[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005056800A - 電子部品用セパレータおよび電子部品 - Google Patents

電子部品用セパレータおよび電子部品 Download PDF

Info

Publication number
JP2005056800A
JP2005056800A JP2003289181A JP2003289181A JP2005056800A JP 2005056800 A JP2005056800 A JP 2005056800A JP 2003289181 A JP2003289181 A JP 2003289181A JP 2003289181 A JP2003289181 A JP 2003289181A JP 2005056800 A JP2005056800 A JP 2005056800A
Authority
JP
Japan
Prior art keywords
separator
mass
electronic component
resin compound
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003289181A
Other languages
English (en)
Other versions
JP4414165B2 (ja
Inventor
Hitohide Sugiyama
仁英 杉山
Hiromi Totsuka
博己 戸塚
Masanori Takahata
正則 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2003289181A priority Critical patent/JP4414165B2/ja
Publication of JP2005056800A publication Critical patent/JP2005056800A/ja
Application granted granted Critical
Publication of JP4414165B2 publication Critical patent/JP4414165B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

【課題】 セパレータに電解液が注液されても、広範囲な温度環境下で電極との接着性が高い電子部品用セパレータを提供する。さらには、性能の優れた電子部品を提供する。
【解決手段】 本発明の電子部品用セパレータ10は、多孔質基材11の少なくとも片面に、電気絶縁性樹脂組成物からなる多孔質層12が形成された電子部品用セパレータ10であって、電気絶縁性樹脂組成物は、ゲル化率が20質量%以下である第1の樹脂化合物10〜50質量%と、ゲル化率が50質量%以上である第2の樹脂化合物50〜90質量%とを含有する。本発明の電子部品は、正極と負極とを有し、それらの間に上述した電子部品用セパレータが配置され、該電子部品用セパレータに電解液が含浸されたものである。
【選択図】 図1

Description

本発明は、リチウムイオン二次電池などの電子部品に備えられるセパレータに関する。さらには、この電子部品用セパレータを備えた電子部品に関する。
近年、ノートパソコン、携帯電話、ビデオカメラなどの各種情報端末機器は、急激に小型化、軽量化、薄型化するとともに広く普及している。また、ハイブリッド自動車、燃料電池自動車についても一部実用化が始まっている。
このような背景により、これらの電源として高エネルギー密度の二次電池の要求が高まっていて、特に、非水電解質を使用したリチウムイオン二次電池は、作動電圧が高く、高エネルギー密度を有する電池として既に実用化されている。
リチウムイオン二次電池は、一般に、正極と負極の間に電気絶縁性と保液性を備えたセパレータを介装して成る電極群を、負極端子も兼ねる電池缶の中に所定の有機電解液などの非水電解液とともに収容し、電池缶の開口部を、正極端子を備えた封口板で絶縁性のガスケットを介して密閉した構造になっている。
このようなリチウムイオン二次電池を製造する方法としては、図3(a)に示すように、電極31の上に接着剤塗料32を塗布し、図3(b)に示すように、その上にポリオレフィン製セパレータ33を接合し、図3(c)に示すように、乾燥して多孔化・接着させてから、電解液を注入する方法などが例示される(例えば、特許文献1参照)。
また、ポリオレフィン系多孔質膜の片面または両面に厚さが5μm以下かつ細孔径が0.1μm未満の連通孔を有する電解液で膨潤する層を積層したセパレータを、電極で挟んでリチウムイオン二次電池を製造する方法が提案されている(例えば、特許文献2参照)。
特許第3225864号公報 特許第2981238号公報
しかしながら、特許文献1に記載の発明では、セパレータに電解液を注液した際には、約50℃以上の高温領域で接着性が低くなることがあり、広範囲な温度環境下で高い接着性を発現させることが困難であった。したがって、電子部品が使用される温度範囲(−20〜100℃程度)において、イオン伝導性が低くなる場合があり、サイクル特性などの性能が不十分になることがあった。また、シャットダウン特性も不十分になることがあった。
また、特許文献2に記載の発明では、孔径が0.1μm未満であるため、通液性が低く、その上、電解液が膨潤した際には、多孔質膜の片面または両面に設けた層の孔径がさらに狭くなるので、イオン伝導性を阻害することがあった。その結果、電池特性が十分ではなかった。
また、ポリマーリチウム電池、アルミニウム電解コンデンサ、電気二重層キャパシタなどセパレータを有する電子部品においても、上記と同様の問題を有していた。
本発明は、前記事情を鑑みてなされたものであり、セパレータに電解液が注液されても、広範囲な温度環境下で電極との接着性が高い電子部品用セパレータを提供することを目的とする。さらには、性能の優れた電子部品を提供することを目的とする。
本発明の電子部品用セパレータは、多孔質基材の少なくとも片面に、電気絶縁性樹脂組成物からなる多孔質層が形成された電子部品用セパレータであって、
電気絶縁性樹脂組成物は、ゲル化率が20質量%以下である第1の樹脂化合物10〜50質量%と、ゲル化率が50質量%以上である第2の樹脂化合物50〜90質量%とを含有することを特徴とする。
本発明の電子部品用セパレータにおいては、第1の樹脂化合物および第2の樹脂化合物の少なくとも一方が、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリスチレン、ポリエチレンオキサイドを骨格中に含む樹脂またはこれら樹脂の誘導体であることが好ましい。
あるいは、本発明の電子部品用セパレータにおいては、第1の樹脂化合物が、四フッ化エチレン、六フッ化プロピレン、エチレンのうちのいずれか1種類以上とフッ化ビニリデンとからなる共重合体、または、フッ化ビニリデンからなる単独重合体であり、
第2の樹脂化合物が、六フッ化プロピレンとフッ化ビニリデンとからなる共重合体であることが好ましい。
さらに、本発明の電子部品用セパレータにおいては、多孔質基材が、ポリエチレンおよび/またはポリプロピレンからなる不織布または延伸多孔質膜であることが好ましい。
本発明の電子部品用セパレータにおいては、ガーレ透気度測定装置により測定される透気度が、1000秒/100ml以下であるものが好ましい。
本発明の電子部品用セパレータは、リチウムイオン二次電池、ポリマーリチウム電池、アルミニウム電解コンデンサ、電気二重層キャパシタから選ばれる電子部品に好適に備えられる。
本発明の電子部品は、正極と負極とを有し、それらの間に、上述した電子部品用セパレータが配置され、該電子部品用セパレータに電解液が含浸されたものであることを特徴とする。
本発明の電子部品用セパレータによれば、高温領域における接着性低下を防ぐことができ、接着性を維持できる。したがって、このセパレータは、広範囲な温度環境下において、イオン伝導性が高く、サイクル特性などの電池性能が優れる。
また、本発明の電子部品は、広範囲の温度範囲でサイクル特性などの性能が優れ、シャットダウン特性も優れる。
本発明の電子部品用セパレータ(以下、セパレータという)の一実施形態例について図面を参照して説明する。
図1は、このセパレータの構成図であり、このセパレータ10は、多孔質基材11の両面に多孔質層12が形成されたものであり、リチウムイオン二次電池に備えられるものである。以下、セパレータ10の各構成要素について詳細に説明する。
多孔質基材11は、電気的化学的に安定な高分子であれば何れも使用することができるが、特に、ポリエチレン、ポリプロピレン、その共重合体、ブテンやヘキセンを共重合した共重合体、またはこれらを組み合わせた混合物であることが好ましい。また、多孔質基材11は、上記材質の繊維状物を抄造した不織布、上記材質を延伸した延伸多孔質膜等を用いることができる。これらの製造方法に特に制限はなく、例えば、延伸多孔質膜の製造方法としては、上記高分子に有機粒子または無機粒子を添加、混合し、膜状に成形後、粒子を抽出、乾燥し、さらに延伸を行うことにより製造することができる。また、膜状に成形する際には、必要に応じて可塑剤等の添加剤を含有してもよい。
また、多孔質基材11としては、電池特性がより優れることから、ポリエチレンおよび/またはポリプロピレンからなる不織布または延伸多孔質膜であることが好ましい。
多孔質基材11の厚みには特に制限はないが、200μm以下であることが好ましい。200μmを超えると、製造されるセパレータ10の厚みが大きくなり、その結果、このセパレータ10を電池に備えた場合に電極間距離が大きくなり、内部抵抗が増大する傾向がある。より好ましい厚みは、5〜50μmである。厚みが50μm以下であると、セパレータ10の厚みも小さくでき、電池を薄型化できる。なお、厚みが5μm未満であると強度が低下しやすく、セパレータ10の製造が困難になり、セパレータ10および電池の生産性が低下する傾向にある。このような観点から最も好ましい範囲は10〜25μmである。厚みがこの範囲であれば、過充電や異常短絡状態にともなって電池内部が加熱した際には、熱溶融により多孔質構造が無孔質構造に変化して電極間反応を停止させる、いわゆるシャットダウン特性がより優れる。
また、多孔質基材11は、ガーレ透気度測定装置により測定される透気度が、1000秒/100ml以下であることが好ましい。測定された透気度が低いほど通液性が良好で、電解液の移動が容易となり、イオン伝導性が向上する。また、このような透気度の多孔質基材11を使用すると、セパレータの透気度を容易に1000秒/100ml以下の範囲とすることができ、その結果、イオン伝導性の良好なセパレータとすることができる。また、多孔質基材11がこのような透気度を有する場合、その空孔率は20〜80体積%の範囲となる。
ここで、ガーレ透気度測定装置により測定される透気度とは、JIS P8117に準拠して測定される値である。
多孔質層12は、電気絶縁性樹脂組成物からなる多孔質の層である。さらに、電気絶縁性樹脂組成物は、ゲル化率が20質量%以下である第1の樹脂化合物10〜50質量%と、ゲル化率が50質量%以上である第2の樹脂化合物50〜90質量%とを含有し、電気絶縁性を有するものである。このように、電気絶縁性樹脂組成物では、ゲル化率が低くて電解液に溶解しにくい第1の樹脂化合物の含有量と、ゲル化率が高くて電解液に溶解しやすい第2の樹脂化合物の含有量が特定されているので、広範囲の温度領域で電極との接着強度を高くできる。特に、高温領域で膨潤ゲルになり、しかも完全に溶解することはないから、高温領域であっても高い接着性を維持できる。
なお、第1の樹脂化合物の含有量が10質量%未満であっても、第2の樹脂化合物の含有量が50質量%未満であっても、電解液を注液した際に接着性が低くなる温度領域を有するようになる。
ここで、ゲル化率とは、電解液に対するゲル化率のことであり、以下のようにして求められる。まず、樹脂化合物0.5g(±0.1g)を秤量し、プロピレンカーボネート(PC):ジエチルカーボネート(DEC)=1:2からなる電解液溶媒5.0g中に浸漬させ、密閉し、90℃の恒温槽中に投入して1時間放置する。次いで、この放置されたものを濾過した後、濾紙上に残った樹脂化合物の濾過物をメタノールで洗浄し、電解液を除去する。そして、濾過物を乾燥して乾燥後の質量を測定し、試験前後の質量を下記式に代入してゲル化率を算出する。
ゲル化率(質量%)={試験前質量(g)−試験後質量(g)}/試験前質量(g)×100
このゲル化率は、各樹脂化合物の分子量や架橋度によって決定される。
電気絶縁性樹脂組成物に含まれる第1の樹脂化合物および第2の樹脂化合物の少なくとも一方は、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリスチレン、ポリエチレンオキサイドを骨格中に含む樹脂またはこの樹脂の誘導体であることが好ましい。電気絶縁性樹脂組成物に含まれる第1の樹脂化合物および第2の樹脂化合物の少なくとも一方が、上述したものであれば、電解液との親和性がより高くなるので、電池特性がより高くなる。また、電解液の膨潤によって発現する接着性がより高くなる。
さらに、第1の樹脂化合物としては、四フッ化エチレン、六フッ化プロピレン、エチレンのうちのいずれか1種類以上とフッ化ビニリデンとからなる共重合体またはフッ化ビニリデンからなる単独重合体であり、第2の樹脂化合物が、六フッ化プロピレンとフッ化ビニリデンとからなる共重合体であることが好ましい。
これらフッ化ビニリデンを必須成分としたフッ化ビニリデン系樹脂は電気化学的に安定であり、電池が有する電極電位の間で十分な電位窓を有するので、第1の樹脂化合物および第2の樹脂化合物が上記重合体である場合には、電池特性がより高くなる。
第1の樹脂化合物、第2の樹脂化合物が、上記のフッ化ビニリデン系樹脂の場合、フッ化ビニリデン系樹脂は、例えば、乳化重合法、懸濁重合法などの公知の重合法による不均一重合系で、適宜重合条件を設定して製造すればよい。具体的には、過硫酸アンモニウムなどの水溶性無機過酸化物、さらには還元剤を組み合わせたレドックス系を触媒として、パーフルオロオクタン酸アンモニウム、パーフルオロヘプタン酸アンモニウム、パーフルオロノナン酸アンモニウムなどを乳化剤に用い、加圧加熱下の条件の下で行う。
この多孔質層12は、外表面の平均孔径が0.1〜5μmの範囲で、内部の平均孔径が0.5〜10μmの範囲であり、かつ、外表面の平均孔径が内部の平均孔径より小さいように制御されていることが好ましい。なお、外表面の平均孔径は、多孔質層の外表面をSEMなどで観察し、任意に選択された少なくとも20個の孔の孔径を測定し、これを平均することにより算出される。また、内部の平均孔径は、多孔質層の縦断面をSEMなどで観察し、外表面に露出していない孔を任意に少なくとも20個選択して、その孔径を測定し、これを平均することにより算出される。また、ここで孔径とは、孔が略円形でなく略楕円形などの場合には、長径のことを指す。
多孔質層12の外表面は、このセパレータを電池に使用した際に、電極と密着する部分である。よって、その平均孔径が大きすぎると、結果として電極と接触する電気絶縁性樹脂組成物の接触面積が小さくなり、電極との密着性、接着性が低下する傾向がある。一方、平均孔径が小さすぎると、電解液の通液が困難となり、イオン伝導性が低下する傾向がある。したがって、外表面の平均孔径を0.1〜5μmの範囲とすることによって、電極との密着性を確保でき、かつ、電解液の通液も十分となる。また、正極や負極に用いられる電極活物質の粒径は様々ではあるものの、一般的に5μm以上であることが多い。この点からも、外表面の孔径が5μm以下であると、セパレータと電極とを接合した際に電極活物質が多孔質層中に混入して局所的な短絡を招くことを、より防止できる。また、外表面の平均孔径がこのような範囲であると、電極とこの外表面とを接着させた場合に、外表面の孔が電極表面の凹凸を吸収し、電極接合後の正極/セパレータ/負極の複合体における厚み斑を軽減しつつ、電極とセパレータとを隙間なく密着させることも可能である。
一方、多孔質層12の内部の平均孔径は、電界液の漏液を防ぎ、保持する電解液の量と電解液の移動の自由度とを確保しつつ、多孔質層12の強度を維持可能な範囲であることが重要であり、0.5〜10μmであることが好ましい。すなわち、平均孔径が0.5μm未満では、保持可能な電解液の量が低下するとともに、電解液の移動の自由度も低下し、イオン伝導性が悪くなる。一方、平均孔径が10μmを超えると多孔質層12の強度が低下し、多孔質構造を維持しにくいうえ、電気絶縁性樹脂組成物が本来有する電解液との親和性が十分に発現せず、電解液が多孔質層から漏液しやすい。より好ましい範囲は0.5〜5μmである。
また、多孔質層12の外表面と内部の平均孔径はそれぞれ上記範囲であって、しかも、外表面の平均孔径が内部の平均孔径より小さくなるように制御されていることが好ましい。このように外表面の孔径が内部の孔径よりも小さいと、電気絶縁性樹脂組成物からなる孔壁との間の弱い相互作用によって孔内に保持されている電解液が、孔の内部に安定に保持されやすく、電解液の漏液が起こりにくい。
このように多孔質層12の外表面と内部との孔径を上述のように異ならせ、特定の関係に制御すれば、電解液の通液性が良好で、かつ、電解液の漏液が抑制され、電極との密着性を強固に維持可能なセパレータを得ることができる。
また、多孔質層12は、1m当たり0.5〜10gの質量で形成されることが好ましい。多孔質層12が1m当たり0.5g未満の質量で形成されると、電極との密着性に寄与する第1の樹脂化合物および第2の樹脂化合物の量が極めて少なくなることとなり、十分な密着性が発現しない場合があるが、多孔質層12が1m当たり0.5g以上の質量で形成されると、密着性は十分となる。一方、多孔質層12が1m当たり10gを超えて形成されても、密着性はそれ以上はほとんど向上しない。よって、多孔質層が1m当たり10gを超えて形成されると、多孔質層の厚みが厚くなり、電池の薄型化にとって不利となるばかりか、体積エネルギー密度を低下させる。したがって、1m当たり0.5〜10gで多孔質層12が形成されると、各種性能のバランスが最も優れた電池を提供可能なセパレータとすることができる。
また、多孔質層12の厚みには特に制限はないが、イオン伝導度、電極との密着性、電池の薄型化の観点から0.5〜8μmが好ましい。厚みが0.5μm未満であると、特に電極との密着性が低下する傾向がある。さらに、好ましくは厚みが0.5〜5μm、より好ましくは0.5〜1.5μmの範囲であると、イオン伝導性が一段と向上する。
また、多孔質層12中には、第1の樹脂化合物および第2の樹脂化合物を主成分とする限りにおいて、必要に応じて、電気化学的に安定な粒子や繊維状物などを含有させて、多孔質層12の機械強度、寸法安定性を向上させてもよい。このような粒子としては、例えば、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化マグネシウムなどの無機粒子、フェノール樹脂粒子、ポリイミド樹脂粒子、ベンゾグアナミン樹脂粒子、メラミン樹脂、ポリオレフィン樹脂、フッ素樹脂粒子などの有機粒子が挙げられ、繊維状物としては、例えば、アパタイト繊維、酸化チタン繊維、金属酸化物のウィスカーなどの無機繊維状物、アラミド繊維、ポリベンゾオキサゾール繊維などの有機繊維状物が挙げられる。これらの粒子、繊維状物の形状、粒径に特に制限はなく、適宜選択して用いることができる。また、これらの粒子や繊維状物を含有させる場合には、上述したように、例えば乾燥法、抽出法などで多孔質層を形成する際にコーティングする溶液またはスラリー中に、これらを添加しておけばよい。
電気絶縁性樹脂組成物から多孔質層12を形成する方法としては、相分離法、乾燥法、抽出法、発泡法などが挙げられる。
例えば、乾燥法で多孔質層12を形成する場合には、まず、電気絶縁性樹脂組成物を溶媒に溶解した溶液またはスラリーを調製し、これを、離型処理したポリマーフィルムなどからなる離型フィルムの表面にコーティングし、乾燥する。この際、特に溶媒として、使用する電気絶縁性樹脂組成物の良溶媒と貧溶媒とを組み合わせて使用し、また、貧溶媒としては、良溶媒よりも高沸点のものを選択する。このように溶媒を選択して組み合わせて使用し、これに電気絶縁性樹脂組成物を溶解させた溶液またはスラリーをコーティングし、乾燥することで、良溶媒が貧溶媒より先に蒸発し、ついで溶解度が低下した電気絶縁性樹脂組成物が析出を開始し、貧溶媒の存在体積相当の空孔率を有する多孔質構造をとることとなる。この際、良溶媒と貧溶媒の組み合わせ、その比率、溶媒中の電気絶縁性樹脂組成物の溶解濃度、乾燥条件などを適宜調整すれば、多孔質層12における孔径を制御することもできる。
セパレータ10を製造する方法としては、例えば、上述した方法により離型フィルム上に多孔質層を形成した後、この多孔質層12上に多孔質基材11を配し、平板プレス、ラミネーターロールなどによりこれらを貼り合わせ、その後、離型フィルムを剥離することにより、多孔質基材11上に多孔質層12を形成することができる。
また、このように離型フィルムを使用して多孔質層12を形成するかわりに、多孔質基材11の表面に、直接、電気絶縁性樹脂組成物を溶媒に溶解した溶液またはスラリーをコーティングし、多孔質層12を形成してもよい。この場合にも、良溶媒と貧溶媒の組み合わせ、その比率、溶媒中の電気絶縁性樹脂組成物の溶解濃度、乾燥条件などを適宜調整することにより、多孔質層12における孔径を制御できる。
抽出法で多孔質層12を形成する場合には、電気絶縁性樹脂組成物を良溶媒に溶解させて得られた溶液を離型フィルムにコーティングした後、これを電気絶縁性樹脂組成物の貧溶媒中に浸漬し、コーティングされた電気絶縁性樹脂組成物中の良溶媒を抽出し、貧溶媒と置換することにより多孔質構造とすることができる。そして、これを乾燥法の場合と同様に、多孔質基材11に貼り合わせ、離型フィルムを剥離することにより、多孔質基材11上に多孔質層12を形成することができる。また、抽出法の場合にも、離型フィルムを使用せずに、直接、多孔質基材11上に電気絶縁性樹脂組成物を良溶媒に溶解させて得られた溶液をコーティングし、その後これを電気絶縁性樹脂組成物の貧溶媒中に浸漬してもよい。
上述した製造方法において、離型フィルムや多孔質基材11上に、溶液またはスラリーをコーティングする方法としては特に制限はなく、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法などが挙げられる。
また、電気絶縁性樹脂組成物の良溶媒としては、例えば、1−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドなどのアミド系、ジメチルスルホキシドなどのスルホン系、2−ブタノン、シクロヘキサノンなどのケトン系、テトラヒドロフランなどのエーテル系などが例示でき、貧溶媒としては、例えばメタノール、1−ヘキサノール、1−ヘプタノール、1−オクタノールなどのアルコール系、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリンなどのグリコール系、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのエーテル系、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルカーボネートなどの炭酸エステル系、デカン、ドデカンなどの炭化水素系、フタル酸ジエチル、フタル酸ジブチルなどのフタル酸エステル系などが例示できるがこれらに限定されるものではない。また、良溶媒および貧溶媒において、各々2種類以上を混合して用いることもできる。
本実施形態例のように、多孔質基材11の両面に多孔質層12を形成する場合には、片面ずつ形成してもよいし、両面に同時にコーティングしたり、両面に同時に別途製造した多孔質層を積層し、平板プレスなどで貼り合わせたりしてもよい。
また、このようなセパレータ10は、ガーレ透気度測定装置により測定される透気度が、1000秒/100ml以下であることが好ましい。セパレータ10の透気度が1000秒/100mlを超えると、イオン伝導性が低下する傾向がある。透気度をより好ましくは500秒/100ml以下、さらに好ましくは1〜200秒/100mlとすることにより、優れたイオン伝導性を有するセパレータとすることができる。
ここで、ガーレ透気度測定装置により測定される透気度とは、JIS P8117に準拠して測定される値である。
以上説明したセパレータ10にあっては、多孔質基材11の両面に多孔質層12が形成されており、さらに多孔質層12をなす電気絶縁性樹脂組成物は、第1の樹脂化合物10〜50質量%と第2の樹脂化合物50〜90質量%とを含有するので、電解液を注液した際には多孔質層12が膨潤ゲルになり、しかも完全に溶解しないから、高温領域における接着性低下を防ぐことができ、接着性を維持できる。その結果、広範囲な温度環境下において高い接着性を有するようになる。具体的には、電子部品の電極に接着され、電解液が含浸された状態で−20〜100℃の環境下に1時間以上放置された後の接着強度が10g/cm以上になる。したがって、このセパレータ10は、広範囲な温度環境下において、イオン伝導性が高く、サイクル特性などの電池性能が優れる。
このようなセパレータ10は、その効果がとりわけ発揮されることから、リチウムイオン二次電池、ポリマーリチウム電池、アルミニウム電解コンデンサ、電気二重層キャパシタなどの電子部品に好適に備えられる。
ここで、接着強度とは、以下のようにして測定された強度のことである。すなわち、セパレータ10と電極とを積層し、100℃のホットプレート上で、1.5MPa、10秒間の条件でプレスし、得られた試験片を180°剥離試験によって剥離速度50mm/分で剥離する。その際に測定される剥離強度を接着強度とする。
また、この接着強度測定の際に含浸される電解液とは、エチレンカーボネートとジメチルカーボネートを質量比1:1の割合で混合した溶媒に、1mol/lとなるようにLiPFを溶解したものである。
また、接着強度の測定の際に使用される電極とは、以下の製法で作製したものである。すなわち、活物質としてコバルト酸リチウム(LiCoO)100質量部と、導電助剤としてアセチレンブラック5質量部と、バインダーとしてビニリデンフロライド−ヘキサフルオロプロピレン共重合体10質量部と、N,N−ジメチルアセトアミド100質量部と、フタル酸ジブチル30質量部とを混合、分散した塗布液を、厚さ40μmのアルミニウム箔上に、乾燥後の厚みが200μmになるように塗布し、150℃にて乾燥する。その後、熱ロールでプレスを行って総厚約150μmの電極(正極)を得る。このようにして得られた電極を接着強度測定に用いる。
または、活物質としてメソフェーズカーボンブラック100質量部と、導電助剤としてアセチレンブラック5質量部と、バインダーとしてビニリデンフロライド−ヘキサフルオロプロピレン共重合体20質量部と、N,N−ジメチルアセトアミド150質量部と、フタル酸ジブチル40質量部とを混合、分散した塗布液を、厚さ40μmの銅箔上に乾燥後の厚みが200μmになるように塗布し、150℃にて乾燥する。その後、熱ロールでプレスを行って総厚約150μmの電極(負極)を得る。このようにして得られた電極を接着強度測定に用いる。
なお、これらの電極は接着強度測定の際に使用されるものであり、本発明の電子部品用セパレータに接着される電極は、上記電極に限定されない。
次に、上述したセパレータを備えた電子部品の1種であるリチウムイオン二次電池について説明する。このリチウムイオン二次電池は、正極と負極とを有し、これらの間に、上述したセパレータが配置され、このセパレータに電解液が含浸されたものである。
正極および負極には、電極活物質が用いられる。リチウムイオン二次電池の正極活物質としては、組成式Li、またはLi(ただし、Mは遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル状の空孔を有する酸化物、層構造の金属カルコゲン化合物などが挙げられ、その具体例としては、LiCoO、LiNiO、LiMn、LiMn、MnO、FeO、V、V13、TiO、TiSなどが挙げられる。また、有機化合物としては、例えばポリアニリン、ポリアセン、ポリピロールなどの導電性高分子が挙げられる。さらに無機化合物、有機化合物を問わず、これら各種活物質を混合して用いてもよい。
リチウムイオン二次電池の負極活物質としては、リチウムおよび/またはリチウムイオンを吸蔵・放出可能な物質である炭素材料、グラファイト、コークスなど、その他、Al、Si、Pb、Sn、Zn、Cdなどとリチウムとの合金、LiFeなどの遷移金属複合酸化物、WO、MoOなどの遷移金属酸化物、グラファイト、カーボンなどの炭素質材料、Li(LiN)などの窒化リチウム、さらに金属リチウム箔などのリチウム金属、またはこれらの混合物を用いてもよい。
特に好ましい負極活物質としては、炭素材料、リチウム金属、リチウム合金または酸化物材料が挙げられ、正極活物質としては、リチウムイオンがインターカーレート・デインターカーレート可能な酸化物または炭素材料などが挙げられる。このような活物質が使用された電極を用いることにより、良好な特性の電池を得ることができる。
ここで炭素材料の具体例としては、メソフェーズカーボンブラック、メソカーボンマイクロビーズ、天然または人造のグラファイト、樹脂焼成炭素材料、カーボンブラック、炭素繊維などから適宜選択すればよい。これらは粉末として用いられる。これらの中でもグラファイトやメソフェーズカーボンブラックが好ましく、その平均粒径は1〜30μm、特に5〜25μmであることが好ましい。平均粒径が上記範囲よりも小さすぎると、充放電サイクル寿命が短くなり、また、容量のばらつきが大きくなる傾向にある。また上記範囲よりも大きすぎると、容量のばらつきが著しく大きくなり、平均容量が小さくなってしまう。平均粒径が大きい場合に容量のばらつきが生じるのは、グラファイトと集電体の接触やグラファイト同士の接触が均一でなく、ばらつくことによると考えられる。
リチウムイオンがインターカーレート、デインターカーレート可能な酸化物としては、リチウムを含む複合酸化物が好ましく、例えば、LiCoO、LiNiO、LiMnO、LiV等が挙げられる。これらの酸化物は粉末として用いられるが、粉末の平均粒子径は1〜40μmであることが好ましい。
また、電極には、必要に応じて導電助剤が添加される。導電助剤としては好ましくは、グラファイト、カーボンブラック、アセチレンブラック、炭素繊維、ニッケル、アルミニウム、銅、銀などの金属が挙げられ、これらのなかでは特にグラファイト、カーボンが好ましい。電極の形成に用いるバインダーとしては、フッ素樹脂、フッ素ゴムなどが挙げられ、バインダーの量は電極の3〜30質量%程度の範囲が適当である。
リチウムイオン二次電池を作製するには、まず、電極活物質と、必要に応じて添加される導電助剤とを、ゲル電解質溶液またはバインダー溶液に分散して電極塗布液を調製し、この電極塗布液を集電体に塗布する。集電体は、電池を備えるデバイスの形状やケース内への配置方法に応じて、公知の集電体から適宜選択して使用すればよい。通常、正極にはアルミニウムなど、負極には銅、ニッケルなどが使用される。
電極塗布液を集電体に塗布したあと、溶媒を蒸発させることにより、集電体に活物質層が形成された正極および負極がそれぞれ得られる。電極塗布液の塗布厚は、50〜400μm程度とすることが好ましい。
このようにして得られた正極および負極と、上述したセパレータとを、図2(a)に示すように、正極活物質層13と集電体14とからなる正極15、セパレータ10、負極活物質層16と集電体17とからなる負極18の順に積層し、圧着して電子素体を作製し、外装材に充填する。なお、積層の際には、電極の活物質層側がセパレータと接するように配置する。ここで、図2(b)に示すように、圧着する際にあらかじめセパレータ10に電解液を含浸しておいてもよいし、電子素体を外装材に充填してから電解液を注入してもよい。その後、電極端子、安全装置などを適宜接続した後、外装材を封止する。
電解液としては、有機溶媒に電解質塩を溶解した混合溶液が使用される。さらに、有機溶媒としては、高い電圧をかけた場合でも分解が起こらないものが好ましく、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトロヒドラフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテートなどの極性溶媒、もしくはこれら溶媒の2種類以上の混合物が挙げられる。
電解液に溶解する電解質塩としては、リチウムイオン二次電池の場合、LiClO、LiPF、LiBF、LiAsF、LiCF、LiCFCO、LiPFSO、LiN(SOCF、Li(SOCFCF、LiN(COCFおよびLiN(COCFCFなどのリチウムを含む塩、またはこれらの2種以上の混合物を使用できる。
以上説明したリチウムイオン二次電池は、上述したセパレータを備えたものであり、電極液が注液されていても、広範囲の温度で電極とセパレータとの接着強度が高い。したがって、広範囲の温度でイオン伝導性が高く、電池性能が高い。しかも、広範囲の温度で、シャットダウン特性に優れ、メルトダウンしにくくなっている。
なお、本発明は上述した実施形態例に限定されない。例えば、上述した実施形態例では、多孔質基材の両面に多孔質層が形成されていたが、多孔質基材の片面のみに形成されていてもよい。但し、多孔質層を多孔質基材の両面に形成すれば、このセパレータと電極との接着性、密着性がより良好となるため、イオン伝導性がより向上する。
また、電子部品がリチウムイオン二次電池以外のものであってもよく、正極および負極とセパレータとから構成される電子部品であれば特に制限されないが、リチウムイオン二次電池以外では、ポリマーリチウム電池、アルミニウム電解コンデンサ、電気二重層キャパシタなどに好適に備えられる。
以下の実施例および比較例において、「%」は「質量%」のことである。
<セパレータの作製>
(実施例1〜7、比較例1〜3)
下記表1に示す樹脂化合物を含む表2に示す電気絶縁性樹脂組成物を用い、以下のようにして、セパレータを作製した。
すなわち、表2に示す電気絶縁性樹脂組成物を1−メチル−2−ピロリドン(NMP)に添加し、窒素雰囲気下において室温で溶解し、室温冷却後、得られた混合物を塗布液とした。次いで、厚さが約12μm、透気度の測定値が約100秒/100mlのポリエチレン製延伸多孔質基材の片面に、得られた塗布液をドクターブレード法によってキャストした後、メタノール中に投入し、10分間浸漬した。次いで、メタノール中から引き上げた後、40℃の乾燥機中で乾燥させて、ポリエチレン製の延伸多孔質基材の片面に多孔質層を形成させた。さらに、ポリエチレン製の延伸多孔質基材のもう一方の片面に、同様の処理を施して、ポリエチレン製の延伸多孔質基材の両面に多孔質層を形成したセパレータを得た。
なお、比較例1では、多孔質層が形成されていないポリエチレン製の延伸多孔質基材をセパレータとして利用した。また、比較例2では、上記ポリエチレン製の延伸多孔質基材の内部に、フッ化ビニリデン重合体(ゲル化率:約4%)を充填してセパレータとした。
<ゲル化率測定方法>
表1に示す各樹脂化合物についてゲル化率を以下のようにして測定した。まず、樹脂化合物0.5g(±0.1g)を秤量し、プロピレンカーボネート(PC):ジエチルカーボネート(DEC)=1:2からなる電解液溶媒5.0g中に浸漬させ、密閉し、−20℃,25℃,90℃の恒温槽中に投入して1時間放置した。次いで、この放置されたものを濾過した後、濾紙上に残った樹脂化合物の濾過物をメタノールで洗浄し、電解液を除去した。そして、濾過物を乾燥して乾燥後の質量を測定し、試験前後の質量を下記式に代入してゲル化率を算出した。
ゲル化率(質量%)={試験前質量(g)−試験後質量(g)}/試験前質量(g)×100
Figure 2005056800
<セパレータの物性>
また、得られたセパレータについて、膜厚、透気度を以下のように測定した。測定結果を表2に示す。
(膜厚)
マイクロメータ(打点式厚み計)を用いて測定した。
(透気度)
JIS P8117に準拠してガーレ式透気度を測定した。
Figure 2005056800
<接着強度の測定>
得られたセパレータと正極、セパレータと負極をそれぞれ積層し、100℃のホットプレート上で1.5MPa、10秒間の条件でプレスした。このプレスによって得られた試験片(試験片幅:10mm)に、1mol/LのLiPFを含むPC:DEC=1:2からなる電解液を含浸し、−20℃,25℃,50℃,100℃の温度環境下において1時間以上放置した。室温に戻した後、セパレータと電極とをORIENTEC社製テンシロン万能試験機により剥離速度50mm/分で180℃剥離し、その剥離強度を接着強度とした。
Figure 2005056800
<リチウムイオン二次電池の作製>
得られたセパレータと、正極および負極とを積層し、100℃のホットプレート上で1.5MPa、10秒間の条件でプレスして電気化学素子を得た。なお、正極および負極としては、接着強度を測定する際に積層されるものを使用した。次いで、この電気化学素子に電極取り出し端子等を接続後、電池用ラミネートパック内に装填した。次いで、その中に、1mol/LのLiPFを含むPC:DEC=1:2からなる電解液を注液し、ラミネートパックを封止して、小型リチウムイオン二次電池を作製した。
(インピーダンス測定)
得られた電池内部のインピーダンスを測定した。その測定では、ソーラトロン社製交流インピーダンス測定装置を用いた。
(サイクル試験)
500回充放電を繰り返して、サイクル特性を測定した。
サイクル特性(%)=500回サイクル後の電池容量/初期電池容量×100
(強制過充放電試験)
12V,2C充電して電池表面温度および電池破裂の有無を確認し、次のように評価した。
◎:50℃以下、破裂無し、○:100℃以下、破裂無し、△:130℃以下、破裂無し、×:破裂あり
Figure 2005056800
実施例1〜7のセパレータでは、多孔質層をなす電気絶縁性樹脂組成物が、ゲル化率が20質量%以下の第1の樹脂化合物10〜50質量%と、ゲル化率が50質量%以上の第2の樹脂化合物50〜90質量%とを含有していたので、表3に示すように、電子部品の電極に接着され、電解液が含浸された状態で−20〜100℃の環境下に1時間以上放置された後の接着強度が10g/cm以上であった。したがって、表4に示すように、実施例1〜7のリチウムイオン二次電池は、広範囲な温度環境下において、イオン伝導性が高く、サイクル特性などの電池性能が優れていた。また、過充電しても問題はなかった。
一方、比較例1では、多孔質基材のみをセパレータとして使用し、しかも接着剤を用いなかったので、電極との接着強度が低く、リチウムイオン二次電池のサイクル特性が不十分であり、さらには過充電後に破裂した。
比較例2のセパレータでは、多孔質基材上に多孔質層が形成されていなかったので、電極との接着強度が低かった。また、セパレータの透気度が低かったので、電解液を注液してもインピーダンスが高く、リチウムイオン二次電池のサイクル特性は低かった。しかも過充電後に破裂した。
比較例3では、ゲル化率の低い樹脂化合物のみが多孔質層をなしていたので、高温で接着強度が低下した。その結果、リチウムイオン二次電池のサイクル特性が低く、過充電後に破裂した。
本発明の電子部品用セパレータの一実施形態例を示す断面図である。 本発明の電子部品を製造する際の工程を示す断面図である。 従来の電子部品を製造する際の工程を示す断面図である。
符号の説明
10 セパレータ(電子部品用セパレータ)
11 多孔質基材
12 多孔質層

Claims (7)

  1. 多孔質基材の少なくとも片面に、電気絶縁性樹脂組成物からなる多孔質層が形成された電子部品用セパレータであって、
    電気絶縁性樹脂組成物は、ゲル化率が20質量%以下である第1の樹脂化合物10〜50質量%と、ゲル化率が50質量%以上である第2の樹脂化合物50〜90質量%とを含有することを特徴とする電子部品用セパレータ。
  2. 第1の樹脂化合物および第2の樹脂化合物の少なくとも一方が、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリスチレン、ポリエチレンオキサイドを骨格中に含む樹脂またはこれら樹脂の誘導体であることを特徴とする請求項1に記載の電子部品用セパレータ。
  3. 第1の樹脂化合物が、四フッ化エチレン、六フッ化プロピレン、エチレンのうちのいずれか1種類以上とフッ化ビニリデンとからなる共重合体、または、フッ化ビニリデンからなる単独重合体であり、
    第2の樹脂化合物が、六フッ化プロピレンとフッ化ビニリデンとからなる共重合体であることを特徴する請求項1に記載の電子部品用セパレータ。
  4. 多孔質基材が、ポリエチレンおよび/またはポリプロピレンからなる不織布または延伸多孔質膜であることを特徴する請求項1〜3のいずれかに記載の電子部品用セパレータ。
  5. ガーレ透気度測定装置により測定される透気度が、1000秒/100ml以下であることを特徴とする請求項1〜4のいずれかに記載の電子部品用セパレータ。
  6. リチウムイオン二次電池、ポリマーリチウム電池、アルミニウム電解コンデンサ、電気二重層キャパシタから選ばれる電子部品に備えられることを特徴とする請求項1〜5のいずれかに記載の電子部品用セパレータ。
  7. 正極と負極とを有し、それらの間に請求項1〜6のいずれかに記載の電子部品用セパレータが配置され、該電子部品用セパレータに電解液が含浸されたものであることを特徴とする電子部品。
JP2003289181A 2003-08-07 2003-08-07 電子部品用セパレータおよび電子部品 Expired - Fee Related JP4414165B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003289181A JP4414165B2 (ja) 2003-08-07 2003-08-07 電子部品用セパレータおよび電子部品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289181A JP4414165B2 (ja) 2003-08-07 2003-08-07 電子部品用セパレータおよび電子部品

Publications (2)

Publication Number Publication Date
JP2005056800A true JP2005056800A (ja) 2005-03-03
JP4414165B2 JP4414165B2 (ja) 2010-02-10

Family

ID=34367596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289181A Expired - Fee Related JP4414165B2 (ja) 2003-08-07 2003-08-07 電子部品用セパレータおよび電子部品

Country Status (1)

Country Link
JP (1) JP4414165B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258066A (ja) * 2006-03-24 2007-10-04 Sony Corp 電池
KR101004184B1 (ko) 2007-06-06 2010-12-24 닛산 지도우샤 가부시키가이샤 2차 전지 및 그 제조 방법
WO2011077542A1 (ja) * 2009-12-25 2011-06-30 トヨタ自動車株式会社 非水電解液型リチウムイオン二次電池及び車両
JP2011198494A (ja) * 2010-03-17 2011-10-06 Toyota Motor Corp ガリウム電池
JP2012074367A (ja) * 2010-08-30 2012-04-12 Sony Corp 非水電解質電池および非水電解質電池の製造方法、並びに絶縁材および絶縁材の製造方法、並びに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013161707A (ja) * 2012-02-07 2013-08-19 Teijin Ltd 非水系二次電池用セパレータおよび非水系二次電池
WO2014103791A1 (ja) * 2012-12-27 2014-07-03 日本ゼオン株式会社 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池
WO2014103792A1 (ja) * 2012-12-27 2014-07-03 日本ゼオン株式会社 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池
JP2015088478A (ja) * 2013-09-26 2015-05-07 東レ株式会社 固体電解質層積層多孔性フィルム及び電池用セパレータ、二次電池
KR101794264B1 (ko) * 2012-07-31 2017-12-01 삼성에스디아이 주식회사 세퍼레이터, 이를 채용한 리튬전지 및 상기 세퍼레이터 제조방법
JP2018056142A (ja) * 2012-11-26 2018-04-05 日本ゼオン株式会社 電極/セパレータ積層体の製造方法およびリチウムイオン二次電池
JP2019521469A (ja) * 2017-06-13 2019-07-25 シェンチェン シニア テクノロジー マテリアル カンパニー リミテッド マルチコア−モノシェル構造のゲルポリマーコーティングセパレータ及びその製造方法と使用
WO2020189112A1 (ja) * 2019-03-18 2020-09-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
CN112055883A (zh) * 2018-03-02 2020-12-08 阿科玛股份有限公司 在电化学装置中使用的含氟聚合物粘结剂涂料

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431638B2 (en) 2011-10-21 2016-08-30 Teijin Limited Non-aqueous secondary battery separator and non-aqueous secondary battery
US10096811B2 (en) 2011-10-21 2018-10-09 Teijin Limited Separator for a non-aqueous secondary battery and non-aqueous secondary battery
TWI553945B (zh) 2011-10-21 2016-10-11 帝人股份有限公司 非水系蓄電池用分隔器及非水系蓄電池
KR102771571B1 (ko) 2015-11-11 2025-02-25 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
KR102654789B1 (ko) 2018-10-23 2024-04-05 에스케이이노베이션 주식회사 이차전지용 분리막 및 이를 이용한 전기화학소자
KR102651679B1 (ko) 2018-10-23 2024-03-27 에스케이이노베이션 주식회사 이차전지용 분리막 및 이를 이용한 전기화학소자
KR20240141480A (ko) 2023-03-20 2024-09-27 에스케이이노베이션 주식회사 분리막 및 상기 분리막을 포함하는 전기화학소자
KR20240141472A (ko) 2023-03-20 2024-09-27 에스케이이노베이션 주식회사 분리막 및 상기 분리막을 포함하는 전기화학소자
US20250210807A1 (en) 2023-12-20 2025-06-26 Sk Innovation Co., Ltd. Composite separator and secondary battery using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172606A (ja) * 1996-12-04 1998-06-26 Mitsubishi Electric Corp リチウムイオン二次電池及びその製造方法
JP2001118558A (ja) * 1999-10-19 2001-04-27 Asahi Kasei Corp 部分被覆されたセパレータ
JP2005019157A (ja) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd 電子部品用セパレータおよび電子部品
JP2005019156A (ja) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd 電子部品用セパレータおよび電子部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172606A (ja) * 1996-12-04 1998-06-26 Mitsubishi Electric Corp リチウムイオン二次電池及びその製造方法
JP2001118558A (ja) * 1999-10-19 2001-04-27 Asahi Kasei Corp 部分被覆されたセパレータ
JP2005019157A (ja) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd 電子部品用セパレータおよび電子部品
JP2005019156A (ja) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd 電子部品用セパレータおよび電子部品

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258066A (ja) * 2006-03-24 2007-10-04 Sony Corp 電池
KR101004184B1 (ko) 2007-06-06 2010-12-24 닛산 지도우샤 가부시키가이샤 2차 전지 및 그 제조 방법
WO2011077542A1 (ja) * 2009-12-25 2011-06-30 トヨタ自動車株式会社 非水電解液型リチウムイオン二次電池及び車両
JP2011198494A (ja) * 2010-03-17 2011-10-06 Toyota Motor Corp ガリウム電池
US9350005B2 (en) 2010-08-30 2016-05-24 Sony Corporation Non-aqueous electrolyte battery, separator, battery pack, electronic device, electromotive vehicle, power storage apparatus, and electric power system
JP2012074367A (ja) * 2010-08-30 2012-04-12 Sony Corp 非水電解質電池および非水電解質電池の製造方法、並びに絶縁材および絶縁材の製造方法、並びに電池パック、電子機器、電動車両、蓄電装置および電力システム
US10637027B2 (en) 2010-08-30 2020-04-28 Murata Manufacturing Co., Ltd. Battery, separator, battery pack, electronic device, electromotive vehicle, power storage apparatus, and electric power system
JP2013161707A (ja) * 2012-02-07 2013-08-19 Teijin Ltd 非水系二次電池用セパレータおよび非水系二次電池
KR101794264B1 (ko) * 2012-07-31 2017-12-01 삼성에스디아이 주식회사 세퍼레이터, 이를 채용한 리튬전지 및 상기 세퍼레이터 제조방법
JP2018056142A (ja) * 2012-11-26 2018-04-05 日本ゼオン株式会社 電極/セパレータ積層体の製造方法およびリチウムイオン二次電池
WO2014103792A1 (ja) * 2012-12-27 2014-07-03 日本ゼオン株式会社 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池
JPWO2014103791A1 (ja) * 2012-12-27 2017-01-12 日本ゼオン株式会社 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池
JPWO2014103792A1 (ja) * 2012-12-27 2017-01-12 日本ゼオン株式会社 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池
WO2014103791A1 (ja) * 2012-12-27 2014-07-03 日本ゼオン株式会社 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池
JP2015088478A (ja) * 2013-09-26 2015-05-07 東レ株式会社 固体電解質層積層多孔性フィルム及び電池用セパレータ、二次電池
JP2019521469A (ja) * 2017-06-13 2019-07-25 シェンチェン シニア テクノロジー マテリアル カンパニー リミテッド マルチコア−モノシェル構造のゲルポリマーコーティングセパレータ及びその製造方法と使用
CN112055883A (zh) * 2018-03-02 2020-12-08 阿科玛股份有限公司 在电化学装置中使用的含氟聚合物粘结剂涂料
EP3759726A4 (en) * 2018-03-02 2022-04-13 Arkema, Inc. FLUOROPOLYMER BONDED COATING FOR USE IN ELECTROCHEMICAL DEVICES
WO2020189112A1 (ja) * 2019-03-18 2020-09-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US12288898B2 (en) 2019-03-18 2025-04-29 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery

Also Published As

Publication number Publication date
JP4414165B2 (ja) 2010-02-10

Similar Documents

Publication Publication Date Title
US7311994B2 (en) Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
JP4431304B2 (ja) リチウムイオン二次電池用セパレータおよびこれを備えたリチウムイオン二次電池
JP4414165B2 (ja) 電子部品用セパレータおよび電子部品
JP4109522B2 (ja) リチウムイオン二次電池用セパレーターおよびそれを用いたリチウムイオン二次電池
KR100833419B1 (ko) 리튬 2차전지
CN100474661C (zh) 涂布有电解液可混溶的聚合物的隔膜及使用该隔膜的电化学器件
US9882189B2 (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2007324073A (ja) リチウム二次電池並びにそのセパレータ及びその製造方法
JP4439226B2 (ja) 非水電解質二次電池
JP2005019156A (ja) 電子部品用セパレータおよび電子部品
JP2005243303A (ja) 電気化学素子用部材及びその製造方法、並びにそれを用いた電気化学素子
JP4490055B2 (ja) リチウムイオン二次電池又はポリマーリチウム電池用セパレータ
JP4551539B2 (ja) 非水電解質二次電池
JP4086474B2 (ja) 電解液担持ポリマー膜、電池用セパレータ、それらを用いた二次電池及びその製造方法
JP4142921B2 (ja) リチウムイオン二次電池
JP2014026946A (ja) 非水電解質電池用セパレータ及び非水電解質電池
JP2008041606A (ja) 非水電解質電池用セパレータ及び非水電解質電池
US6669860B1 (en) Solid electrolyte, electrochemical device, lithium ion secondary battery, and electric double-layer capacitor
CN112216812B (zh) 锂离子电池重复单元、锂离子电池及其使用方法、电池模组和汽车
JP3351765B2 (ja) 非水電解液二次電池
JP5213003B2 (ja) 非水電解質二次電池
JP2001202954A (ja) 非水電解質電池
JP4238099B2 (ja) 非水電解質二次電池
JP2000195522A (ja) 非水電解質二次電池
JP3984008B2 (ja) 電気化学デバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4414165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees