JP2005073335A - スイッチング電源回路 - Google Patents
スイッチング電源回路 Download PDFInfo
- Publication number
- JP2005073335A JP2005073335A JP2003297625A JP2003297625A JP2005073335A JP 2005073335 A JP2005073335 A JP 2005073335A JP 2003297625 A JP2003297625 A JP 2003297625A JP 2003297625 A JP2003297625 A JP 2003297625A JP 2005073335 A JP2005073335 A JP 2005073335A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- switching
- winding
- current
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
【解決手段】複合共振形コンバータの二次側に巻線電圧検出方式の同期整流回路を備える。そして、絶縁コンバータトランスPITのギャップ長を1.5mm程度として結合係数を0.8程度にまで低下させると共に、二次巻線の1ターン(T)あたりの誘起電圧レベルが2V/Tとなるように一次巻線N1、二次巻線N2A,N2Bのターン数を設定する。これにより、絶縁コンバータトランスPITのコアの磁束密度が一定以下となることで、重負荷の条件でも二次側整流電流を連続モードとすることができる。さらに、この際、二次側の各整流電流経路に対してインダクタLdを挿入すれば、このインダクタの逆起電力により整流電流に生じる逆電流が抑圧され、無効電力のさらなる低減が図られる。
【選択図】図1
Description
そこで、共振形コンバータによるスイッチング電源回路が各種提案され、実用化されている。共振形コンバータは容易に高電力変換効率が得られると共に、スイッチング動作波形が正弦波状となることで低ノイズが実現される。また、比較的少数の部品点数により構成することができるというメリットも有している。
また、一次巻線N1の他端は、一次側アースに接続される。
ここで、上記直列共振コンデンサC1のキャパシタンスと、一次巻線N1を含む絶縁コンバータトランスPITのリーケージインダクタンスL1によっては、一次側スイッチングコンバータの動作を電流共振形とするための一次側直列共振回路を形成する。
つまり、この図に示す電源回路は、一次側スイッチングコンバータを共振形とするための共振回路に対して、他の共振回路とが組み合わされた形式を採っていることになる。本明細書では、このようなスイッチングコンバータについて、複合共振形コンバータということにする。
先ず、二次側巻線の1T(ターン)あたりの誘起電圧レベルが、5V/Tとなるようして、二次巻線N2A,N2B及び一次巻線N1のターン数を設定することとして、具体的には、二次巻線N2A=N2B=1T、一次巻線N1=30Tとしている。
そして、絶縁コンバータトランスPITのEE型コアの中央磁脚に対しては1.0mm程度のギャップを形成するようにしている。これによって、一次巻線N1と二次巻線N2A,N2Bとで、0.85程度の結合係数を得るようにしている。
また、一次側直列共振コンデンサC1=0.068μF、部分電圧共振コンデンサCp=330pFを選定し、整流ダイオードDo1,Do2には、50A/40Vのショットキーダイオードを選定している。
また、スイッチング素子Q1は、上記スイッチング素子Q2に対して交互にオン/オフするようにしてスイッチングを行う。このため、スイッチング素子Q1//ダンパーダイオードDD1に流れるスイッチング電流IDS1は、スイッチング電流IDS2に対して180°位相がシフトした波形となっている。
つまり、二次巻線N2Aに発生する二次巻線電圧V2は、図9に示すようにして、一次側直列共振電流Ioが正弦波状で流れる期間のみ、所定の絶対値レベルでクランプされる波形が生じ、その間の一次側直列共振電流Ioとして励磁インダクタンスによる鋸歯状波成分が流れる期間は0レベルとなる。二次巻線N2Bには、二次巻線電圧V2を反転させた波形が発生する。
このために、整流ダイオードDo1を流れる整流電流I1と、整流ダイオードDo2を流れる整流電流I2は、それぞれ、一次側直列共振電流Ioが正弦波状で流れる期間DON1、DON2においてのみ流れ、これ以外の期間においては共に流れない。つまり、二次側の整流電流は不連続で平滑コンデンサに流入している。
なお、図10においては、絶縁コンバータトランスPITの二次側の構成のみを示している。一次側の構成は、図8と同様であるものとする。また、定電圧制御方式としても、二次側直流出力電圧Eoのレベルに応じて、一次側スイッチングコンバータのスイッチング周波数を可変制御するスイッチング周波数制御方式を採る。
また、この図10に示す二次側の構成を採る電源回路としても、図8の場合と同様の低電圧大電流(VAC=100V、負荷電力Po=100W、Eo=5V、Io=25A)の条件に対応するものとされる。
同様に、MOS−FETQ4を駆動する駆動回路は、二次巻線N2AとMOS−FETQ3のドレインとの接続点とMOS−FETQ4のゲートの間に、ゲート抵抗Rg2を接続すると共に、MOS−FETQ4のゲートと二次側アースとの間に抵抗R12を接続して形成される。
上記した駆動回路は、二次巻線の電圧を検出することに基づいて、平滑コンデンサCoの正極端子に充電する方向にのみ電流が流れるように、MOS−FETQ3,Q4をスイッチング駆動するための回路である。
この図において、スイッチング素子Q2の両端電圧V1と、これに応じた二次巻線N2A−N2Bの両端に得られる二次巻線電圧V2は、図9と同様のタイミングとなっているものである。なお、図11に示す二次巻線電圧V2は、二次巻線N2Aとゲート抵抗Rg2との接続点側からみた場合の極性となっており、二次巻線N2Bとゲート抵抗Rg1との接続点側からみた場合には逆極性となる。
MOS−FETQ4の駆動回路は、この図に示す極性の二次巻線電圧V2が負極性の所定レベルでクランプされる期間に至ると、MOS−FETQ4のゲートに対して、ゲート抵抗Rg2と抵抗R12とにより設定されるレベルのオン電圧を印加するように動作することになる。
同様にして、MOS−FETQ3の駆動回路(ゲート抵抗Rg1,抵抗R11)は、この図とは反転した極性の二次巻線電圧(V2)が負極性の所定レベルでクランプされる期間に至ると、MOS−FETQ3のゲートに対してオン電圧を印加するように動作することになる。
この不連続モードでは、整流電流I1,I2として、平滑コンデンサCoへの充電電流が0レベルになったとしても、絶縁コンバータトランスPITの一次巻線N1には同じ方向に電流が流れている。これは、先の図9の波形図において、期間DON1,DON2以外の期間において、一次側直列共振電流Ioとして、一次巻線N1の励磁インダクタンス成分がその直前タイミングと同じ極性で流れていることを指している。このために、実際としては、二次巻線N2A,N2Bに誘起される電圧の極性が反転しないために、その間、MOS−FETQ3、Q4は完全にオフにならずにオン状態を維持する。これにより、図示するようにして、期間DON1,DON2以外では、整流電流I1,I2として逆方向の電流が流れてしまう。この期間DON1,DON2以外における逆方向の整流電流I1,I2は、無効電力を生じさせるが、このときの整流電流I1,I2のレベルは、8Apと比較的高いために、その無効電力量も相応に大きなものとなる。
このように、同期整流回路として巻線電圧検出方式を採る場合、整流電流の導通損は低減されるものの、上記のようにして無効電力が発生するために、全体として電力変換効率の有効な向上は図ることが難しいというのが現状である。
図10に示す電源回路の実際としても、先に図8に示した電源回路の構成として説明したようにスイッチング周波数制御による定電圧制御を行うが、軽負荷の条件となって二次側直流出力電圧が上昇すると、スイッチング周波数を高くするようにして二次側直流出力電圧を低下させ、これにより安定化を図るように動作する。
そして、このような軽負荷の状態では、図12に示すスイッチング素子Q2の両端電圧V1に対して、二次側巻線電圧V2はほぼ同じタイミングで反転するようになり、これに応じて、二次側の整流電流I1、I2としては、期間DON1,DON2との間に休止期間が無く平滑コンデンサCoに連続して充電されるようにして流れる。つまり、連続モードとなる。このときには、上記図14の重負荷時の動作として示したような逆方向の整流電流I1、I2が流れる期間は存在しなくなって、これに応じた無効電力も生じていない。
このように、二次側整流回路系を巻線電圧検出方式による同期整流回路に置き換えた構成の電源回路も、重負荷時における電力変換効率の低下が依然として問題となる。
この整流電流検出方式による同期整流回路の構成例を、図13に示す。なお、この図においては、説明を簡単なものとするために、半波整流による構成を示している。
カレントトランスの二次巻線Nbに対しては、抵抗Raが並列に接続されるとともに、相互に順電圧方向が逆となるようにして、ダイオードDa、Dbが並列に接続されて並列接続回路を形成する。また、この並列接続回路に対して、コンパレータ20が接続される。コンパレータ20の反転入力には、基準電圧Vrefが入力される。なお、基準電圧Vrefとコンパレータ20の反転入力との接続点には、上記並列接続回路においてダイオードDaのアノードとダイオードDbのカソードが接続されている側の端部と接続される。また、コンパレータ20の非反転入力には、上記並列接続回路においてダイオードDaのカソードとダイオードDbのアノードが接続されている側の端部が接続される。
この場合、コンパレータ20の出力は、バッファ21により増幅されてMOS−FETQ4のゲートに印加されるようになっている。
二次巻線N2に誘起される電圧が、平滑コンデンサCoの両端電圧(Eo)よりも大きくなると、先ず、MOS−FETQ4のボディダイオードのアノード→カソードの方向により、平滑コンデンサCoへ充電するようにして整流電流Idが流れ始める。この整流電流Idは、カレントトランスの一次巻線Naに流れるので、カレントトランスの二次巻線Nbには、一次巻線Naに流れる整流電流Idに応じた電圧Vnbが誘起される。コンパレータ20では、基準電圧Vrefと電圧Vnbとを比較して、電圧Vnbが基準電圧Vrefを越えるとHレベルを出力する。このHレベルの出力がバッファ21からオン電圧としてMOS−FETQ4のゲートに対して印加され、MOS−FETQ4をオンさせる。これにより、整流電流IdがMOS−FETQ4のドレイン→ソース方向により流れることになる。図14では、正極性により流れる整流電流Idとして示されている。
例えば、図8に示した電源回路の二次側の構成を、上記図13に示した構成に基づく、全波整流の整流電流検出方式による同期整流回路とした場合のDC→DC電力変換効率としては、先の図9、図11などと同様の条件の下で測定したところ、90%程度にまで向上するという測定結果が得られた。
特に、図13に示した一次側のスイッチングコンバータの構成を基本として整流電流検出方式の同期整流回路を二次側に備えることとした場合、二次側には全波整流回路を備える必要がある。従って、上記したカレントトランス及び駆動回路系は、MOS−FETQ3,Q4ごとに対応して2組必要とされることになり、上記した問題がさらに大きくなる。
このようにして、巻線電圧検出方式と整流電流検出方式とでは、巻線電圧検出方式のほうが、無効電力により電力変換効率の面で不利ではあるが、回路構成が簡略であるのに対して、整流電流検出方式のほうは、無効電力が生じないので電力変換効率の面では有利であるが、回路構成が複雑になる、というトレードオフの関係にある。
