[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001170685A - Treating device for nitrogen-containing waste water - Google Patents

Treating device for nitrogen-containing waste water

Info

Publication number
JP2001170685A
JP2001170685A JP36269599A JP36269599A JP2001170685A JP 2001170685 A JP2001170685 A JP 2001170685A JP 36269599 A JP36269599 A JP 36269599A JP 36269599 A JP36269599 A JP 36269599A JP 2001170685 A JP2001170685 A JP 2001170685A
Authority
JP
Japan
Prior art keywords
nitrogen
amount
concentration
organic matter
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36269599A
Other languages
Japanese (ja)
Other versions
JP4335392B2 (en
Inventor
Toru Aoi
透 青井
Akira Cho
亮 張
Tatsuhiko Suzuki
辰彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP36269599A priority Critical patent/JP4335392B2/en
Publication of JP2001170685A publication Critical patent/JP2001170685A/en
Application granted granted Critical
Publication of JP4335392B2 publication Critical patent/JP4335392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a treating device for nitrogen-containing waste water which is capable of stably obtaining treated water of consistent water quality even if the oxidative nitrogen concentration of the treated water fluctuates largely. SOLUTION: This device has an inflow oxidative nitrogen measuring means 15 which measures the oxidative nitrogen concentration in the water to be treated to flow into a denitrification tank 10, an organic matter injecting means 13 for organic matter into the denitrification tank and an organic matter injection rate control means 14 for controlling the organic matter injection rate from the organic matter injecting means 13. The organic matter injection rate control means 14 has an arithmetic section which computes the required amount of the organic matter in accordance with the inflow nitrogen concentration measured by the inflow oxidative nitrogen measuring means 15 and a control section which controls the organic matter injection rate from the organic matter injecting means 13 in accordance with the result computed by the arithmetic section.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒素含有排水の処
理装置に関し、詳しくは、排水中に含まれている窒素を
微生物により生物学的に除去する工程を含んだ窒素含有
排水の処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for treating nitrogen-containing wastewater, and more particularly, to an apparatus for treating nitrogen-containing wastewater that includes a step of biologically removing nitrogen contained in the wastewater by microorganisms. .

【0002】[0002]

【従来の技術】排水中の窒素除去を目的とした排水処理
装置としては、従来から、嫌気(無酸素)槽と好気槽と
を組合わせた嫌気好気活性汚泥法(循環式硝化脱窒法)
が広く行われている。この嫌気好気活性汚泥法は、流入
下水等の被処理水を無酸素槽に流入させるとともに、好
気槽からの硝化液と最終沈殿池からの返送汚泥とを無酸
素槽に循環させるように形成したものであって、好気槽
では、無酸素槽を経て流入するアンモニア性窒素を亜硝
酸性あるいは硝酸性の窒素に酸化し、これらを硝化液と
して無酸素槽に循環させることにより、これらの酸化態
の窒素を流入水中の有機物による酸化反応で窒素ガスに
還元し、水中から除去するようにしている。また、他の
方式の脱窒法も行われているが、基本的には、アンモニ
ア性窒素を酸化して酸化態窒素とし、酸化態窒素を還元
して窒素ガスにする反応となっている。
2. Description of the Related Art As a wastewater treatment apparatus for removing nitrogen from wastewater, a conventional anaerobic and aerobic activated sludge method (circulating nitrification denitrification method) combining an anaerobic (anoxic) tank and an aerobic tank has been used. )
Is widely practiced. This anaerobic and aerobic activated sludge method is to allow the water to be treated, such as inflow sewage, to flow into the anoxic tank, and to circulate the nitrifying liquid from the aerobic tank and the return sludge from the final sedimentation tank to the anoxic tank. In the aerobic tank, in the aerobic tank, the ammonia nitrogen flowing through the anoxic tank is oxidized to nitrite or nitrate nitrogen, and these are circulated to the anoxic tank as a nitrifying solution, thereby Oxidized nitrogen is reduced to nitrogen gas by an oxidation reaction with organic matter in the influent water and removed from the water. In addition, although other types of denitrification methods are also used, basically, the reaction is a reaction in which ammoniacal nitrogen is oxidized to oxidized nitrogen, and oxidized nitrogen is reduced to nitrogen gas.

【0003】上述の脱窒処理を行うに際し、無酸素槽に
おける生物学的な酸化態窒素の還元による窒素除去、即
ち脱窒処理においては、標準的な都市下水の場合は、脱
窒のために有機物を添加する必要はないが、被処理水中
のBODが低い場合は、水素供用体としてメタノール等
の有機物を無酸素槽に添加する必要がある。
[0003] In performing the above-mentioned denitrification treatment, nitrogen removal by reduction of biological oxide nitrogen in an anoxic tank, that is, in the denitrification treatment, in the case of standard municipal sewage, the denitrification is carried out. It is not necessary to add an organic substance, but when the BOD in the water to be treated is low, it is necessary to add an organic substance such as methanol to the oxygen-free tank as a hydrogen donor.

【0004】上述のように、無酸素槽にメタノール等を
添加する場合、例えば、特許第2643478号公報に
は、反応槽内の混合液又は処理液を取出して酸化態窒素
濃度を測定し、測定結果に基づいてメタノール注入量等
を制御することが開示されている。
As described above, when methanol or the like is added to an oxygen-free tank, for example, Japanese Patent No. 2,643,478 discloses that a mixed liquid or a processing liquid in a reaction tank is taken out and the concentration of oxidized nitrogen is measured. It is disclosed that a methanol injection amount or the like is controlled based on the result.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
ように、反応槽内の混合液又は処理液を取出して酸化態
窒素濃度を測定するものでは、流入水(被処理水)中の
窒素含有量が大きく変化しても、反応槽内の窒素濃度は
僅かずつしか変化しないため、通常の変動範囲に隠れて
しまい、適切な制御が行えなくなるおそれがある。ま
た、槽内の酸化態窒素濃度が所定値を超えてからメタノ
ールの注入量を増加させても被処理水の窒素濃度に追随
できず、その結果、一定の水質を保証することができな
くなってしまう。したがって、前記公報記載の方法は、
回分式の窒素除去には有効であっても、他の形式のもの
には適用が困難となっている。
However, as described above, in the case of taking out the mixed solution or the processing solution in the reaction tank and measuring the concentration of oxidized nitrogen, the nitrogen content in the influent water (the water to be treated) is not considered. Even if the value greatly changes, the nitrogen concentration in the reaction tank changes only little by little, so that it may be hidden in a normal fluctuation range, and appropriate control may not be performed. In addition, even if the injection amount of methanol is increased after the oxidized nitrogen concentration in the tank exceeds a predetermined value, it cannot follow the nitrogen concentration of the water to be treated, and as a result, it is impossible to guarantee a constant water quality. I will. Therefore, the method described in the above publication,
Although effective for batch type nitrogen removal, it is difficult to apply to other types.

