) * | 2005-07-20 | 2007-03-01 | Seiko Epson Corp | Method of forming film pattern, device, electro-optical device, electronic equipment, and method of manufacturing active matrix substrate |
JP2007053334A (en) * | 2005-07-20 | 2007-03-01 | Seiko Epson Corp | Method of forming film pattern, device, electro-optical device, electronic equipment, and method of manufacturing active matrix substrate |
JP4677937B2 (en) * | 2005-07-20 | 2011-04-27 | セイコーエプソン株式会社 | Film pattern forming method, device, electro-optical device, electronic apparatus, and active matrix substrate manufacturing method |
US7628667B2 (en) | 2005-12-07 | 2009-12-08 | Seiko Epson Corporation | Method for manufacturing display, display, and electronic device |
JP2008021640A (en) * | 2006-06-14 | 2008-01-31 | Semiconductor Energy Lab Co Ltd | Method of manufacturing semiconductor device |
WO2007145103A1 (en) * | 2006-06-14 | 2007-12-21 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US9064827B2 (en) | 2006-06-14 | 2015-06-23 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
JP2008012384A (en) * | 2006-07-03 | 2008-01-24 | Advanced Pdp Development Corp | Method of forming fine line |
JP2008129303A (en) * | 2006-11-21 | 2008-06-05 | Hitachi Displays Ltd | Liquid crystal display device and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3788467B2 (en) | Pattern forming method, device and device manufacturing method, electro-optical device, electronic apparatus, and active matrix substrate manufacturing method | |
JP4123172B2 (en) | Thin film pattern forming method, device manufacturing method, electro-optical device, and electronic apparatus | |
JP3823981B2 (en) | PATTERN AND WIRING PATTERN FORMING METHOD, DEVICE AND ITS MANUFACTURING METHOD, ELECTRO-OPTICAL DEVICE, ELECTRONIC DEVICE, AND ACTIVE MATRIX SUBSTRATE MANUFACTURING METHOD | |
JP2005019955A (en) | Method for forming thin film pattern and method for manufacturing corresponding devices, electro-optic device and electronic instrument | |
JP2005012173A (en) | Film pattern forming method, device and its manufacturing method, electro-optical device, and electronic apparatus | |
KR100753954B1 (en) | Method for forming wiring pattern, method for manufacturing device, and device | |
JP2004363560A (en) | Substrate, device, process for fabricating device, process for producing active matrix substrate,electrooptic device and electronic apparatus | |
JP2005013984A (en) | Forming method of thin film pattern, device and its production method, production method of liquid crystal display device, liquid crystal display device, production method of active matrix substrate, electrooptical apparatus, and electronic apparatus | |
JP2005013986A (en) | Device and its production method, production method of active matrix substrate and electro-optic apparatus as well as electronic equipment | |
JP2005012179A (en) | Method of forming thin film pattern, device, its manufacturing method, electrooptic device, electronic equipment, and method of manufacturing active matrix substrate | |
JP4240018B2 (en) | Film pattern forming method, device and manufacturing method thereof, electro-optical device, and electronic apparatus | |
JP2005013985A (en) | Method for forming film pattern, device and its production method, electro-optic apparatus, and electronic component, production method of active matrix substrate, active matrix substrate | |
JP4400290B2 (en) | Film pattern forming method, device manufacturing method, and active matrix substrate manufacturing method | |
KR20060089660A (en) | Method for forming film pattern, device and method for manufacturing the same, electro-optical device, and electronic apparatus | |
JP4517583B2 (en) | Line pattern forming method and device manufacturing method | |
JP4572868B2 (en) | Wiring pattern forming method, non-contact card medium manufacturing method, electro-optical device manufacturing method, and active matrix substrate manufacturing method | |
JP4042625B2 (en) | THIN FILM PATTERN FORMING METHOD, DEVICE AND ITS MANUFACTURING METHOD, ELECTRO-OPTICAL DEVICE, AND ELECTRONIC DEVICE | |
JP4192674B2 (en) | Thin film pattern forming method and device manufacturing method | |
JP2004356321A (en) | Process for forming thin film pattern, device and its manufacturing method, electro-optical device, and electronic apparatus | |
JP4075929B2 (en) | Pattern formation method | |
JP4075694B2 (en) | Device manufacturing method | |
JP2004311530A (en) | Pattern forming method, device and its manufacturing method, method of manufacturing liquid crystal display device, method of manufacturing plasma display panel, method of manufacturing organic el device, method of manufacturing field emission display, electro-optical device, and electronic apparatus | |
JP2004305989A (en) | Method for forming film pattern, device and device manufacturing method, electro-optical apparatus and electronic equipment | |
JP2004330164A (en) | Method for forming thin film pattern, device and its production method and electro-optic apparatus as well as electronic equipment | |
JP2004337780A (en) | Method for forming thin film pattern, device, its fabrication method, electro-optical device and electronic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060705 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20061130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090727 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100506 |