従って、同期整流回路を備える電源回路としては、できるだけ簡略な回路構成でありながら、かつ、無効電力による損失増加が解消されるような構成を採ることが求められている、ということになる。
すなわち、先ず、入力された直流入力電圧を断続するようにしてスイッチングを行うスイッチング素子を備えて形成されるスイッチング手段と、上記スイッチング素子をスイッチング駆動する駆動手段と、上記スイッチング手段のスイッチング出力を一次側から二次側に伝送するものであり、少なくとも一次巻線と二次巻線が巻装される絶縁コンバータトランスとを備える。
そして、少なくとも、上記絶縁コンバータトランスの一次巻線の漏洩インダクタンス成分と、自己のキャパシタンスとによって上記スイッチング手段の動作を共振形とするための一次側共振回路を形成するようにして、一次側の所定の部位に接続される一次側共振コンデンサと、上記スイッチング手段を形成するスイッチング素子のうち、少なくとも一方のスイッチング素子に対して並列に接続される部分共振コンデンサのキャパシタンスと、上記絶縁コンバータトランスの一次巻線の漏洩インダクタンス成分によって形成され、上記スイッチング手段を形成するスイッチング素子のターンオフ期間に部分電圧共振動作を行う一次側部分電圧共振回路を備え、さらに上記絶縁コンバータトランスの二次巻線に誘起される交番電圧を全波整流して二次側平滑コンデンサに整流電流を充電することで、上記二次側平滑コンデンサの両端電圧として二次側直流出力電圧を得るようにされた同期整流回路と、を備えるようにする。
そして、このような構成において、先ずは、上記絶縁コンバータトランスの磁束密度を、上記二次側直流電圧に接続される負荷条件の変動にかかわらず、上記全波整流動作により同期整流回路に流れる二次側整流電流が連続モードとなるようにして、所定以下となるように設定する。
さらに、上記同期整流回路としては、上記絶縁コンバータトランスの二次巻線をセンタータップしたタップ出力を平滑コンデンサの正極端子に接続するとともに、
上記二次巻線のセンタータップしていない側の一方の端部と二次側アースとの間に直列接続される第1の電界効果トランジスタと、上記二次巻線のセンタータップしていない側の他方の端部と二次側アースとの間に直列接続される第2の電界効果トランジスタとを備えるようにする。
そして、上記第1の電界効果トランジスタが整流電流を流すべき半波の期間に対応する二次巻線電圧を抵抗素子により検出して、上記第1の電界効果トランジスタをオンとするためのゲート電圧を出力するようにされた第1の駆動回路と、上記第2の電界効果トランジスタが整流電流を流すべき半波の期間に対応する二次巻線電圧を抵抗素子により検出して、上記第2の電界効果トランジスタをオンとするためのゲート電圧を出力するようにされた第2の駆動回路とを備えるようにする。
その上で、上記二次巻線のセンタータップしていない側の一方の端部と上記第1の電界効果トランジスタとの間、及び上記二次巻線のセンタータップしていない側の他方の端部と第2の電界効果トランジスタとの間に、それぞれ直列に挿入される所要のインダクタンスによるインダクタ素子を備えるようにした。
そして、絶縁コンバータトランスの磁束密度が所定以下となるようにしていることで、負荷変動にかかわらず、二次側整流電流が常に連続モードとなるようにしている。二次側整流電流が連続モードとなれば、巻線電圧検出方式による同期整流回路において問題となる、二次側整流電流の不連続期間において整流電流に逆方向電流が生じることに依る無効電力を低減することができる。
その上で、上記のようにして二次巻線と各電界効果トランジスタとの間には、所要のインダクタンスによるインダクタ素子が直列に挿入される。このインダクタ素子によっては、そこに電流が流れる際の逆起電力により整流電流に生じる逆方向電流が抑圧される。つまり、これによって、上記逆方向電流が流れることによる無効電力についての、さらなる低減が図られる。
つまり、本発明によっては、同期整流回路を備える複合共振形コンバータとして、高い電力変換効率を得ることと、回路の簡易化による回路規模の縮小、及び低コスト化を図ることとの両立が図られるものであり、特に、低電圧大電流とされるような条件に電源回路を使用する場合に有利となるものである。
そして、このようなノイズフィルタの後段に対しては、図のように整流ダイオードDA,DBから成る整流回路部Diと、2本の平滑コンデンサCi1,Ci2とから成る倍電圧整流回路が備えられる。この倍電圧整流回路によっては、平滑コンデンサCi1−Ci2の両端電圧として、交流入力電圧VACの2倍に対応したレベル整流平滑電圧Ei(直流入力電圧)が生成される。
この絶縁トランスPITの一次巻線N1の一方の端部は、一次側並列共振コンデンサC1の直列接続を介して、スイッチング素子Q1のソースとスイッチング素子Q2のドレインとの接続点(スイッチング出力点)に接続されることで、スイッチング出力が伝達されるようになっている。
また、一次巻線N1の他方の端部は、一次側アースに接続される。
つまり、この図に示す電源回路は、一次側スイッチングコンバータを共振形とするための共振回路に対して、他の共振回路とが組み合わされた、複合共振形コンバータとしての構成を採っている。
本実施の形態の場合、絶縁コンバータトランスPITの二次巻線としては、図のように、それぞれ上記一次巻線N1と巻方向が同極性とされた二次巻線N2A,二次巻線N2Bが備えられる。
これら二次巻線N2A、N2Bは、それぞれセンタータップが施されたことで、それぞれ図のように2つの巻線部に分割されている。ここでは、二次巻線N2Aの巻き始め端部を含む巻線部を巻線部N2A1とし、巻き終わり端部を含む巻線部は巻線部N2A2としている。また、二次巻線N2Bの巻き始め端部を含む巻線部は巻線部N2B1、巻き終わり端部を含む巻線部は巻線部N2B2とする。
そして、この二次巻線N2A,N2Bに対しては、整流用素子としてNチャネルのMOS−FETQ3,Q4を備える全波整流の同期整流回路が備えられる。これらMOS−FETQ3,Q4は、例えば低耐圧のトレンチ構造のものを選定することで、低オン抵抗を得るようにされる。
そして、二次巻線N2A、N2Bの各巻き始め端部は、インダクタLd1→MOS−FETQ3のドレイン→ソースを介して、二次側アース(平滑コンデンサCoの負極端子側)に接続される。
また、二次巻線N2A、N2Bの各巻き終わり端部は、インダクタLd2→MOS−FETQ4のドレイン→ソースを介して、二次側アース(平滑コンデンサCoの負極端子側)に接続される。
なお、MOS−FETQ3,Q4のドレイン−ソースに対しては、それぞれ、ボディダイオードDD3,DD4が接続される。
また、この際、上記巻線部N2A1、巻線部N2B1を含む整流電流経路においては、二次巻線N2A、N2Bの各巻き始め端部とMOS−FETQ3のドレインとの間に、インダクタLd1が直列に挿入されるものとなる。同様に、上記巻線部N2A2、巻線部N2B2を含む整流電流経路においては、二次巻線N2A、N2Bの各巻き終わり端部とMOS−FETQ4のドレインとの間にインダクタLd2が直列に挿入される。
同様に、MOS−FETQ4を駆動する駆動回路は、二次巻線N2Bの巻き始め端部とMOS−FETQ4のゲートとの間に、ゲート抵抗Rg2を接続して形成される。
つまりこの場合、上記MOS−FETQ3は、それぞれ巻線部N2A2、巻線部N2B2に励起される交番電圧が上記ゲート抵抗Rg1により検出されて導通するようにされ、また、MOS−FETQ4は、巻線部N2A1、巻線部N2B1に励起される交番電圧が上記ゲート抵抗Rg2により検出されて導通するようにされているものである。
上記した駆動回路は、二次巻線の電圧を検出することに基づいて、平滑コンデンサCoの正極端子に充電する方向(つまり、この場合ではソース→ドレイン方向)の電流のみが流れるように、MOS−FETQ3,Q4をスイッチング駆動するための回路である。つまり、この場合における同期整流回路の回路構成としては、巻線電圧検出方式により、整流電流に同期させてMOS−FETQ3,Q4をオン/オフ駆動する構成を採っているものである。
このようなツェナーダイオードDzとしては、ツェナー電位(ブレイクダウン電位)としてMOS−FETQ3、Q4の耐圧レベルに応じた電位のもが選定される。これにより、MOS−FETQ3、Q4のゲート−ソース間電位が耐圧レベル以上に上昇するのに応じ、これらツェナーダイオードDzが導通してMOS−FETQ3、Q4を保護することができる。
例えば、この場合のツェナーダイオードDzとしては、ツェナー電位=±20Vのものが選定される。また、例えばこれらツェナーダイオードDz1、Dz2、及びツェナーダイオードDz3、Dz4は、それぞれMOS−FETQ3、MOS−FETQ4に対して内蔵されるようにして備えられる。
本実施の形態において、これらインダクタLd1、Ld2としては、例えば0.6μH程度の比較的低いインダクタンスを設定するものとしている。
すなわち、この図3に示されるようにして、例えばアモルファス磁性体若しくはフェライト材等の磁性体が筒形状に形成されたビーズコアによって、リード線を挿通する。そして、このようにリード線を挿通したビーズコアを、1つのインダクタ素子としてプリント基板上に実装するものである。
先ず、図4(a)は、インダクタLd1、Ld2として、上記したようなビーズコアを用いる他の例を示している。
この場合、上記したようなアモルファス磁性体若しくはフェライト材等の磁性体によるビーズコアを、図のようにプリント基板に半田付けされるMOS−FETQ3、Q4のドレイン電極端子としてのリード線を挿通するようにして設ける。そして、このようなビーズコアのインダクタンスによってインダクタLd1、Ld2を形成する。
このようにドレイン電極のリード線にビーズコアを直接設けるようにすれば、図3に示したようなビーズコアとしての部品素子を基板上に実装する必要がなく、基板の省スペース化を図ることができる。
この場合は、プリント基板における、MOS−FETQ3、Q4のドレイン電極に配線されるべき銅箔パターンを、図示するように螺旋状に形成し、この螺旋形状によりインダクタLd1、Ld2としての所要のインダクタンスを得るようにするものである。
これによれば、プリント配線基板の製造と同時にインダクタLdを形成できるというメリットがある。
上述した回路構成による同期整流回路によっては、平滑コンデンサCoに対して全波整流により整流して得られる整流電流を充電する動作が得られる。
すなわち、二次側に励起される交番電圧の一方の半周期には、巻線部N2A1、N2B1を流れる電流がそれぞれ平滑コンデンサCoに対して充電される。また、交番電圧の他方の半周期には、巻線部N2A2、N2B2に流れる電流がそれぞれ平滑コンデンサCoに対して充電される。これによって、上記交番電圧が正/負の期間で平滑コンデンサCoに充電する全波整流動作が得られるものである。
そして、このような平滑コンデンサCoの両端電圧として、図のような二次側直流出力電圧Eoが得られる。この二次側直流出力電圧Eoは、図示しない負荷側に供給されるとともに、次に説明する制御回路1のための検出電圧としても分岐して入力される。
例えば重負荷の傾向となって二次側直流出力電圧Eoが低下するのに応じては、上記スイッチング周波数を高くするように制御することで、二次側直流出力電圧Eoを上昇させる。これに対して、軽負荷の傾向となって二次側直流出力電圧Eoが上昇するのに応じては、上記スイッチング周波数を低くするように制御することで、二次側直流出力電圧Eoを低下させる。
先ず、絶縁コンバータトランスPITについては、図2に示す構造を採ることとしている。
この図に示すように、絶縁コンバータトランスPITは、フェライト材によるE型コアCR1、CR2を互いの磁脚が対向するように組み合わせたEE型コアを備える。
