JP2004337980A - チャンネル部品およびそのステップ形状の決定方法 - Google Patents
チャンネル部品およびそのステップ形状の決定方法 Download PDFInfo
- Publication number
- JP2004337980A JP2004337980A JP2004127196A JP2004127196A JP2004337980A JP 2004337980 A JP2004337980 A JP 2004337980A JP 2004127196 A JP2004127196 A JP 2004127196A JP 2004127196 A JP2004127196 A JP 2004127196A JP 2004337980 A JP2004337980 A JP 2004337980A
- Authority
- JP
- Japan
- Prior art keywords
- channel component
- step shape
- parameter
- shape
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Bending Of Plates, Rods, And Pipes (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
【課題】 チャンネル部品において、歩留まりの悪化を回避しつつ、部品精度の向上、衝突性能の向上、重量の軽量化を何れも高いレベルで実現する。
【解決手段】 まず、チャンネル部品1のステップ形状2は、その断面における成形前の線長Lbと成形後の線長Laとの差(線長差)と、複数箇所の成形アールの半径Rd1、Rp、Rd2とから求められるパラメータに基づき、その形状が決定されることで、ステップ形状2に、必要な機能を持たせることが可能となる。パラメータxの具体的算出方法は、線長差と、半径Rd1、Rp、Rd2の総和の平方根とを掛け合わせることが好ましい。そして、線長差と各半径Rd1、Rp、Rd2とを適宜変更することによって、ステップ形状2に必要な機能を持たせるためのパラメータxを得ることが可能となる。
【選択図】 図1
【解決手段】 まず、チャンネル部品1のステップ形状2は、その断面における成形前の線長Lbと成形後の線長Laとの差(線長差)と、複数箇所の成形アールの半径Rd1、Rp、Rd2とから求められるパラメータに基づき、その形状が決定されることで、ステップ形状2に、必要な機能を持たせることが可能となる。パラメータxの具体的算出方法は、線長差と、半径Rd1、Rp、Rd2の総和の平方根とを掛け合わせることが好ましい。そして、線長差と各半径Rd1、Rp、Rd2とを適宜変更することによって、ステップ形状2に必要な機能を持たせるためのパラメータxを得ることが可能となる。
【選択図】 図1
Description
本発明は、製品形状にステップ形状を有するチャンネル部品に関するものである。
従来から、自動車の衝突安全性の向上や、車体重量の軽量化を図る手段として、図22に示すように、自動車の強度メンバーであるチャンネル部品1に、ステップ形状2を追加して稜線3を形成する手法や(例えば、非特許文献1参照。)、段絞り成形を実施する手法(例えば、非特許文献2参照。)等、種々の工夫を加えたものが、従来から用いられている。また、自動車の車体パネルのプレス成形時におけるシワ等の発生を防ぎ、車体パネルの品質向上を図るために、車体パネルの製品形状にステップ形状を設けた例がある(例えば、特許文献1参照。)。
綾 紀元,高橋 邦弘,車体のエネルギ吸収特性(第1報),自動車技術会論文集,1974,No.7,p60−66
小林 敏郎ほか,段絞り法についての基礎的検討と実用例,塑性と加工,1962,3−21,p717
特開平4−187321号公報(請求項1、図1)
しかしながら、上記従来技術は、以下の点で解決すべき問題を包含していた。まず、チャンネル部品の製品形状に稜線を追加する手法は、稜線の追加による利点として、衝突性能は向上するが、欠点として稜線の追加の仕方によっては寸法精度を悪化および重量を増加させてしまう場合がある。また、部品組み付け上の制約により、製品形状に稜線を追加すること自体が困難な場合が多い。
一方、チャンネル部品に段絞り成形を実施する手法は、寸法精度の向上といった点ではその効果が知られているが、衝突性能の向上を図ることは知られていない。しかも、製品形状外にステップ形状を有する場合には余分な材料が必要となり、歩留まりの悪化を招くといった欠点もある。
一方、チャンネル部品に段絞り成形を実施する手法は、寸法精度の向上といった点ではその効果が知られているが、衝突性能の向上を図ることは知られていない。しかも、製品形状外にステップ形状を有する場合には余分な材料が必要となり、歩留まりの悪化を招くといった欠点もある。
他方、車体パネルの製品形状にステップ形状を設けた例は、自動車の衝突安全性の向上と部品精度の向上とを、高いレベルで実現し得るものではなかった。
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、チャンネル部品において、歩留まりの悪化を回避しつつ、部品精度の向上、衝突性能の向上、重量の軽量化を何れも高いレベルで実現することにある。
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、チャンネル部品において、歩留まりの悪化を回避しつつ、部品精度の向上、衝突性能の向上、重量の軽量化を何れも高いレベルで実現することにある。
上記課題を解決するための、本発明の請求項1に係るチャンネル部品は、製品形状にステップ形状を含むチャンネル部品であって、前記ステップ形状は、その断面における成形前後の線長差と複数箇所の成形アールの半径とから求められるパラメータに基づき、その形状が決定されていることを特徴とするものである。
本発明によれば、製品形状に含まれるステップ形状が、その断面における成形前後の線長差と複数箇所の成形アールの半径とから求められるパラメータに基づき決定されることとし、前記パラメータを制御することによって、当該ステップ形状に必要な機能を持たせることが可能となる。
本発明によれば、製品形状に含まれるステップ形状が、その断面における成形前後の線長差と複数箇所の成形アールの半径とから求められるパラメータに基づき決定されることとし、前記パラメータを制御することによって、当該ステップ形状に必要な機能を持たせることが可能となる。
また、本発明の請求項2に係るチャンネル部品は、請求項1記載のチャンネル部品において、前記パラメータは、前記線長差と、前記半径の総和の平方根とを掛け合わせた値としたものである。
本発明によれば、前記パラメータを前記線長差と、前記半径の総和の平方根とを掛け合わせた値とすることで、前記ステップ形状に必要な機能を持たせるためのパラメータを、前記線長差と前記半径とを変更することによって得ることが可能となる。
本発明によれば、前記パラメータを前記線長差と、前記半径の総和の平方根とを掛け合わせた値とすることで、前記ステップ形状に必要な機能を持たせるためのパラメータを、前記線長差と前記半径とを変更することによって得ることが可能となる。
また、本発明の請求項3に係るチャンネル部品は、請求項1または2記載のチャンネル部品において、前記パラメータは、衝突性能および寸法精度の向上に関するものとしたものである。
本発明によれば、製品形状に含まれるステップ形状が、その断面における成形前後の線長差と複数箇所の成形アールの半径とから求められるパラメータに基づき決定されることで、前記パラメータを制御することによって、当該ステップ形状に衝突性能および寸法精度の向上を図るための機能を持たせることが可能となる。
本発明によれば、製品形状に含まれるステップ形状が、その断面における成形前後の線長差と複数箇所の成形アールの半径とから求められるパラメータに基づき決定されることで、前記パラメータを制御することによって、当該ステップ形状に衝突性能および寸法精度の向上を図るための機能を持たせることが可能となる。
また、本発明の請求項4に係るチャンネル部品は、請求項3記載のチャンネル部品において、前記衝突性能は、軸圧壊または3点曲げでの吸収エネルギーの増大に係るものとしたものである。
本発明によれば、前記パラメータを制御することによって、チャンネル部品の、軸圧壊または3点曲げでの吸収エネルギーの増大と寸法精度の向上とを、同時に達成することが可能となる。
本発明によれば、前記パラメータを制御することによって、チャンネル部品の、軸圧壊または3点曲げでの吸収エネルギーの増大と寸法精度の向上とを、同時に達成することが可能となる。
また、本発明の請求項5に係るチャンネル部品は、請求項3または4記載のチャンネル部品において、前記衝突性能は、軸圧壊または3点曲げでの最大荷重の増大に係るものとしたものである。
本発明によれば、前記パラメータを制御することによって、チャンネル部品の、軸圧壊または3点曲げでの最大荷重の増大と寸法精度の向上とを、同時に達成することが可能となる。
本発明によれば、前記パラメータを制御することによって、チャンネル部品の、軸圧壊または3点曲げでの最大荷重の増大と寸法精度の向上とを、同時に達成することが可能となる。
また、本発明の請求項6に係るチャンネル部品は、請求項1から5のいずれか1項記載のチャンネル部品において、前記ステップ形状は、縦壁部とフランジ部との間に形成したものである。
本発明によれば、チャンネル部品の縦壁部とフランジ部との間に形成した前記ステップ形状に、衝突性能および寸法精度の向上等、必要な機能を持たせたチャンネル部品を提供することが可能となる。
本発明によれば、チャンネル部品の縦壁部とフランジ部との間に形成した前記ステップ形状に、衝突性能および寸法精度の向上等、必要な機能を持たせたチャンネル部品を提供することが可能となる。
また、本発明の請求項7に係るチャンネル部品は、請求項1から6のいずれか1項記載のチャンネル部品において、前記パラメータを表すxが、前記断面形状における成形前の線長Lbと、成形後の線長Laと、前記ステップ形状を構成する三つの成形アールの半径Rd1、Rp、Rd2とに対し、x=ΔL×√(Rd1+Rp+Rd2)かつΔL=La―Lbの関係を有することとして、上記作用を得るものである。
また、本発明の請求項8に係るチャンネル部品は、請求項7記載のチャンネル部品において、前記パラメータを表すxが、6.19<x<14.37を満足させるものである。
そして、この構成により、例えば板厚をゲージダウンさせた場合の衝突性能低下分を補うための、吸収エネルギーの向上が図られる。
そして、この構成により、例えば板厚をゲージダウンさせた場合の衝突性能低下分を補うための、吸収エネルギーの向上が図られる。
さらに、本発明の請求項9に係るチャンネル部品は、ストレートチャンネル部品であることとし、当該ストレートチャンネル部品において、上記各作用を得るものである。
一方、本発明の請求項10に係るチャンネル部品は、屈曲チャンネル部品であることとし、当該屈曲チャンネル部品において、上記各作用を得るものである。
一方、本発明の請求項10に係るチャンネル部品は、屈曲チャンネル部品であることとし、当該屈曲チャンネル部品において、上記各作用を得るものである。
また、上記課題を解決するための、本発明の請求項11に係るチャンネル部品のステップ形状の決定方法は、製品形状にステップ形状を含むチャンネル部品において、前記ステップ形状の、断面形状における成形前後の線長差と複数箇所の成形アールの半径とから求められるパラメータに基づき、前記ステップ形状を決定したことを特徴とするものである。
本発明によれば、製品形状に含まれるステップ形状が、その断面における成形前後の線長差と複数箇所の成形アールの半径とから求められるパラメータに基づき決定されることとし、前記パラメータを制御することによって、当該ステップ形状に必要な機能を持たせることが可能となる。
本発明によれば、製品形状に含まれるステップ形状が、その断面における成形前後の線長差と複数箇所の成形アールの半径とから求められるパラメータに基づき決定されることとし、前記パラメータを制御することによって、当該ステップ形状に必要な機能を持たせることが可能となる。
また、本発明の請求項12に係るチャンネル部品のステップ形状の決定方法は、請求項11記載のチャンネル部品のステップ形状の決定方法において、前記パラメータを、前記線長差と前記半径の総和の平方根とを掛け合わせて求めることとしたものである。
本発明によれば、前記パラメータを前記線長差と、前記半径の総和の平方根とを掛け合わせた値とすることで、前記ステップ形状に必要な機能を持たせるためのパラメータを、前記前記線長差と前記半径とを変更することによって得ることが可能となる。
本発明によれば、前記パラメータを前記線長差と、前記半径の総和の平方根とを掛け合わせた値とすることで、前記ステップ形状に必要な機能を持たせるためのパラメータを、前記前記線長差と前記半径とを変更することによって得ることが可能となる。
また、本発明の請求項13に係るチャンネル部品のステップ形状の決定方法は、請求項11または12記載のチャンネル部品のステップ形状の決定方法において、前記パラメータは、衝突性能および寸法精度の向上に関するものとしたものである。
本発明によれば、製品形状に含まれるステップ形状が、その断面における成形前後の線長差と複数箇所の成形アールの半径とから求められるパラメータに基づき決定されることで、前記パラメータを制御することによって、当該ステップ形状に衝突性能および寸法精度の向上を図るための機能を持たせることが可能となる。
本発明によれば、製品形状に含まれるステップ形状が、その断面における成形前後の線長差と複数箇所の成形アールの半径とから求められるパラメータに基づき決定されることで、前記パラメータを制御することによって、当該ステップ形状に衝突性能および寸法精度の向上を図るための機能を持たせることが可能となる。
また、本発明の請求項14に係るチャンネル部品のステップ形状の決定方法は、請求項13記載のチャンネル部品のステップ形状の決定方法において、前記衝突性能は、軸圧壊または3点曲げでの吸収エネルギーの増大に係るものとしたものである。
本発明によれば、前記パラメータを制御することによって、チャンネル部品の、軸圧壊または3点曲げでの吸収エネルギーの増大と寸法精度の向上とを、同時に達成することが可能となる。
本発明によれば、前記パラメータを制御することによって、チャンネル部品の、軸圧壊または3点曲げでの吸収エネルギーの増大と寸法精度の向上とを、同時に達成することが可能となる。
また、本発明の請求項15に係るチャンネル部品のステップ形状の決定方法は、請求項13または14記載のチャンネル部品のステップ形状の決定方法において、前記衝突性能は、軸圧壊または3点曲げでの最大荷重の増大に係るものとしたものである。
本発明によれば、前記パラメータを制御することによって、チャンネル部品の、軸圧壊または3点曲げでの最大荷重の増大と寸法精度の向上とを、同時に達成することが可能となる。
本発明によれば、前記パラメータを制御することによって、チャンネル部品の、軸圧壊または3点曲げでの最大荷重の増大と寸法精度の向上とを、同時に達成することが可能となる。
また、本発明の請求項16に係るチャンネル部品のステップ形状の決定方法は、請求項13から15のいずれか1項記載のチャンネル部品のステップ形状の決定方法において、前記ステップ形状を縦壁部とフランジ部との間に形成するものである。
本発明によれば、チャンネル部品の縦壁部とフランジ部との間に形成した前記ステップ形状に、衝突性能および寸法精度の向上等、必要な機能を持たせたチャンネル部品を提供することが可能となる。
本発明によれば、チャンネル部品の縦壁部とフランジ部との間に形成した前記ステップ形状に、衝突性能および寸法精度の向上等、必要な機能を持たせたチャンネル部品を提供することが可能となる。
また、本発明の請求項17に係るチャンネル部品のステップ形状の決定方法は、請求項11から16のいずれか1項記載のチャンネル部品において、前記パラメータを表すxが、前記断面形状における成形前の線長Lbと、成形後の線長Laと、前記ステップ形状を構成する三つの成形アールの半径Rd1、Rp、Rd2とに対し、x=ΔL×√(Rd1+Rp+Rd2)かつΔL=La―Lbの関係を有することとして、上記作用を得るものである。
また、本発明の請求項18に係るチャンネル部品のステップ形状の決定方法は、請求項17記載のチャンネル部品において、前記パラメータを表すxが、6.19<x<14.37を満足させるものである。
そして、この構成により、例えば板厚をゲージダウンさせた場合の衝突性能低下分を補うための、吸収エネルギーの向上が図られる。
そして、この構成により、例えば板厚をゲージダウンさせた場合の衝突性能低下分を補うための、吸収エネルギーの向上が図られる。
さらに、本発明の請求項19に係るチャンネル部品のステップ形状の決定方法は、ストレートチャンネル部品であることとし、当該ストレートチャンネル部品において、上記各作用を得るものである。
一方、本発明の請求項20に係るチャンネル部品のステップ形状の決定方法は、屈曲チャンネル部品であることとし、当該屈曲チャンネル部品において、上記各作用を得るものである。
一方、本発明の請求項20に係るチャンネル部品のステップ形状の決定方法は、屈曲チャンネル部品であることとし、当該屈曲チャンネル部品において、上記各作用を得るものである。
本発明はこのように構成したので、チャンネル部品において、歩留まりの悪化を回避しつつ、部品精度の向上、自動車の衝突安全性の向上、車体重量の軽量化を何れも高いレベルで実現することが可能となる。
以下、本発明を実施するための最良の形態を添付図面に基づいて説明する。ここで、従来技術と同一部分若しくは相当する部分については同一符号で示し、詳しい説明を省略する。
図1には、本発明の実施の形態に係る、いわゆるハット断面形状を有するチャンネル部品1の、ステップ形状2の断面を示している。まず、このステップ形状2の断面において、成形前の断面の線長を符号Lbで表し、成形後の断面の線長を符号Laで表す。また、ステップ形状2を構成する三つの成形アールの半径を、夫々、Rd1、Rp、Rd2と表す。さらに、半径Rd1の成形アールと半径Rpの成形アールとをつなぐ平面部分の幅を符号Wsで表し、半径Rpの成形アールと半径Rd2の成形アールとをつなぐ平面部分の高さを符号Hsで表す。なお、チャンネル部品1の板の厚さをtとする。
ステップ形状2の断面における成形前後の線長差をΔLとすると、
ΔL=La―Lb ‥‥(1)
で表される。また、成形後の線長Laは、図1より幾何学的に求められ、
La=π×{(Rd1+t/2)+2×(Rp+t/2)+(Rd2+t/2)}/4+Ws+Hs ‥‥(2)
となる。一方、成形前の線長Lbも、図1より幾何学的に求められ、
Lb=√(Lbx2+Lby2) ‥‥(3)
ここで、Lbx、Lbyは各々、
Lbx=(Rd1+t/2)/√2+Ws+(Rp+t/2)+(Rd2+t/2)×(1−1/√2) ‥‥(4)
Lby=(1−1/√2)×(Rd1+t/2)+(Rp+t/2)+Hs+(Rd2+t/2)/√2 ‥‥(5)
と表される。
ΔL=La―Lb ‥‥(1)
で表される。また、成形後の線長Laは、図1より幾何学的に求められ、
La=π×{(Rd1+t/2)+2×(Rp+t/2)+(Rd2+t/2)}/4+Ws+Hs ‥‥(2)
となる。一方、成形前の線長Lbも、図1より幾何学的に求められ、
Lb=√(Lbx2+Lby2) ‥‥(3)
ここで、Lbx、Lbyは各々、
Lbx=(Rd1+t/2)/√2+Ws+(Rp+t/2)+(Rd2+t/2)×(1−1/√2) ‥‥(4)
Lby=(1−1/√2)×(Rd1+t/2)+(Rp+t/2)+Hs+(Rd2+t/2)/√2 ‥‥(5)
と表される。
ところで、絞り成形、曲げ成形等、成形方法を問わず、図1に示すステップ形状2を、チャンネル部品1の長手方向全体若しくは一部に形成したとき、
x=ΔL×√(Rd1+Rp+Rd2) ‥‥(6)
の関係が成り立つパラメータxの値を制御することにより、チャンネル部品1の衝突性能および寸法精度を、何れも向上させることが可能となることが、本発明者らによって明らかにされている。以下に、具体的数値例を挙げて説明する。
x=ΔL×√(Rd1+Rp+Rd2) ‥‥(6)
の関係が成り立つパラメータxの値を制御することにより、チャンネル部品1の衝突性能および寸法精度を、何れも向上させることが可能となることが、本発明者らによって明らかにされている。以下に、具体的数値例を挙げて説明する。
まず、チャンネル部品の場合には、前提条件として、各成形アールの半径R(RにはRd1、Rp、Rd2の全てを含む)を何れも0.5mm<R<5.0mmとし、かつ、各成形アールに挟まれた平面部分を0<Ws<10mm好ましくは0<Hs<10mmとするのが良い。
なお、以上のように段寸法を限定した理由は、以下の通りである。すなわち、従来は、段形状が比較的大きい領域(段幅15mm以上)のみ検討しており、寸法精度を良くするために、線長を長くする(段形状を大きくする方向)対策が行われていたところ、本実施の形態では、歩留まり、他部品との干渉を避けるために、従来検討されていないような段形状が小さい領域に着目し、小さな段形状でも、寸法の適正化により、寸法精度および衝突性能の向上を可能とするものであることによる。
なお、以上のように段寸法を限定した理由は、以下の通りである。すなわち、従来は、段形状が比較的大きい領域(段幅15mm以上)のみ検討しており、寸法精度を良くするために、線長を長くする(段形状を大きくする方向)対策が行われていたところ、本実施の形態では、歩留まり、他部品との干渉を避けるために、従来検討されていないような段形状が小さい領域に着目し、小さな段形状でも、寸法の適正化により、寸法精度および衝突性能の向上を可能とするものであることによる。
かかる範囲内で、パラメータxの値を変化させたときの、寸法精度(mm)と軸圧壊または3点曲げでの吸収エネルギー(KJ)の変化の様子の一例を、図2にまとめている。なお、軸圧壊または3点曲げの何れの衝突性能を検討する場合であっても、同様の手順となることから、本説明では、軸圧壊での吸収エネルギー(KJ)の変化の様子を例示して、以下に説明する。
図2において、菱形の点は寸法精度(スプリングバックに起因した、ハット断面形状の縦壁部における「壁反り」不良が生じた時の、開き量に関する。)の変化の様子を、正方形の点は軸圧壊での吸収エネルギーの変化の様子を、各々示している。
ここで、パラメータxの値が0のとき(成形前後の線長差ΔLが0のとき)の寸法精度を基準(点線L0)として考えたとき、14.37>xの範囲では、寸法精度の向上が見られる。一方、パラメータxが0のときの軸圧壊での吸収エネルギーを基準(点線L1)として考えたとき、16.94>xの範囲では、吸収エネルギーの増大が見られる。さらに、寸法精度を低下させることなくかつ軽量化を図るために、例えば板厚t=2.0mmから1.8mmへとゲージダウンさせた場合の衝突性能低下分を補うための、約15%の吸収エネルギーの向上が可能な範囲は、6.19<x<14.37である。
図2において、菱形の点は寸法精度(スプリングバックに起因した、ハット断面形状の縦壁部における「壁反り」不良が生じた時の、開き量に関する。)の変化の様子を、正方形の点は軸圧壊での吸収エネルギーの変化の様子を、各々示している。
ここで、パラメータxの値が0のとき(成形前後の線長差ΔLが0のとき)の寸法精度を基準(点線L0)として考えたとき、14.37>xの範囲では、寸法精度の向上が見られる。一方、パラメータxが0のときの軸圧壊での吸収エネルギーを基準(点線L1)として考えたとき、16.94>xの範囲では、吸収エネルギーの増大が見られる。さらに、寸法精度を低下させることなくかつ軽量化を図るために、例えば板厚t=2.0mmから1.8mmへとゲージダウンさせた場合の衝突性能低下分を補うための、約15%の吸収エネルギーの向上が可能な範囲は、6.19<x<14.37である。
なお、図2の例では、縦軸をyとした時、寸法精度を表す多項式は、
y=0.0212x3−0.3443x2+0.5691x+20.914
となっている。また、吸収エネルギーを表す多項式は、
y=−0.005x3+0.0995x2−0.251x+5.3595
となっている。
y=0.0212x3−0.3443x2+0.5691x+20.914
となっている。また、吸収エネルギーを表す多項式は、
y=−0.005x3+0.0995x2−0.251x+5.3595
となっている。
また、前述のR、Ws、Hsの範囲内で、パラメータxの値を変化させたときの、寸法精度(mm)と軸圧壊での最大荷重(kN)の変化の様子の一例を、図3にまとめている。図3においても、菱形の点は寸法精度(スプリングバックによる開き量)の変化の様子を示している。一方、丸の点は軸圧壊での最大荷重の変化の様子を示している。
ここで、パラメータxが0のとき(成形前後の線長差ΔLが0のとき)の寸法精度を基準(点線L0)として、14.37>xの範囲では、寸法精度の向上が見られるのは、図2と同様である。一方、パラメータxが0のときの軸圧壊での最大荷重を基準(点線L2)として、寸法精度を悪化させることなく最大荷重の増大が可能な範囲は、0<x<14.37である。参考までに、寸法精度を悪化させることなく最大荷重の増大が可能な範囲0<x<14.37において、軸圧壊での最大荷重が最も増大するパラメータxの値はx=5.50であり、このときの最大荷重の向上率は約8%である。
ここで、パラメータxが0のとき(成形前後の線長差ΔLが0のとき)の寸法精度を基準(点線L0)として、14.37>xの範囲では、寸法精度の向上が見られるのは、図2と同様である。一方、パラメータxが0のときの軸圧壊での最大荷重を基準(点線L2)として、寸法精度を悪化させることなく最大荷重の増大が可能な範囲は、0<x<14.37である。参考までに、寸法精度を悪化させることなく最大荷重の増大が可能な範囲0<x<14.37において、軸圧壊での最大荷重が最も増大するパラメータxの値はx=5.50であり、このときの最大荷重の向上率は約8%である。
なお、図3の例では、縦軸をyとした時、寸法精度を表す多項式は、図2と同じく、
y=0.0212x3−0.3443x2+0.5691x+20.914
となっている。一方、最大荷重を表す多項式は、
y=0.0391x3−1.0394x2−7.8927x+210.72
となっている。
y=0.0212x3−0.3443x2+0.5691x+20.914
となっている。一方、最大荷重を表す多項式は、
y=0.0391x3−1.0394x2−7.8927x+210.72
となっている。
以上の数値例から理解されるように、チャンネル部品1に求められる衝突性能として、例えば、軸圧壊での吸収エネルギーの増大を重視する場合には、吸収エネルギーの増大に適したパラメータxの値となるように、ステップ形状を決定すれば良い。また、軸圧壊での最大荷重の増大を重視する場合には、最大荷重の増大に適したパラメータxの値となるように、ステップ形状を決定すれば良い。その際、0.5mm<R<5.0mm、0<Ws<10mm、0<Hs<10mmの範囲内で、Rd1、Rp、Rd2、Ws、Hsの各寸法を変更するものとする。
図4には、本発明の実施の形態の応用例を示している。図4(a)は、縦壁部とフランジ部との間に、複数段のステップ形状2を形成したものである。この例によれば、チャンネル部品1の断面に現われる稜線の数の増加、チャンネル部品1の断面積の増加を図ることができ、しかも、段絞り成形の態様をなすことから、チャンネル部品1の衝突性能および縦壁寸法精度の向上を図ることが可能となる。
図4(b)は、パンチ肩部にステップ形状2を形成した例である。この例によれば、チャンネル部品1の断面に現われる稜線の数の増加に加え、成形ストローク末期にパンチ肩部を押し込むことになるので、チャンネル部品1の衝突性能の向上に加え、縦壁寸法精度の更なる向上を図ることが可能となる。
図4(c)は、チャンネル部品1のウェブ面にステップ形状2を形成した例である。この例によれば、チャンネル部品1の断面に現われる稜線の数の増加に加え、成形ストローク末期にウェブ面を押し込むことになるので、チャンネル部品1の衝突性能の向上に加え、縦壁寸法精度の更なる向上を図ることが可能となる。
図4(b)は、パンチ肩部にステップ形状2を形成した例である。この例によれば、チャンネル部品1の断面に現われる稜線の数の増加に加え、成形ストローク末期にパンチ肩部を押し込むことになるので、チャンネル部品1の衝突性能の向上に加え、縦壁寸法精度の更なる向上を図ることが可能となる。
図4(c)は、チャンネル部品1のウェブ面にステップ形状2を形成した例である。この例によれば、チャンネル部品1の断面に現われる稜線の数の増加に加え、成形ストローク末期にウェブ面を押し込むことになるので、チャンネル部品1の衝突性能の向上に加え、縦壁寸法精度の更なる向上を図ることが可能となる。
さらに、上記ステップ形状の決定方法は、ストレートチャンネル部品の衝突性能および寸法精度の向上を図るのみならず、屈曲チャンネル部品においても同様の効果を発揮するものである。図5には、屈曲チャンネル部品4を示している。この屈曲チャンネル部品4の断面形状は、その全長にわたって図6に示すハット断面形状を有し、なおかつ、中間部がく字状に屈曲した部品である。
この屈曲チャンネル部品4は、壁反り不良のみならず、図7に示すようなキャンバー不良を生じるといった問題が指摘されている。このキャンバー不良は、固定点5、5を基準として、図中に点線で示すプレス成形時の下死点形状に対し、図中に実線で示す離型後の形状が、断面C−Cにおいて、高さΔHだけ反りかえる現象である。その発生メカニズムは、成形過程において、部品の長手方向に生じる引張り応力と圧縮応力との不均一が、金型の拘束を解かれた時点で屈曲部に縮み変形および伸び変形を引き起こし、キャンバー不良として現われるものである。
この屈曲チャンネル部品4は、壁反り不良のみならず、図7に示すようなキャンバー不良を生じるといった問題が指摘されている。このキャンバー不良は、固定点5、5を基準として、図中に点線で示すプレス成形時の下死点形状に対し、図中に実線で示す離型後の形状が、断面C−Cにおいて、高さΔHだけ反りかえる現象である。その発生メカニズムは、成形過程において、部品の長手方向に生じる引張り応力と圧縮応力との不均一が、金型の拘束を解かれた時点で屈曲部に縮み変形および伸び変形を引き起こし、キャンバー不良として現われるものである。
そこで、このキャンバー不良を解消するため、図8および図9に示すように、屈曲チャンネル部品4にも、ステップ形状2を形成する。図示の例では、ステップ形状2は、角度θの範囲に設けられた屈曲部に係る部分2aと、その前後の一定長さの部分2bとが図9に示すステップ形状を有し、部分2bのさらに先の部分2cが、図9のステップ形状を徐変させて、ステップ形状を備えない一般的なハット断面形状(図6参照)へと収束するものである。したがって、図8に示すステップ形状2を有する屈曲チャンネル部品6も、その端部の(図8のB―B線の部分)断面形状は、図6に示すハット断面形状と同様である。
そして図5に示す屈曲チャンネル部品4と、図8に示す屈曲チャンネル部品6との寸法精度を比較すると、図8に示すステップ形状2を有する屈曲チャンネル部品6は、図5に示すステップ形状を備えない屈曲チャンネル部品6に比べ、寸法精度においてはキャンバー量ΔHを50%低減させ、衝突性能においては吸収エネルギーを20%増大させた事例が、発明者らによって報告されている。
そして図5に示す屈曲チャンネル部品4と、図8に示す屈曲チャンネル部品6との寸法精度を比較すると、図8に示すステップ形状2を有する屈曲チャンネル部品6は、図5に示すステップ形状を備えない屈曲チャンネル部品6に比べ、寸法精度においてはキャンバー量ΔHを50%低減させ、衝突性能においては吸収エネルギーを20%増大させた事例が、発明者らによって報告されている。
上記構成をなす、本発明の実施の形態によれば、次のような作用効果を得ることができる。
まず、チャンネル部品1のステップ形状2は、その断面における成形前後の線長差ΔLと複数箇所の成形アールの半径Rd1、Rp、Rd2とから求められるパラメータxに基づき、その形状が決定されることで、ステップ形状2に必要な機能を持たせることが可能となる。
パラメータxの具体的算出方法は、式(6)のごとく、線長差ΔLと、半径Rd1、Rp、Rd2の総和の平方根とを掛け合わせた値を用いることが好ましい。そして、線長差ΔLと各半径Rd1、Rp、Rd2とを適宜変更することによって、ステップ形状2に必要な機能を持たせるためのパラメータxを得ることが可能となる。
まず、チャンネル部品1のステップ形状2は、その断面における成形前後の線長差ΔLと複数箇所の成形アールの半径Rd1、Rp、Rd2とから求められるパラメータxに基づき、その形状が決定されることで、ステップ形状2に必要な機能を持たせることが可能となる。
パラメータxの具体的算出方法は、式(6)のごとく、線長差ΔLと、半径Rd1、Rp、Rd2の総和の平方根とを掛け合わせた値を用いることが好ましい。そして、線長差ΔLと各半径Rd1、Rp、Rd2とを適宜変更することによって、ステップ形状2に必要な機能を持たせるためのパラメータxを得ることが可能となる。
ここで、パラメータxは、衝突性能および寸法精度の向上に関するものとしたものである。よって、本発明の実施の形態によれば、チャンネル部品1の製品形状に含まれるステップ形状2が、その断面における成形前後の線長差ΔLと複数箇所の成形アールの半径Rd1、Rp、Rd2とから求められるパラメータxに基づき決定されることで、ステップ形状2に、衝突性能および寸法精度の向上を図るための機能を持たせることが可能となる。
さらに、前記衝突性能としては、軸圧壊での吸収エネルギーの増大と、軸圧壊での最大荷重の増大とが考慮されており、必要に応じてパラメータxの値を制御することによって、寸法精度と共に衝突性能を向上させることが可能となる。
さらに、前記衝突性能としては、軸圧壊での吸収エネルギーの増大と、軸圧壊での最大荷重の増大とが考慮されており、必要に応じてパラメータxの値を制御することによって、寸法精度と共に衝突性能を向上させることが可能となる。
なお、本発明の実施の形態では、パラメータxが、ハット断面形状における成形前の線長Lbと、成形後の線長Laと、前記ステップ形状を構成する三つの成形アールの半径Rd1、Rp、Rd2とに対し、
x=ΔL×√(Rd1+Rp+Rd2)‥‥(6)
かつ
ΔL=La―Lb ‥‥(1)
の関係を有することとして、上記作用効果を得るものである。
そして、パラメータxの値が、6.19<x<14.37を満足させることとすることによって、例えば板厚をゲージダウンさせた場合の衝突性能低下分を補うための、吸収エネルギーの向上が図られる。
x=ΔL×√(Rd1+Rp+Rd2)‥‥(6)
かつ
ΔL=La―Lb ‥‥(1)
の関係を有することとして、上記作用効果を得るものである。
そして、パラメータxの値が、6.19<x<14.37を満足させることとすることによって、例えば板厚をゲージダウンさせた場合の衝突性能低下分を補うための、吸収エネルギーの向上が図られる。
しかも、本発明の実施の形態に係るチャンネル部品1のステップ形状2を、縦壁部とフランジ部との間に形成した場合には、縦壁部とフランジ部との間に形成したステップ形状に、上記作用効果を持たせたチャンネル部品を提供することが可能となる。
加えて、本発明の実施の形態では、プレス金型の型締め完了前の段階で、素材が成形アールを形成する2つの稜線(半径Rd1、Rd2の成形アール)に跨ってプレス成形が進行することから(図1参照)、この間、ダイスRが擬似的に大きくなる。この点も、割れの発生等、成形性を損なうことを防ぐことにつながり、チャンネル部品1の品質向上に貢献するものとなる。また、製品形状にステップ形状2を有することから、従来の製品外での段絞り成形に比べて、材料歩留まりを向上させることが可能となる。
しかも、従来の型構造に大きな変更を加えるものでもなく、工数の増加を来すものでもないことは明らかである。
加えて、本発明の実施の形態では、プレス金型の型締め完了前の段階で、素材が成形アールを形成する2つの稜線(半径Rd1、Rd2の成形アール)に跨ってプレス成形が進行することから(図1参照)、この間、ダイスRが擬似的に大きくなる。この点も、割れの発生等、成形性を損なうことを防ぐことにつながり、チャンネル部品1の品質向上に貢献するものとなる。また、製品形状にステップ形状2を有することから、従来の製品外での段絞り成形に比べて、材料歩留まりを向上させることが可能となる。
しかも、従来の型構造に大きな変更を加えるものでもなく、工数の増加を来すものでもないことは明らかである。
さらに、本発明の実施の形態を屈曲チャンネル部品6に適用した場合においても、ストレートチャンネル部品への適用例と同様に、六つの課題を解決することができる。すなわち、(1)通常の金型構造を採用すれば良く、特殊構造の金型を使用する必要を無くすことができる。また、段幅Wを15mm未満とすることを可能とし、(2)必要材料の削減、(3)歩留まり悪化防止、(4)他部品との干渉の虞の回避を実現することができる。(従来は段幅Wを15mm以上確保していた。)。さらに、ステップ形状の適正化(段寸法と成形アールの組み合わせ)により、段サイズが小さくても、(5)寸法精度向上効果および(6)衝突性能向上効果をいずれも高次元で達成することができる。
ここで、ストレートチャンネル部品および屈曲チャンネル部品の、衝突性能および寸法精度の向上効果の具体的評価方法を、以下に例示する。
まず、ストレートチャンネル部品の評価方法について説明する。ここで、寸法精度の向上効果を評価するために用いられる供試材は、590MPa級冷延鋼鈑であり、板厚は1.2mmである。また、供試体寸法は、図10に示すように、ウェブ面の幅(板内)DWを48mm、縦壁部の高さ(板内)Hを67mm、フランジ部の幅DFを、段部を備えない供試体で42mm、段部を備える供試体で58mmとする。また、パンチ肩部の板内半径Ri、縦壁部とフランジ部との間の板外半径Roを、共に5mmとする。さらに、供試体の全長を39.5mmとする。
さらに、供試体の縦壁部とフランジ部との間(図10の円で囲んだ部分)に、図11に示すステップ形状2を与える。ステップ形状の各部の具体的寸法例は、図15に示す図表の通りである。なお、ステップ形状2を備える供試体の成形時には、ダイ−パンチ間のクリアランスを板厚t+0.2mmに設定し、かつ、ダイとブランクホルダーとによるフランジ部のシワ押さえ力は、トータルで30kNとする。
まず、ストレートチャンネル部品の評価方法について説明する。ここで、寸法精度の向上効果を評価するために用いられる供試材は、590MPa級冷延鋼鈑であり、板厚は1.2mmである。また、供試体寸法は、図10に示すように、ウェブ面の幅(板内)DWを48mm、縦壁部の高さ(板内)Hを67mm、フランジ部の幅DFを、段部を備えない供試体で42mm、段部を備える供試体で58mmとする。また、パンチ肩部の板内半径Ri、縦壁部とフランジ部との間の板外半径Roを、共に5mmとする。さらに、供試体の全長を39.5mmとする。
さらに、供試体の縦壁部とフランジ部との間(図10の円で囲んだ部分)に、図11に示すステップ形状2を与える。ステップ形状の各部の具体的寸法例は、図15に示す図表の通りである。なお、ステップ形状2を備える供試体の成形時には、ダイ−パンチ間のクリアランスを板厚t+0.2mmに設定し、かつ、ダイとブランクホルダーとによるフランジ部のシワ押さえ力は、トータルで30kNとする。
そして、ストレートチャンネル部品の壁反り不良の評価指標は、図12(a)、(b)に点線で示す各供試体の狙い形状の口開き量W0と、供試体の実際の形状の口開き量W1との差の値ΔW(ΔW=W1−W0)を用いる。なお、図12(a)には、比較対象であるステップ形状を備えない供試体8を、図12(b)には、本発明の実施の形態に係るステップ形状2を備える供試体10を示している。
一方、衝突性能の向上効果を評価するために用いられる供試材は、590MPa級冷延鋼鈑であり、板厚は1.2mmである。また、供試体寸法は、図10に示す、ウェブ面の幅(板内)DWを70mm、縦壁部の高さ(板内)Hを70mm、フランジ部の幅DFを、段部を備えない供試体で22mm、段部を備える供試体で34mmとする。また、パンチ肩部の板内半径Ri、縦壁部とフランジ部との間の板外半径Roを、共に5mmとする。さらに、図13に示すように、供試体12の全長を400mmとし、フランジ部に裏板14(440MPa級冷延鋼鈑、t=1.2)をスポット溶接したものの両端部に、図14に示すように、150mm角の板厚10mmの天板16をアーク溶接している。なお、スポット溶接のピッチは50mmである。
そして、供試体12の天板16に対し、290kgの重錘を11mの高さから落下させることによって、供試体の軸圧壊試験を行う。かかる評価指標としては、重錘による押し込み量が0〜150mmの間の吸収エネルギー量で評価する。なお、吸収エネルギー量は、荷重−変位線図(図21参照)の、曲線と縦横の軸線とで囲まれる範囲の面積として求める。そして、吸収エネルギーが高いほど、衝突性能が良好であると判断する。
図15には、従来の段無し形状の供試体と、本発明の実施の形態に係る、様々なステップ部寸法を形成した供試材10、12との、寸法精度向上効果および衝突性能向上効果をまとめた図表を示している。また、図16には、課題の総合評価を示している。そして、図16に示すように、(1)〜(6)の課題を同時に解決できるステップ形状(段形状)が存在することが明らかとなった。
なお、図16中、「従来技術1−1」は、ステップ形状を構成する三つの成形アールの少なくとも二つを鋭角にした金型を使用した例である。また、「従来技術1−2」は、複数のスライドを備える複雑な構造の金型を使用した例である。何れの従来技術も、その総合評価は、本発明の実施の形態に係る好適例に劣るものである。
なお、図16中、「従来技術1−1」は、ステップ形状を構成する三つの成形アールの少なくとも二つを鋭角にした金型を使用した例である。また、「従来技術1−2」は、複数のスライドを備える複雑な構造の金型を使用した例である。何れの従来技術も、その総合評価は、本発明の実施の形態に係る好適例に劣るものである。
さて、図16に示すステップ形状のうち、特に好評価が得られた形状例の、具体的評価を図17、図18に示している。まず図17は、ステップ形状2の各部寸法Rd1、Rp、Rd2、Ws、Hsに、図19に示す具体的数値(段形状11)を設定した場合における、軸圧壊での変形量(変位)と、最大荷重または吸収エネルギーとの関係を、従来のチャンネル部品(ステップ形状を設けず単純絞りを行ったもの)と比較したものである。図中、図19のチャンネル部品に関するデータを点線で、従来のチャンネル部品に関するデータを実線で示している。また、図18には、図19に示すステップ形状を設けたチャンネル部品1と、ステップ形状を設けず単純絞りを行った従来のチャンネル部品とに生じるスプリングバックによる開き量(壁反り不良)を、パンチ形状と共に図示したものである。図18においても、図19の「段形状11」を備えるチャンネル部品の形状を点線で示し、従来のチャンネル部品の形状を実線で示している。
これらの結果からも明らかなように、本発明の実施の形態によれば、最大荷重、吸収エネルギー共に従来のストレートチャンネル部品よりも増大させることが可能であり、かつ、スプリングバックによる開き量を減少させて、寸法精度を向上させることが可能である。
これらの結果からも明らかなように、本発明の実施の形態によれば、最大荷重、吸収エネルギー共に従来のストレートチャンネル部品よりも増大させることが可能であり、かつ、スプリングバックによる開き量を減少させて、寸法精度を向上させることが可能である。
さらに、屈曲チャンネル部品の、衝突性能および寸法精度の向上効果の具体的評価方法を、以下に例示する。
まず、衝突性能の向上効果を評価するために用いられる供試材は、590MPa級冷延鋼鈑であり、板厚は1.6mmである。そして、供試体の具体的寸法を、図5、図6、図8、図9を参照しながら説明すると、R1は210mm、R2は150mm、θは46°、Lは200mm、Wpは80mm、Wfは20mm、hは60mm、tは2.3mm、rpは5mm、rdは5mmである。また、ステップ形状2のRd1は2mm、Rpは2mm、Rd2は2mm、Hsは4mm、Wsは4mmである。さらに、屈曲部に係る部分2aの前後の一定長さの部分2bの長さは30mm、部分2bのさらに先の、ステップ形状2を徐変させて収束させる部分2cの長さは40mm、段幅Wは9.6mmである。
さらに、供試体の縦壁部とフランジ部との間(図10の円で囲んだ部分に、図11に示すステップ形状2を与える。ステップ形状の各部の具体的寸法例は、図15に示す図表の通りである。なお、ダイ−パンチ間のクリアランスを板厚t+0.2mmに設定し、かつ、ダイとブランクホルダーとによるフランジ部のシワ押さえ力は、トータルで300kNとする。
まず、衝突性能の向上効果を評価するために用いられる供試材は、590MPa級冷延鋼鈑であり、板厚は1.6mmである。そして、供試体の具体的寸法を、図5、図6、図8、図9を参照しながら説明すると、R1は210mm、R2は150mm、θは46°、Lは200mm、Wpは80mm、Wfは20mm、hは60mm、tは2.3mm、rpは5mm、rdは5mmである。また、ステップ形状2のRd1は2mm、Rpは2mm、Rd2は2mm、Hsは4mm、Wsは4mmである。さらに、屈曲部に係る部分2aの前後の一定長さの部分2bの長さは30mm、部分2bのさらに先の、ステップ形状2を徐変させて収束させる部分2cの長さは40mm、段幅Wは9.6mmである。
さらに、供試体の縦壁部とフランジ部との間(図10の円で囲んだ部分に、図11に示すステップ形状2を与える。ステップ形状の各部の具体的寸法例は、図15に示す図表の通りである。なお、ダイ−パンチ間のクリアランスを板厚t+0.2mmに設定し、かつ、ダイとブランクホルダーとによるフランジ部のシワ押さえ力は、トータルで300kNとする。
以上の条件に基き、図5、図6に示す屈曲チャンネル部品4と、図8、図9に示す屈曲チャンネル部品6との寸法精度を比較した事例では、部品上の特定の比較点において、Y方向(図6、図9の左右方向)の変位が、屈曲チャンネル部品4で1.07mmのところ、屈曲チャンネル部品6では0.77mmに抑えられ、Z方向(図6、図9の上下方向)の変位が、屈曲チャンネル部品4で4.48mmのところ、屈曲チャンネル部品6では2.20mmに抑えられることが確認された。
すなわち、図8に示すステップ形状2を有する屈曲チャンネル部品6は、図5に示すステップ形状を備えない屈曲チャンネル部品4に比べ、寸法精度においてはキャンバー量ΔHを50%程度低減させることが可能となる。その改善メカニズムは、屈曲チャンネル部品6の断面の上部に発生した引張り応力と下部に発生した圧縮応力とが、金型の拘束を解かれた時点で屈曲部に縮み変形および伸び変形を引き起こすことを、ステップ形状2によって阻止することによるものである。
すなわち、図8に示すステップ形状2を有する屈曲チャンネル部品6は、図5に示すステップ形状を備えない屈曲チャンネル部品4に比べ、寸法精度においてはキャンバー量ΔHを50%程度低減させることが可能となる。その改善メカニズムは、屈曲チャンネル部品6の断面の上部に発生した引張り応力と下部に発生した圧縮応力とが、金型の拘束を解かれた時点で屈曲部に縮み変形および伸び変形を引き起こすことを、ステップ形状2によって阻止することによるものである。
また、衝突性能評価においては、供試体12に裏板(440MPa級冷延鋼鈑 t=1.2mm)をスポット溶接した後(スポット溶接ピッチ:500mm)、図20に示すように、供試体12の一端部を完全拘束し、他端部の50mmの領域を剛体(変形しない)と仮定して、当該剛体部に矢印で示す強制変位を与えた。荷重は、強制変位点にかかる反力を示す。そして、その際の吸収エネルギを、数値解析を用いて評価した。具体的には、図21に示す荷重−変位線図の、曲線と縦横の軸線とで囲まれる範囲の面積として求めるものである。
その結果、図8に示すステップ形状2を有する屈曲チャンネル部品6は、図5に示すステップ形状を備えない屈曲チャンネル部品6に比べ、衝突性能においては吸収エネルギーを20%程度増大させることが可能となった。その改善メカニズムは、屈曲チャンネル部材6が、歪(変形)を、ステップ形状2を設けた範囲に広く分散させ、局部的に折れにくい(応力集中が生じにくい)ものとすることによるものであり、最大荷重後も高い荷重を受け止め得る状態が維持され、吸収エネルギーの増大が図られる。
その結果、図8に示すステップ形状2を有する屈曲チャンネル部品6は、図5に示すステップ形状を備えない屈曲チャンネル部品6に比べ、衝突性能においては吸収エネルギーを20%程度増大させることが可能となった。その改善メカニズムは、屈曲チャンネル部材6が、歪(変形)を、ステップ形状2を設けた範囲に広く分散させ、局部的に折れにくい(応力集中が生じにくい)ものとすることによるものであり、最大荷重後も高い荷重を受け止め得る状態が維持され、吸収エネルギーの増大が図られる。
1:チャンネル部品、2:ステップ形状、3:稜線、6:屈曲チャンネル部品、La:成形後の線長、Lb:成形前の線長、 Rd1、Rp、Rd2:成形アールの半径、Ws:半径Rd1の成形アールと半径Rpの成形アールとをつなぐ平面部分の幅、Hs:半径Rpの成形アールと半径Rd2の成形アールとをつなぐ平面部分の高さ、t:チャンネル部品の板の厚さ
Claims (20)
- 製品形状にステップ形状を含むチャンネル部品であって、前記ステップ形状は、その断面における成形前後の線長差と複数箇所の成形アールの半径とから求められるパラメータに基づき、その形状が決定されていることを特徴とするチャンネル部品。
- 前記パラメータは、前記線長差と前記半径の総和の平方根とを掛け合わせた値であることを特徴とする請求項1記載のチャンネル部品。
- 前記パラメータは、衝突性能および寸法精度の向上に関するものであることを特徴とする請求項1または2記載のチャンネル部品。
- 前記衝突性能は、軸圧壊または3点曲げでの吸収エネルギーの増大に係るものであることを特徴とする請求項3項記載のチャンネル部品。
- 前記衝突性能は、軸圧壊または3点曲げでの最大荷重の増大に係るものであることを特徴とする請求項3または4記載のチャンネル部品。
- 前記ステップ形状は、縦壁部とフランジ部との間に形成されていることを特徴とする請求項1から5のいずれか1項記載のチャンネル部品。
- 前記パラメータを表すxが、前記断面形状における成形前の線長Lbと、成形後の線長Laと、前記ステップ形状を構成する三つの成形アールの半径Rd1、Rp、Rd2とに対し、
x=ΔL×√(Rd1+Rp+Rd2)
かつ
ΔL=La―Lb
の関係を有することを特徴とする請求項1から6のいずれか1項記載のチャンネル部品。 - 前記パラメータを表すxが、6.19<x<14.37を満たすことを特徴とする請求項7記載のチャンネル部品。
- 前記チャンネル部品がストレートチャンネル部品であることを特徴とする請求項1から8のいずれか1項記載のチャンネル部品。
- 前記チャンネル部品が屈曲チャンネル部品であることを特徴とする請求項1から8のいずれか1項記載のチャンネル部品。
- 製品形状にステップ形状を含むチャンネル部品において、前記ステップ形状の、断面形状における成形前後の線長差と複数箇所の成形アールの半径とから求められるパラメータに基づき、前記ステップ形状を決定したことを特徴とするチャンネル部品のステップ形状の決定方法。
- 前記パラメータを、前記線長差と前記半径の総和の平方根とを掛け合わせて求めることを特徴とする請求項11記載のチャンネル部品のステップ形状の決定方法。
- 前記パラメータは、衝突性能および寸法精度の向上に関するものであることを特徴とする請求項11または12記載のチャンネル部品のステップ形状の決定方法。
- 前記衝突性能は、軸圧壊または3点曲げでの吸収エネルギーの増大に係るものであることを特徴とする請求項13記載のチャンネル部品のステップ形状の決定方法。
- 前記衝突性能は、軸圧壊または3点曲げでの最大荷重の増大に係るものであることを特徴とする請求項13または14記載のチャンネル部品のステップ形状の決定方法。
- 前記ステップ形状を縦壁部とフランジ部との間に形成することを特徴とする請求項11から15のいずれか1項記載のチャンネル部品のステップ形状の決定方法。
- 前記パラメータを表すxが、前記断面形状における成形前の線長Lbと、成形後の線長Laと、前記ステップ形状を構成する三つの成形アールの半径Rd1、Rp、Rd2とに対し、
x=ΔL×√(Rd1+Rp+Rd2)
かつ
ΔL=La―Lb
の関係を有することを特徴とする請求項11から16のいずれか1項記載のステップ形状の決定方法。 - 前記パラメータを表すxが、6.19<x<14.37を満たすことを特徴とする請求項17記載のステップ形状の決定方法。
- 前記チャンネル部品がストレートチャンネル部品であることを特徴とする請求項11から18のいずれか1項記載のステップ形状の決定方法。
- 前記チャンネル部品が屈曲チャンネル部品であることを特徴とする請求項11から18のいずれか1項記載のステップ形状の決定方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004127196A JP2004337980A (ja) | 2003-04-22 | 2004-04-22 | チャンネル部品およびそのステップ形状の決定方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003117015 | 2003-04-22 | ||
JP2004127196A JP2004337980A (ja) | 2003-04-22 | 2004-04-22 | チャンネル部品およびそのステップ形状の決定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004337980A true JP2004337980A (ja) | 2004-12-02 |
Family
ID=33543119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004127196A Pending JP2004337980A (ja) | 2003-04-22 | 2004-04-22 | チャンネル部品およびそのステップ形状の決定方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004337980A (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008012570A (ja) * | 2006-07-06 | 2008-01-24 | Nippon Steel Corp | 形状凍結性に優れた多段プレス成形方法 |
JP2008073697A (ja) * | 2006-09-19 | 2008-04-03 | Nippon Steel Corp | 形状凍結性に優れた2段プレス成形用金型の設計方法 |
JP2010099700A (ja) * | 2008-10-23 | 2010-05-06 | Jfe Steel Corp | プレス成形用の金型、プレス成形方法、及びハット型形状の成形品 |
WO2011148880A1 (ja) * | 2010-05-25 | 2011-12-01 | 新日本製鐵株式会社 | 形状凍結性に優れた金属部材の成形方法 |
JP2013063462A (ja) * | 2011-08-30 | 2013-04-11 | Jfe Steel Corp | 長手方向に湾曲したハット型部材のプレス成形方法 |
JP2013233548A (ja) * | 2012-05-02 | 2013-11-21 | Unipres Corp | 熱間プレス成形装置 |
WO2015199231A1 (ja) * | 2014-06-26 | 2015-12-30 | 新日鐵住金株式会社 | プレス成形品の製造方法およびプレス金型 |
JP2018196890A (ja) * | 2017-05-24 | 2018-12-13 | Jfeスチール株式会社 | プレス成形方法 |
WO2019187863A1 (ja) * | 2018-03-28 | 2019-10-03 | Jfeスチール株式会社 | プレス成形品の設計方法、プレス成形金型、プレス成形品およびプレス成形品の製造方法 |
-
2004
- 2004-04-22 JP JP2004127196A patent/JP2004337980A/ja active Pending
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4700568B2 (ja) * | 2006-07-06 | 2011-06-15 | 新日本製鐵株式会社 | 形状凍結性に優れた多段プレス成形方法 |
JP2008012570A (ja) * | 2006-07-06 | 2008-01-24 | Nippon Steel Corp | 形状凍結性に優れた多段プレス成形方法 |
JP2008073697A (ja) * | 2006-09-19 | 2008-04-03 | Nippon Steel Corp | 形状凍結性に優れた2段プレス成形用金型の設計方法 |
JP4621185B2 (ja) * | 2006-09-19 | 2011-01-26 | 新日本製鐵株式会社 | 形状凍結性に優れた2段プレス成形用金型の設計方法 |
JP2010099700A (ja) * | 2008-10-23 | 2010-05-06 | Jfe Steel Corp | プレス成形用の金型、プレス成形方法、及びハット型形状の成形品 |
US9248487B2 (en) | 2010-05-25 | 2016-02-02 | Nippon Steel & Sumitomo Metal Corporation | Forming method of metal member excellent in shape freezing property |
WO2011148880A1 (ja) * | 2010-05-25 | 2011-12-01 | 新日本製鐵株式会社 | 形状凍結性に優れた金属部材の成形方法 |
JP5114688B2 (ja) * | 2010-05-25 | 2013-01-09 | 新日鐵住金株式会社 | 形状凍結性に優れた金属部材の成形方法 |
CN102905809A (zh) * | 2010-05-25 | 2013-01-30 | 新日铁住金株式会社 | 形状冻结性优良的金属部件的成形方法 |
AU2011259044B2 (en) * | 2010-05-25 | 2015-11-26 | Nippon Steel Corporation | Method for forming metal member having excellent shape freezing properties |
JP2013063462A (ja) * | 2011-08-30 | 2013-04-11 | Jfe Steel Corp | 長手方向に湾曲したハット型部材のプレス成形方法 |
JP2013233548A (ja) * | 2012-05-02 | 2013-11-21 | Unipres Corp | 熱間プレス成形装置 |
CN106413935A (zh) * | 2014-06-26 | 2017-02-15 | 新日铁住金株式会社 | 冲压成型品的制造方法以及冲压模具 |
CN106413935B (zh) * | 2014-06-26 | 2019-04-16 | 新日铁住金株式会社 | 冲压成型品的制造方法以及冲压模具 |
WO2015199231A1 (ja) * | 2014-06-26 | 2015-12-30 | 新日鐵住金株式会社 | プレス成形品の製造方法およびプレス金型 |
JPWO2015199231A1 (ja) * | 2014-06-26 | 2017-05-25 | 新日鐵住金株式会社 | プレス成形品の製造方法およびプレス金型 |
TWI619564B (zh) * | 2014-06-26 | 2018-04-01 | 新日鐵住金股份有限公司 | 壓製成形品之製造方法及壓製模具 |
RU2668171C2 (ru) * | 2014-06-26 | 2018-09-26 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Способ изготовления штампованного изделия и пресс-форма |
US10730092B2 (en) | 2014-06-26 | 2020-08-04 | Nippon Steel Corporation | Pressed article manufacturing method and press mold |
KR20170010832A (ko) * | 2014-06-26 | 2017-02-01 | 신닛테츠스미킨 카부시키카이샤 | 프레스 성형품의 제조 방법 및 프레스 금형 |
KR102007557B1 (ko) * | 2014-06-26 | 2019-08-05 | 닛폰세이테츠 가부시키가이샤 | 프레스 성형품의 제조 방법 및 프레스 금형 |
JP2018196890A (ja) * | 2017-05-24 | 2018-12-13 | Jfeスチール株式会社 | プレス成形方法 |
WO2019187863A1 (ja) * | 2018-03-28 | 2019-10-03 | Jfeスチール株式会社 | プレス成形品の設計方法、プレス成形金型、プレス成形品およびプレス成形品の製造方法 |
JPWO2019187863A1 (ja) * | 2018-03-28 | 2020-05-28 | Jfeスチール株式会社 | プレス成形品の設計方法、プレス成形金型、プレス成形品およびプレス成形品の製造方法 |
KR20200112989A (ko) * | 2018-03-28 | 2020-10-05 | 제이에프이 스틸 가부시키가이샤 | 프레스 성형품의 설계 방법, 프레스 성형 금형, 프레스 성형품 및 프레스 성형품의 제조 방법 |
CN111801175A (zh) * | 2018-03-28 | 2020-10-20 | 杰富意钢铁株式会社 | 冲压成型品的设计方法、冲压成型模具、冲压成型品以及冲压成型品的制造方法 |
KR102370794B1 (ko) * | 2018-03-28 | 2022-03-04 | 제이에프이 스틸 가부시키가이샤 | 프레스 성형품의 설계 방법, 프레스 성형 금형, 프레스 성형품 및 프레스 성형품의 제조 방법 |
CN111801175B (zh) * | 2018-03-28 | 2023-02-03 | 杰富意钢铁株式会社 | 冲压成型品的设计方法、冲压成型模具、冲压成型品以及冲压成型品的制造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5569661B2 (ja) | プレス成形体の製造方法および製造装置 | |
JP3864899B2 (ja) | 形状凍結性に優れたプレス加工方法およびそれに用いる加工工具 | |
JP2009255117A (ja) | 形状凍結性に優れたプレス成形方法およびその装置 | |
JP6515961B2 (ja) | プレス成形品の製造方法 | |
CN108698105B (zh) | 冲压成型品的制造方法 | |
JP2004337980A (ja) | チャンネル部品およびそのステップ形状の決定方法 | |
WO2016171229A1 (ja) | プレス成形品の製造方法、プレス成形品及びプレス装置 | |
JP2018020349A (ja) | 金型の設計方法およびプレス成形品の製造方法 | |
JP6504130B2 (ja) | プレス成形品の製造方法 | |
RU2706253C1 (ru) | Штампованный компонент кузова автомобиля и способ его изготовления | |
JP6265315B1 (ja) | 自動車車体用プレス成形部品およびその製造方法 | |
JP6687110B2 (ja) | 自動車構造部材用絞り成形体、自動車構造部材用絞り成形体の製造方法、および自動車構造部材用絞り成形体の製造装置 | |
JP5079604B2 (ja) | 金属製断面ハット型形状部材のプレス成形用金型およびプレス成形方法 | |
JP6323414B2 (ja) | プレス成形方法 | |
JP6176430B1 (ja) | プレス成形品の製造方法 | |
US20210023601A1 (en) | Method of designing press-formed product, press-forming die, press-formed product, and method of producing press-formed product | |
JP2016203256A (ja) | プレス成形品の製造方法、プレス成形品及びプレス装置 | |
JP2008161896A (ja) | 溶接条件設定方法、装置、及びコンピュータプログラム | |
JP4582630B2 (ja) | 衝撃吸収特性に優れた構造用部材のプレス成形方法 | |
JP2019030886A (ja) | プレス成形品の製造方法 | |
JP5757224B2 (ja) | 構造部材の設計方法 | |
JP4984414B2 (ja) | 金属板のプレス加工方法及びプレス金型並びにプレス成形品の製造方法 | |
JP6493331B2 (ja) | プレス成形品の製造方法 | |
JP2022013343A (ja) | プレス部品の製造方法及びプレス成形用の金属板 | |
JP7356023B2 (ja) | 縮みフランジを有する冷間プレス部品 |