[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005053006A - Method for manufacturing micro-molded product - Google Patents

Method for manufacturing micro-molded product Download PDF

Info

Publication number
JP2005053006A
JP2005053006A JP2003206336A JP2003206336A JP2005053006A JP 2005053006 A JP2005053006 A JP 2005053006A JP 2003206336 A JP2003206336 A JP 2003206336A JP 2003206336 A JP2003206336 A JP 2003206336A JP 2005053006 A JP2005053006 A JP 2005053006A
Authority
JP
Japan
Prior art keywords
molded
micro
temperature
film
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003206336A
Other languages
Japanese (ja)
Inventor
Katsuhide Shinmo
勝秀 新毛
Kenichi Nakama
健一 仲間
Yukinari Sekiguchi
幸成 関口
Naoko Hikichi
奈緒子 引地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003206336A priority Critical patent/JP2005053006A/en
Publication of JP2005053006A publication Critical patent/JP2005053006A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacrturing a micro-molded product having high heat resistance with good mass productivity. <P>SOLUTION: A gel film 14 comprising an organic/inorganic composite material is formed on the surface of a glass substrate 12 and the fine groove shape 10 of a diffraction lattice mold 11 is transferred to the gel film 14 to mold a molding structure 14A which is, in turn, heat-treated at 600°C or below (a range of 350-600°C) to remove an unstable easily separable component such as an unreacted component from the molding structure 14A. Even if the manufactured diffraction lattice 20 is heated to 400°C or above, the generation of the gas separated by the combustion of an organic component can be suppressed and the damage of the diffraction lattice 20 itself by pyrolysis or the damage of a reflecting film 16 can be suppressed. By suppressing a heat treatment temperature to 600°C or below (the range of 350-600°C), the damage of the diffraction lattice 20 itself by pyrolysis is suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロレンズアレイや回折格子などの微小成形体の製造方法に関する。
【0002】
【従来の技術】
従来、幅や高さが数μm程度の微小成形体、例えば回折格子などは転写性のよいエポキシ樹脂などの成形により作製されている。
【0003】
また、光学素子基材表面に金属アルコレートを供給し、型により押圧して光学素子基材上に凹凸を有する形状の酸化物層を、光学素子に形成する技術が知られている(例えば、特許文献1参照)。
【0004】
さらに、回折格子などの光学素子以外の微小成形体としては、内部に流体を充填または移動させるための微小流路を有する微小流路構造体が知られている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開平10−142410号公報
【特許文献2】
特開2003−62797号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来技術には次のような問題点があった。
(1)エポキシ樹脂などの成形により回折格子などの光学素子を作製した場合、樹脂の種類にもよるが、エポキシ樹脂自身の熱分解により数10〜400℃で大きく変形し、あるいは燃焼してしまう。
【0007】
(2)一般に、回折格子などの光学素子(精密光学素子)に要求される耐熱温度は、使用状態ではかなり高温での使用を想定する場合でも一般に100〜200℃程度以下である。しかし、回折格子などの光学素子をモジュールや装置に組み込んだりする実装工程において、耐候性を高めるためには樹脂接着剤よりも低融点ガラスを用いる方が好ましい。低融点ガラスによる接合には通常400〜500℃以上の高温が要求されるので、光学素子自身もこのような高温に晒される場合があり得る。
【0008】
上記特許文献1に記載された従来技術では、400℃以上で加熱されると有機成分の燃焼によって脱離したガスが発生し、光学素子自体が破損されたり、表面に反射膜や反射防止膜が形成されている場合にはそれらの膜が破損されたりする。これは、金属アルコレート(ゾルゲル法で用いる有機無機複合材料)は材料自体に有機成分を含み、これらの分解温度が数10〜400℃程度にあり、熱分解が起こるためである。
(3)完全な無機材料を成形して回折格子などの光学素子を作製する場合は、溝などの凹凸深さが0.1μm程度のものしか作製できなかった。これは、膜厚が0.1μm以上になると、硬化時の収縮によりクラックが発生し易いためである。
【0009】
本発明は、このような従来の問題点に着目してなされたもので、耐熱性の高い微小成形体を量産性よく作製可能な微小成形体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る発明は、ゾル液を脱水処理したゲル膜に成形型の微細な形状を転写して、前記微細な形状を有する成形構造体を成形し、前記成形構造体を加熱して微小成形体を作製する微小成形体の製造方法において、前記成形構造体を、脱水縮合反応および未反応成分の脱離が起こる温度と、前記成形構造体を構成する物質の骨格構造が熱分解する温度との間の温度で熱処理する工程を備えることを要旨とする。
【0011】
なお、ここにいう「骨格構造」とは、成形構造体を構成する物質の化学構造を意味し、本発明においてはその物質の金属−酸素−金属結合、または金属−炭素結合を指す。ただし、ここにいう「金属」には、Siも含まれる。一方、「成形構造体」における「構造」は凹凸構造などの形状のことである。
【0012】
この構成によれば、微細な形状を有する成形構造体を、脱水縮合反応および未反応成分の脱離が起こる温度と成形構造体を構成する物質の骨格構造が熱分解する温度との間の温度で熱処理する。この熱処理により、成形構造体内の不安定な成分は除去されるが、成形構造体を構成する物質の骨格構造は破壊されないため、作製された微小成形体の形状は、高温で変化しない。このため、耐熱性が高くなり、高温で微細な形状が維持される。例えば、微小成形体が400℃以上で加熱されても、脱離したガスが発生して微小成形体自体が破損したり、その表面に反射膜や反射防止膜がある場合にはその膜が破損するのを抑制できる。したがって、耐熱性の高い微小成形体を量産性よく作製することができる。
【0013】
また、上述したように、微小成形体をモジュールや装置に組み込んだりする実装工程において、微小成形体が低融点ガラスによる接合時に400〜500℃以上の高温に晒される場合がある。しかし、微小成形体は耐熱性が高いので、低融点ガラスによる接合時に微小成形体自体が破損したり、その表面に反射膜や反射防止膜がある場合にはその膜が破損するのが抑制される。したがって、前記実装工程における不良品の発生を抑制でき、製造コストを低減することができる。
【0014】
請求項2に係る発明は、ゾル液を脱水処理したゲル膜に成形型の微細な形状を転写して、前記微細な形状を有する成形構造体を成形し、前記成形構造体を加熱して微小成形体を作製する微小成形体の製造方法において、基材表面に前記ゲル膜を形成する工程と、前記ゲル膜に前記成形型の微細な形状を転写して前記成形構造体を成形する工程と、前記成形構造体を、脱水縮合反応および未反応成分の脱離が起こる温度と、前記成形構造体を構成する物質の骨格構造が熱分解する温度との間の温度で熱処理する工程とを備えることを要旨とする。
【0015】
この構成によれば、成形構造体を、脱水縮合反応および未反応成分の脱離が起こる温度と成形構造体を構成する物質の骨格構造が熱分解する温度との間の温度で熱処理する。この熱処理により、成形構造体内の不安定な成分は除去されるが、成形構造体を構成する物質の骨格構造は破壊されないため、作製された微小成形体の形状は高温で変化しない。このため、耐熱性が高くなり、高温で微細な形状が維持される。例えば、微小成形体が400℃以上で加熱されても、脱離したガスが発生して微小成形体自体が破損したり、表面の反射膜や反射防止膜が破損するのを抑制できる。
【0016】
したがって、高さ或いは深さが0〜0.1μmの範囲はもちろん、0.1μm以上の微細な形状を持つ場合でも、耐熱性の高い、すなわち400℃以上の耐熱性を持つ微小成形体を、量産性よく作製することができる。
【0017】
また、上述したように、微小成形体をモジュールや装置に組み込んだりする実装工程において、微小成形体が低融点ガラスによる接合時に400〜500℃以上の高温に晒される場合がある。しかし、微小成形体は耐熱性が高いので、低融点ガラスによる接合時に微小成形体自体が破損したり、反射膜などの膜が破損するのが抑制されので、前記実装工程における不良品の発生を抑制でき、製造コストを低減することができる。
【0018】
請求項3に係る発明は、請求項1又は2に記載の微小成形体の製造方法において、前記熱処理する工程における前記熱処理を、350〜600℃の範囲で行うことを要旨とする。
【0019】
この構成によれば、成形構造体を350℃以上で熱処理を行うことにより、未反応成分などの不安定で脱離し易い成分を成形構造体から除去することができる。そのため、作製された微小成形体を400℃以上で加熱しても、上記従来技術のように有機成分の燃焼によって脱離したガスが発生するのを抑制でき、微小成形体自体の熱分解による破損や、反射膜或いは反射防止膜の破損を抑制できる。したがって、耐熱性に優れた微小成形体を得ることができる。また、成形構造体の熱処理温度を600℃以下に抑えることで、微小成形体自体の熱分解による破損を抑制できる。
【0020】
請求項4に係る発明は、請求項1〜3のいずれか一つに記載の微小成形体の製造方法において、前記成形構造体に転写成形された微細な形状の表面に膜を成膜する場合、その成膜前に前記熱処理する工程を行うことを要旨とする。
【0021】
この構成によれば、成形構造体に転写成形された微細な形状の表面に膜を成膜する場合、その成膜前に前記熱処理する工程を行うので、微細な形状の表面に成膜した反射膜や反射防止膜などの膜が熱処理中に発生するガスにより破損するのを抑制できる。これにより、微細な形状の表面に反射膜や反射防止膜などが成膜された微小成形体、例えば高さ或いは深さが0〜0.1μmの範囲はもちろん、0.1μm以上の微細な形状の表面に反射膜が形成された耐熱性の高い反射型の回折格子を得ることができる。
【0022】
請求項5に係る発明は、請求項1〜4のいずれか一つに記載の微小成形体の製造方法において、前記ゲル膜の材料として、メチル基またはフェニル基が直接Siに結合した有機無機複合材料を用いることを要旨とする。
【0023】
なお、ゲル膜の材料として、メチル基またはフェニル基が直接Siに結合した有機無機複合材料を用いる場合における前記「骨格構造」は、Siと酸素または炭素の結合を意味する。
【0024】
この構成によれば、ゲル膜の材料として、メチル基またはフェニル基が直接Siに結合した有機無機複合材料、例えばメチルトリエトキシシラン、フェニルトリエトキシシラン、ジメチルジエトキシシランなどを用いる。これにより、成形構造体を熱処理する過程において脱離する成分が水(HO)と一部の未反応基に付帯すると考えられるメチル基(CH)またはフェニル基なので、有機成分の燃焼時の収縮量(減少量)を抑制できる。
【0025】
また、従来、完全な無機材料を成形して回折格子などの光学素子を作製する場合は、溝などの凹凸深さが0.1μm程度のものしか作製できなかった。これは、膜厚が0.1μm以上になると、硬化時の収縮によりクラックが発生し易いためである。これに対して、有機無機複合材料からなるゲル膜に成形型の微細な形状を転写成形するので、ゲル膜の膜厚が0〜0.1μmの範囲はもちろん、0.1μm以上になっても、硬化時の収縮によりクラックが発生するのを抑制できる。
【0026】
また、微小成形体が400℃以上で加熱されても、有機無機複合材料に含まれる有機成分の燃焼によって脱離したガスが発生して微小成形体自体が破損したり、表面の反射膜や反射防止膜が破損するのを抑制できる。その結果、高さ或いは深さが0〜0.1μmの範囲はもちろん、0.1μm以上の微細な形状を持つ場合でも、400℃以上の耐熱性を持つ微小成形体を得ることができる。
【0027】
したがって、高さ或いは深さが0〜0.1μmの範囲はもちろん、0.1μm以上の微細な形状を持つ場合でも、耐熱性の高い、すなわち400℃以上の耐熱性を持つ微小成形体を、量産性よく作製することができる。
【0028】
【発明の実施の形態】
以下、本発明に係る微小成形体の製造方法を回折格子に適用した一実施形態を図面に基づいて説明する。
【0029】
[一実施形態]
本発明の一実施形態に係る回折格子の製造方法を図1に基づいて説明する。
この製造方法は、ゾルゲル法による回折格子の製造方法で、以下の工程を含む。
【0030】
なお、一般的な「ゾルゲル法」は、含水酸化物ゾルを脱水処理してゲルとし、このゲルを加熱して無機酸化物をある一定の形状、または基板上の被膜として、調製する方法をいう。
【0031】
(工程1)まず、微細な形状である微細な溝形状10を有する樹脂製の回折格子成形型11(図1(a)参照)を作製し、微細な溝形状10の表面に離型膜(図示略)を成膜する。
【0032】
(工程2)基材としてのガラス基板12の表面(基材表面)に有機無機複合材料からなるゲル膜14を形成する。
この工程2は、次の手順で行われる。
【0033】
・図1(b)に示すように、メチル基が直接Siに結合した材料(有機無機複合材料)であるメチルトリエトキシシランおよび酸水溶液を主成分とするゾル液13をガラス基板12の表面に塗布する。
【0034】
・塗布したゾル液13を脱水処理してゲル膜14を形成する。
(工程3)上記工程2で形成されたゲル膜14に、回折格子成形型11の微細な溝形状10を転写して、微細な溝形状10を有する成形構造体14Aを成形する。
【0035】
この工程3は次の手順で行われる。
・上記工程2で得られたゲル膜14が柔らかい状態で、表面にゲル膜14が形成されたガラス基板12をプレス機15内に入れ(図1(c)参照)、プレス機15内を真空にして成形の準備をする。
【0036】
・次に、プレス機15に取り付けた回折格子成形型11の微細な溝形状10をゲル膜14に押し当てて、微細な溝形状10を有する成形構造体14Aを成形する(図1(d)参照)。
【0037】
・次に、プレス機15内を60℃に保持して成形構造体14Aを硬化させる。
・この後、プレス機15内部を大気圧に戻し、回折格子成形型11をゲル膜14から離型する(図1(e)参照)。
【0038】
こうして、回折格子成形型11の微細な溝形状10がゲル膜14に転写されて微細な溝形状10を有する成形構造体(ゲル状の回折格子)14Aが形成される。
【0039】
(工程4)微細な溝形状10を有する成形構造体14Aを350℃で熱処理する(図1(f)参照)。
(工程5)次に、工程4で熱処理された成形構造体14Aの微細な溝形状10の表面に金(Au)を成膜して反射膜16を形成し(図1(g)参照)、反射膜16付の成形構造体14Aの光学特性を評価する。
【0040】
(工程6)次に、反射膜16を剥離する(図1(h)参照)。
(工程7)次に、反射膜16が剥離された成形構造体14Aを、脱水縮合反応および未反応成分の脱離が起こる温度(例えば350℃)と、成形構造体14Aを構成する物質の骨格構造が熱分解する温度(例えば600℃)との間の温度で熱処理する。本実施形態では、反射膜16が剥離された成形構造体14Aを600℃で1時間熱処理を行う(図1(i)参照)。
【0041】
(工程8)次に、上記工程7で熱処理された成形構造体14Aの微細な溝形状10の表面に再度金(Au)を成膜して反射膜16を形成する(図1(j)参照)。これにより、微小成形体としての回折格子20の作製が完了する。
【0042】
こうして作製された回折格子20の光学特性を評価し工程7(図1(i))での熱処理前の成形構造体14Aと比較したところ、回折効率で20%程度の変化はあったものの、その他の光学特性では変化がなかった。
【0043】
この評価後、回折格子20をさらに400℃で2時間の熱処理を行い、この熱処理後の回折格子20の光学特性を再び評価したが、光学特性の変化はなかった。
【0044】
<分析試験>
次に、上記工程7での熱処理時に生じる現象を検証するための分析試験を行った。この分析試験では、試料として、メチルトリエトキシシランとテトラエトキシシランの混合物を用い、熱重量−示差熱(TG−DTA)分析および昇温脱離ガス分析を行った。その分析結果を示す図2において、曲線30はメチル基(CH)の脱離ガス量を示しており、曲線40は水(HO)の脱離ガス量を示している。
【0045】
熱重量−示差熱(TG−DTA)分析は、示差熱天秤などの測定装置により、熱重量測定(TG:Thermo Gravimetry)と示差熱分析(DTA:Differential Thermal Analysis)を同時に測定した。
【0046】
熱重量−示差熱分析法で評価される重量減少は、図2に示すように、100〜350℃、および600℃以上の温度範囲で急激に発生しているが、途中の350〜600℃の温度範囲では大きな重量減少は生じていない。また、600℃以上の温度領域での重量減少は発熱を伴うことがわかる。
【0047】
また、昇温脱離ガス分析からは、100〜350℃付近の重量減少の脱離成分は水(HO)と一部の未反応基に付帯すると考えられるメチル基(CH)を含み、600℃付近の脱離成分は主としてメチル基(CH)だけを含むことがわかる。
【0048】
以上の分析結果から、100〜350℃の温度範囲での重量減少は、脱水縮合反応によるゲル骨格の発達に伴う反応と未反応成分の脱離などにより生じていると考えられる。また、350〜600℃の温度範囲では緩やかに脱水を伴う縮合反応が進行し、600℃以上の温度領域では成形構造体14A内のメチル基(CH)が熱分解されて脱離することにより重量減少が生じていると考えられる。
ここでの「メチル基の脱離」は、成形構造体14Aを構成する物質の骨格構造であるSi−O−Si結合やSi−C結合が分解していることを意味する。このようなメチル基の脱離は、成形構造体14Aの形状変化や破壊を引き起こす。
【0049】
そこで、図1(i)に示す上記工程7では、成形構造体14Aを、脱水縮合反応および未反応成分の脱離が起こる温度(例えば350℃)と、成形構造体14Aを構成する物質の骨格構造が熱分解する温度(例えば600℃)との間の温度(350℃〜600°)の範囲で熱処理する。350℃以上の熱処理(本例では600℃)を行うことによって、未反応成分などの不安定で脱離し易い成分を成形構造体14Aから除去でき、耐熱性に優れた回折格子20が得られる。また、上記工程7において熱処理温度を600℃以下(本例では600℃)に抑えることで、成形構造体14A自体の熱分解による破損を抑制できる。
【0050】
以上のように構成された一実施形態によれば、以下の作用効果を奏する。
○成形構造体14Aを、脱水縮合反応および未反応成分の脱離が起こる温度(例えば350℃)とそれを構成する物質の骨格構造が熱分解する温度(例えば600℃温度)との間の温度で熱処理するので、成形構造体14A内の不安定な成分は除去されるが、成形構造体14Aを構成する物質の骨格構造は破壊されない。これにより、作製された回折格子20の形状は高温で変化しなくなる。このため、回折格子20の耐熱性が高くなり、高温で回折格子20の微細な溝形状10が維持される。
【0051】
例えば、回折格子20が400℃以上で加熱されても、脱離したガスが発生して微小成形体である回折格子20自体が破損したり、表面の反射膜16が破損するのを抑制できる。したがって、高さ或いは深さが0〜0.1μmの範囲はもちろん、0.1μm以上の微細な形状を持つ場合でも、耐熱性の高い、すなわち400℃以上の耐熱性を持つ回折格子20を量産性よく作製することができる。
【0052】
○図1(i)に示す上記工程7で350℃以上の熱処理(本例では600℃)を行うことによって、未反応成分などの不安定で脱離し易い成分を成形構造体14Aから除去することができる。そのため、作製された回折格子20を400℃以上で加熱しても、上記従来技術のように有機成分の燃焼によって脱離したガスが発生するのを抑制でき、回折格子20自体の熱分解による破損や反射膜16などの膜の破損を抑制できる。したがって、耐熱性に優れた回折格子20を得ることができる。
【0053】
○上記工程7において熱処理温度を600℃以下(本例では600℃)に抑えることで、成形構造体14Aを構成する物質の骨格構造は破壊されないので、成形構造体14A自体の熱分解による破損を抑制でき、回折格子20の歩留まりが向上する。
【0054】
○回折格子20をモジュールや装置に組み込んだりする実装工程において、上述したように回折格子20が低融点ガラスによる接合時に400〜500℃以上の高温に晒される場合がある。しかし、回折格子20は耐熱性が高いので、低融点ガラスによる接合時に回折格子20自体が破損したり、反射膜16などの膜が破損するのが抑制されるので、前記実装工程における不良品の発生を抑制でき、製造コストを低減することができる。
【0055】
○図1(f)に示す上記工程4で成形構造体14Aを350℃で熱処理した後、成形構造体14Aに反射膜16を成膜した状態で、成形構造体14Aを600℃で熱処理したところ、反射膜16に多数の穴が開くなどの破損が生じた。
【0056】
これに対して、図1(j)に示す上記工程8で成形構造体14Aに反射膜16を成膜する前に、上記工程7で成形構造体14Aを600℃で1時間熱処理するようにしているので、反射膜16に多数の穴が開くなどの破損が生じるのを抑制できる。したがって、耐熱性に優れた反射膜付の回折格子20を得ることができる。
【0057】
○上記工程3において、上記工程2で形成されたゲル膜14に回折格子成形型11の微細な溝形状10を転写して、微細な溝形状10を有する成形構造体14Aを成形する。具体的には、この工程3では、メチル基が直接Siに結合した有機無機複合材料であるメチルトリエトキシシランおよび酸水溶液を主成分とするゾル液13をガラス基板12の表面に塗布し、このゾル液13を脱水処理してゲル膜14を形成する。このゲル膜14に、回折格子成形型11の微細な溝形状10を転写して成形構造体14Aを成形する。
【0058】
このため、ゲル膜14の膜厚が0.1μm以上になっても、硬化時の収縮によりクラックがゲル膜14に発生するのを抑制でき、高さ或いは深さが0〜0.1μmの範囲はもちろん、0.1μm以上の微細な溝形状10を持つ成形構造体14Aを成形することができる。したがって、高さ或いは深さが0〜0.1μmの範囲はもちろん、0.1μm以上の微細な形状を持つ場合でも、耐熱性の高い回折格子20を得ることができる。
【0059】
○上記工程5において、微細な溝形状10を有する成形構造体14Aの表面に反射膜16を形成して、反射膜16付の成形構造体(ゲル状の回折格子)14Aの光学特性を評価するようにしている。そのため、所望の光学特性が得られた成形構造体14Aに対してのみ、その後の処理を行って回折格子20を完成させることができるので、回折格子20の歩留まりが向上し、製造コストを低減することができる。
【0060】
○図1(g)に示す工程5で微細な溝形状10を有する成形構造体14Aの表面に反射膜16を形成する前に、図1(f)に示す工程4で成形構造体14Aを350℃で熱処理しているので、この熱処理によっても未反応成分などの不安定で脱離し易い成分を回折格子から除去することができる。
【0061】
[ 変形例]
なお、この発明は以下のように変更して具体化することもできる。
・上記一実施形態では、基材表面であるガラス基板12の表面に形成したゲル膜14に回折格子成形型11の微細な溝形状10を転写するようにしているが、本発明はこれに限定されない。例えば、回折格子成形型11の微細な溝形状10の表面にゲル膜14を形成し、このゲル膜14をプレス機15によりガラス基板12などの基材表面に押圧して、微細な溝形状10を有する成形構造体14Aを基材と一体化するような製造方法にも本発明は適用可能である。
【0062】
要するに、本発明は、ゾル液を脱水処理したゲル膜に成形型の微細な形状を転写して、微細な形状を有する成形構造体を成形し、成形構造体を加熱して微小成形体を作製する微小成形体の製造方法に広く適用可能である。
【0063】
・上記一実施形態では、工程4において成形構造体14Aを350℃で熱処理しているが、その熱処理温度は一例であって、350℃よりも低い温度であってもよい。
【0064】
・上記一実施形態では、工程7において成形構造体14Aを600℃で1時間熱処理しているが、その熱処理温度および時間は一例である。熱処理温度は、350℃〜600℃の範囲内であればよく、また、熱処理時間は1時間に限らず、適宜増減可能である。
【0065】
・上記一実施形態では、メチル基が直接Siに結合した材料(有機無機複合材料)であるメチルトリエトキシシランおよび酸水溶液を主成分とするゾル液13を用いているが、本発明はこれに限定されない。
【0066】
メチル基が直接Siに結合した有機無機複合材料として、メチルトリエトキシシラン以外に、例えば、ジメチルジエトキシシランなどを用いることができる。ここで、メチルトリエトキシシラン、ジメチルジエトキシシランの一般式は、次のとおりである。
【0067】
メチルトリアルコキシシラン類:CHSi(OR)R=CHまたはC
ジメチルジアルコキシシラン類:(CHSi(OR)R=CHまたはC
【0068】
これらの材料に、
テトラアルコキシシラン類:Si(OR)R=CHまたはCを加えた組成を有する有機無機複合材料を、ゾル液13に用いることができる。
【0069】
また、ゲル膜14の材料として、メチル基以外に、例えばフェニル基が直接Siに結合したフェニルトリエトキシシランなどの有機無機複合材料を主成分とするゾル液13を用いる場合にも本発明は適用可能である。この場合においても、メチル基の場合と同様に耐熱性の高い回折格子などの微小成形体が得られる。
【0070】
・上記一実施形態では、反射膜16付の回折格子20を作製する場合の製造方法を一例として説明したが、反射膜や反射防止膜のない微小成形体を作製する場合にも本発明は適用可能である。反射膜や反射防止膜のない微小成形体を作製する場合には、図1に示す各工程のうち、図1(g),(h)および(j)の工程が不要になる。
【0071】
・また、反射膜や反射防止膜のない微小成形体を作製する場合、図1(f)に示す上記工程4において成形構造体14Aを350℃で熱処理する代わりに、図1(i)に示す上記工程7のように成形構造体14Aを600℃で1時間熱処理するようにしてもよい。このようにすることで、熱処理工程を一つ減らすことができる。
【0072】
・上記一実施形態において、微小成形体の一例として回折格子20を作製する場合の製造方法について説明したが、本発明は回折格子以外の微小成形体を作製する場合にも適用できる。例えば、透明基板の片面に多数の微小レンズを有する平板マイクロレンズを成形により作製する場合に本発明を適用可能である。この場合、例えば、片面に半球面状の凹部(微細な形状)を多数有する透明基板を本発明による方法で作製可能である。
【0073】
・また、回折格子などの光学素子以外に、微細な形状を有する微小成形体として、例えば上記特許文献2に記載された微小流路構造体を作製する場合にも本発明は適用可能である。要するに、種々の微細な形状を有する微小成形体の作製に本発明は広く適用可能である。
【0074】
【発明の効果】
以上説明したように、本発明によれば、耐熱性の高い微小成形体を量産性よく作製することができる。
【図面の簡単な説明】
【図1】(a)〜(j)は一実施形態に係る回折格子の製造方法を示す説明図。
【図2】作製した回折格子についての熱分析結果を示すグラフ。
【符号の説明】
10…微細な形状である微細な溝形状、11…成形型としての回折格子成形型、12…基材としてのガラス基板、13…ゾル液、14…ゲル膜、14A…成形構造体、16…反射膜、20…微小成形体としての回折格子。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a micro-molded product such as a microlens array or a diffraction grating.
[0002]
[Prior art]
Conventionally, a minute molded body having a width and height of about several μm, such as a diffraction grating, is produced by molding an epoxy resin having good transferability.
[0003]
In addition, a technique is known in which a metal alcoholate is supplied to the surface of an optical element substrate, and pressed with a mold to form an oxide layer having irregularities on the optical element substrate on the optical element (for example, Patent Document 1).
[0004]
Further, as a micro-molded body other than an optical element such as a diffraction grating, a micro-channel structure having a micro-channel for filling or moving a fluid therein is known (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-10-142410
[Patent Document 2]
JP 2003-62797 A
[0006]
[Problems to be solved by the invention]
However, the above prior art has the following problems.
(1) When an optical element such as a diffraction grating is produced by molding an epoxy resin or the like, although depending on the type of resin, the epoxy resin itself is greatly deformed or burned at several tens to 400 ° C. due to thermal decomposition. .
[0007]
(2) Generally, the heat resistant temperature required for an optical element (precision optical element) such as a diffraction grating is generally about 100 to 200 ° C. or less even when assumed to be used at a considerably high temperature in use. However, in a mounting process in which an optical element such as a diffraction grating is incorporated in a module or an apparatus, it is preferable to use a low melting point glass rather than a resin adhesive in order to improve weather resistance. Since bonding with a low-melting glass usually requires a high temperature of 400 to 500 ° C. or higher, the optical element itself may be exposed to such a high temperature.
[0008]