そして、一次側と二次側の巻装部について相互に独立するようにして分割した形状により、例えば樹脂などによって形成される、ボビンBが備えられる。このボビンBの一方の巻装部に対して一次巻線N1を巻装する。また、他方の巻装部に対して二次巻線(N2A,N2B)を巻装する。このようにして一次側巻線及び二次側巻線が巻装されたボビンBを上記EE型コア(CR1,CR2)に取り付けることで、一次側巻線及び二次側巻線とがそれぞれ異なる巻装領域により、EE型コアの中央磁脚に巻装される状態となる。このようにして絶縁コンバータトランスPIT全体としての構造が得られる。この場合のEE型コアのサイズは例えばEER−35としている。
また、スイッチング素子Q1は、上記スイッチング素子Q2に対して交互にオン/オフするようにしてスイッチングを行う。このため、スイッチング素子Q1//ダンパーダイオードDD1に流れるスイッチング電流としても、図示はしていないがスイッチング電流IDS2に対して180°位相がシフトした波形となる。また、スイッチング素子Q1の両端電圧としても、スイッチング素子Q2の両端電圧V1に対して180°位相がシフトした波形となる。
なお、この電圧V2としては、巻線部N2A1に得られる電位として示したが、二次巻線N2Bにおける巻線部N2B2においても同等の波形により電位が生じていることになる。またこの場合、巻線部N2A2、巻線部N2B2においても、この電圧V2と同等の電位が生じるものである。
ここで、図9に示す電圧V2と比較して分かるように、この図5に示す電圧V2は、一次側直列共振電流Ioが0レベルとなるタイミングで、同様に0レベルとなる波形が得られる。つまり、この場合の電圧V2としては、ゼロクロスタイミングが一次側直列共振電流Ioのゼロクロスタイミングと重なるようになっている(図中時点t1、t2、t3参照)。
この場合、電圧V2としては、図示するように時点t1にて正極性のピークレベルとなり、以降はそのレベルを低下させていき時点t2にて0レベルとなるような波形とされている。MOS−FETQ4のゲート−ソース間に生じるゲート−ソース間電圧VGS4は、この電圧V2が、Q4のゲート−ソース間電位として定められた所定のレベルに対応したレベル以上を保つ期間(図中期間t1〜td1)において、オン電圧を発生させる。つまり、この期間t1〜td1が、MOS−FETQ4のオン期間DON2となる。
そして、この期間DON2が終了する時点td1から時点t2までは、MOS−FETQ4のデットタイムであり、このデットタイムである期間td1〜t2ではQ4のボディダイオードDD4を介して整流電流が流れる。このことは、図示するゲート−ソース間電圧VGS4における期間td1−t2の電位によっても示されている。
これによって、MOS−FETQ4を介して流される整流電流I4としては、図示するように時点t1〜t2の期間にわたって流れるようになる。つまり、この整流電流I4としては、これら時点t1、t2において、一次側直列共振電流Ioと0レベルになるタイミングが重なるようにされ、これによって一次側直列共振電流と連続するものとなる。
つまり、この場合、MOS−FETQ3のゲート−ソース間に生じるゲート−ソース間電圧VGS3は、巻線部N2A2、N2B2側に生じる電圧V2がゲート−ソース間電位としての所定のレベルに対応したレベル以上を保つ期間(図中期間t2〜td2)において、オン電圧を発生させ、これによってこの期間t2〜td2がMOS−FETQ3のオン期間DON1となる。
そして、同様にこの期間DON1が終了する時点td2から時点t3までは、MOS−FETQ3のデットタイムであり、この期間td2〜t3ではQ3のボディダイオードDD3を介して整流電流が流れる。
これによって、MOS−FETQ3を介して流れる整流電流I3としても、図示するように一次側直列共振電流Ioのゼロクロスタイミングである時点t2と時点t3との間にわたって流れるようになり、一次側直列共振電流Ioと連続して流れるものとなる。
そして、前述したように、この場合の二次巻線に生じる電圧V2は、一次側直列共振電流Ioが0レベルとなるのに応じ0レベルとなるから、電圧V2は一次側直列共振電流と連続するものとなる。さらに、このように電圧V2が連続することによって、上記説明のようにして整流電流I3、整流電流I4も連続することになり、従って、平滑コンデンサCoに対する充電電流Icも連続して流れることになる。
つまり、本実施の形態としては、重負荷とされてスイッチング周波数が低くなるようにして制御されているときにも、二次側整流電流としては連続モードが得られていることになる。なお、この場合、整流電流I3,I4としては28Apとなっており、例えば従来の図9に示した整流電流I1,I2よりも低減している。これは、例えば、同等のスイッチング周波数に対応する周期内において、整流電流の導通期間が従来よりも拡大したことに依るものである。
つまり、従来において、整流電流I1、I2には8Apによる逆方向電流が流れ、これが電力損失を生じさせていたが、本実施の形態ではこのような整流電流に生じていた逆方向電流が発生しないものである。
本実施の形態において、整流電流I3、I4にこのような逆方向電流が発生しないのは、先の図1に示したようにして、各整流電流経路にインダクタLd1、Ld2を挿入するようにしたことによる。
つまり、このように整流電流経路に対してインダクタを挿入することによっては、整流電流が流れた際に、このインダクタに逆起電力が発生するようになる。そして、このように逆起電力が発生することに伴って、MOSFETQ3、Q4のターンオフ時に生じるとされていた逆方向電流が抑圧されるようになるものである。
先にも述べたように、本実施の形態ではこれらインダクタLd1、Ld2として0.6μHを設定し、これによって整流電流I3、I4における逆方向電流の発生を防止することが可能とされる。
しかしながら、二次側整流電流が不連続モードで流れる場合において、同期整流回路として巻線電圧検出方式を採る場合、平滑コンデンサCoへの充電電流が0レベルとなってもMOS−FETがオンを維持して逆方向電流が流れ、これが無効電力を生じていた。
この無効電力を解消しようとすれば、整流電流検出方式の同期整流回路を採用することになる。しかしながら、整流電流検出方式では、カレントトランス及びコンパレータを備える駆動回路系などが必要であり、回路構成が複雑で大規模化する。
このことから本実施の形態としては、同期整流回路として電圧検出方式による構成を採ることで、簡単な回路構成として回路規模の拡大を抑制し、さらにコストアップを避けるようにしていながら、なおかつ、電流不連続期間の無効電力による電力変換効率の低下の問題を解消していることになる。
このようにショットキーダイオードDg1、Dg2を挿入することによっては、MOS−FETQ3、Q4のターンオフ時に、これらMOS−FETQ3、Q4のゲート入力容量(Ciss)の蓄積電荷を、これらショットキーダイオードDg1、Dg2を介して引き抜くようにして流すことができる。
つまりこの場合、ゲート入力容量の電荷は、それぞれショットキーダイオードDg(Dg1、Dg2)→二次巻線N2→平滑コンデンサCoの経路により放電されることになる。そして、このように入力容量の電荷が放電されることにより、MOS−FETQ3、Q4におけるターンオフ時の電圧降下時間を減少させることができる。
このようにして、MOS−FETのターンオフ時の電圧降下時間を減少させることができれば、これらMOS−FETQ3、Q4を確実にオフとさせてより良好なスイッチング特性を得ることができる。
図1に示す電源回路では、これまでの説明から理解されるように、二次側直流出力電圧Eoの安定化のために、スイッチング周波数制御による定電圧制御を行う。この定電圧制御は、軽負荷の条件となって二次側直流出力電圧が上昇すると、スイッチング周波数を高くするようにして二次側直流出力電圧を低下させ、これにより安定化を図るように動作する。
このような軽負荷の状態では、図示するスイッチング素子Q2の両端電圧V1に対して、二次側巻線電圧V2はほぼ同じタイミングで得られるようになり、これに応じて、二次側の充電電流Ic(整流電流I3、I4)としても、図のように休止期間が無く平滑コンデンサCoに連続して充電されるようにして流れる。
このことから、図1に示した電源回路では、軽負荷時においても連続モードとなることが理解できる。
また、負荷電力Po=25W時には、ηAC→DCが約13%向上し、このとき交流入力電力は4.7W低減する結果が得られている。
このことから、絶縁コンバータトランスPITの漏洩インダクタンスを増加させて、重負荷時の不連続モードを排除したのみの構成とするよりも、インダクタLdを挿入した本例の方が無効電力のさらなる低減が図られていることがわかる。
しかしながら先に説明したように、図1に示す電源回路では、同期整流回路の構成としては巻線電圧検出方式を採っていることで、回路構成はより簡略なものとすることができるものである。
例えば、本発明に基づいた巻線電圧検出方式の同期整流回路の細部の構成については適宜変更されてよい。また、例えば一次側スイッチングコンバータのスイッチング素子としては、IGBT(Insulated Gate Bipolar Transistor)など、他励式に使用可能な素子であれば、MOS−FET以外の素子が採用されて構わない。また、先に説明した各部品素子の定数なども、実際の条件等に応じて変更されて構わない。
また、本発明としては、自励式による電流共振形コンバータを備えて構成することも可能とされる。この場合には、スイッチング素子として例えばバイポーラトランジスタを選定することができる。さらには、4石のスイッチング素子をフルブリッジ結合した電流共振形コンバータにも適用できる。
また、商用交流電源を入力して直流入力電圧を得る整流回路としても、例えば倍電圧整流回路以外の構成とすることが考えられる。
さらに、実施の形態では、絶縁コンバータトランスPITの二次巻線を2つに分けて捲装するようにたが、例えば先の図8に示したようにして二次巻線を1つのみ捲装する構成が採られてもよい。
但し、この際、二次巻線としての巻数が多くなれば、その分そこに生じる直流抵抗値も上昇するものである。従って、上記のように二次巻線を2つに分けて捲装する本例によっては、二次巻線を1つとする場合よりも直流抵抗を軽減でき、これによる電力損失の低減を図ることができる。
Claims (6)
- 入力された直流入力電圧を断続するようにしてスイッチングを行うスイッチング素子を備えて形成されるスイッチング手段と、
上記スイッチング素子をスイッチング駆動する駆動手段と、
上記スイッチング手段のスイッチング出力を一次側から二次側に伝送するものであり、少なくとも一次巻線と二次巻線が巻装される絶縁コンバータトランスと、
少なくとも、上記絶縁コンバータトランスの一次巻線の漏洩インダクタンス成分と、自己のキャパシタンスとによって上記スイッチング手段の動作を共振形とするための一次側共振回路を形成するようにして、一次側の所定の部位に接続される一次側共振コンデンサと、
上記スイッチング手段を形成するスイッチング素子のうち、少なくとも一方のスイッチング素子に対して並列に接続される部分共振コンデンサのキャパシタンスと、上記絶縁コンバータトランスの一次巻線の漏洩インダクタンス成分によって形成され、上記スイッチング手段を形成するスイッチング素子のターンオフ期間に部分電圧共振動作を行う一次側部分電圧共振回路と、
上記絶縁コンバータトランスの二次巻線に誘起される交番電圧を全波整流して二次側平滑コンデンサに整流電流を充電することで、上記二次側平滑コンデンサの両端電圧として二次側直流出力電圧を得るようにされた同期整流回路と、を備えるものとされ、
上記絶縁コンバータトランスの磁束密度は、上記二次側直流電圧に接続される負荷条件の変動にかかわらず、上記全波整流動作により同期整流回路に流れる二次側整流電流が連続モードとなるようにして、所定以下となるように設定されると共に、
上記同期整流回路は、
上記絶縁コンバータトランスの二次巻線をセンタータップしたタップ出力を平滑コンデンサの正極端子に接続するとともに、
上記二次巻線のセンタータップしていない側の一方の端部と二次側アースとの間に直列接続される第1の電界効果トランジスタと、
上記二次巻線のセンタータップしていない側の他方の端部と二次側アースとの間に直列接続される第2の電界効果トランジスタと、
上記第1の電界効果トランジスタが整流電流を流すべき半波の期間に対応する二次巻線電圧を抵抗素子により検出して、上記第1の電界効果トランジスタをオンとするためのゲート電圧を出力するようにされた第1の駆動回路と、
上記第2の電界効果トランジスタが整流電流を流すべき半波の期間に対応する二次巻線電圧を抵抗素子により検出して、上記第2の電界効果トランジスタをオンとするためのゲート電圧を出力するようにされた第2の駆動回路と、
さらに、上記二次巻線のセンタータップしていない側の一方の端部と上記第1の電界効果トランジスタとの間、及び上記二次巻線のセンタータップしていない側の他方の端部と第2の電界効果トランジスタとの間に、それぞれ直列に挿入された所要のインダクタンスによるインダクタ素子を備える、
ことを特徴とするスイッチング電源回路。 - 上記絶縁コンバータトランスの磁束密度を一定以下とするために、絶縁コンバータトランスに形成するギャップ長を所定以上とすることで、一次側と二次側の結合係数を所定以下に設定している、
ことを特徴とする請求項1に記載のスイッチング電源回路。 - 上記絶縁コンバータトランスの磁束密度を一定以下とするために、上記二次巻線における1ターンあたりの誘起電圧レベルが所要以下となるように、上記一次巻線と、上記二次巻線のターン数を設定している、
ことを特徴とする請求項1に記載のスイッチング電源回路。 - 上記二次側直流出力電圧のレベルに応じて、上記スイッチング手段のスイッチング周波数を可変制御することで、上記二次側直流出力電圧についての定電圧制御を行うようにされた定電圧制御手段をさらに備える、
ことを特徴とする請求項1に記載のスイッチング電源回路。 - 上記インダクタ素子は、上記第1及び第2の電界効果トランジスタのドレイン電極のリード線を挿通する筒形状の磁性体により形成される、
ことを特徴とする請求項1に記載のスイッチング電源回路。 - 上記インダクタ素子は、プリント配線基板における配線パターンを螺旋状とすることにより形成される、
ことを特徴とする請求項1に記載のスイッチング電源回路。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003297625A JP2005073335A (ja) | 2003-08-21 | 2003-08-21 | スイッチング電源回路 |
TW093123950A TWI271023B (en) | 2003-08-21 | 2004-08-10 | Switching power-supply circuit |
KR1020057004452A KR20060036890A (ko) | 2003-08-21 | 2004-08-13 | 스위칭 전원회로 |
US10/527,129 US7167384B2 (en) | 2003-08-21 | 2004-08-13 | Switching power circuit |
CN 200480001098 CN1701498A (zh) | 2003-08-21 | 2004-08-13 | 开关电源电路 |
PCT/JP2004/011950 WO2005020416A1 (ja) | 2003-08-21 | 2004-08-13 | スイッチング電源回路 |
EP04771911A EP1551096A1 (en) | 2003-08-21 | 2004-08-13 | Switching power supply circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003297625A JP2005073335A (ja) | 2003-08-21 | 2003-08-21 | スイッチング電源回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005073335A true JP2005073335A (ja) | 2005-03-17 |
Family
ID=34403421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003297625A Pending JP2005073335A (ja) | 2003-08-21 | 2003-08-21 | スイッチング電源回路 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2005073335A (ja) |
CN (1) | CN1701498A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009054963A (ja) * | 2007-08-29 | 2009-03-12 | Hitachi Kokusai Electric Inc | スイッチング回路 |
JP2010098831A (ja) * | 2008-10-16 | 2010-04-30 | Denso Corp | 車両用回転電機の電力変換器 |
JP2019037073A (ja) * | 2017-08-15 | 2019-03-07 | キヤノン株式会社 | 電源装置及び画像形成装置 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008041399A1 (fr) * | 2006-10-02 | 2008-04-10 | Murata Manufacturing Co., Ltd. | Convertisseur cc-cc d'isolation à double extrémité |
US8102678B2 (en) * | 2008-05-21 | 2012-01-24 | Flextronics Ap, Llc | High power factor isolated buck-type power factor correction converter |
US8693213B2 (en) * | 2008-05-21 | 2014-04-08 | Flextronics Ap, Llc | Resonant power factor correction converter |
JP2015154656A (ja) * | 2014-02-18 | 2015-08-24 | 矢崎総業株式会社 | 突入電流抑制回路 |
CN105207457B (zh) * | 2014-06-27 | 2019-03-29 | 比亚迪股份有限公司 | 同步整流电路及具有其的llc谐振变换器 |
DE102017125548A1 (de) * | 2017-11-01 | 2019-05-02 | Sma Solar Technology Ag | Schaltungsanordnung und leistungselektronische wandlerschaltung |
US10890634B2 (en) * | 2018-05-21 | 2021-01-12 | Hyperfine Research, Inc. | Radio-frequency coil signal chain for a low-field MRI system |
CN115166479B (zh) * | 2022-06-29 | 2024-05-28 | 珠海视熙科技有限公司 | D类功放电路的仿真测试方法、装置及存储介质 |
-
2003
- 2003-08-21 JP JP2003297625A patent/JP2005073335A/ja active Pending
-
2004
- 2004-08-13 CN CN 200480001098 patent/CN1701498A/zh active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009054963A (ja) * | 2007-08-29 | 2009-03-12 | Hitachi Kokusai Electric Inc | スイッチング回路 |
JP2010098831A (ja) * | 2008-10-16 | 2010-04-30 | Denso Corp | 車両用回転電機の電力変換器 |
JP2019037073A (ja) * | 2017-08-15 | 2019-03-07 | キヤノン株式会社 | 電源装置及び画像形成装置 |
Also Published As
Publication number | Publication date |
---|---|
CN1701498A (zh) | 2005-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | A current-driving synchronous rectifier for an LLC resonant converter with voltage-doubler rectifier structure | |
TWI271023B (en) | Switching power-supply circuit | |
US7405955B2 (en) | Switching power supply unit and voltage converting method | |
EP1156580A2 (en) | Switching power supply apparatus with active clamp circuit | |
JP2005151796A (ja) | スイッチング電源回路 | |
JP2005168276A (ja) | スイッチング電源回路 | |
JP2005110486A (ja) | スイッチング電源回路 | |
KR20020029902A (ko) | 2중 전압 출력을 가진 공진 스위칭 전원 회로 | |
JP2000152617A (ja) | スイッチング電源回路 | |
KR20070038921A (ko) | 스위칭 전원 회로 | |
JP2001224170A (ja) | スイッチング電源回路 | |
KR20070037384A (ko) | 스위칭 전원 회로 | |
JP2006129548A (ja) | 電力変換装置 | |
US7447048B2 (en) | Switching power supply circuit | |
JP2005073335A (ja) | スイッチング電源回路 | |
JP2007104747A (ja) | スイッチング電源回路 | |
JP4367611B2 (ja) | スイッチング電源回路 | |
JP2002262568A (ja) | スイッチング電源回路 | |
JP2005094980A (ja) | スイッチング電源回路 | |
JP2001178127A (ja) | スイッチング電源回路 | |
JP2005073336A (ja) | スイッチング電源回路 | |
JP2005057925A (ja) | スイッチング電源回路 | |
JP2005094981A (ja) | スイッチング電源回路 | |
JP2007104880A (ja) | スイッチング電源回路 | |
JP2005073371A (ja) | スイッチング電源回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070410 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070626 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071023 |