[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005041930A - Thermoplastic resin sheet and container for transporting electronic part - Google Patents

Thermoplastic resin sheet and container for transporting electronic part Download PDF

Info

Publication number
JP2005041930A
JP2005041930A JP2003200658A JP2003200658A JP2005041930A JP 2005041930 A JP2005041930 A JP 2005041930A JP 2003200658 A JP2003200658 A JP 2003200658A JP 2003200658 A JP2003200658 A JP 2003200658A JP 2005041930 A JP2005041930 A JP 2005041930A
Authority
JP
Japan
Prior art keywords
sheet
thermoplastic resin
expansion coefficient
resin
directions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003200658A
Other languages
Japanese (ja)
Inventor
Yusuke Ishida
祐輔 石田
Masateru Yonezawa
賢輝 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003200658A priority Critical patent/JP2005041930A/en
Publication of JP2005041930A publication Critical patent/JP2005041930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Packages (AREA)
  • Packaging Frangible Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic sheet which gives a molded article having excellent dimensional stability, when molded, especially when used as a carrier tape, and to provide an electronic part transportation container comprising the same. <P>SOLUTION: The thermoplastic resin sheet is characterized by having an absolute value difference of ≤6 % between thermal expansion coefficients in the MD and TD directions of the sheet at a molding temperature, having thermal expansion coefficients of ≤12×10<SP>-5</SP>/°C in the MD and TD directions of the sheet, respectively, at a temperature of 20 to 30°C, and having a thickness of 0.1 to 1.0 mm. A molded article having excellent dimensional stability is obtained by using the thermoplastic resin sheet. The electronic part transportation container comprises the thermoplastic resin sheet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、成形する際の寸法安定性に優れた単層又は多層の熱可塑性樹脂シート及びそれよりなる電子部品搬送用容器に関するものである。
【0002】
【従来の技術】
従来、熱可塑性樹脂シートを成形する場合、その成形品の寸法バラツキが大きく安定した製品が得られないという問題が起きていた。特にエンボスキャリアテープに成形する場合は、電子部品の小型化及びIC等の薄化傾向により、各ポケットに対する寸法精度の向上、バラツキ低減が要求されてきた。しかしながら、熱による樹脂自身の膨張や収縮、シーティングの際にシート内部で生じた歪による膨張や収縮により、同じ条件で成形しても出来上がる製品のポケット寸法にバラツキが生じていた。この問題に対し、特許文献1に示すようにエンボスキャリアテープの成形機を改造することによる改善も行われている。しかしそれだけでは要求に対して完全に応えることが出来ず、技術者による成形機の調整によって問題解消が行われている。そのため、技術者の育成に時間がかかると言った問題や調整回数の増加による稼働率の低下問題がある。また技術者が調整した後でも、成形する熱可塑性樹脂シートのロット等の変更により寸法が変化し、安定した成形品が連続的に得られないという問題もある。
【0003】
【特許文献1】
特開平10−272685号公報
【0004】
【発明が解決しようとする課題】
本発明は、かかる問題を解決したものであり、成形の温度におけるシートのMD、TD方向の熱膨張率の差の絶対値が6%以下であり、温度20〜30℃におけるシートのMD、TD方向の線膨張係数が共に12×10−5/℃以下である、厚み0.1〜1.0mmの熱可塑性樹脂シートを用いることにより、寸法安定性に優れた成形品を提供することができる。
【0005】
【課題を解決するための手段】
本発明は、
(1)成形の温度におけるシートのMD、TD方向の熱膨張率の差の絶対値が6%以下であり、温度20〜30℃におけるシートのMD、TD方向の線膨張係数が共に12×10−5/℃以下である、厚み0.1〜1.0mmの熱可塑性樹脂シート、