【0006】そこで本発明は、脱窒槽(反応槽、無酸素
槽)に流入する被処理水の酸化態窒素濃度が大きく変動
しても、一定の水質の処理水を安定して得ることができ
る窒素含有排水の処理装置を提供することを目的として
いる。
Therefore, according to the present invention, even if the concentration of oxidized nitrogen in the water to be treated flowing into the denitrification tank (reaction tank, anoxic tank) fluctuates greatly, it is possible to stably obtain treated water having a constant water quality. It is an object of the present invention to provide an apparatus for treating nitrogen-containing wastewater.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の窒素含有排水の処理装置は、酸化態窒素を
生物学的に窒素に変換する脱窒槽を有する排水処理装置
において、前記脱窒槽に流入する被処理水中の酸化態窒
素濃度を測定する流入酸化態窒素計測手段と、脱窒槽に
有機物を注入する有機物注入手段と、該有機物注入手段
からの有機物注入量を制御する有機物注入量制御手段と
を備え、該有機物注入量制御手段は、前記流入酸化態窒
素計測手段で計測した流入窒素濃度に基づいて有機物の
必要量を演算する演算部と、該演算部での演算結果に基
づいて前記有機物注入手段からの有機物注入量を制御す
る制御部とを備えていることを特徴としている。
In order to achieve the above object, a nitrogen-containing wastewater treatment apparatus according to the present invention is a wastewater treatment apparatus having a denitrification tank for biologically converting oxidized nitrogen into nitrogen. Inflow oxidized nitrogen measurement means for measuring the concentration of oxidized nitrogen in the water to be treated flowing into the nitrification tank, organic substance injection means for injecting organic substances into the denitrification tank, and organic substance injection amount for controlling the amount of organic substances injected from the organic substance injection means Control means, wherein the organic substance injection amount control means calculates a required amount of organic substance based on the inflowing nitrogen concentration measured by the inflowing oxidized nitrogen measurement means, and a calculation section based on a calculation result in the calculation section. And a control unit for controlling the amount of organic substance injected from the organic substance injection means.

【0008】さらに、本発明の窒素含有排水の処理装置
は、前記脱窒槽内の処理水又は該脱窒槽から流出した処
理水中の酸化態窒素濃度を測定する処理水酸化態窒素計
測手段を備え、前記有機物注入量制御手段の演算部は、
前記流入窒素濃度と前記処理水酸化態窒素計測手段で計
測した処理水窒素濃度とに基づいて有機物の必要量を演
算することを特徴とし、特に、前記有機物注入量制御手
段は、前記流入窒素濃度と前記処理水窒素濃度と前記有
機物注入量とをそれぞれ経時的に記憶する記憶手段と、
流入窒素濃度と処理水窒素濃度とから脱窒槽における窒
素除去量を求める窒素除去量算出部と、該窒素除去量算
出部で求めた窒素除去量と前記有機物注入量との間の相
関関係を求める相関関係算出部とを備え、前記演算部
は、相関関係算出部で求めた相関関係と前記流入窒素濃
度とに基づいて有機物の必要量を演算することを特徴と
している。
Further, the apparatus for treating nitrogen-containing wastewater of the present invention comprises a treated hydroxylated nitrogen measuring means for measuring an oxidized nitrogen concentration in treated water in the denitrification tank or treated water flowing out of the denitrification tank, The calculation unit of the organic substance injection amount control means,
The required amount of organic matter is calculated based on the inflow nitrogen concentration and the treated water nitrogen concentration measured by the treated hydroxylated nitrogen measurement means, and in particular, the organic matter injection amount control means comprises the inflow nitrogen concentration And storage means for storing the treated water nitrogen concentration and the organic substance injection amount with time, respectively.
A nitrogen removal amount calculation unit for obtaining the nitrogen removal amount in the denitrification tank from the inflow nitrogen concentration and the treated water nitrogen concentration, and a correlation between the nitrogen removal amount obtained by the nitrogen removal amount calculation unit and the organic substance injection amount is obtained. A correlation calculation unit, wherein the calculation unit calculates a required amount of organic matter based on the correlation obtained by the correlation calculation unit and the inflowing nitrogen concentration.

【0009】また、前記脱窒槽に、槽内の活性汚泥濃度
を測定する汚泥濃度計測手段を設けるとともに、前記有
機物注入量制御手段の演算部は、前記汚泥濃度計測手段
で測定した活性汚泥濃度を含めて有機物の必要量を演算
することを特徴とし、前記有機物注入量制御手段は、前
記流入窒素濃度と前記処理水窒素濃度と前記有機物注入
量と前記活性汚泥濃度とをそれぞれ経時的に記憶する記
憶手段と、前記流入窒素濃度と前記処理水窒素濃度とか
ら脱窒槽における窒素除去量を求める窒素除去量算出部
と、該窒素除去量算出部で求めた窒素除去量と前記活性
汚泥濃度とから単位汚泥濃度当たりの窒素除去速度を求
める窒素除去速度算出部と、該窒素除去速度算出部で求
めた窒素除去速度と前記有機物注入量との間の相関関係
を求める相関関係算出部と備え、前記演算部は、相関関
係算出部で求めた相関関係と前記流入窒素濃度とに基づ
いて有機物の必要量を演算することを特徴としている。
Further, the denitrification tank is provided with sludge concentration measuring means for measuring the activated sludge concentration in the tank, and the arithmetic unit of the organic substance injection amount control means calculates the activated sludge concentration measured by the sludge concentration measuring means. The organic matter injection amount control means stores the inflow nitrogen concentration, the treated water nitrogen concentration, the organic matter injection amount, and the activated sludge concentration with time, respectively. A storage unit, a nitrogen removal amount calculation unit for obtaining the nitrogen removal amount in the denitrification tank from the inflow nitrogen concentration and the treated water nitrogen concentration, and a nitrogen removal amount and the activated sludge concentration obtained by the nitrogen removal amount calculation unit. A nitrogen removal rate calculator for determining a nitrogen removal rate per unit sludge concentration, and a correlation for determining a correlation between the nitrogen removal rate determined by the nitrogen removal rate calculator and the organic substance injection amount. Includes a detection section, the arithmetic unit is characterized in that for calculating the required amount of organic matter on the basis of said inlet nitrogen concentration correlates obtained in the correlation calculating section.