In the prior art described in the above-mentioned Patent Document 1, when heated at 400 ° C. or higher, gas desorbed due to combustion of organic components is generated, the optical element itself is damaged, or a reflective film or antireflection film is formed on the surface. If formed, those films may be damaged. This is because the metal alcoholate (organic-inorganic composite material used in the sol-gel method) contains an organic component in the material itself, the decomposition temperature thereof is about several tens to 400 ° C., and thermal decomposition occurs.
(3) In the case where an optical element such as a diffraction grating is manufactured by molding a complete inorganic material, only those having a concave and convex depth such as a groove of about 0.1 μm can be manufactured. This is because when the film thickness is 0.1 μm or more, cracks are likely to occur due to shrinkage during curing.
[0009]
The present invention has been made paying attention to such a conventional problem, and is to provide a method for producing a micro-molded body capable of producing a micro-molded body having high heat resistance with high mass productivity.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claim 1 is characterized in that the fine shape of the molding die is transferred to the gel film obtained by dehydrating the sol solution, and the molded structure having the fine shape is molded, In a method of manufacturing a micro-molded body in which the molded structure is heated to produce a micro-molded body, the molding structure is divided into a temperature at which dehydration condensation reaction and desorption of unreacted components occur, and a substance constituting the molded structure. The gist of the present invention is to provide a heat treatment step at a temperature between the temperature at which the skeleton structure is thermally decomposed.
[0011]
Here, the “skeleton structure” means a chemical structure of a substance constituting the molded structure, and in the present invention indicates a metal-oxygen-metal bond or a metal-carbon bond of the substance. However, “metal” here includes Si. On the other hand, the “structure” in the “molded structure” is a shape such as an uneven structure.
[0012]
According to this configuration, a molded structure having a fine shape is formed at a temperature between a temperature at which dehydration condensation reaction and elimination of unreacted components occur and a temperature at which the skeleton structure of the substance constituting the molded structure is thermally decomposed. Heat treatment with Although the unstable components in the molded structure are removed by this heat treatment, the skeleton structure of the substance constituting the molded structure is not destroyed, so that the shape of the produced micromolded body does not change at a high temperature. For this reason, heat resistance becomes high and a fine shape is maintained at high temperature. For example, even if the micro-molded body is heated at 400 ° C. or higher, desorbed gas is generated and the micro-molded body itself is damaged, or the film is damaged if there is a reflective film or an antireflection film on the surface. Can be suppressed. Therefore, a micro-molded body having high heat resistance can be manufactured with high mass productivity.
[0013]
In addition, as described above, in a mounting process in which a micro-molded body is incorporated into a module or device, the micro-molded body may be exposed to a high temperature of 400 to 500 ° C. or higher when bonded with low-melting glass. However, since the micro-molded product has high heat resistance, it is possible to prevent the micro-molded product itself from being damaged when bonded with a low-melting glass, or if there is a reflective film or anti-reflection film on the surface, the film is prevented from being damaged. The Therefore, generation | occurrence | production of the inferior goods in the said mounting process can be suppressed, and manufacturing cost can be reduced.
[0014]
According to a second aspect of the present invention, a fine shape of a molding die is transferred to a gel film obtained by dehydrating a sol solution, a molded structure having the fine shape is molded, and the molded structure is heated to make a minute In the method of manufacturing a micro-molded body for producing a molded body, a step of forming the gel film on the surface of a substrate, and a step of molding the molded structure by transferring a fine shape of the molding die to the gel film. And a step of heat-treating the molded structure at a temperature between a temperature at which a dehydration condensation reaction and elimination of unreacted components occur and a temperature at which a skeleton structure of a substance constituting the molded structure is thermally decomposed. This is the gist.
[0015]
According to this configuration, the molded structure is heat-treated at a temperature between a temperature at which dehydration condensation reaction and desorption of unreacted components occur and a temperature at which the skeleton structure of the substance constituting the molded structure is thermally decomposed. Although the unstable components in the molded structure are removed by this heat treatment, the skeleton structure of the substance constituting the molded structure is not destroyed, so that the shape of the produced micromolded body does not change at high temperature. For this reason, heat resistance becomes high and a fine shape is maintained at high temperature. For example, even if the micro-molded body is heated at 400 ° C. or higher, it is possible to prevent the desorbed gas from being generated and the micro-molded body itself from being damaged or the surface reflection film or antireflection film from being damaged.
[0016]
Therefore, even if the height or depth is in the range of 0 to 0.1 μm, as well as a fine shape of 0.1 μm or more, a micro-molded body having high heat resistance, that is, heat resistance of 400 ° C. or more, It can be manufactured with high productivity.
[0017]
In addition, as described above, in a mounting process in which a micro-molded body is incorporated into a module or device, the micro-molded body may be exposed to a high temperature of 400 to 500 ° C. or higher when bonded with low-melting glass. However, since the micro-molded product has high heat resistance, it is possible to prevent the micro-molded product itself from being damaged or the film such as the reflective film from being damaged during the joining with the low melting point glass. This can be suppressed, and the manufacturing cost can be reduced.
[0018]
The invention according to claim 3 is characterized in that, in the method for producing a micro-molded article according to claim 1 or 2, the heat treatment in the heat treatment step is performed in a range of 350 to 600 ° C.
[0019]
According to this configuration, an unstable and easily desorbed component such as an unreacted component can be removed from the molded structure by heat-treating the molded structure at 350 ° C. or higher. Therefore, even if the produced micromolded body is heated at 400 ° C. or higher, it is possible to suppress the generation of gas desorbed by the combustion of organic components as in the above-described conventional technology, and the micromolded body itself is damaged by thermal decomposition. In addition, damage to the reflection film or the antireflection film can be suppressed. Therefore, it is possible to obtain a fine molded body having excellent heat resistance. In addition, by suppressing the heat treatment temperature of the molded structure to 600 ° C. or less, it is possible to suppress damage due to thermal decomposition of the minute molded body itself.
[0020]
The invention according to claim 4 is the method for producing a micro-molded body according to any one of claims 1 to 3, wherein a film is formed on the surface of a fine shape transferred and molded on the molded structure. The gist is to perform the heat treatment step before the film formation.
[0021]
According to this configuration, when a film is formed on the surface of a fine shape transferred and formed on the molded structure, the heat treatment step is performed before the film formation, and thus the reflection formed on the surface of the fine shape is performed. A film such as a film or an antireflection film can be prevented from being damaged by a gas generated during the heat treatment. As a result, a micro-molded body in which a reflective film, an anti-reflection film or the like is formed on the surface of a fine shape, for example, a fine shape having a height or depth of 0 to 0.1 μm, as well as a fine shape of 0.1 μm or more. A reflective diffraction grating having a high heat resistance and having a reflective film formed on the surface can be obtained.
[0022]
The invention according to claim 5 is an organic-inorganic composite in which a methyl group or a phenyl group is directly bonded to Si as a material of the gel film in the method for producing a micro-molded body according to any one of claims 1 to 4. The gist is to use materials.
[0023]
The “skeleton structure” in the case where an organic-inorganic composite material in which a methyl group or a phenyl group is directly bonded to Si is used as the material of the gel film means a bond between Si and oxygen or carbon.
[0024]
According to this configuration, an organic-inorganic composite material in which a methyl group or a phenyl group is directly bonded to Si, for example, methyltriethoxysilane, phenyltriethoxysilane, dimethyldiethoxysilane, or the like is used as a material for the gel film. As a result, the component desorbed in the process of heat-treating the molded structure is water (H 2 O) and a methyl group (CH 3 ) Or phenyl group, the amount of shrinkage (decrease amount) of the organic component during combustion can be suppressed.
[0025]
Conventionally, when an optical element such as a diffraction grating is manufactured by molding a complete inorganic material, only a concave and convex portion such as a groove has a depth of about 0.1 μm. This is because when the film thickness is 0.1 μm or more, cracks are likely to occur due to shrinkage during curing. On the other hand, since the fine shape of the mold is transferred and formed on the gel film made of the organic-inorganic composite material, the film thickness of the gel film is not only in the range of 0 to 0.1 μm, but also 0.1 μm or more. It is possible to suppress the generation of cracks due to shrinkage during curing.
[0026]
In addition, even when the micro-molded body is heated at 400 ° C. or higher, gas desorbed by the combustion of the organic components contained in the organic-inorganic composite material is generated and the micro-molded body itself is damaged, or the reflective film or reflection on the surface It is possible to suppress damage to the prevention film. As a result, it is possible to obtain a micro-molded body having a heat resistance of 400 ° C. or higher, even when the height or depth is in the range of 0 to 0.1 μm, as well as when having a fine shape of 0.1 μm or more.
[0027]
Therefore, even if the height or depth is in the range of 0 to 0.1 μm, as well as a fine shape of 0.1 μm or more, a micro-molded body having high heat resistance, that is, heat resistance of 400 ° C. or more, It can be manufactured with high productivity.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment in which a method for producing a micro molded body according to the invention is applied to a diffraction grating will be described with reference to the drawings.
[0029]
[One Embodiment]
A method for manufacturing a diffraction grating according to an embodiment of the present invention will be described with reference to FIG.
This manufacturing method is a method for manufacturing a diffraction grating by a sol-gel method, and includes the following steps.
[0030]
The general “sol-gel method” refers to a method in which a hydrous oxide sol is dehydrated to form a gel, and the gel is heated to prepare an inorganic oxide in a certain shape or a coating on a substrate. .
[0031]
(Step 1) First, a resin diffraction grating mold 11 (see FIG. 1A) having a fine groove shape 10 which is a fine shape is produced, and a release film (on the surface of the fine groove shape 10) ( (Not shown) is formed.
[0032]
(Step 2) A gel film 14 made of an organic-inorganic composite material is formed on the surface (base material surface) of the glass substrate 12 as a base material.
This process 2 is performed in the following procedure.
[0033]
As shown in FIG. 1B, a sol solution 13 mainly composed of methyltriethoxysilane, which is a material in which a methyl group is directly bonded to Si (organic-inorganic composite material), and an aqueous acid solution is applied to the surface of the glass substrate 12. Apply.
[0034]
-The applied sol solution 13 is dehydrated to form a gel film 14.
(Step 3) The fine groove shape 10 of the diffraction grating mold 11 is transferred to the gel film 14 formed in the above step 2, and a forming structure 14A having the fine groove shape 10 is formed.
[0035]
This step 3 is performed according to the following procedure.
The glass substrate 12 having the gel film 14 formed on the surface is placed in a press machine 15 (see FIG. 1C) while the gel film 14 obtained in the above step 2 is soft, and the inside of the press machine 15 is vacuumed. Prepare for molding.
[0036]
Next, the fine groove shape 10 of the diffraction grating mold 11 attached to the press machine 15 is pressed against the gel film 14 to form a forming structure 14A having the fine groove shape 10 (FIG. 1D). reference).
[0037]
Next, the inside of the press machine 15 is kept at 60 ° C. to cure the molded structure 14A.
Thereafter, the inside of the press machine 15 is returned to atmospheric pressure, and the diffraction grating mold 11 is released from the gel film 14 (see FIG. 1E).
[0038]
In this way, the fine groove shape 10 of the diffraction grating mold 11 is transferred to the gel film 14 to form a molded structure (gel diffraction grating) 14A having the fine groove shape 10.
[0039]
(Step 4) The molded structure 14A having the fine groove shape 10 is heat-treated at 350 ° C. (see FIG. 1 (f)).
(Step 5) Next, a gold (Au) film is formed on the surface of the fine groove shape 10 of the molded structure 14A heat-treated in the step 4 to form a reflective film 16 (see FIG. 1 (g)). The optical characteristics of the molded structure 14A with the reflective film 16 are evaluated.
[0040]
(Step 6) Next, the reflective film 16 is peeled off (see FIG. 1 (h)).
(Step 7) Next, the molded structure 14A from which the reflective film 16 has been peeled is subjected to a temperature at which dehydration condensation reaction and desorption of unreacted components occur (for example, 350 ° C.), and the skeleton of the substance constituting the molded structure 14A. Heat treatment is performed at a temperature between the temperature at which the structure is thermally decomposed (for example, 600 ° C.). In the present embodiment, the molded structure 14A from which the reflective film 16 has been peeled is subjected to heat treatment at 600 ° C. for 1 hour (see FIG. 1 (i)).
[0041]
(Step 8) Next, a gold (Au) film is formed again on the surface of the fine groove shape 10 of the molded structure 14A heat-treated in the above step 7 to form a reflective film 16 (see FIG. 1 (j)). ). Thereby, the production of the diffraction grating 20 as a micro-molded body is completed.
[0042]
When the optical characteristics of the diffraction grating 20 thus produced were evaluated and compared with the molded structure 14A before the heat treatment in step 7 (FIG. 1 (i)), the diffraction efficiency changed by about 20%. There was no change in the optical characteristics.
[0043]
After this evaluation, the diffraction grating 20 was further heat-treated at 400 ° C. for 2 hours, and the optical characteristics of the diffraction grating 20 after this heat treatment were evaluated again, but there was no change in the optical characteristics.
[0044]
<Analysis test>
Next, an analytical test was performed to verify the phenomenon that occurs during the heat treatment in step 7 above. In this analytical test, a mixture of methyltriethoxysilane and tetraethoxysilane was used as a sample, and thermogravimetric-differential heat (TG-DTA) analysis and temperature programmed desorption gas analysis were performed. In FIG. 2 showing the analysis result, the curve 30 shows a methyl group (CH 3 ) And the curve 40 shows water (H 2 The amount of desorbed gas of O) is shown.
[0045]
In the thermogravimetric-differential heat (TG-DTA) analysis, thermogravimetry (TG) and differential thermal analysis (DTA) were simultaneously measured by a measuring device such as a differential thermobalance.
[0046]
As shown in FIG. 2, the weight loss evaluated by the thermogravimetric-differential thermal analysis method is abruptly generated in the temperature range of 100 to 350 ° C. and 600 ° C. or more. There is no significant weight loss in the temperature range. Moreover, it turns out that the weight reduction in the temperature range of 600 degreeC or more accompanies heat_generation | fever.
[0047]
Further, from the temperature-programmed desorption gas analysis, the desorption component with a weight loss of around 100 to 350 ° C. is water (H 2 O) and a methyl group (CH 3 The elimination component near 600 ° C. is mainly a methyl group (CH 3 ) Only.
[0048]
From the above analysis results, it is considered that the weight loss in the temperature range of 100 to 350 ° C. is caused by the reaction accompanying the development of the gel skeleton by the dehydration condensation reaction and the desorption of unreacted components. In addition, the condensation reaction accompanied by dehydration proceeds slowly in the temperature range of 350 to 600 ° C., and in the temperature range of 600 ° C. or higher, the methyl group (CH 3 ) Is thermally decomposed and desorbed.
Here, “desorption of methyl group” means that the Si—O—Si bond or Si—C bond, which is the skeleton structure of the substance constituting the molded structure 14A, is decomposed. Such elimination of the methyl group causes a change in shape or destruction of the molded structure 14A.
[0049]
Therefore, in step 7 shown in FIG. 1 (i), the molded structure 14A is subjected to a temperature at which dehydration condensation reaction and unreacted components are desorbed (for example, 350 ° C.) and the skeleton of the substance constituting the molded structure 14A. Heat treatment is performed in a temperature range (350 ° C. to 600 ° C.) between a temperature at which the structure is thermally decomposed (for example, 600 ° C.). By performing heat treatment at 350 ° C. or higher (600 ° C. in this example), unstable and easily desorbed components such as unreacted components can be removed from the molded structure 14A, and the diffraction grating 20 having excellent heat resistance can be obtained. Further, by suppressing the heat treatment temperature to 600 ° C. or lower (in this example, 600 ° C.) in the above step 7, damage due to thermal decomposition of the molded structure 14A itself can be suppressed.
[0050]
According to the embodiment configured as described above, the following operational effects can be obtained.
A temperature between the temperature at which dehydration condensation reaction and desorption of unreacted components occur (for example, 350 ° C.) and the temperature at which the skeleton structure of the material constituting the molded structure 14A undergoes thermal decomposition (for example, 600 ° C. temperature) Therefore, although unstable components in the molded structure 14A are removed, the skeleton structure of the substance constituting the molded structure 14A is not destroyed. Thereby, the shape of the produced diffraction grating 20 does not change at a high temperature. For this reason, the heat resistance of the diffraction grating 20 is increased, and the fine groove shape 10 of the diffraction grating 20 is maintained at a high temperature.
[0051]
For example, even when the diffraction grating 20 is heated at 400 ° C. or higher, it is possible to prevent the detached gas from being generated and damaging the diffraction grating 20 itself, which is a micro-molded product, or damaging the reflective film 16 on the surface. Accordingly, mass production of the diffraction grating 20 having high heat resistance, that is, heat resistance of 400 ° C. or higher, even in the case where the height or depth is in the range of 0 to 0.1 μm, as well as having a fine shape of 0.1 μm or more. It can be manufactured with good performance.
[0052]
○ Removal of unstable and easily desorbed components such as unreacted components from the molded structure 14A by performing heat treatment at 350 ° C. or higher (600 ° C. in this example) in step 7 shown in FIG. Can do. Therefore, even if the produced diffraction grating 20 is heated at 400 ° C. or higher, it is possible to suppress the generation of gas desorbed by the combustion of organic components as in the above-described conventional technique, and the diffraction grating 20 itself is damaged due to thermal decomposition. And damage to the film such as the reflective film 16 can be suppressed. Therefore, the diffraction grating 20 excellent in heat resistance can be obtained.
[0053]
○ By suppressing the heat treatment temperature to 600 ° C. or less (600 ° C. in this example) in the above step 7, the skeletal structure of the material constituting the molded structure 14A is not destroyed, so that the molded structure 14A itself is damaged by thermal decomposition. Therefore, the yield of the diffraction grating 20 is improved.
[0054]
In the mounting process in which the diffraction grating 20 is incorporated into a module or device, the diffraction grating 20 may be exposed to a high temperature of 400 to 500 ° C. or higher during bonding with low-melting glass as described above. However, since the diffraction grating 20 has high heat resistance, it is possible to prevent the diffraction grating 20 itself from being damaged or a film such as the reflection film 16 from being damaged during bonding with the low melting point glass. Generation | occurrence | production can be suppressed and manufacturing cost can be reduced.
[0055]
○ When the molded structure 14A is heat-treated at 350 ° C. in the step 4 shown in FIG. 1 (f), and then the molded structure 14A is heat-treated at 600 ° C. with the reflective film 16 formed on the molded structure 14A. The reflection film 16 was damaged such as a large number of holes.
[0056]
On the other hand, before forming the reflective film 16 on the molded structure 14A in the step 8 shown in FIG. 1 (j), the molded structure 14A is heat-treated at 600 ° C. for 1 hour in the step 7. Therefore, it is possible to suppress the occurrence of breakage such as a large number of holes in the reflective film 16. Therefore, the diffraction grating 20 with a reflective film excellent in heat resistance can be obtained.
[0057]
In step 3, the fine groove shape 10 of the diffraction grating mold 11 is transferred to the gel film 14 formed in the step 2 to form a forming structure 14A having the fine groove shape 10. Specifically, in this step 3, a sol solution 13 mainly composed of methyltriethoxysilane, which is an organic-inorganic composite material in which a methyl group is directly bonded to Si, and an acid aqueous solution is applied to the surface of the glass substrate 12, The sol solution 13 is dehydrated to form a gel film 14. The fine groove shape 10 of the diffraction grating mold 11 is transferred to the gel film 14 to form a molded structure 14A.
[0058]
For this reason, even if the film thickness of the gel film 14 is 0.1 μm or more, the generation of cracks in the gel film 14 due to shrinkage during curing can be suppressed, and the height or depth is in the range of 0 to 0.1 μm. Needless to say, a molding structure 14A having a fine groove shape 10 of 0.1 μm or more can be molded. Therefore, the diffraction grating 20 with high heat resistance can be obtained not only in the range of 0 to 0.1 μm in height or depth but also in the case of a fine shape of 0.1 μm or more.
[0059]
In step 5, the reflective film 16 is formed on the surface of the molded structure 14A having the fine groove shape 10, and the optical characteristics of the molded structure (gel-like diffraction grating) 14A with the reflective film 16 are evaluated. I am doing so. Therefore, since it is possible to complete the diffraction grating 20 by performing subsequent processing only on the molded structure 14A having desired optical characteristics, the yield of the diffraction grating 20 is improved and the manufacturing cost is reduced. be able to.
[0060]
○ Before forming the reflective film 16 on the surface of the molding structure 14A having the fine groove shape 10 in step 5 shown in FIG. 1 (g), the molding structure 14A is 350 in step 4 shown in FIG. 1 (f). Since the heat treatment is performed at 0 ° C., unstable and easily desorbed components such as unreacted components can be removed from the diffraction grating by this heat treatment.
[0061]
[Modification]
In addition, this invention can also be changed and embodied as follows.
In the above embodiment, the fine groove shape 10 of the diffraction grating mold 11 is transferred to the gel film 14 formed on the surface of the glass substrate 12 that is the surface of the base material. However, the present invention is limited to this. Not. For example, the gel film 14 is formed on the surface of the fine groove shape 10 of the diffraction grating mold 11, and the gel film 14 is pressed against the surface of the base material such as the glass substrate 12 by the press machine 15. The present invention can also be applied to a manufacturing method in which a molded structure 14A having a structure is integrated with a base material.
[0062]
In short, the present invention transfers a fine shape of a molding die to a gel film obtained by dehydrating a sol solution, forms a molding structure having a fine shape, and heats the molding structure to produce a micro molding. The present invention can be widely applied to a method for manufacturing a micromolded body.
[0063]
In the above embodiment, the molded structure 14A is heat-treated at 350 ° C. in Step 4, but the heat treatment temperature is an example and may be lower than 350 ° C.
[0064]
In the above embodiment, the molded structure 14A is heat treated at 600 ° C. for 1 hour in Step 7, but the heat treatment temperature and time are examples. The heat treatment temperature may be in the range of 350 ° C. to 600 ° C., and the heat treatment time is not limited to 1 hour and can be appropriately increased or decreased.
[0065]
In the above embodiment, the sol solution 13 mainly composed of methyltriethoxysilane and an acid aqueous solution, which are materials (organic-inorganic composite materials) in which methyl groups are directly bonded to Si, is used. It is not limited.
[0066]
As the organic-inorganic composite material in which the methyl group is directly bonded to Si, for example, dimethyldiethoxysilane can be used in addition to methyltriethoxysilane. Here, general formulas of methyltriethoxysilane and dimethyldiethoxysilane are as follows.
[0067]
Methyl trialkoxysilanes: CH 3 Si (OR) 3 R = CH 2 Or C 2 H 5 ,
Dimethyl dialkoxysilanes: (CH 3 ) 2 Si (OR) 2 R = CH 2 Or C 2 H 5 .
[0068]
In these materials,
Tetraalkoxysilanes: Si (OR) 4 R = CH 2 Or C 2 H 5 An organic-inorganic composite material having a composition to which sol is added can be used for the sol solution 13.
[0069]
The present invention is also applicable to the case where the sol solution 13 mainly composed of an organic-inorganic composite material such as phenyltriethoxysilane in which a phenyl group is directly bonded to Si is used as a material of the gel film 14. Is possible. Even in this case, a micro-molded body such as a diffraction grating having high heat resistance can be obtained as in the case of the methyl group.
[0070]
In the above embodiment, the manufacturing method in the case of producing the diffraction grating 20 with the reflective film 16 has been described as an example. However, the present invention is also applied to the case of producing a micro-molded body having no reflective film or antireflection film. Is possible. In the case of producing a micro-molded body without a reflection film or an antireflection film, the steps shown in FIGS. 1G, 1H, and 1J are not required among the steps shown in FIG.
[0071]
In addition, when producing a micro-molded body without a reflective film or an anti-reflection film, instead of heat-treating the molded structure 14A at 350 ° C. in the above step 4 shown in FIG. 1 (f), it is shown in FIG. 1 (i). You may make it heat-process the shaping | molding structure 14A at 600 degreeC like the said process 7 for 1 hour. By doing in this way, one heat treatment process can be reduced.
[0072]
In the above embodiment, the manufacturing method for producing the diffraction grating 20 as an example of the micro-molded body has been described. However, the present invention can also be applied to the case of fabricating a micro-molded body other than the diffraction grating. For example, the present invention can be applied to a case where a flat microlens having a large number of microlenses on one side of a transparent substrate is formed by molding. In this case, for example, a transparent substrate having many hemispherical concave portions (fine shapes) on one side can be produced by the method according to the present invention.
[0073]
In addition to an optical element such as a diffraction grating, the present invention can also be applied to a case where a microchannel structure described in Patent Document 2 is manufactured as a micromolded body having a fine shape. In short, the present invention can be widely applied to the production of micromolded bodies having various fine shapes.
[0074]
【The invention's effect】
As described above, according to the present invention, it is possible to produce a micro-molded body having high heat resistance with high mass productivity.
[Brief description of the drawings]
FIGS. 1A to 1J are explanatory views showing a method of manufacturing a diffraction grating according to an embodiment.
FIG. 2 is a graph showing a thermal analysis result of the produced diffraction grating.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Fine groove | channel shape which is a fine shape, 11 ... Diffraction grating shaping | molding die as a shaping | molding die, 12 ... Glass substrate as a base material, 13 ... Sol liquid, 14 ... Gel film | membrane, 14A ... Molding structure, 16 ... Reflective film, 20... Diffraction grating as a minute molded body.

Claims (5)

ゾル液を脱水処理したゲル膜に成形型の微細な形状を転写して、前記微細な形状を有する成形構造体を成形し、前記成形構造体を加熱して微小成形体を作製する微小成形体の製造方法において、
前記成形構造体を、脱水縮合反応および未反応成分の脱離が起こる温度と、前記成形構造体を構成する物質の骨格構造が熱分解する温度との間の温度で熱処理する工程を備えることを特徴とする微小成形体の製造方法。
A micro-molded body in which a fine shape of a molding die is transferred to a gel film obtained by dehydrating a sol liquid, a molded structure having the fine shape is molded, and the molded structure is heated to produce a micro-molded body. In the manufacturing method of
Heat-treating the molded structure at a temperature between a temperature at which dehydration condensation reaction and desorption of unreacted components occur and a temperature at which a skeleton structure of a substance constituting the molded structure is thermally decomposed. A method for producing a micro-molded product.
ゾル液を脱水処理したゲル膜に成形型の微細な形状を転写して、前記微細な形状を有する成形構造体を成形し、前記成形構造体を加熱して微小成形体を作製する微小成形体の製造方法において、
基材表面に前記ゲル膜を形成する工程と、
前記ゲル膜に前記成形型の微細な形状を転写して前記成形構造体を成形する工程と、
前記成形構造体を、脱水縮合反応および未反応成分の脱離が起こる温度と、前記成形構造体を構成する物質の骨格構造が熱分解する温度との間の温度で熱処理する工程とを備えることを特徴とする微小成形体の製造方法。
A micro-molded body in which a fine shape of a molding die is transferred to a gel film obtained by dehydrating a sol liquid, a molded structure having the fine shape is molded, and the molded structure is heated to produce a micro-molded body. In the manufacturing method of
Forming the gel film on a substrate surface;
Transferring the fine shape of the mold to the gel film and molding the molded structure;
Heat-treating the molded structure at a temperature between a temperature at which a dehydration condensation reaction and elimination of unreacted components occur, and a temperature at which a skeleton structure of a substance constituting the molded structure is thermally decomposed. A method for producing a micro-molded product characterized by
前記熱処理する工程における前記熱処理を、350〜600℃の範囲で行うことを特徴とする請求項1又は2に記載の微小成形体の製造方法。The method for producing a micro-molded product according to claim 1 or 2, wherein the heat treatment in the heat treatment step is performed in a range of 350 to 600 ° C. 前記成形構造体に転写成形された微細な形状の表面に膜を成膜する場合、その成膜前に前記熱処理する工程を行うことを特徴とする請求項1〜3のいずれか一つに記載の微小成形体の製造方法。4. The method according to claim 1, wherein when the film is formed on the surface of the fine shape transferred and formed on the molding structure, the heat treatment step is performed before the film formation. 5. A method for producing a micromolded body of 前記ゲル膜の材料として、メチル基またはフェニル基が直接Siに結合した有機無機複合材料を用いることを特徴とする請求項1〜4のいずれか一つに記載の微小成形体の製造方法。The method for producing a micro-molded product according to any one of claims 1 to 4, wherein an organic-inorganic composite material in which a methyl group or a phenyl group is directly bonded to Si is used as the material of the gel film.
JP2003206336A 2003-08-06 2003-08-06 Method for manufacturing micro-molded product Pending JP2005053006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206336A JP2005053006A (en) 2003-08-06 2003-08-06 Method for manufacturing micro-molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206336A JP2005053006A (en) 2003-08-06 2003-08-06 Method for manufacturing micro-molded product

Publications (1)

Publication Number Publication Date
JP2005053006A true JP2005053006A (en) 2005-03-03

Family

ID=34363235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206336A Pending JP2005053006A (en) 2003-08-06 2003-08-06 Method for manufacturing micro-molded product

Country Status (1)

Country Link
JP (1) JP2005053006A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508163A (en) * 2006-11-01 2010-03-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Uneven layer and imprinting method for producing uneven layer
CN101930087A (en) * 2009-06-18 2010-12-29 阿尔卑斯电气株式会社 Lens and manufacture method thereof with anti-reflection film
JP2011068126A (en) * 2009-08-04 2011-04-07 Agency For Science Technology & Research Method for reducing size of imprint structure on base material
JP2012126078A (en) * 2010-12-17 2012-07-05 Canon Inc Method for manufacturing optical element
KR20150055615A (en) * 2012-09-10 2015-05-21 쌩-고벵 글래스 프랑스 Decorative glass panel having a reflective layer deposited on a textured substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508163A (en) * 2006-11-01 2010-03-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Uneven layer and imprinting method for producing uneven layer
JP2015053487A (en) * 2006-11-01 2015-03-19 コーニンクレッカ フィリップス エヌ ヴェ Uneven layer, and stamping method for producing uneven layer
US11619878B2 (en) 2006-11-01 2023-04-04 Koninklijke Philips N.V. Method for making relief layer
CN101930087A (en) * 2009-06-18 2010-12-29 阿尔卑斯电气株式会社 Lens and manufacture method thereof with anti-reflection film
JP2011068126A (en) * 2009-08-04 2011-04-07 Agency For Science Technology & Research Method for reducing size of imprint structure on base material
JP2012126078A (en) * 2010-12-17 2012-07-05 Canon Inc Method for manufacturing optical element
KR20150055615A (en) * 2012-09-10 2015-05-21 쌩-고벵 글래스 프랑스 Decorative glass panel having a reflective layer deposited on a textured substrate
JP2015533759A (en) * 2012-09-10 2015-11-26 サン−ゴバン グラス フランス Decorative glass panel having a reflective layer deposited on a surface structured substrate
KR102159989B1 (en) 2012-09-10 2020-09-25 쌩-고벵 글래스 프랑스 Decorative glass panel having a reflective layer deposited on a textured substrate

Similar Documents

Publication Publication Date Title
CN101479031B (en) Monoparticulate-film etching mask and process for producing the same, process for producing fine structure with the monoparticulate-film etching mask, and fine structure obtained by the production pro
CN111977611B (en) Manufacturing method of micro-nano cross-scale polymer spray needle
JP5309579B2 (en) Resin molding die and method for manufacturing the same
CN106104778A (en) Goods and method for polymer surfaces and the controlled bonding of carrier
CN102157642A (en) Nanoimprint based preparation method of LED with high light-emitting efficiency
WO1999021711A1 (en) Multi-layered coated substrate and method of production thereof
CN106711049B (en) Porous substrate and manufacturing method thereof, and manufacturing method of thin film transistor
JP2006148055A (en) Method of hot embossing lithography
CN101823690A (en) Manufacturing method of SU-8 nano fluid system
CN102060262A (en) Method for manufacturing micro-nano fluid control system by using low-pressure bonding technology
CN106883828B (en) Preparation method of composite interface heat dissipation material based on graphical carbon nanotube array
JP2005053006A (en) Method for manufacturing micro-molded product
KR101291727B1 (en) Method for manufacturing implint resin and implinting method
CN111153379A (en) Method for manufacturing size-controllable nanochannel through angle deposition film
KR20060067875A (en) Method for producing a microstructure using organic-inorganic hybride materials and nano-imprint technology, and the microstructure therefof
KR101575879B1 (en) Patterning method using reversal imprint process
CN111175857B (en) Method for improving infrared band transmittance by processing micro-nano structure on chalcogenide glass surface
CN102621805B (en) Method for preparing micro-nano-channels based on liquid-gas equilibrium polymer nano-channels self-building mechanism
WO2017104799A1 (en) Sapphire composite base and method for producing same
JP5783714B2 (en) Optical element manufacturing method
JP2012126078A5 (en)
JP2009233855A (en) Transfer mold, method for manufacturing transfer mold, and method for manufacturing transferred product using the transfer mold
CN108528078A (en) Nanostructure transfer method and the method for preparing multi-layer nano structure using stacking method
KR20050072332A (en) Fabrication method of silicon carbon-nitride microstructures using pdms mold for high-temperature micro electro mechanical system applications
US9791601B2 (en) Method for fabricating an embedded pattern using a transfer-based imprinting

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060324

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624