(2) 熱可塑性樹脂がポリフェニレンエーテル系樹脂、ポリスチレン系樹脂、ABS系樹脂、ポリカーボネート系樹脂又はポリエステル系樹脂から選ばれた少なくとも1種類からなる(1)に記載した熱可塑性樹脂シート、
(3) 表面又は厚み全体に導電性を付与し、表面抵抗率が1×10Ω以上1×1013Ω未満である(1)又は(2)に記載した熱可塑性樹脂シート、
(4) (1)〜(3)のいずれかに記載の熱可塑性樹脂シートよりなる電子部品搬送用容器、である。
【0006】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。本発明で使用される熱可塑性樹脂シートは成形の温度におけるシートのMD、TD方向の熱膨張率の差の絶対値が6%以下であり、温度20〜30℃におけるシートのMD、TD方向の線膨張係数が共に12×10−5/℃以下であり、厚みが0.1〜1.0mmのものであれば何でも良い。
【0007】
成形の温度における熱可塑性樹脂シートのMD、TD方向の熱膨張率の差の絶対値は6%以下である。この値より大きくなると成形で加熱した際にシート歪の解放挙動に差違が見られ、均一に膨張・収縮が起こらない為、成形品の内部歪が大きくなり成形ポケットの寸法バラツキが大きくなる。熱可塑性樹脂シートのMD、TD方向の熱膨張率の差の絶対値は押出温度、冷却能力、引取張力等様々な因子に依存する。熱可塑性樹脂シートのMD、TD方向の熱膨張率の差の絶対値を小さくするためには、押出温度を低く、冷却能力を高く、引取張力を小さくし、シート内の歪が少ないようにシーティングすれば良い。例えば押出温度に関しては、あまり高すぎると樹脂が冷却される迄に時間がかかり、引取張力等により歪が生じる。また、あまり低すぎると、押出圧による配向等により歪が生じる。このようにそれぞれの因子には最適条件があり、単独ではなく様々な因子との兼ね合いで、熱可塑性樹脂シートのMD、TD方向の熱膨張率の差の絶対値を小さくすることができるが、これらの因子は製造設備、製造条件、使用樹脂等により異なるためその都度調整する必要がある。
【0008】
また、温度20〜30℃におけるシートのMD、TD方向の線膨張係数は共に12×10−5/℃以下である。この値より大きくなると成形した際に樹脂自身の膨張により成形品の寸法が金型の寸法より大きく変化する為、成形ポケットの寸法バラツキが大きくなる。樹脂のガラス転移温度が30℃より高いものに関しては、温度20〜30℃におけるシートのMD、TD方向の線膨張係数は樹脂自身に依存するが、シーティング方法によっても多少変化する。
【0009】
シート厚みは0.1〜1.0mmである。下限値未満だと成形した際に成形ポケット部が肉薄になりすぎ、強度的に弱く潰れが発生する。また上限値を超えるとシートが厚いため、巻き取る際に剛性が強く巻き取れなかったり、成形時に加熱時間がかかったりし、生産性が悪くなるといった不具合が発生する。
【0010】
ポリフェニレンエーテル系樹脂とはポリフェニレンエーテル樹脂またはポリフェニレンエーテル樹脂とポリスチレン系樹脂をポリマーアロイしたものを主成分とする樹脂である。
ポリスチレン系樹脂とは一般ポリスチレン樹脂または耐衝撃性ポリスチレン樹脂およびこれらの混合物を主成分とするものである。ABS系樹脂とはアクリルニトリル−ブタジエン−スチレンの三成分を主体とした共重合体を主成分とするものである。
ポリカーボネート系樹脂とは2,2−ビス(4−オキシフェニル)アルカン系、ビス(4−オキシフェニル)エーテル系、ビス(4−オキシフェニル)スルホン系、ビス(4−オキシフェニル)スルフィド系、ビス(4−オキシフェニル)スルホキサド系等のビスフェノール類からなる重合体若しくは共重合体を主成分とするものであり、具体的には芳香族ポリカーボネート樹脂、芳香族―脂肪族ポリカーボネート樹脂等が挙げられる。
ポリエステル系樹脂とは、多塩基酸と多価アルコールとの重合により得られるエステル化生成物を主体とした樹脂で、不飽和ポリエステル樹脂、アルキド樹脂、ポリエチレンテレフタレート等が挙げられる。
これらの熱可塑性樹脂は、単層でも良く、多層化した熱可塑性樹脂シートとしても良い。
【0011】
導電性を付与する方法としては、カーボン、金属及び金属酸化物等の導電性を有するものを樹脂に練り込んだり、導電性を有する樹脂や塗料を表面に積層や塗布させたり、プラズマ処理や界面活性剤の塗布又は練り込み等により表面を親水化する等の方法がある。
【0012】
ICや電子部品の包装材として使用する場合、その表面抵抗値は1×10Ω/□以上、1×1013Ω/□未満である。表面抵抗値が上限値を超えると十分な帯電防止効果が得られず、下限値未満では導電性が良すぎて外部で発生した静電気に対して通電してしまい内容物であるIC等を破壊する恐れがあるため好ましくない。
【0013】
本発明で用いられる樹脂には、必要に応じて流動性や力学的特性を改善するために、滑剤、可塑剤、加工助剤、相容化剤及び補強剤等の各種添加剤や樹脂等を添加することが可能である。
【0014】
本発明により、成形の温度におけるシートのMD、TD方向の熱膨張率の差の絶対値が6%以下であり、温度20〜30℃におけるシートのMD、TD方向の線膨張係数が共に12×10−5/℃以下である、厚み0.1〜1.0mmの熱可塑性樹脂シートを用いることにより、寸法安定性に優れた成形品を提供することができる。
【0015】
【実施例】
以下、本発明を実施例により更に詳細に説明する。
<実施例1>
ポリフェニレンエーテル樹脂(GEプラスチック(株)製、ノリル731)を用い、20mmφの押出機1台を用いたフィードブロック方式のシーティング設備にて、150℃におけるシートのMD、TD方向の熱膨張率の差の絶対値が4%、温度20〜30℃におけるシートのMD方向の線膨張係数が9×10−5/℃、TD方向の線膨張係数が9×10−5/℃、厚み0.2mmである単層シートを得た。
<実施例2>
耐衝撃性ポリスチレン樹脂(日本ポリスチレン(株)製、H640)を用い、20mmφの押出機1台を用いたフィードブロック方式のシーティング設備にて、110℃におけるシートのMD、TD方向の熱膨張率の差の絶対値が4%、温度20〜30℃におけるシートのMD方向の線膨張係数が10×10−5/℃、TD方向の線膨張係数が10×10−5/℃、厚み0.2mmである単層シートを得た。
<実施例3>
ABS樹脂(日本エイアンドエル(株)製、サンタックMT−81)を用い、20mmφの押出機1台を用いたフィードブロック方式のシーティング設備にて、115℃におけるシートのMD、TD方向の熱膨張率の差の絶対値が4%、温度20〜30℃におけるシートのMD方向の線膨張係数が10×10−5/℃、TD方向の線膨張係数が10×10−5/℃、厚み0.2mmである単層シートを得た。
<実施例4>
ポリカーボネート樹脂(GEプラスチック(株)製、レキサン131)を用い、20mmφの押出機1台を用いたフィードブロック方式のシーティング設備にて、160℃におけるシートのMD、TD方向の熱膨張率の差の絶対値が4%、温度20〜30℃におけるシートのMD方向の線膨張係数が9×10−5/℃、TD方向の線膨張係数が910−5/℃、厚み0.2mmである単層シートを得た。
<実施例5>
A−PETシート(カネボウ合繊(株)製、AST7CR)を用いて、85℃におけるシートのMD、TD方向の熱膨張率の差の絶対値が2%、温度20〜30℃におけるシートのMD方向の線膨張係数が8×10−5/℃、TD方向の線膨張係数が9×10−5/℃、厚み0.2mmである単層シートを得た。
<実施例6>
導電性樹脂組成物とし、耐衝撃性ポリスチレン(A&Mスチレン(株)製、HT516)73.8重量部、(B)を含むSBR(旭化成工業(株)製、タフプレン125)6.6重量部、エチレンと酢酸ビニルの共重合体樹脂(三井デュポン(株)製、エバフレックスV406)1.6重量部及び導電性カーボンブラック(電気化学工業(株)製、デンカブラック(粒状))18.0重量部をバンバリーにて混練し、押出機にてストランドカットでペレット化したものを使用し、基材層として実施例1に記載した樹脂を用いた。導電層と基材層との積層は、20mmφの押出機2台を用いた2種3層のフィードブロック方式のシーティング設備にて共押出にて行い、115℃におけるシートのMD、TD方向の熱膨張率の差の絶対値が4%、温度20〜30℃におけるシートのMD方向の線膨張係数が10×10−5/℃、TD方向の線膨張係数が10×10−5/℃、厚み0.2mmで層比率が導電層/基材層/導電層=1/8/1である3層シート表面導電性シートを得た。
<実施例7>
実施例5で使用したシートの両面に導電性塗料(大阪印刷インキ製造(株)製 UPT−100(V)墨 UI3)をグラビア版で厚み1μm塗布し、85℃におけるシートのMD、TD方向の熱膨張率の差の絶対値が2%、温度20〜30℃におけるシートのMD方向の線膨張係数が8×10−5/℃、TD方向の線膨張係数が9×10−5/℃、厚み0.2mmである表面導電性シートを得た。
<比較例1>
ポリエチレン樹脂(三井住友ポリオレフィン(株)製、L211)を用い、20mmφの押出機1台を用いたフィードブロック方式のシーティング設備にて、90℃におけるシートのMD、TD方向の熱膨張率の差の絶対値が4%、温度20〜30℃におけるシートのMD方向の線膨張係数が15×10−5/℃、TD方向の線膨張係数が15×10−5/℃、厚み0.2mmである単層シートを得た。
<比較例2>
ABS樹脂(日本エイアンドエル(株)製、クララスチックGA−501)を用い、20mmφの押出機1台を用いたフィードブロック方式のシーティング設備にて<実施例3>に比べ押出温度を高く、冷却能力を低く、引張張力を大きくし、115℃におけるシートのMD、TD方向の熱膨張率の差の絶対値が10%、温度20〜30℃におけるシートのMD方向の線膨張係数が10×10−5/℃、TD方向の線膨張係数が10×10−5/℃、厚み0.2mmである単層シートを得た。
<比較例3>
ABS樹脂(日本エイアンドエル(株)製、サンタックMT−81)を用い、20mmφの押出機1台を用いたフィードブロック方式のシーティング設備にて、115℃におけるシートのMD、TD方向の熱膨張率の差の絶対値が4%、温度20〜30℃におけるシートのMD方向の線膨張係数が10×10−5/℃、TD方向の線膨張係数が10×10−5/℃、厚み0.05mmである単層シートを得た。
<比較例4>
ABS樹脂(日本エイアンドエル(株)製、サンタックMT−81)を用い、20mmφの押出機1台を用いたフィードブロック方式のシーティング設備にて、115℃におけるシートのMD、TD方向の熱膨張率の差の絶対値が4%、温度20〜30℃におけるシートのMD方向の線膨張係数が10×10−5/℃、TD方向の線膨張係数が10×10−5/℃、厚み1.5mmである単層シートを得た。
【0016】
上記で得られたシートの特性値(熱膨張率の差の絶対値、線膨張係数、厚み、成形性、巻き性)を表1に示した。
熱膨張率の差とは成形の温度におけるシートのMD、TD方向の熱膨張率の差の絶対値であり、また、線膨張係数(MD)とは温度20〜30℃におけるシートのMD方向の線膨張係数、線膨張係数(TD)とは温度20〜30℃におけるシートのTD方向の線膨張係数であり、TMA(セイコーインスツルメンツ(株)製、EXSTR 6000)により測定した。
厚みとはシートの厚みである。
成形性とは成形品の寸法安定性の評価であり、16mm幅のシートに、6mm幅×6mm長×2mm深のポケットを成形した後、連続した10個の成形ポケットの幅、長さ、深さの寸法を測定後、±0.2mm以上寸法がずれているポケットがないものを○、1つでもあるものを×とした。
巻き性とはシートを80mmφのリールに成形後のキャリアテープを巻いた際に問題なく巻けるものを○、反発によりうまく巻けないもの、又は巻いた際にポケットが潰れるものを×とした。
【0017】
【表1】

Figure 2005041930
【0018】
【発明の効果】
本発明により、成形の温度におけるシートのMD、TD方向の熱膨張率の差の絶対値が6%以下であり、温度20〜30℃におけるシートのMD、TD方向の線膨張係数が共に12×10−5/℃以下である、厚み0.1mm〜1.0mmの熱可塑性樹脂シートを用いることにより、寸法安定性に優れた成形品を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single-layer or multilayer thermoplastic resin sheet excellent in dimensional stability during molding and an electronic component transport container comprising the same.
[0002]
[Prior art]
Conventionally, when a thermoplastic resin sheet is molded, there has been a problem that a dimensional variation of the molded product is large and a stable product cannot be obtained. In particular, in the case of molding into an embossed carrier tape, improvement in dimensional accuracy and reduction in variation for each pocket have been required due to the trend toward smaller electronic components and thinner ICs. However, due to the expansion and contraction of the resin itself due to heat and the expansion and contraction due to the distortion generated inside the sheet during sheeting, the pocket size of the finished product varies even when molded under the same conditions. To solve this problem, as shown in Patent Document 1, improvements have been made by remodeling an embossed carrier tape molding machine. However, it is not possible to meet the requirements completely by itself, and the problem is solved by adjusting the molding machine by an engineer. Therefore, there is a problem that it takes time to train engineers, and there is a problem that the operation rate decreases due to an increase in the number of adjustments. In addition, even after adjustment by an engineer, there is a problem that the dimensions change due to a change in the lot of the thermoplastic resin sheet to be molded and a stable molded product cannot be obtained continuously.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-272585
[Problems to be solved by the invention]
The present invention solves such a problem. The absolute value of the difference in thermal expansion coefficient between the MD and TD direction of the sheet at the molding temperature is 6% or less, and the MD and TD of the sheet at a temperature of 20 to 30 ° C. By using a thermoplastic resin sheet having a thickness of 0.1 to 1.0 mm, both of which have a linear expansion coefficient of 12 × 10 −5 / ° C. or less, a molded article having excellent dimensional stability can be provided. .
[0005]
[Means for Solving the Problems]
The present invention
(1) The absolute value of the difference between the thermal expansion coefficients in the MD and TD directions of the sheet at the molding temperature is 6% or less, and the linear expansion coefficients in the MD and TD directions of the sheet at a temperature of 20 to 30 ° C. are both 12 × 10. A thermoplastic resin sheet having a thickness of 0.1 to 1.0 mm, which is −5 / ° C. or less,
(2) The thermoplastic resin sheet according to (1), wherein the thermoplastic resin is at least one selected from a polyphenylene ether resin, a polystyrene resin, an ABS resin, a polycarbonate resin, or a polyester resin,
(3) The thermoplastic resin sheet according to (1) or (2), which imparts conductivity to the entire surface or thickness and has a surface resistivity of 1 × 10 3 Ω or more and less than 1 × 10 13 Ω,
(4) An electronic component transport container comprising the thermoplastic resin sheet according to any one of (1) to (3).
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail. In the thermoplastic resin sheet used in the present invention, the absolute value of the difference in thermal expansion coefficient between the MD and TD directions of the sheet at the molding temperature is 6% or less, and the MD and TD directions of the sheet at a temperature of 20 to 30 ° C. Any linear expansion coefficient is 12 × 10 −5 / ° C. or less and the thickness is 0.1 to 1.0 mm.
[0007]
The absolute value of the difference between the thermal expansion coefficients in the MD and TD directions of the thermoplastic resin sheet at the molding temperature is 6% or less. When this value is exceeded, there is a difference in the release behavior of the sheet strain when heated by molding, and no uniform expansion or contraction occurs, so the internal strain of the molded product increases and the dimensional variation of the molding pocket increases. The absolute value of the difference between the thermal expansion coefficients in the MD and TD directions of the thermoplastic resin sheet depends on various factors such as extrusion temperature, cooling capacity, take-up tension, and the like. In order to reduce the absolute value of the difference between the thermal expansion coefficients in the MD and TD directions of the thermoplastic resin sheet, sheeting is performed so that the extrusion temperature is low, the cooling capacity is high, the take-up tension is low, and the distortion in the sheet is small. Just do it. For example, if the extrusion temperature is too high, it takes time until the resin is cooled, and distortion occurs due to take-up tension and the like. On the other hand, if it is too low, distortion may occur due to orientation caused by extrusion pressure. As described above, each factor has an optimum condition, and the absolute value of the difference in thermal expansion coefficient between the MD and TD directions of the thermoplastic resin sheet can be reduced in consideration of various factors, not alone. Since these factors vary depending on the production equipment, production conditions, resin used, etc., it is necessary to adjust each time.
[0008]
Further, the linear expansion coefficients in the MD and TD directions of the sheet at a temperature of 20 to 30 ° C. are both 12 × 10 −5 / ° C. or less. When the value is larger than this value, the size of the molded product changes more than the size of the mold due to the expansion of the resin itself during molding, so that the size variation of the molding pocket increases. As for the resin having a glass transition temperature higher than 30 ° C., the linear expansion coefficient in the MD and TD directions of the sheet at a temperature of 20 to 30 ° C. depends on the resin itself, but varies somewhat depending on the sheeting method.
[0009]
The sheet thickness is 0.1 to 1.0 mm. If it is less than the lower limit value, the molding pocket portion becomes too thin when molding, and the strength is weak and crushing occurs. Further, when the upper limit is exceeded, the sheet is thick, so that there is a problem in that the rigidity is not strong when winding, or the heating time is required at the time of molding, resulting in poor productivity.
[0010]
The polyphenylene ether resin is a resin mainly composed of a polyphenylene ether resin or a polymer alloy of a polyphenylene ether resin and a polystyrene resin.
The polystyrene resin is mainly composed of a general polystyrene resin or an impact-resistant polystyrene resin and a mixture thereof. The ABS resin is mainly composed of a copolymer mainly composed of three components of acrylonitrile-butadiene-styrene.
Polycarbonate resins are 2,2-bis (4-oxyphenyl) alkane, bis (4-oxyphenyl) ether, bis (4-oxyphenyl) sulfone, bis (4-oxyphenyl) sulfide, bis The main component is a polymer or copolymer composed of bisphenols such as (4-oxyphenyl) sulfoxide, and specific examples include aromatic polycarbonate resins and aromatic-aliphatic polycarbonate resins.
The polyester resin is a resin mainly composed of an esterification product obtained by polymerization of a polybasic acid and a polyhydric alcohol, and examples thereof include unsaturated polyester resins, alkyd resins, and polyethylene terephthalate.
These thermoplastic resins may be a single layer or a multilayered thermoplastic resin sheet.
[0011]
Methods for imparting conductivity include kneading conductive materials such as carbon, metal, and metal oxide into a resin, laminating or applying conductive resin or paint on the surface, plasma treatment or interface. There is a method of hydrophilizing the surface by application of an activator or kneading.
[0012]
When used as a packaging material for ICs and electronic parts, the surface resistance value is 1 × 10 3 Ω / □ or more and less than 1 × 10 13 Ω / □. If the surface resistance value exceeds the upper limit value, sufficient antistatic effect cannot be obtained. If the surface resistance value is less than the lower limit value, the electrical conductivity is too good and the externally generated static electricity is energized, destroying the contents such as the IC. Because there is a fear, it is not preferable.
[0013]
The resin used in the present invention contains various additives such as lubricants, plasticizers, processing aids, compatibilizers and reinforcing agents, resins, etc. in order to improve fluidity and mechanical properties as necessary. It is possible to add.
[0014]
According to the present invention, the absolute value of the difference between the thermal expansion coefficients in the MD and TD directions of the sheet at the molding temperature is 6% or less, and the linear expansion coefficients in the MD and TD directions of the sheet at 20 to 30 ° C. are both 12 ×. By using a thermoplastic resin sheet having a thickness of 0.1 to 1.0 mm that is 10 −5 / ° C. or less, a molded product having excellent dimensional stability can be provided.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
<Example 1>
Difference in thermal expansion coefficient between MD and TD direction of sheet at 150 ° C. in a feed block type sheeting equipment using polyphenylene ether resin (GE Plastics, Noryl 731) and one 20 mmφ extruder. The linear expansion coefficient in the MD direction of the sheet is 9 × 10 −5 / ° C., the linear expansion coefficient in the TD direction is 9 × 10 −5 / ° C., and the thickness is 0.2 mm. A single layer sheet was obtained.
<Example 2>
Using a high-impact polystyrene resin (made by Nippon Polystyrene Co., Ltd., H640), the sheet of the block at 110 ° C. has a thermal expansion coefficient in the TD direction with a feed block type sheeting equipment using one 20 mmφ extruder. The absolute value of the difference is 4%, the linear expansion coefficient in the MD direction of the sheet at a temperature of 20-30 ° C. is 10 × 10 −5 / ° C., the linear expansion coefficient in the TD direction is 10 × 10 −5 / ° C., and the thickness is 0.2 mm. A single layer sheet was obtained.
<Example 3>
Using ABS resin (manufactured by Nippon A & L Co., Ltd., Santac MT-81), with a feed block type sheeting equipment using one 20 mmφ extruder, the thermal expansion coefficient in the MD and TD directions of the sheet at 115 ° C. The absolute value of the difference is 4%, the linear expansion coefficient in the MD direction of the sheet at a temperature of 20-30 ° C. is 10 × 10 −5 / ° C., the linear expansion coefficient in the TD direction is 10 × 10 −5 / ° C., and the thickness is 0.2 mm. A single layer sheet was obtained.
<Example 4>
Using a polycarbonate resin (GE Plastic Co., Ltd., Lexan 131) and a feed block type sheeting facility using one 20 mmφ extruder, the difference in thermal expansion coefficient between the MD and TD directions of the sheet at 160 ° C. Single layer having an absolute value of 4%, a linear expansion coefficient in the MD direction of 9 × 10 −5 / ° C., a linear expansion coefficient in the TD direction of 910 −5 / ° C., and a thickness of 0.2 mm at a temperature of 20 to 30 ° C. A sheet was obtained.
<Example 5>
Using an A-PET sheet (manufactured by Kanebo Synthetic Co., Ltd., AST7CR), the absolute value of the difference in thermal expansion coefficient in the MD and TD directions at 85 ° C. is 2%, and the MD direction of the sheet at 20 to 30 ° C. A single-layer sheet having a linear expansion coefficient of 8 × 10 −5 / ° C., a linear expansion coefficient in the TD direction of 9 × 10 −5 / ° C., and a thickness of 0.2 mm was obtained.
<Example 6>
As a conductive resin composition, impact resistant polystyrene (A & M Styrene Co., Ltd., HT516, 73.8 parts by weight, SBR containing (B) (Asahi Kasei Kogyo Co., Ltd., Tuffprene 125) 6.6 parts by weight, 1.6 parts by weight of copolymer resin of ethylene and vinyl acetate (Mitsui DuPont, Evaflex V406) and conductive carbon black (Denka Black (granular), Denka Black (granular)) 18.0 wt The part described above was used as a base material layer by kneading the parts with a banbury and pelletizing them by strand cutting with an extruder. Lamination of the conductive layer and the base material layer is carried out by coextrusion using a two-type three-layer feed block type sheeting equipment using two 20 mmφ extruders, and the sheet MD and TD direction heat at 115 ° C. The absolute value of the difference in expansion coefficient is 4%, the linear expansion coefficient in the MD direction of the sheet at a temperature of 20-30 ° C. is 10 × 10 −5 / ° C., the linear expansion coefficient in the TD direction is 10 × 10 −5 / ° C., and the thickness. A three-layer sheet surface conductive sheet having a layer ratio of 0.2 mm and a conductive layer / base material layer / conductive layer = 1/8/1 was obtained.
<Example 7>
A conductive paint (UPT-100 (V) black UI3 manufactured by Osaka Printing Ink Manufacturing Co., Ltd.) was applied to both sides of the sheet used in Example 5 with a gravure plate in a thickness of 1 μm, and the MD and TD directions of the sheet at 85 ° C. The absolute value of the difference in thermal expansion coefficient is 2%, the linear expansion coefficient in the MD direction of the sheet at a temperature of 20-30 ° C. is 8 × 10 −5 / ° C., the linear expansion coefficient in the TD direction is 9 × 10 −5 / ° C., A surface conductive sheet having a thickness of 0.2 mm was obtained.
<Comparative Example 1>
Using a polyethylene resin (L211, manufactured by Sumitomo Mitsui Polyolefin Co., Ltd.) and a feed block type sheeting equipment using one 20 mmφ extruder, the difference in thermal expansion coefficient in the MD and TD directions of the sheet at 90 ° C. The linear expansion coefficient in the MD direction of the sheet at an absolute value of 4%, a temperature of 20-30 ° C. is 15 × 10 −5 / ° C., the linear expansion coefficient in the TD direction is 15 × 10 −5 / ° C., and the thickness is 0.2 mm. A single layer sheet was obtained.
<Comparative example 2>
Using an ABS resin (manufactured by Nippon A & L Co., Ltd., Clarastic GA-501), the feed block type sheeting equipment using one 20 mmφ extruder has a higher extrusion temperature and cooling capacity than <Example 3>. The tensile strength is increased, the absolute value of the difference between the thermal expansion coefficients in the MD and TD directions at 115 ° C. is 10%, and the linear expansion coefficient in the MD direction at 10 to 10 ° C. is 10 × 10 − A single layer sheet having a linear expansion coefficient in the TD direction of 10 × 10 −5 / ° C. and a thickness of 0.2 mm was obtained at 5 / ° C.
<Comparative Example 3>
Using ABS resin (manufactured by Nippon A & L Co., Ltd., Santac MT-81), with a feed block type sheeting equipment using one 20 mmφ extruder, the thermal expansion coefficient in the MD and TD directions of the sheet at 115 ° C. The absolute value of the difference is 4%, the linear expansion coefficient in the MD direction of the sheet at a temperature of 20 to 30 ° C. is 10 × 10 −5 / ° C., the linear expansion coefficient in the TD direction is 10 × 10 −5 / ° C., and the thickness is 0.05 mm. A single layer sheet was obtained.
<Comparative example 4>
Using ABS resin (manufactured by Nippon A & L Co., Ltd., Santac MT-81), with a feed block type sheeting equipment using one 20 mmφ extruder, the thermal expansion coefficient in the MD and TD directions of the sheet at 115 ° C. When the absolute value of the difference is 4%, the linear expansion coefficient in the MD direction is 10 × 10 −5 / ° C., the linear expansion coefficient in the TD direction is 10 × 10 −5 / ° C., and the thickness is 1.5 mm. A single layer sheet was obtained.
[0016]
Table 1 shows the characteristic values (absolute value of difference in thermal expansion coefficient, linear expansion coefficient, thickness, formability, rollability) of the sheet obtained above.
The difference in thermal expansion coefficient is the absolute value of the difference in thermal expansion coefficient in the MD and TD directions of the sheet at the molding temperature, and the linear expansion coefficient (MD) is the MD direction of the sheet at a temperature of 20 to 30 ° C. The linear expansion coefficient and the linear expansion coefficient (TD) are the linear expansion coefficient in the TD direction of the sheet at a temperature of 20 to 30 ° C., and were measured by TMA (manufactured by Seiko Instruments Inc., EXSTR 6000).
The thickness is the thickness of the sheet.
Formability is an evaluation of the dimensional stability of a molded product. After forming a 6 mm width x 6 mm length x 2 mm depth pocket on a 16 mm width sheet, the width, length, and depth of 10 consecutive molding pockets After measuring the dimensions, ◯ indicates that there is no pocket whose size is shifted by ± 0.2 mm or more, and x indicates that there is no pocket.
The rollability was evaluated as “◯” when the sheet was wound without any problem when the formed carrier tape was wound on a reel of 80 mmφ, “X” when the sheet was not wound well due to repulsion, or when the pocket was crushed.
[0017]
[Table 1]
Figure 2005041930
[0018]
【The invention's effect】
According to the present invention, the absolute value of the difference between the thermal expansion coefficients in the MD and TD directions of the sheet at the molding temperature is 6% or less, and the linear expansion coefficients in the MD and TD directions of the sheet at 20 to 30 ° C. are both 12 ×. By using a thermoplastic resin sheet having a thickness of 0.1 mm to 1.0 mm that is 10 −5 / ° C. or less, a molded article having excellent dimensional stability can be provided.

Claims (4)

成形の温度におけるシートの流れ方向(MD)と幅方向(TD)の熱膨張率の差の絶対値が6%以下であり、温度20〜30℃におけるシートのMD、TD方向の線膨張係数が共に12×10−5/℃以下であり、且つ厚みが0.1〜1.0mmであることを特徴とする熱可塑性樹脂シート。The absolute value of the difference in thermal expansion coefficient between the sheet flow direction (MD) and the width direction (TD) at the molding temperature is 6% or less, and the linear expansion coefficients in the MD and TD directions of the sheet at a temperature of 20 to 30 ° C. Both are 12 * 10 < -5 > / degrees C or less, and the thickness is 0.1-1.0 mm, The thermoplastic resin sheet characterized by the above-mentioned. 熱可塑性樹脂がポリフェニレンエーテル系樹脂、ポリスチレン系樹脂、ABS系樹脂、ポリカーボネート系樹脂又はポリエステル系樹脂から選ばれた少なくとも1種類からなる請求項1記載の熱可塑性樹脂シート。The thermoplastic resin sheet according to claim 1, wherein the thermoplastic resin is at least one selected from a polyphenylene ether resin, a polystyrene resin, an ABS resin, a polycarbonate resin, or a polyester resin. 表面又は厚み全体に導電性を付与し、表面抵抗率が1×10Ω以上1×1013Ω未満である請求項1又は2記載の熱可塑性樹脂シート。The thermoplastic resin sheet according to claim 1 or 2, wherein conductivity is imparted to the entire surface or thickness, and the surface resistivity is 1 x 10 3 Ω or more and less than 1 x 10 13 Ω. 請求項1〜3のいずれかに記載の熱可塑性樹脂シートよりなる電子部品搬送用容器。The container for electronic component conveyance which consists of a thermoplastic resin sheet in any one of Claims 1-3.
JP2003200658A 2003-07-23 2003-07-23 Thermoplastic resin sheet and container for transporting electronic part Pending JP2005041930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200658A JP2005041930A (en) 2003-07-23 2003-07-23 Thermoplastic resin sheet and container for transporting electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200658A JP2005041930A (en) 2003-07-23 2003-07-23 Thermoplastic resin sheet and container for transporting electronic part

Publications (1)

Publication Number Publication Date
JP2005041930A true JP2005041930A (en) 2005-02-17

Family

ID=34260990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200658A Pending JP2005041930A (en) 2003-07-23 2003-07-23 Thermoplastic resin sheet and container for transporting electronic part

Country Status (1)

Country Link
JP (1) JP2005041930A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327161A (en) * 2005-05-30 2006-12-07 Fujifilm Holdings Corp Manufacturing method of thermoplastic film
US8916633B2 (en) 2004-06-15 2014-12-23 Asahi Kasei Chemicals Corporation TAB leader tape made of polyphenylene ether-based resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916633B2 (en) 2004-06-15 2014-12-23 Asahi Kasei Chemicals Corporation TAB leader tape made of polyphenylene ether-based resin
JP2006327161A (en) * 2005-05-30 2006-12-07 Fujifilm Holdings Corp Manufacturing method of thermoplastic film

Similar Documents

Publication Publication Date Title
EP2285902B1 (en) Matte biaxially oriented polylactic acid film
KR20060015330A (en) Multilayer film and biaxially oriented polyester film
WO2012018099A1 (en) Multi-layer film, decorative molding film and molded body
KR101548850B1 (en) Conductive sheet
JP5856968B2 (en) Surface conductive multilayer sheet
MX2010013666A (en) Method to produce matte and opaque biaxially oriented polylactic acid film.
KR101419073B1 (en) Conductive resin composition and conductive sheets comprising the same
KR20180126013A (en) Release film suitable for the manufacture of multilayer printed circuit boards
JP4951484B2 (en) Antistatic sheet and molded product for packaging
JP2006312263A (en) Laminated mat-like polyester film
JP2005041930A (en) Thermoplastic resin sheet and container for transporting electronic part
JP2010194841A (en) Release film and method for manufacturing the same
JPWO2011037018A1 (en) Molding film
JP2016022616A (en) Multilayer film, film for decorative molding, and decorative molding
WO2022149416A1 (en) Electronic article packaging sheet
KR100738844B1 (en) Sheet for embossed carrier tape and embossed carrier tape using thereof
JP2008074408A (en) Plastic sheet and carrier tape
JP2006160834A (en) Electrically-conductive resin composition
JPH10329279A (en) Conductive composite plastic sheet
JP4335572B2 (en) Styrene resin composition, film, substrate and molded product
JP4047659B2 (en) Surface conductive composite plastic sheet and container for transporting electronic components
JP2002173194A (en) Electronic part container
JP3231119B2 (en) Heat resistant conductive carrier tape
JP2000141554A (en) Conductive sheet, its production and molded product
JP5331272B2 (en) Polyester film for in-mold transfer foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216