【0010】さらに、前記脱窒槽に流入する被処理水の
流量を測定する流入水量計測手段と、該流入水量計測手
段で測定した流入水量に基づいて脱窒槽内での処理時間
を算出し、該処理時間に基づいて脱窒槽内の処理水量を
制御する処理水量制御手段とを設けたことを特徴とし、
このように形成した前記脱窒槽を、上流の硝化槽と、下
流の化学酸化処理槽との間に設置したことを特徴として
いる。
Further, an inflow water amount measuring means for measuring a flow rate of the water to be treated flowing into the denitrification tank, and a treatment time in the denitrification tank are calculated based on the inflow water amount measured by the inflow water amount measurement means. Characterized in that it is provided with treated water amount control means for controlling the treated water amount in the denitrification tank based on the treatment time,
The denitrification tank thus formed is provided between an upstream nitrification tank and a downstream chemical oxidation treatment tank.

【0011】[0011]

【発明の実施の形態】図1は本発明の窒素含有排水の処
理装置の第1形態例を示す系統図である。この窒素含有
排水の処理装置は、生物学的な脱窒処理、すなわち、酸
化態窒素を生物学的に窒素に変換する処理を行う脱窒槽
10と、該脱窒槽10に被処理水を流入させる被処理水
流入経路11と、脱窒槽10で処理した処理水を流出さ
せる処理水流出経路12と、脱窒槽10内にメタノール
等の有機物を注入する有機物注入手段13と、該有機物
注入手段13からの有機物注入量を制御する有機物注入
量制御手段14と、被処理水流入経路11を流れる被処
理水中の酸化態窒素濃度を測定する流入酸化態窒素計測
手段15とにより形成されている。
FIG. 1 is a system diagram showing a first embodiment of a nitrogen-containing wastewater treatment apparatus according to the present invention. The nitrogen-containing wastewater treatment apparatus includes a denitrification tank 10 that performs a biological denitrification treatment, that is, a treatment that biologically converts oxidized nitrogen into nitrogen, and allows the water to be treated to flow into the denitrification tank 10. The treated water inflow path 11, the treated water outflow path 12 through which treated water treated in the denitrification tank 10 flows out, the organic substance injection means 13 for injecting an organic substance such as methanol into the denitrification tank 10, and the organic substance injection means 13 And an inflowing oxidized nitrogen measuring means 15 for measuring the concentration of oxidized nitrogen in the treated water flowing through the treated water inflow path 11.

【0012】ここで、このように形成した排水処理装置
においては、脱窒槽10で除去する窒素量(窒素除去量
M)と、被処理水流入経路11から流入する被処理水中
の酸化態窒素濃度(流入窒素濃度Cin)と、処理水流
出経路12から流出する処理水中の酸化態窒素濃度(処
理水窒素濃度Cout)と、処理水量(流入水量F)と
の間に、M=F(Cin−Cout)という関係が成り
立つ。
In the wastewater treatment apparatus formed as described above, the amount of nitrogen removed in the denitrification tank 10 (the amount of nitrogen removal M) and the concentration of oxidized nitrogen in the water to be treated flowing from the inflow path 11 for treated water. M = F (Cin−) between the (inflow nitrogen concentration Cin), the oxidized nitrogen concentration in the treated water flowing out of the treated water outflow path 12 (treated water nitrogen concentration Cout), and the treated water amount (inflow water amount F). (Cout).

【0013】この中で、流入水量F及び処理水窒素濃度
Coutが一定とすれば、流入窒素濃度Cinを測定す
ることにより、窒素除去量Mが算出できる。したがっ
て、窒素除去量Mと有機物注入量との間の相関関係をあ
らかじめ求めておけば、この窒素除去量Mと有機物注入
量との相関関係から、有機物注入手段13から脱窒槽1
0内に注入すべき有機物量を算出することができる。
If the inflow water amount F and the treated water nitrogen concentration Cout are constant, the nitrogen removal amount M can be calculated by measuring the inflow nitrogen concentration Cin. Therefore, if the correlation between the nitrogen removal amount M and the organic substance injection amount is determined in advance, the correlation between the nitrogen removal amount M and the organic substance injection amount indicates that the organic substance injection means 13 has the function of the denitrification tank 1.
It is possible to calculate the amount of organic substances to be injected into zero.

【0014】すなわち、本形態例における前記有機物注
入量制御手段14は、前記流入酸化態窒素計測手段15
で計測した流入窒素濃度Cinに基づいて有機物の必要
量を演算する演算部と、該演算部での演算結果に基づい
て前記有機物注入手段13からの有機物注入量を制御す
る制御部とを備えており、演算部で算出した有機物注入
量に応じて制御部が有機物注入手段13に設けた流量調
整弁の開閉制御やポンプの回転数調整等を行い、脱窒槽
10に注入する有機物量を所定量に調整する。
That is, in the present embodiment, the organic substance injection amount control means 14 is provided with the inflowing oxidized nitrogen measurement means 15.
A calculation unit for calculating the required amount of organic matter based on the inflow nitrogen concentration Cin measured in step 1, and a control unit for controlling the amount of organic matter injected from the organic matter injection means 13 based on the calculation result of the calculation unit. The control unit controls the opening and closing of the flow control valve provided in the organic substance injection means 13 and adjusts the rotation speed of the pump in accordance with the organic substance injection amount calculated by the arithmetic unit, and adjusts the organic substance amount injected into the denitrification tank 10 by a predetermined amount. Adjust to

【0015】これにより、脱窒槽10に流入する被処理
水の酸化態窒素濃度に応じた適正な量の有機物を脱窒槽
10内に注入することができるので、被処理水の酸化態
窒素濃度が大きく変動しても、所定量の有機物によって
確実な脱窒処理を行うことができ、処理水の酸化態窒素
濃度を一定濃度以下に維持することができる。
By this, an appropriate amount of organic matter corresponding to the concentration of oxidized nitrogen in the water to be treated flowing into the denitrification tank 10 can be injected into the denitrification tank 10, so that the concentration of oxidized nitrogen in the water to be treated is reduced. Even if it fluctuates greatly, the denitrification treatment can be performed reliably with a predetermined amount of organic matter, and the concentration of oxidized nitrogen in the treated water can be maintained at a certain concentration or less.

【0016】なお、酸化態窒素濃度の測定は、波長が2
20±14nm、好ましくは220±5nmにおける吸
光度と、250±14nm、好ましくは250±10n
mにおける吸光度との差から求めることができる。例え
ば、適当量を被検水を抜出してろ過処理した後、両波長
域の吸光度をそれぞれ測定して差を求め、吸光度差に所
定の演算処理を行うことにより酸化態窒素濃度を求める
ことができる。
Incidentally, the measurement of the concentration of oxidized nitrogen was carried out at a wavelength of 2
Absorbance at 20 ± 14 nm, preferably 220 ± 5 nm, and 250 ± 14 nm, preferably 250 ± 10 n
It can be determined from the difference from the absorbance at m. For example, after extracting an appropriate amount of test water and filtering, the absorbance in both wavelength ranges is measured to determine the difference, and the absorbance difference can be subjected to a predetermined operation to determine the oxidized nitrogen concentration. .

【0017】図2は本発明の窒素含有排水の処理装置の
第2形態例を示す系統図である。なお、以下の説明にお
いて、前記第1形態例の構成要素と同一の構成要素には
同一の符号を付して詳細な説明は省略する。
FIG. 2 is a system diagram showing a second embodiment of the apparatus for treating nitrogen-containing waste water according to the present invention. In the following description, the same components as those of the first embodiment will be denoted by the same reference numerals, and detailed description will be omitted.

【0018】本形態例は、前記第1形態例装置に加え
て、処理水流出経路12に、脱窒槽10から流出した処
理水中の酸化態窒素濃度を測定する処理水酸化態窒素計
測手段16を設け、前記有機物注入量制御手段14の演
算部で、前記流入窒素濃度に加えて、処理水酸化態窒素
計測手段16で計測した処理水窒素濃度も含めて有機物
の必要量を演算するようにしたものである。例えば、流
入窒素濃度に基づいて算出した有機物注入量に対して、
処理水窒素濃度が上昇又は低下したときに、有機物注入
量を増加又は減少させる補正を行うようにする。これに
より、脱窒槽10内の環境が変動しても処理水の酸化態
窒素濃度を一定濃度以下に維持することができる。
In this embodiment, in addition to the apparatus of the first embodiment, a treated hydroxylated nitrogen measuring means 16 for measuring the concentration of oxidized nitrogen in the treated water flowing out of the denitrification tank 10 is provided in the treated water outflow path 12. The calculation unit of the organic substance injection amount control means 14 calculates the required amount of organic substances including the concentration of treated water nitrogen measured by the treated hydroxylated nitrogen measuring means 16 in addition to the concentration of inflow nitrogen. Things. For example, for the organic substance injection amount calculated based on the inflowing nitrogen concentration,
When the concentration of nitrogen in the treated water increases or decreases, a correction for increasing or decreasing the amount of injected organic matter is performed. Thereby, even if the environment in the denitrification tank 10 fluctuates, the oxidized nitrogen concentration of the treated water can be maintained at a certain concentration or less.

【0019】さらに、有機物注入量制御手段14に、流
入窒素濃度Cinと処理水窒素濃度Coutと有機物注
入量Yとを経時的に記憶するメモリーやディスク装置等
の記憶手段と、流入窒素濃度Cinと処理水窒素濃度C
outとから脱窒槽10における窒素除去量Mを求める
窒素除去量算出部と、該窒素除去量算出部で求めた窒素
除去量Mと前記有機物注入量との間の相関関係を求める
相関関係算出部とを設けておき、前記演算部により、相
関関係算出部で求めた相関関係と前記流入窒素濃度Ci
nとに基づいて有機物の必要量を演算することにより、
経時的な流入窒素濃度及び処理水窒素濃度の変動、例え
ば昼夜における変動等に対応して的確な量の有機物を注
入することができるので、より効果的な窒素除去を行う
ことができる。
Further, a storage means such as a memory or a disk device for storing the inflow nitrogen concentration Cin, the treated water nitrogen concentration Cout, and the organic matter injection amount Y over time into the organic substance injection amount control means 14; Treated water nitrogen concentration C
a nitrogen removal amount calculation unit for obtaining the nitrogen removal amount M in the denitrification tank 10 from the out, and a correlation calculation unit for obtaining a correlation between the nitrogen removal amount M obtained by the nitrogen removal amount calculation unit and the organic substance injection amount. Is provided by the calculation unit, and the correlation calculated by the correlation calculation unit and the inflowing nitrogen concentration Ci are calculated.
By calculating the required amount of organic matter based on n
Since an appropriate amount of organic substance can be injected in response to a change in the nitrogen concentration of the inflowing nitrogen and the nitrogen concentration of the treated water with time, for example, a change in the daytime or nighttime, more effective nitrogen removal can be performed.

【0020】なお、脱窒槽10から流出した処理水中の
酸化態窒素濃度を測定するのに代えて、脱窒槽10内の
酸化態窒素濃度を測定するようにしても、窒素流入量と
の関係から、窒素除去量を算出することは可能である。
Incidentally, instead of measuring the concentration of nitrogen oxides in the treated water flowing out of the denitrification tank 10, the concentration of nitrogen oxides in the denitrification tank 10 may be measured. It is possible to calculate the nitrogen removal amount.

【0021】図3は本発明の窒素含有排水の処理装置の
第3形態例を示す系統図である。本形態例は、前記第2
形態例装置に加えて、脱窒槽10内に槽内の活性汚泥濃
度を測定する汚泥濃度計測手段17を設け、前記流入窒
素濃度及び処理水窒素濃度に加えて、汚泥濃度計測手段
17で測定した活性汚泥濃度も含めて有機物の必要量を
演算するようにしたものである。例えば、活性汚泥濃度
の増減に応じて有機物注入量を増減させる補正を行うよ
うにしている。なお、処理水窒素濃度を一定とした場合
は、処理水酸化態窒素計測手段16を設けず、流入酸化
態窒素計測手段15で計測した流入窒素濃度と汚泥濃度
計測手段17で測定した活性汚泥濃度とによって有機物
注入量を算出することもできる。
FIG. 3 is a system diagram showing a third embodiment of the apparatus for treating nitrogen-containing waste water according to the present invention. In this embodiment, the second
In addition to the apparatus of the embodiment, a sludge concentration measuring means 17 for measuring the activated sludge concentration in the denitrification tank 10 was provided in the denitrification tank 10, and the sludge concentration measuring means 17 measured in addition to the inflow nitrogen concentration and the treated water nitrogen concentration. The required amount of organic matter including the activated sludge concentration is calculated. For example, correction is made to increase or decrease the amount of injected organic matter in accordance with the increase or decrease in the activated sludge concentration. When the treated water nitrogen concentration is fixed, the treated hydroxylated nitrogen measuring means 16 is not provided, and the inflowing nitrogen concentration measured by the inflowing oxidized nitrogen measuring means 15 and the activated sludge concentration measured by the sludge concentration measuring means 17 are not provided. Thus, the organic substance injection amount can be calculated.

【0022】また、前記有機物注入量制御手段14に、
流入窒素濃度と処理水窒素濃度と有機物注入量と活性汚
泥濃度とをそれぞれ経時的に記憶する記憶手段と、流入
窒素濃度と処理水窒素濃度とから脱窒槽10における窒
素除去量を求める窒素除去量算出部と、該窒素除去量算
出部で求めた窒素除去量と前記活性汚泥濃度とから単位
汚泥濃度当たりの窒素除去速度を求める窒素除去速度算
出部と、該窒素除去速度算出部で求めた窒素除去速度と
有機物注入量との間の相関関係を求める相関関係算出部
と設け、演算部において、相関関係算出部で求めた相関
関係と流入窒素濃度とに基づいて有機物の必要量を演算
することにより、流入窒素濃度等の経時的な変動に応じ
て活性汚泥における窒素除去能力を有効に利用すること
ができ、窒素除去を効率よく行うことができる。
The organic substance injection amount control means 14 includes:
Storage means for storing the inflow nitrogen concentration, the treated water nitrogen concentration, the organic matter injection amount, and the activated sludge concentration over time, respectively, and the nitrogen removal amount for obtaining the nitrogen removal amount in the denitrification tank 10 from the inflow nitrogen concentration and the treated water nitrogen concentration A calculation unit, a nitrogen removal rate calculation unit that calculates a nitrogen removal rate per unit sludge concentration from the nitrogen removal amount determined by the nitrogen removal amount calculation unit and the activated sludge concentration, and a nitrogen removal rate calculated by the nitrogen removal rate calculation unit. A correlation calculation unit for obtaining a correlation between the removal rate and the organic substance injection amount; and a calculation unit for calculating a required amount of the organic substance based on the correlation obtained by the correlation calculation unit and the inflowing nitrogen concentration. Thereby, the ability to remove nitrogen in the activated sludge can be effectively used in accordance with the temporal variation of the concentration of the inflowing nitrogen, and the nitrogen can be removed efficiently.

【0023】図4は本発明の窒素含有排水の処理装置の
第4形態例を示す系統図である。本形態例は、前記第2
形態例装置に加えて、脱窒槽10の上流に流入水槽18
を設けるとともに、該流入水槽18に流入する被処理水
の流量を測定する流入水量測定手段19と、流入水槽1
8から脱窒槽10に流入する被処理水の流量を制御する
処理水量制御手段20とを設け、流入水量も制御データ
の一つとして用いるようにしたものである。
FIG. 4 is a system diagram showing a fourth embodiment of the apparatus for treating nitrogen-containing waste water according to the present invention. In this embodiment, the second
In addition to the apparatus of the embodiment, an inflow water tank 18 is provided upstream of the denitrification tank 10.
And an inflow water amount measuring means 19 for measuring the flow rate of the water to be treated flowing into the inflow water tank 18;
A treatment water amount control means 20 for controlling the flow rate of the water to be treated flowing from 8 into the denitrification tank 10 is provided, and the amount of inflow water is used as one of the control data.

【0024】通常、下水処理設備では、時間帯や季節、
天候によって流入水量が変動するが、流入水量が変動す
る場合、流入水(被処理水)中の窒素濃度も変動する場
合が多い。一般的には、水量が多くなると窒素濃度が低
くなり、水量が少なくなると窒素濃度が高くなる傾向に
ある。すなわち、水量や窒素濃度が変動しても、処理す
べき全窒素量の変動はそれほど大きくはならない。
Usually, in sewage treatment facilities, time zones, seasons,
The amount of inflow water fluctuates depending on the weather, and when the amount of inflow water fluctuates, the nitrogen concentration in the inflow water (water to be treated) often fluctuates. Generally, as the amount of water increases, the nitrogen concentration tends to decrease, and as the amount of water decreases, the nitrogen concentration tends to increase. That is, even if the water amount or the nitrogen concentration fluctuates, the fluctuation of the total nitrogen amount to be treated does not become so large.

【0025】したがって、流入水量が多くなったときに
脱窒槽10での滞留時間を短くしても十分な脱窒処理を
行うことが可能であるから、少なくとも、前記流入酸化
態窒素計測手段15で測定した流入窒素濃度と流入水量
とによって有機物注入量を制御することにより、流入水
量に応じた最適な脱窒処理を行うことができる。なお、
流入水量と処理水量との関係は、脱窒槽10の処理能力
等に応じてあらかじめ設定しておけばよい。
Therefore, even when the residence time in the denitrification tank 10 is shortened when the amount of inflow water becomes large, a sufficient denitrification treatment can be performed. By controlling the amount of organic matter injected based on the measured inflow nitrogen concentration and the amount of inflow water, an optimal denitrification treatment according to the amount of inflow water can be performed. In addition,
The relationship between the inflow water amount and the treated water amount may be set in advance according to the treatment capacity of the denitrification tank 10 and the like.

【0026】すなわち、流入水量が多くなった場合で
も、窒素濃度が低いので脱窒槽10における滞留時間
(処理時間)を短くして処理水量を多くすることにより
十分な脱窒処理を行えるので、脱窒槽10を大型化する
ことなくコンパクトな設備で流入量の増加に対応するこ
とができる。
That is, even when the amount of inflow water is large, since the nitrogen concentration is low, a sufficient denitrification treatment can be performed by shortening the residence time (treatment time) in the denitrification tank 10 and increasing the amount of treated water. It is possible to cope with an increase in the inflow amount with compact equipment without increasing the size of the nitrification tank 10.

【0027】図5は本発明の窒素含有排水の処理装置の
第5形態例を示す系統図である。本形態例は、前記各形
態例に記載したような脱窒槽10を、好気雰囲気下でア
ンモニア性窒素を除去する硝化槽21と、化学酸化処理
を行う化学酸化処理槽22との間に設置したものであ
る。化学酸化処理方法としては、オゾン、紫外線、過酸
化水素、これら二種以上の組合わせ、あるいは、これら
一種以上と光触媒又は酸化触媒との組合わせを用いるこ
とができる。この化学酸化処理を行うことにより、殺
菌、脱臭、脱色の他に、難分解性有機物の除去も行うこ
とができる。
FIG. 5 is a system diagram showing a fifth embodiment of the apparatus for treating nitrogen-containing waste water according to the present invention. In this embodiment, the denitrification tank 10 as described in each of the above embodiments is installed between a nitrification tank 21 for removing ammonia nitrogen in an aerobic atmosphere and a chemical oxidation treatment tank 22 for performing a chemical oxidation treatment. It was done. As the chemical oxidation treatment method, ozone, ultraviolet light, hydrogen peroxide, a combination of two or more of these, or a combination of one or more of these with a photocatalyst or an oxidation catalyst can be used. By performing this chemical oxidation treatment, in addition to sterilization, deodorization, and decolorization, it is possible to remove hardly decomposable organic substances.

【0028】硝化槽21では、処理水量や流入窒素量の
急激な変動により硝化不良が発生すると、亜硝酸が生成
することがある。この亜硝酸は、化学酸化処理槽22で
の化学酸化処理でスカベンジャとなり、オゾン等の酸化
剤を消費してしまうので、化学酸化処理槽22に流入す
る脱窒処理水中に亜硝酸が存在すると、酸化剤の利用効
率が大幅に低下してしまう。
In the nitrification tank 21, if nitrification failure occurs due to a sudden change in the amount of treated water or the amount of inflowing nitrogen, nitrite may be generated. This nitrous acid becomes a scavenger in the chemical oxidation treatment in the chemical oxidation treatment tank 22 and consumes an oxidizing agent such as ozone. Therefore, if nitrite is present in the denitrification treatment water flowing into the chemical oxidation treatment tank 22, The use efficiency of the oxidizing agent is greatly reduced.

【0029】したがって、硝化槽21と化学酸化処理槽
22との間に、前記有機物注入量制御手段14等を備え
た脱窒槽10を設置することにより、硝化槽21からの
硝化処理水中の亜硝酸濃度が急増しても、流入酸化態窒
素計測手段15で測定した流入窒素濃度等に基づいて必
要量の有機物を注入しながら脱窒処理を行うことによ
り、脱窒槽10で亜硝酸を完全に除去することができる
ので、化学酸化処理槽22に亜硝酸が流入することが無
くなり、化学酸化処理槽22における酸化剤の有効利
用、すなわち、化学酸化処理槽22での化学酸化処理を
効率よく行うことができる。
Therefore, by installing the denitrification tank 10 provided with the organic substance injection amount control means 14 and the like between the nitrification tank 21 and the chemical oxidation treatment tank 22, nitrite in the nitrification treatment water from the nitrification tank 21 is provided. Even if the concentration suddenly increases, nitric acid is completely removed in the denitrification tank 10 by performing a denitrification treatment while injecting a necessary amount of organic matter based on the inflowing nitrogen concentration measured by the inflowing oxidized nitrogen measuring means 15 and the like. Therefore, nitrous acid does not flow into the chemical oxidation treatment tank 22, and the oxidizing agent in the chemical oxidation treatment tank 22 is effectively used, that is, the chemical oxidation treatment in the chemical oxidation treatment tank 22 is efficiently performed. Can be.

【0030】上記第5形態例に示すように、本発明の処
理装置は、各種処理と組合わせることが可能であり、前
述の循環式硝化脱窒法だけでなく、二段循環式、硝化内
生脱窒法等にも適用が可能である。
As shown in the fifth embodiment, the processing apparatus of the present invention can be combined with various types of processing. In addition to the above-mentioned circulating type nitrification and denitrification method, a two-stage circulating type It is also applicable to a denitrification method and the like.

【0031】[0031]

【発明の効果】以上説明したように、本発明の窒素含有
排水の処理装置によれば、脱窒槽に流入する酸化態窒素
濃度等に応じて有機物の注入量を制御するので、脱窒槽
に流入する被処理水の酸化態窒素濃度が大きく変動して
も、一定の水質の処理水を安定して得ることができる。
さらに、流出した処理水中の酸化態窒素濃度や経時的な
変動要素も加えて有機物注入量を制御することにより、
脱窒処理を効率よく行うことができる。
As described above, according to the apparatus for treating nitrogen-containing waste water of the present invention, the amount of organic matter injected is controlled in accordance with the concentration of oxidized nitrogen flowing into the denitrification tank, so that it flows into the denitrification tank. Even if the concentration of oxidized nitrogen in the water to be treated fluctuates greatly, treated water with a constant water quality can be stably obtained.
Furthermore, by controlling the organic matter injection amount by adding the oxidized nitrogen concentration in the discharged treated water and the time-varying factors,
The denitrification treatment can be performed efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の窒素含有排水の処理装置の第1形態
例を示す系統図である。
FIG. 1 is a system diagram showing a first embodiment of an apparatus for treating nitrogen-containing wastewater of the present invention.

【図2】 同じく処理装置の第2形態例を示す系統図で
ある。
FIG. 2 is a system diagram showing a second embodiment of the processing apparatus.

【図3】 同じく処理装置の第3形態例を示す系統図で
ある。
FIG. 3 is a system diagram showing a third embodiment of the processing apparatus.

【図4】 同じく処理装置の第4形態例を示す系統図で
ある。
FIG. 4 is a system diagram showing a fourth embodiment of the processing apparatus.

【図5】 同じく処理装置の第5形態例を示す系統図で
ある。
FIG. 5 is a system diagram showing a fifth embodiment of the processing apparatus.

【符号の説明】[Explanation of symbols]

10…脱窒槽、11…被処理水流入経路、12…処理水
流出経路、13…有機物注入手段、14…有機物注入量
制御手段、15…流入酸化態窒素計測手段、16…処理
水酸化態窒素計測手段、17…汚泥濃度計測手段、18
…流入水槽、19…流入水量測定手段、20…処理水量
制御手段、21…硝化槽、22…化学酸化処理槽
DESCRIPTION OF SYMBOLS 10 ... Denitrification tank, 11 ... Treatment water inflow path, 12 ... Treatment water outflow path, 13 ... Organic substance injection means, 14 ... Organic substance injection amount control means, 15 ... Inflow oxidized nitrogen measurement means, 16 ... Treatment hydroxylated nitrogen Measuring means, 17: Sludge concentration measuring means, 18
... inflow water tank, 19 ... inflow water amount measuring means, 20 ... treatment water amount control means, 21 ... nitrification tank, 22 ... chemical oxidation treatment tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 辰彦 東京都中央区京橋1丁目3番3号 前澤工 業株式会社内 Fターム(参考) 4D040 AA61 BB02 BB22 BB91 BB93 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tatsuhiko Suzuki 1-3-3 Kyobashi, Chuo-ku, Tokyo F-term (reference) 4D040 AA61 BB02 BB22 BB91 BB93

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 酸化態窒素を生物学的に窒素に変換する
脱窒槽を有する排水処理装置において、前記脱窒槽に流
入する被処理水中の酸化態窒素濃度を測定する流入酸化
態窒素計測手段と、脱窒槽に有機物を注入する有機物注
入手段と、該有機物注入手段からの有機物注入量を制御
する有機物注入量制御手段とを備え、該有機物注入量制
御手段は、前記流入酸化態窒素計測手段で計測した流入
窒素濃度に基づいて有機物の必要量を演算する演算部
と、該演算部での演算結果に基づいて前記有機物注入手
段からの有機物注入量を制御する制御部とを備えている
ことを特徴とする窒素含有排水の処理装置。
1. A wastewater treatment apparatus having a denitrification tank for biologically converting oxidized nitrogen into nitrogen, wherein inflow oxidized nitrogen measuring means for measuring the concentration of oxidized nitrogen in the water to be treated flowing into the denitrification tank. An organic substance injection means for injecting an organic substance into the denitrification tank, and an organic substance injection quantity control means for controlling an organic substance injection quantity from the organic substance injection means, wherein the organic substance injection quantity control means is the inflowing oxidized nitrogen measuring means. An arithmetic unit for calculating the required amount of organic matter based on the measured inflowing nitrogen concentration, and a control unit for controlling the amount of organic matter injected from the organic matter injection means based on the calculation result in the arithmetic unit. Characteristic nitrogen wastewater treatment equipment.
【請求項2】 前記脱窒槽内の処理水又は該脱窒槽から
流出した処理水中の酸化態窒素濃度を測定する処理水酸
化態窒素計測手段を備え、前記有機物注入量制御手段の
演算部は、前記流入窒素濃度と前記処理水酸化態窒素計
測手段で計測した処理水窒素濃度とに基づいて有機物の
必要量を演算することを特徴とする請求項1記載の窒素
含有排水の処理装置。
2. A processing hydroxylated nitrogen measuring means for measuring a concentration of oxidized nitrogen in treated water in the denitrification tank or treated water flowing out of the denitrification tank, and an arithmetic unit of the organic substance injection amount control means includes: 2. The nitrogen-containing wastewater treatment apparatus according to claim 1, wherein a required amount of organic matter is calculated based on the inflow nitrogen concentration and the treated water nitrogen concentration measured by the treated hydroxylated nitrogen measuring means.
【請求項3】 前記有機物注入量制御手段は、前記流入
窒素濃度と前記処理水窒素濃度と前記有機物注入量とを
それぞれ経時的に記憶する記憶手段と、流入窒素濃度と
処理水窒素濃度とから脱窒槽における窒素除去量を求め
る窒素除去量算出部と、該窒素除去量算出部で求めた窒
素除去量と前記有機物注入量との間の相関関係を求める
相関関係算出部とを備え、前記演算部は、相関関係算出
部で求めた相関関係と前記流入窒素濃度とに基づいて有
機物の必要量を演算することを特徴とする請求項2記載
の窒素含有排水の処理装置。
3. The organic matter injection amount control means includes a storage means for storing the inflow nitrogen concentration, the treated water nitrogen concentration, and the organic matter injection amount with time, respectively, and an inflow nitrogen concentration and a treated water nitrogen concentration. A nitrogen removal amount calculation unit for obtaining the nitrogen removal amount in the denitrification tank; and a correlation calculation unit for obtaining a correlation between the nitrogen removal amount obtained by the nitrogen removal amount calculation unit and the organic substance injection amount, wherein the calculation is performed. 3. The apparatus for treating nitrogen-containing wastewater according to claim 2, wherein the unit calculates a required amount of organic matter based on the correlation obtained by the correlation calculation unit and the inflowing nitrogen concentration.
【請求項4】 前記脱窒槽に、槽内の活性汚泥濃度を測
定する汚泥濃度計測手段を設けるとともに、前記有機物
注入量制御手段の演算部は、前記汚泥濃度計測手段で測
定した活性汚泥濃度を含めて有機物の必要量を演算する
ことを特徴とする請求項1,2又は3記載の窒素含有排
水の処理装置。
4. The denitrification tank is provided with a sludge concentration measuring means for measuring the activated sludge concentration in the tank, and an arithmetic unit of the organic substance injection amount control means calculates the activated sludge concentration measured by the sludge concentration measuring means. 4. The apparatus for treating nitrogen-containing wastewater according to claim 1, wherein the required amount of organic matter is calculated.
【請求項5】 前記脱窒槽に、槽内の活性汚泥濃度を測
定する汚泥濃度計測手段を設けるとともに、前記有機物
注入量制御手段は、前記流入窒素濃度と前記処理水窒素
濃度と前記有機物注入量と前記活性汚泥濃度とをそれぞ
れ経時的に記憶する記憶手段と、前記流入窒素濃度と前
記処理水窒素濃度とから脱窒槽における窒素除去量を求
める窒素除去量算出部と、該窒素除去量算出部で求めた
窒素除去量と前記活性汚泥濃度とから単位汚泥濃度当た
りの窒素除去速度を求める窒素除去速度算出部と、該窒
素除去速度算出部で求めた窒素除去速度と前記有機物注
入量との間の相関関係を求める相関関係算出部と備え、
前記演算部は、相関関係算出部で求めた相関関係と前記
流入窒素濃度とに基づいて有機物の必要量を演算するこ
とを特徴とする請求項2記載の窒素含有排水の処理装
置。
5. The denitrification tank is provided with a sludge concentration measuring means for measuring the activated sludge concentration in the tank, and the organic substance injection amount control means comprises the inflow nitrogen concentration, the treated water nitrogen concentration, and the organic substance injection amount. And a storage means for storing the activated sludge concentration over time, a nitrogen removal amount calculation unit for determining the nitrogen removal amount in the denitrification tank from the inflow nitrogen concentration and the treated water nitrogen concentration, and the nitrogen removal amount calculation unit A nitrogen removal rate calculating unit for obtaining a nitrogen removal rate per unit sludge concentration from the nitrogen removal amount obtained in the above and the activated sludge concentration, and between the nitrogen removal rate obtained by the nitrogen removal rate calculation unit and the organic substance injection amount. A correlation calculation unit for determining the correlation of
3. The nitrogen-containing wastewater treatment device according to claim 2, wherein the calculation unit calculates a required amount of organic matter based on the correlation obtained by the correlation calculation unit and the inflowing nitrogen concentration. 4.
【請求項6】 前記脱窒槽に流入する被処理水の流量を
測定する流入水量計測手段と、該流入水量計測手段で測
定した流入水量に基づいて脱窒槽内での処理時間を算出
し、該処理時間に基づいて脱窒槽内の処理水量を制御す
る処理水量制御手段とを設けたことを特徴とする請求項
1,2,3,4又は5記載の窒素含有排水の処理装置。
6. An inflow water amount measuring means for measuring a flow rate of the water to be treated flowing into the denitrification tank, and a processing time in the denitrification tank is calculated based on the inflow water amount measured by the inflow water amount measurement means. 6. The apparatus for treating nitrogen-containing wastewater according to claim 1, further comprising a treated water amount control means for controlling the treated water amount in the denitrification tank based on the treatment time.
【請求項7】 前記脱窒槽を、上流の硝化槽と、下流の
化学酸化処理槽との間に設置したことを特徴とする請求
項1,2,3,4,5又は6記載の窒素含有排水の処理
装置。
7. The nitrogen-containing tank according to claim 1, wherein the denitrification tank is provided between an upstream nitrification tank and a downstream chemical oxidation treatment tank. Wastewater treatment equipment.
JP36269599A 1999-12-21 1999-12-21 Nitrogen-containing wastewater treatment equipment Expired - Fee Related JP4335392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36269599A JP4335392B2 (en) 1999-12-21 1999-12-21 Nitrogen-containing wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36269599A JP4335392B2 (en) 1999-12-21 1999-12-21 Nitrogen-containing wastewater treatment equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009029308A Division JP4335970B2 (en) 2009-02-12 2009-02-12 Nitrogen-containing wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2001170685A true JP2001170685A (en) 2001-06-26
JP4335392B2 JP4335392B2 (en) 2009-09-30

Family

ID=18477517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36269599A Expired - Fee Related JP4335392B2 (en) 1999-12-21 1999-12-21 Nitrogen-containing wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP4335392B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033786A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification by living organisms
JP2003039092A (en) * 2001-07-30 2003-02-12 Kurita Water Ind Ltd Biological denitrification treatment method
KR100436043B1 (en) * 2001-11-20 2004-06-12 (주)극동기모도 Method for removing nitro-oxides in waste water
JP2005087853A (en) * 2003-09-17 2005-04-07 Fuji Electric Systems Co Ltd Method and apparatus for treating methane fermentation waste liquid
JP2009505822A (en) * 2005-08-24 2009-02-12 パークソン コーポレーション Denitrification process and denitrification device
JP2013226508A (en) * 2012-04-25 2013-11-07 Jfe Steel Corp Treatment method of nitrogen-containing wastewater and device
CN105948274A (en) * 2016-06-20 2016-09-21 孟涛 River water treating technology

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033786A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification by living organisms
JP2003039092A (en) * 2001-07-30 2003-02-12 Kurita Water Ind Ltd Biological denitrification treatment method
KR100436043B1 (en) * 2001-11-20 2004-06-12 (주)극동기모도 Method for removing nitro-oxides in waste water
JP2005087853A (en) * 2003-09-17 2005-04-07 Fuji Electric Systems Co Ltd Method and apparatus for treating methane fermentation waste liquid
JP2009505822A (en) * 2005-08-24 2009-02-12 パークソン コーポレーション Denitrification process and denitrification device
US8025796B2 (en) 2005-08-24 2011-09-27 Parkson Corporation Denitrification system
US8034243B2 (en) 2005-08-24 2011-10-11 Parkson Corporation Denitrification process
JP2012187587A (en) * 2005-08-24 2012-10-04 Parkson Corp Denitrification process and system
JP2013226508A (en) * 2012-04-25 2013-11-07 Jfe Steel Corp Treatment method of nitrogen-containing wastewater and device
CN105948274A (en) * 2016-06-20 2016-09-21 孟涛 River water treating technology

Also Published As

Publication number Publication date
JP4335392B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP4335392B2 (en) Nitrogen-containing wastewater treatment equipment
JP2006136820A (en) Method for removing phosphorus and/or nitrogen from sewage
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JP4335970B2 (en) Nitrogen-containing wastewater treatment equipment
JP2013081881A (en) Apparatus for treating ammonia nitrogen content wastewater
JP6334244B2 (en) Water treatment process control system
JP3203774B2 (en) Organic wastewater treatment method and methane fermentation treatment device
JP3384951B2 (en) Biological water treatment method and equipment
JP2015024411A (en) Sewage treatment system
JP2003053375A (en) Device for controlling water quality
JP2004136208A (en) Water treatment device, water treatment method, and water treatment program
JP3260558B2 (en) Control method of intermittent aeration type activated sludge method
JP2006142166A (en) Apparatus for treating waste water biologically and method for controlling operation of the apparatus
JP2001029991A (en) Water treatment method
JPH08224594A (en) Biological nitrification and denitrification device
JP3677811B2 (en) Biological denitrification method
JP2015044197A (en) Sewage treatment system
JP3279008B2 (en) Control method of intermittent aeration type activated sludge method
JP2001121187A (en) Waste water treatment method and apparatus for the same
JP3260574B2 (en) Control method of intermittent aeration type activated sludge method
JP4743100B2 (en) Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus
JP3260575B2 (en) Control method of intermittent aeration type activated sludge method
JPH0362480B2 (en)
JPS6320033A (en) Oxidation and reduction treatment device
JPH0763712B2 (en) Biological denitrification method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4335392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees