JP2004331852A - Abrasive slurry excellent in dispersion stability, and manufacturing method for substrate - Google Patents
Abrasive slurry excellent in dispersion stability, and manufacturing method for substrate Download PDFInfo
- Publication number
- JP2004331852A JP2004331852A JP2003131025A JP2003131025A JP2004331852A JP 2004331852 A JP2004331852 A JP 2004331852A JP 2003131025 A JP2003131025 A JP 2003131025A JP 2003131025 A JP2003131025 A JP 2003131025A JP 2004331852 A JP2004331852 A JP 2004331852A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- abrasive
- colloidal
- substrate
- polishing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1454—Abrasive powders, suspensions and pastes for polishing
- C09K3/1463—Aqueous liquid suspensions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C19/00—Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Silicon Compounds (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
この発明は、分散安定性に優れた研磨剤スラリーに係り、特に限定するものではないが、半導体製造工程や静電チャック製造工程で行われる基板表面の平坦化のための表面研磨を始めとして、フォトマスクブランクス、ガラスディスク、光学レンズ等の被研磨面の研磨に幅広く採用されている化学的機械研磨(Chemical Mechanical Polishing;以下「CMP」という)の用途に用いるのに好適な研磨剤スラリーに関する。
【0002】
【従来の技術】
例えば、半導体製造工程で用いられるシリコン基板や静電チャック製造工程で用いられるアルミニウム基板等の基板については、極めて高い精度の平坦性が要求されており、その被研磨面である基板表面を平坦化する技術として、研磨微粒子による機械的研磨とエッチング液による化学的研磨とを組み合わせたCMPにより、基板表面に損傷を与えることなく基板表面を高度に平坦化する平坦化技術が採用されている。
【0003】
そして、このような平坦化技術で用いる研磨剤としては、一般に、研磨対象となる基板の種類や平坦化技術で要求される加工速度等に応じて、種々の大きさ(平均粒径)を有する酸化セリウム(CeO2)、二酸化マンガン(MnO2)等の金属酸化物や、沈降シリカ、ヒュームドシリカ、コロイダルシリカ等の珪素酸化物(SiO2)や、ヒュームドアルミナ、コロイダルアルミナ等のアルミニウム酸化物(Al2O3)等の種々の種類の研磨微粒子を水等の分散媒中に分散させて得られたスラリーが用いられている。
【0004】
しかるに、これらの研磨微粒子は、その種類や大きさによっては分散媒中での分散安定性が悪く、例えば、酸化セリウム粒子の場合には、比較的大きな比重を有するために、酸化セリウム粒子を分散媒中に分散させて研磨剤スラリーを調製すると、調製後しばらくは均一に分散してはいるものの、その後比較的短時間で酸化セリウム粒子が分離し始め、沈降し、やがては粒子の凝集を起こしてその粒径が大きくなり、粒度分布が広くなるという沈降・凝集の問題を引き起こし、加工速度が経時的に変化し、また、基板表面が損傷する等の問題が生じる。
【0005】
このため、従来においては、このような研磨剤スラリーにおける沈降・凝集の問題を解消するため、例えば、研磨剤スラリーの使用直前に攪拌して研磨微粒子を再び分散させる再分散処理や、凝集して所定の粒径より大きくなった異常凝集粒子を濾過して分離除去する分離除去処理等が行われており、基板等の平坦化工程での大きな負担になっている。
【0006】
そこで、従来においても、この研磨剤スラリーの沈降・凝集の問題を解決するための幾つかの提案がされている。
すなわち、酸化セリウム粒子、アクリル酸アンモニウム塩とアクリル酸メチルとの共重合体、及び水を含み、沈降し難く、SiO2絶縁膜等の被研磨面を損傷することなく高速で研磨可能な酸化セリウム研磨剤が提案されている(特許文献1参照)。
【0007】
また、分散剤として水溶性有機高分子、水溶性陰イオン性界面活性剤、水溶性非イオン性界面活性剤及び水溶性アミンから選ばれた少なくとも1種の化合物を含み、最大沈降速度が1μm/s以下であり、沈降が少なく、攪拌による均一化が容易であり、SiO2絶縁膜等の被研磨面を損傷することなく高速で研磨可能な酸化セリウム研磨剤が提案されている(特許文献2参照)。
【0008】
更に、酸化セリウム粒子と、ポリアクリル酸の全カルボキシル基の90%超をアンモニアで中和させた第1のポリアクリル酸塩と、ポリアクリル酸の全カルボキシル基の15〜50%をアンモニアで中和させた第2のポリアクリル酸塩と、水とを含み、第1のポリアクリル酸塩と第2のポリアクリル酸塩の合計含有量が0.15〜1重量%であり、安定性が良く、二層分離や凝集沈降固結、粘度変化を起こさない酸化セリウム研磨剤が提案されている(特許文献3参照)。
【0009】
しかしながら、これら分散剤を含む酸化セリウム研磨剤についても、1ヶ月あるいはそれ以上の長期に亘って沈降・凝集の問題を解消し、再分散性のよい状態に維持することは困難であり、また、製造工程においては、凝集した研磨剤による装置配管内の詰り等の発生事例も認められ、これらの諸問題を必ずしも完全には解決できないという問題がある。
【0010】
また、これらいずれの酸化セリウム研磨剤も、分散剤として水溶性有機高分子、水溶性陰イオン性界面活性剤、水溶性非イオン性界面活性剤、水溶性アミン等の有機化合物を比較的多量(0.1〜5重量%)に含むものであり、研磨処理後の廃液中には酸化セリウム粒子の無機物質と分散剤等の有機物質とが混在し、この廃液処理に多大な手間とコストとを要するという問題もある。
【0011】
加えて、このような研磨剤スラリーについては、その製造コストや輸送コストを可及的に低減するという観点から、製造時にはできるだけ高濃度のものを製造し、使用時に所定の濃度まで希釈して使用するのが望ましいが、沈降・凝集の問題は高濃度であればあるほど発生し易く、より一層の分散安定性に優れた研磨剤スラリーの開発が望まれている。
【0012】
【特許文献1】特開2000−17195号公報
【特許文献2】特開2001−138214号公報
【特許文献3】特開2002−353175号公報
【0013】
【発明が解決しようとする課題】
そこで、本発明者らは、長期に亘って分散安定性に優れており、また、再分散性が良好で、沈降・凝集の問題を可及的に解消することができるほか、有機系分散剤を全く使用しない分散剤フリーでの使用が可能な研磨剤スラリーについて鋭意検討した結果、コロイド状酸化物であって研磨微粒子より小さい平均粒径を有するコロイダル微粒子を添加することにより、研磨微粒子の沈降・凝集を可及的に抑制できることを見出し、本発明を完成した。
【0014】
従って、本発明の目的は、長期に亘って分散安定性に優れており、また、再分散性が良好で、沈降・凝集の問題を可及的に解消することができるほか、有機系分散剤を全く使用しない分散剤フリーでの使用が可能な研磨剤スラリーを提供することにある。
【0015】
また、本発明の他の目的は、このような研磨剤スラリーを用いて、CMPにより半導体製造工程で用いられるシリコン基板や静電チャック製造工程で用いられるアルミニウム基板等の基板を工業的に有利に製造するための基板の製造方法を提供することにある。
【0016】
【課題を解決するための手段】
すなわち、本発明は、1種又は2種以上の酸化物からなる研磨微粒子と、コロイド状酸化物であって上記研磨微粒子より小さい平均粒径を有するコロイダル微粒子と、これら研磨微粒子及びとコロイダル微粒子とを分散させる分散媒とを含む、分散安定性に優れた研磨剤スラリーである。
また、本発明は、無機質の基板を製造する方法であって、上記の研磨剤スラリーを用いて基板を研磨する研磨工程を含む、基板の製造方法である。
【0017】
本発明において、研磨微粒子として用いられる酸化物としては、従来この種の研磨微粒子として用いられているものをそのまま使用することができ、具体的には、酸化セリウム(CeO2)、二酸化マンガン(MnO2)等の金属酸化物や、沈降シリカ、ヒュームドシリカ、コロイダルシリカ等の珪素酸化物(SiO2)や、ヒュームドアルミナ、コロイダルアルミナ等のアルミニウム酸化物(Al2O3)等を挙げることができる。これらはその1種のみを単独で用いることができるほか、2種以上を混合して用いることもできる。
【0018】
これらの酸化物のうち、本発明で研磨微粒子として用いる上で好ましいのは、例えば酸化セリウム粒子、酸化アルミニウム粒子等のように、比較的比重が高く、あるいは、比較的平均粒径が大きく、それ自体では沈降・凝集を起こし易いものであるのがよく、このような研磨微粒子に対して特に有効である。
【0019】
本発明で用いる研磨微粒子の平均粒径(Dp)については、特に制限はなく、また、種類によっても異なるが、酸化セリウム粒子の場合には、通常100〜5,000nm、好ましくは500〜2,000nmであるのがよく、研磨微粒子の種類によっては、平均粒径(Dp)が100nmより小さいと研磨能力が十分に発揮されない場合があり、反対に、5,000nmより大きくなると研磨面に傷が生じ易いという問題がある。
【0020】
また、この研磨微粒子と共に用いられるコロイダル微粒子については、例えば、コロイダルシリカ、コロイダルアルミナ等のコロイド状酸化物を挙げることができ、これらはその1種のみを単独で用いることができるほか、2種以上を混合して用いることもできる。
【0021】
そして、このコロイダル微粒子の平均粒径(Dc)については、少なくとも上記研磨微粒子より小さいことが必要であり、種類によっても異なるが、コロイダルシリカの場合を含めて多くの場合、通常10〜300nm、好ましくは20〜200nmであって、上記研磨微粒子の平均粒径(Dp)とこのコロイダル微粒子の平均粒径(Dc)との粒径比(Dc/Dp)が10以下、好ましくは0.01〜3程度であるのがよい。このコロイダル微粒子の平均粒径(Dc)が10nmより小さいと製造時に不安定でゲル化し易く、反対に、300nmより大きくなると粒径にバラツキが生じ易く、また、粒径比(Dc/Dp)が10を超えると結果として研磨微粒子が小さくなりすぎて研磨能力が十分に発揮されない。
【0022】
更に、研磨剤スラリーを構成する分散媒については、従来この種の研磨剤スラリーにおいて用いられている分散媒をそのまま用いることができ、特に制限されるものではなく、この研磨剤スラリーの用途、例えば半導体製造工程で用いるシリコン基板や静電チャック製造工程で用いるアルミニウム基板等の基板の平坦化に用いられるCMP用の研磨剤スラリーであるか、フォトマスクブランクス、ガラスディスク、光学レンズ等の被研磨面の研磨に用いられるCMP用の研磨剤スラリーであるか、更にはその他の被研磨面の研磨に用いられる通常の研磨剤スラリーであるか等によって適宜選択できるが、好ましくは水、又は、水を主成分としてメタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、tert−ブタノール等のアルコール類や、ケトン類、エステル類、エーテル類等の水溶性溶剤を含む水性分散媒が好適に用いられる。また、この分散媒中には、従来の場合と同様に、必要に応じてCMPの際に化学的研磨を行うためのエッチング液も添加される。
【0023】
そして、本発明の研磨剤スラリーを構成する上記研磨微粒子の粒子濃度(Cp)については、研磨微粒子の種類によって異なるが、酸化セリウム粒子の場合には、通常5〜40重量%、好ましくは5〜30重量%、より好ましくは5〜10重量%であって、また、コロイダル微粒子の粒子濃度(Cc)については、コロイダルシリカの場合を含めて多くの場合、通常0.1〜5重量%、好ましくは0.5〜2重量%であるのがよく、更に、上記研磨微粒子とコロイダル微粒子との重量配合比(Cc/Cp)が1以下、好ましくは0.5以下であるのがよい。このような粒子濃度(Cp)及び(Cc)で調製された研磨剤スラリーは、そのままの粒子濃度(Cp)及び(Cc)で、あるいは、必要に応じて分散媒により所定の粒子濃度(Cp)及び(Cc)まで希釈してCMP等の研磨に用いられる。研磨微粒子の粒子濃度(Cp)が5重量%より低いと研磨能力が不足し、反対に、40重量%より高くなると溶解性に問題が生じる。また、コロイダル微粒子の粒子濃度(Cc)が0.1重量%より低いと沈降・凝集の抑制効果が低下し、反対に、5重量%より高くなると逆に凝集現象が生じ易くなる。更に、研磨微粒子とコロイダル微粒子との重量配合比(Cc/Cp)が1を超えると、凝集現象が生じ易くなる。
【0024】
本発明の研磨剤スラリーは、特に水溶性有機高分子、水溶性陰イオン性界面活性剤、水溶性非イオン性界面活性剤及び水溶性アミン等の有機系分散剤を添加しなくても長期に亘る分散安定性に優れており、また、再分散性が良好で、沈降・凝集の問題を可及的に解消することができる。
【0025】
また、本発明において、研磨剤スラリーを調製する方法についても、その構成成分である研磨微粒子、コロイダル微粒子及び分散媒が均一に混合され、分散媒中に研磨微粒子及びコロイダル微粒子が均一に分散したスラリーとなればよく、特に制限はなく、通常の攪拌機を用いて調製できるほか、必要により超音波分散機、ホモジナイザー、ボールミル、振動ボールミル、遊星ボールミル、媒体攪拌式ミル等の湿式分散機を用いることができる。
【0026】
本発明の研磨剤スラリーは、半導体製造工程で用いるシリコン基板や静電チャック製造工程で用いるアルミニウム基板等の基板の平坦化だけでなく、所定の配線を有する配線板に形成された酸化珪素絶縁膜等の酸化膜、ガラス、窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プリズム等の光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバ−の端面、シンチレ−タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ用LEDサファイア基板、SiC、GaP、GaAS等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を研磨するために使用される。
【0027】
例えば、回路素子とアルミニウム配線が形成された段階の半導体基板や、回路素子が形成された段階の半導体基板等の基板上に酸化珪素絶縁膜等の酸化膜が形成された基板について、その酸化膜表面の凹凸を解消するための平坦化を目的にCMPを行う場合、基板を保持するホルダーと研磨布(パッド)が貼り付けられた回転盤とを備えた一般的な研磨装置を用い、研磨布には本発明の研磨剤スラリーをポンプ等で連続的に一定量ずつ供給し、所定の回転数及び加圧下の下に研磨することができる。
【0028】
そして、研磨終了後の基板については、通常の後処理の場合と同様に、流水中で良く洗浄後、スピンドライヤ等を用いて基板上に付着した水滴を払い落としてから乾燥させる。
この基板の研磨の際に排出される廃液については、有機系分散剤を全く使用しない分散剤フリーであるため、従来に比べてその廃液処理を極めて経済的に行うことができる。
【0029】
【発明の実施の形態】
以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。
【0030】
実施例1〜27
〔コロイダルシリカ(20nm)の調製〕
液留出口、液面制御装置及び攪拌機を備えたジャケット付き1m3−タンクに、メチルシリケート32kg、メタノール100kg及び純水768kgを仕込み、混合してA液とした。
また、攪拌機を備えた3m3−タンクに、メチルシリケート368kg、メタノール100kg、純水1840g及び28wt%−アンモニア水12kgを仕込み、混合してB液とした。
【0031】
次に、A液が入ったタンクをスチーム加熱し、メタノールと水の混合液を留出させ、A液から液が留出し始めたところでA液の液面が一定になるようにB液を添加し、B液の全てを添加し終えたところで、更にA液の液面が一定になるように純水240kgを添加し、反応させた。
反応終了後、A液が入っていたタンク内から反応生成物を取り出して分析した結果、シリカ濃度が20重量%であって平均粒径が20nmであるコロイド状シリカ生成物(コロイダルシリカ(20nm))であった。
【0032】
〔コロイダルシリカ(70nm)の調製〕
攪拌機を備えたジャケット付き3m3−タンクに、メタノール1721.7kg、純水306.3kg及び28wt%−アンモニア水88.4kgを仕込み、混合した後、液温を23±1℃に調整し、次いで液温を23±1℃に維持しながら2〜2.5時間かけて攪拌下に404.4kgのメチルシリケートを投入し、反応させた。
【0033】
反応終了後、得られた反応混合物の粗製品を液留出口、液面制御装置及び攪拌機を備えたジャケット付き1m3−タンクに移し、タンクをスチーム加熱してメタノール、水及びアンモニアの混合液を留出させ、タンクから液が留出し始めたところで液面が一定になるように残りの反応混合物を添加し、反応混合物の全てを添加し終えたところで、更に液面が一定になるように純水を添加し、タンク内の液温が100℃に到達するまで純水の添加を行った。
【0034】
液温が100℃に到達したところで加熱を終了し、中間製品にして冷却し、液温が70℃になったところで適量の28wt%−アンモニア水を添加し、更に攪拌して混合した後、タンクから反応生成物を取り出した。
得られた反応生成物は、シリカ濃度が30重量%であって平均粒径が70nmであるコロイド状シリカ生成物(コロイダルシリカ(70nm))であった。
【0035】
〔コロイダルシリカ(170nm)の調製〕
攪拌機を備えたジャケット付き1.8m3−タンクに、メタノール885.1kg、純水63.1kg及び28wt%−アンモニア水113.25kgを仕込み、混合した後、温度を23±1℃に調整し、次いで液温を23±1℃に維持しながら3時間かけて攪拌下に171.1kgのメチルシリケートを投入し、反応させた。
【0036】
反応終了後、得られた反応混合物の粗製品を液留出口、液面制御装置及び攪拌機を備えたジャケット付き1m3−タンクに移し、タンクをスチーム加熱してメタノール、水及びアンモニアの混合液を留出させ、タンクから液が留出し始めたところで液面が一定になるように残りの反応混合物を添加し、反応混合物の全てを添加し終えたところで、更に液面が一定になるように純水を添加し、タンク内の液温が100℃に到達するまで純水の添加を行った。
【0037】
液温が100℃に到達したところで加熱を終了し、中間製品にして冷却し、液温が70℃になったところで適量の28wt%−アンモニア水を添加し、更に攪拌して混合した後、タンクから反応生成物を取り出した。
得られた反応生成物は、シリカ濃度が22重量%であって平均粒径が170nmであるコロイド状シリカ生成物(コロイダルシリカ(170nm))であった。
【0038】
〔研磨剤スラリーの調製〕
研磨微粒子として平均粒径1.1μm及び最大粒径8μmの酸化セリウム粒子(セイミケミカル社製商品名:TE−508)を用い、コロイダル微粒子として上で得られた3種類のコロイダルシリカを用い、分散媒として純水を用い、表1に示す割合で配合し、攪拌機にて均一に混合し、各実施例1〜27の研磨剤スラリーを調製した。
【0039】
〔沈殿・凝集状態及び再分散性の評価〕
得られた各実施例1〜27の研磨剤スラリーについて、その50mlを100ml−試験管内に入れ、1ヶ月間静止放置の後、沈殿・凝集の状態を目視で観察した。
また、50mlの研磨剤スラリーを100ml−ポリエチレン製容器内に入れ、1ヶ月間静止放置した。その後、手振りによる再分散性を目視で観察すると共に、卓上型ボールミル攪拌機(入江商会社製:型式V−1M)の上に横に寝かせて載置し、攪拌回転数100rpm及び攪拌時間10分の条件で攪拌し、攪拌機による再分散性を目視で観察した。
【0040】
上記の沈殿・凝集状態と再分散性との結果を、
◎:沈殿部全体がソフトであって、手振りにより数秒で再分散が可能であり、また、攪拌機により5分以内に再分散が可能である、
○:沈殿部に固い部分があるが、手振りによる再分散に30秒程を要し、また、攪拌機による再分散に10分程を要す、
△:沈殿部に固い部分があるが、手振りによる再分散に2分以上を要し、また、攪拌機による再分散に10分程を要す、
×:沈殿部全体が完全に固化し、10分間の手振りでも再分散せず、また、攪拌機による再分散に10分間以上を要する、
の4段階で評価した。
結果を表1に示す。
【0041】
〔石英基板研磨速度〕
また、研磨剤スラリーを超純水で3倍に希釈し、研磨布を備えたCMP用研磨機(ナノファクター社製:FACT−200)を用い、回転数200rpm、加工圧力500g/cm2、及び研磨剤スラリーの供給速度10ml/minの条件下で、試料(幅3.3cm×2.6cm、厚さ1.15mmの石英基板)を10分間研磨し、研磨前後の試料の厚さをマイクロメーターで測定し、研磨前後の試料の厚さから石英基板(SiO2)に対する研磨速度(μm/10min)を求めた。
結果を表1に示す。
【0042】
比較例1〜15
有機系分散剤としてポリビニルピロリドン(PVP)を用い、上記実施例1〜27の場合と同様にして比較例1〜15の研磨剤スラリーを調製し、得られた各比較例1〜15の研磨剤について、各実施例1〜27の場合と同様にして、沈殿・凝集状態及び再分散性を評価し、また、石英基板(SiO2)に対する研磨速度(μm/10min)を求めた。
結果を上記各実施例1〜27と共に表1に示す。
【0043】
【表1】
【0044】
表1に示す結果から明らかなように、本発明の各実施例1〜27の研磨剤スラリーはいずれも沈降・凝集状態及び再分散性の評価、及び、石英基板研磨速度において優れた性能を発揮するのに対し、コロイダル微粒子及び分散剤のいずれも添加しない比較例1〜3の研磨剤スラリーは再分散が不可能で研磨速度が測定されず、また、1重量%又は3重量%の分散剤のみを添加した比較例4〜15の研磨剤スラリーは再分散に長時間を要しており、本発明の研磨剤スラリーが特に沈降・凝集状態及び再分散性において優れた性能を有することが判明した。
【0045】
【発明の効果】
本発明によれば、長期に亘って分散安定性に優れており、また、再分散性が良好で、沈降・凝集の問題を可及的に解消することができ、また、有機系分散剤を全く使用しない分散剤フリーでの使用が可能な研磨剤スラリーを提供することができる。
また、本発明の研磨剤スラリーを用いることにより、CMPにより半導体製造工程で用いられるシリコン基板や静電チャック製造工程で用いられるアルミニウム基板等の基板を工業的に有利に製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an abrasive slurry having excellent dispersion stability, including, but not limited to, surface polishing for flattening a substrate surface performed in a semiconductor manufacturing process or an electrostatic chuck manufacturing process, The present invention relates to an abrasive slurry suitable for use in chemical mechanical polishing (hereinafter, referred to as “CMP”) widely used for polishing a surface to be polished such as a photomask blank, a glass disk, and an optical lens.
[0002]
[Prior art]
For example, substrates such as a silicon substrate used in a semiconductor manufacturing process and an aluminum substrate used in an electrostatic chuck manufacturing process are required to have extremely high flatness, and the surface to be polished is flattened. As a technique for performing the polishing, a flattening technique for highly flattening the substrate surface without damaging the substrate surface by CMP that combines mechanical polishing with abrasive fine particles and chemical polishing with an etchant has been adopted.
[0003]
The polishing agent used in such a planarization technique generally has various sizes (average particle diameters) according to the type of a substrate to be polished, the processing speed required by the planarization technique, and the like. Metal oxides such as cerium oxide (CeO 2 ) and manganese dioxide (MnO 2 ), silicon oxides (SiO 2 ) such as precipitated silica, fumed silica and colloidal silica, and aluminum oxides such as fumed alumina and colloidal alumina A slurry obtained by dispersing various kinds of abrasive fine particles such as a substance (Al 2 O 3 ) in a dispersion medium such as water is used.
[0004]
However, these abrasive fine particles have poor dispersion stability in a dispersion medium depending on their type and size.For example, in the case of cerium oxide particles, since they have a relatively large specific gravity, cerium oxide particles are dispersed. When the abrasive slurry is prepared by dispersing it in a medium, the cerium oxide particles begin to separate and settle down in a relatively short period of time after the preparation, but then sediment and eventually agglomerate. This causes problems such as sedimentation and agglomeration that the particle size becomes large and the particle size distribution becomes wide, the processing speed changes with time, and the substrate surface is damaged.
[0005]
For this reason, conventionally, in order to solve the problem of sedimentation / agglomeration in such an abrasive slurry, for example, a re-dispersion process in which the abrasive fine particles are again dispersed by stirring just before use of the abrasive slurry, Separation and removal processing of filtering and separating and removing abnormal agglomerated particles having a particle size larger than a predetermined particle size is performed, which imposes a heavy burden on a step of flattening a substrate or the like.
[0006]
Therefore, some proposals have conventionally been made to solve the problem of sedimentation / aggregation of the abrasive slurry.
That is, cerium oxide containing cerium oxide particles, a copolymer of ammonium acrylate and methyl acrylate, and water, hardly sediments, and can be polished at high speed without damaging the surface to be polished such as a SiO 2 insulating film. An abrasive has been proposed (see Patent Document 1).
[0007]
Further, it contains at least one compound selected from a water-soluble organic polymer, a water-soluble anionic surfactant, a water-soluble nonionic surfactant and a water-soluble amine as a dispersant, and has a maximum sedimentation velocity of 1 μm / The cerium oxide abrasive has been proposed, which is less than or equal to s, has low sedimentation, can be easily uniformized by stirring, and can be polished at high speed without damaging the surface to be polished such as an SiO 2 insulating film (Patent Document 2) reference).
[0008]
Further, cerium oxide particles, a first polyacrylate salt in which more than 90% of all carboxyl groups of polyacrylic acid are neutralized with ammonia, and 15 to 50% of all carboxyl groups of polyacrylic acid with ammonia The first polyacrylate and the second polyacrylate have a total content of 0.15 to 1% by weight, and have stability. A cerium oxide abrasive which does not cause two-layer separation, coagulation and sedimentation and viscosity change is proposed (see Patent Document 3).
[0009]
However, even with cerium oxide abrasives containing these dispersants, it is difficult to solve the problem of sedimentation / aggregation over a long period of one month or more, and to maintain good redispersibility, In the manufacturing process, there have been cases where clogging or the like has occurred in the apparatus piping due to the agglomerated abrasive, and there is a problem that these problems cannot always be completely solved.
[0010]
In addition, any of these cerium oxide abrasives contains a relatively large amount of an organic compound such as a water-soluble organic polymer, a water-soluble anionic surfactant, a water-soluble nonionic surfactant, or a water-soluble amine as a dispersant. 0.1 to 5% by weight), and the waste liquid after the polishing process contains an inorganic substance of cerium oxide particles and an organic substance such as a dispersing agent. There is also a problem that requires.
[0011]
In addition, from the viewpoint of minimizing the production cost and transportation cost of such an abrasive slurry, a slurry having a concentration as high as possible is manufactured at the time of manufacture, and the slurry is diluted to a predetermined concentration at the time of use. However, the problem of sedimentation / aggregation is more likely to occur as the concentration is higher, and it is desired to develop an abrasive slurry having more excellent dispersion stability.
[0012]
[Patent Document 1] JP-A-2000-17195 [Patent Document 2] JP-A-2001-138214 [Patent Document 3] JP-A-2002-353175
[Problems to be solved by the invention]
Then, the present inventors have excellent dispersion stability over a long period of time, have good redispersibility, can solve the problem of sedimentation / aggregation as much as possible, and have an organic dispersant. As a result of intensive studies on an abrasive slurry that can be used without a dispersant without using any abrasive, the addition of colloidal fine particles, which are colloidal oxides and have an average particle size smaller than the abrasive fine particles, caused sedimentation of the abrasive fine particles. -It discovered that aggregation could be suppressed as much as possible, and completed this invention.
[0014]
Therefore, an object of the present invention is to provide excellent dispersion stability over a long period of time, good redispersibility, and to solve the problems of sedimentation and aggregation as much as possible. It is an object of the present invention to provide an abrasive slurry that can be used without using a dispersant and that does not use any of them.
[0015]
Further, another object of the present invention is to industrially advantageously use such an abrasive slurry to produce a substrate such as a silicon substrate used in a semiconductor manufacturing process or an aluminum substrate used in an electrostatic chuck manufacturing process by CMP. An object of the present invention is to provide a method of manufacturing a substrate for manufacturing.
[0016]
[Means for Solving the Problems]
That is, the present invention relates to abrasive fine particles comprising one or more oxides, colloidal fine particles which are colloidal oxides and have an average particle diameter smaller than the above-mentioned abrasive fine particles, and these abrasive fine particles and colloidal fine particles. And a dispersion medium for dispersing the same.
Further, the present invention is a method for producing an inorganic substrate, which comprises a polishing step of polishing the substrate using the above-mentioned abrasive slurry.
[0017]
In the present invention, as the oxide used as the polishing fine particles, those conventionally used as this type of polishing fine particles can be used as they are. Specifically, cerium oxide (CeO 2 ), manganese dioxide (MnO 2 ) 2 ) and the like; silicon oxides (SiO 2 ) such as precipitated silica, fumed silica and colloidal silica; and aluminum oxides (Al 2 O 3 ) such as fumed alumina and colloidal alumina. Can be. These can be used alone or in combination of two or more.
[0018]
Among these oxides, those which are preferable for use as the polishing fine particles in the present invention have a relatively high specific gravity or a relatively large average particle diameter, for example, such as cerium oxide particles and aluminum oxide particles. It is preferable that sedimentation and agglomeration easily occur by itself, and it is particularly effective for such abrasive fine particles.
[0019]
The average particle diameter (Dp) of the abrasive fine particles used in the present invention is not particularly limited and varies depending on the type. In the case of cerium oxide particles, the average particle diameter is usually 100 to 5,000 nm, preferably 500 to 2,000. If the average particle size (Dp) is smaller than 100 nm, the polishing ability may not be sufficiently exhibited. Conversely, if the average particle size (Dp) is larger than 5,000 nm, the polished surface may be damaged. There is a problem that it easily occurs.
[0020]
The colloidal fine particles used together with the abrasive fine particles include, for example, colloidal oxides such as colloidal silica and colloidal alumina. These can be used alone or in combination of two or more. May be used in combination.
[0021]
The average particle size (Dc) of the colloidal fine particles needs to be at least smaller than the above-mentioned abrasive fine particles, and varies depending on the type. In many cases, including colloidal silica, the average particle size is usually 10 to 300 nm, preferably. Is 20 to 200 nm, and the particle size ratio (Dc / Dp) between the average particle size (Dp) of the abrasive fine particles and the average particle size (Dc) of the colloidal fine particles is 10 or less, preferably 0.01 to 3 The degree is good. If the average particle diameter (Dc) of the colloidal fine particles is less than 10 nm, the particles are unstable during the production and easily gelled. Conversely, if the average particle diameter (Dc) is more than 300 nm, the particle diameter tends to vary, and the particle diameter ratio (Dc / Dp) is reduced. When it exceeds 10, as a result, the polishing fine particles become too small, and the polishing ability is not sufficiently exhibited.
[0022]
Further, as the dispersion medium constituting the abrasive slurry, the dispersion medium conventionally used in this type of abrasive slurry can be used as it is, and is not particularly limited, and the use of the abrasive slurry, for example, Polishing slurry for CMP used to planarize substrates such as silicon substrates used in semiconductor manufacturing processes and aluminum substrates used in electrostatic chuck manufacturing processes, or polished surfaces such as photomask blanks, glass disks, optical lenses, etc. Polishing slurry for CMP used for polishing, or it can be appropriately selected depending on whether it is a normal polishing slurry used for polishing other polished surfaces, etc., preferably water, or water. The main components are methanol, ethanol, n-propanol, iso-propanol, n-butanol and tert. Alcohols and the like butanol, ketones, esters, aqueous dispersion medium containing a water-soluble solvent such as ethers are preferably used. In addition, an etching solution for performing chemical polishing at the time of CMP is added to the dispersion medium as needed, as in the conventional case.
[0023]
The particle concentration (Cp) of the abrasive fine particles constituting the abrasive slurry of the present invention varies depending on the type of the abrasive fine particles, but in the case of cerium oxide particles, usually 5 to 40% by weight, preferably 5 to 40% by weight. It is 30% by weight, more preferably 5 to 10% by weight, and the particle concentration (Cc) of the colloidal fine particles is usually 0.1 to 5% by weight, in many cases including the case of colloidal silica. Is preferably 0.5 to 2% by weight, and the weight ratio (Cc / Cp) of the abrasive fine particles to the colloidal fine particles is 1 or less, preferably 0.5 or less. The abrasive slurry prepared with such particle concentrations (Cp) and (Cc) has the same particle concentration (Cp) and (Cc) or, if necessary, a predetermined particle concentration (Cp) with a dispersion medium. And diluted to (Cc) and used for polishing such as CMP. If the particle concentration (Cp) of the polishing fine particles is lower than 5% by weight, the polishing ability is insufficient, and if it is higher than 40% by weight, there is a problem in solubility. On the other hand, when the particle concentration (Cc) of the colloidal fine particles is lower than 0.1% by weight, the effect of suppressing sedimentation / aggregation is reduced. On the contrary, when the particle concentration is higher than 5% by weight, the aggregation phenomenon is liable to occur. Further, when the weight mixing ratio (Cc / Cp) of the abrasive fine particles and the colloidal fine particles exceeds 1, the aggregation phenomenon tends to occur.
[0024]
The abrasive slurry of the present invention can be used for a long time without adding an organic dispersant such as a water-soluble organic polymer, a water-soluble anionic surfactant, a water-soluble nonionic surfactant and a water-soluble amine. It has excellent dispersion stability over the entire surface, has good redispersibility, and can solve the problems of sedimentation and aggregation as much as possible.
[0025]
In the present invention, the method for preparing an abrasive slurry also includes a slurry in which the constituent fine particles, the colloidal fine particles and the dispersion medium are uniformly mixed, and the polishing fine particles and the colloidal fine particles are uniformly dispersed in the dispersion medium. There is no particular limitation, and it can be prepared using a normal stirrer.If necessary, an ultrasonic disperser, a homogenizer, a ball mill, a vibrating ball mill, a planetary ball mill, and a wet disperser such as a medium stirring mill may be used. it can.
[0026]
The abrasive slurry of the present invention is used not only for flattening a substrate such as a silicon substrate used in a semiconductor manufacturing process or an aluminum substrate used in an electrostatic chuck manufacturing process, but also for a silicon oxide insulating film formed on a wiring board having predetermined wiring. Oxide film such as glass, inorganic insulating film such as silicon nitride, optical glass such as photomask, lens, prism, etc., inorganic conductive film such as ITO, optical integrated circuit and optical switching element composed of glass and crystalline material. Optical waveguide, end face of optical fiber, optical single crystal such as scintillator, solid laser single crystal, LED sapphire substrate for blue laser, semiconductor single crystal such as SiC, GaP, GaAs, glass for magnetic disk It is used for polishing a substrate, a magnetic head and the like.
[0027]
For example, for a substrate in which an oxide film such as a silicon oxide insulating film is formed on a substrate such as a semiconductor substrate in which a circuit element and an aluminum wiring are formed or a semiconductor substrate in which a circuit element is formed, When performing CMP for the purpose of flattening to eliminate surface irregularities, a general polishing apparatus including a holder for holding a substrate and a rotating plate to which a polishing cloth (pad) is attached is used. , The polishing slurry of the present invention can be continuously supplied at a constant rate by a pump or the like, and can be polished under a predetermined number of rotations and pressure.
[0028]
Then, as in the case of the ordinary post-treatment, the substrate after the polishing is thoroughly washed in running water, and after removing water droplets attached to the substrate using a spin drier or the like, the substrate is dried.
Since the waste liquid discharged during the polishing of the substrate is free of a dispersant without using any organic dispersant, the waste liquid can be treated extremely economically as compared with the related art.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be specifically described based on examples and comparative examples.
[0030]
Examples 1-27
[Preparation of colloidal silica (20 nm)]
32 kg of methyl silicate, 100 kg of methanol and 768 kg of pure water were charged into a jacketed 1 m 3 -tank equipped with a liquid outlet, a liquid level controller and a stirrer, and mixed to obtain a liquid A.
Further, 368 kg of methyl silicate, 100 kg of methanol, 1840 g of pure water and 12 kg of 28 wt% -ammonia water were charged into a 3 m 3 -tank equipped with a stirrer, and mixed to obtain a liquid B.
[0031]
Next, the tank containing the liquid A is steam-heated to distill a mixed liquid of methanol and water, and when the liquid starts to be distilled from the liquid A, the liquid B is added so that the liquid level of the liquid A becomes constant. Then, when all the liquid B was added, 240 kg of pure water was further added so that the liquid level of the liquid A became constant and reacted.
After the completion of the reaction, the reaction product was taken out of the tank containing the solution A and analyzed. As a result, a colloidal silica product (colloidal silica (20 nm) having a silica concentration of 20% by weight and an average particle diameter of 20 nm was obtained. )Met.
[0032]
[Preparation of colloidal silica (70 nm)]
1721.7 kg of methanol, 306.3 kg of pure water and 88.4 kg of 28 wt% -ammonia water were charged into a jacketed 3 m 3 -tank equipped with a stirrer, mixed, and then the liquid temperature was adjusted to 23 ± 1 ° C. While maintaining the liquid temperature at 23 ± 1 ° C., 404.4 kg of methyl silicate was charged and reacted over 2 to 2.5 hours with stirring.
[0033]
After completion of the reaction, the crude product EkiTome outlet of the obtained reaction mixture, jacketed 1 m 3 equipped with a liquid level control device and a stirrer - transferred to the tank, and a steam heating tank methanol, mixture of water and ammonia Distill, add the remaining reaction mixture so that the liquid level becomes constant when the liquid starts to distill from the tank, and when all of the reaction mixture has been added, add pure water so that the liquid level becomes more constant. Water was added, and pure water was added until the liquid temperature in the tank reached 100 ° C.
[0034]
When the liquid temperature reached 100 ° C., the heating was terminated, the product was cooled as an intermediate product, and when the liquid temperature reached 70 ° C., an appropriate amount of 28 wt% -ammonia water was added, and the mixture was further stirred and mixed. From the reaction product.
The obtained reaction product was a colloidal silica product (colloidal silica (70 nm)) having a silica concentration of 30% by weight and an average particle size of 70 nm.
[0035]
[Preparation of colloidal silica (170 nm)]
885.1 kg of methanol, 63.1 kg of pure water and 113.25 kg of 28 wt% -ammonia water were charged into a jacketed 1.8 m 3 -tank equipped with a stirrer, mixed, and then adjusted to a temperature of 23 ± 1 ° C. Then, while maintaining the liquid temperature at 23 ± 1 ° C., 171.1 kg of methyl silicate was charged and reacted over 3 hours while stirring.
[0036]
After completion of the reaction, the crude product EkiTome outlet of the obtained reaction mixture, jacketed 1 m 3 equipped with a liquid level control device and a stirrer - transferred to the tank, and a steam heating tank methanol, mixture of water and ammonia Distill, add the remaining reaction mixture so that the liquid level becomes constant when the liquid starts to distill from the tank, and when all of the reaction mixture has been added, add pure water so that the liquid level becomes more constant. Water was added, and pure water was added until the liquid temperature in the tank reached 100 ° C.
[0037]
When the liquid temperature reached 100 ° C., the heating was terminated, the product was cooled as an intermediate product, and when the liquid temperature reached 70 ° C., an appropriate amount of 28 wt% -ammonia water was added, and the mixture was further stirred and mixed. From the reaction product.
The obtained reaction product was a colloidal silica product (colloidal silica (170 nm)) having a silica concentration of 22% by weight and an average particle size of 170 nm.
[0038]
(Preparation of abrasive slurry)
Cerium oxide particles having an average particle diameter of 1.1 μm and a maximum particle diameter of 8 μm (trade name: TE-508, manufactured by Seimi Chemical Co., Ltd.) were used as the polishing fine particles, and the three types of colloidal silica obtained above were used as the colloidal fine particles. Pure water was used as a medium, mixed at the ratios shown in Table 1, and uniformly mixed with a stirrer to prepare abrasive slurries of Examples 1 to 27.
[0039]
(Evaluation of precipitation / aggregation state and redispersibility)
With respect to the obtained abrasive slurries of Examples 1 to 27, 50 ml of the slurry was placed in a 100 ml test tube, allowed to stand still for one month, and then visually observed for precipitation and aggregation.
In addition, 50 ml of the abrasive slurry was placed in a 100 ml-polyethylene container and allowed to stand still for one month. Thereafter, the redispersibility by hand movement is visually observed, and the apparatus is laid on a table-type ball mill stirrer (manufactured by Irie Shosha Co., Ltd .: Model V-1M) sideways. The stirring rotation speed is 100 rpm and the stirring time is 10 minutes. The mixture was stirred under the conditions, and the redispersibility by a stirrer was visually observed.
[0040]
The results of the above precipitation / aggregation state and redispersibility
◎: The entire settling portion is soft, can be redispersed in a few seconds by hand, and can be redispersed within 5 minutes by a stirrer.
:: There is a hard part in the sedimentation part, but it takes about 30 seconds for redispersion by hand, and about 10 minutes for redispersion by a stirrer.
Δ: There is a hard part in the sedimentation part, but redispersion by hand requires 2 minutes or more, and redispersion by a stirrer requires about 10 minutes.
×: The entire sedimentation portion was completely solidified and did not re-disperse even if shaked for 10 minutes, and required more than 10 minutes for re-dispersion using a stirrer.
Was evaluated in four steps.
Table 1 shows the results.
[0041]
(Quartz substrate polishing rate)
Further, the polishing slurry was diluted three times with ultrapure water, and the number of rotations was 200 rpm, the processing pressure was 500 g / cm 2 , and the polishing machine for polishing (FACT-200 manufactured by Nanofactor) equipped with a polishing cloth was used. The sample (a quartz substrate having a width of 3.3 cm × 2.6 cm and a thickness of 1.15 mm) was polished for 10 minutes under the conditions of a supply rate of the abrasive slurry of 10 ml / min, and the thickness of the sample before and after polishing was measured by a micrometer. The polishing rate (μm / 10 min) for the quartz substrate (SiO 2 ) was determined from the thickness of the sample before and after polishing.
Table 1 shows the results.
[0042]
Comparative Examples 1 to 15
Using polyvinylpyrrolidone (PVP) as the organic dispersant, the abrasive slurries of Comparative Examples 1 to 15 were prepared in the same manner as in Examples 1 to 27, and the obtained abrasives of Comparative Examples 1 to 15 were obtained. In the same manner as in Examples 1 to 27, the precipitation / aggregation state and redispersibility were evaluated, and the polishing rate (μm / 10 min) for the quartz substrate (SiO 2 ) was determined.
The results are shown in Table 1 together with the above Examples 1 to 27.
[0043]
[Table 1]
[0044]
As is clear from the results shown in Table 1, each of the abrasive slurries of Examples 1 to 27 of the present invention exhibited excellent performance in evaluation of sedimentation / agglomeration state and redispersibility, and in polishing rate of quartz substrate. On the other hand, the abrasive slurries of Comparative Examples 1 to 3 to which neither the colloidal fine particles nor the dispersant is added cannot be redispersed, the polishing rate is not measured, and 1% by weight or 3% by weight of the dispersant is used. It was found that the abrasive slurries of Comparative Examples 4 to 15 to which only A was added required a long time for re-dispersion, and the abrasive slurries of the present invention had excellent performance especially in the sedimentation / aggregation state and re-dispersibility. did.
[0045]
【The invention's effect】
According to the present invention, the dispersion stability is excellent over a long period of time, the redispersibility is good, the problem of sedimentation / aggregation can be eliminated as much as possible. It is possible to provide an abrasive slurry which can be used without using a dispersant at all.
Further, by using the abrasive slurry of the present invention, substrates such as a silicon substrate used in a semiconductor manufacturing process and an aluminum substrate used in an electrostatic chuck manufacturing process can be industrially advantageously manufactured by CMP.
Claims (8)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003131025A JP2004331852A (en) | 2003-05-09 | 2003-05-09 | Abrasive slurry excellent in dispersion stability, and manufacturing method for substrate |
TW093101645A TW200424036A (en) | 2003-05-09 | 2004-01-20 | Abrasive slurry having high dispersion stability and manufacturing method for a substrate |
KR1020040007302A KR100808758B1 (en) | 2003-05-09 | 2004-02-04 | Abrasive slurry having high dispersion stability and manufacturing method for a substrate |
CNB2004100055621A CN1330733C (en) | 2003-05-09 | 2004-02-18 | Abrasive slurry having high dispersion stability and manufacturing method for a substrate |
US10/779,680 US20040221516A1 (en) | 2003-05-09 | 2004-02-18 | Abrasive slurry having high dispersion stability and manufacturing method for a substrate |
US11/589,779 US20070094936A1 (en) | 2003-05-09 | 2006-10-31 | Abrasive slurry having high dispersion stability and manufacturing method for a substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003131025A JP2004331852A (en) | 2003-05-09 | 2003-05-09 | Abrasive slurry excellent in dispersion stability, and manufacturing method for substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004331852A true JP2004331852A (en) | 2004-11-25 |
Family
ID=33410568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003131025A Pending JP2004331852A (en) | 2003-05-09 | 2003-05-09 | Abrasive slurry excellent in dispersion stability, and manufacturing method for substrate |
Country Status (5)
Country | Link |
---|---|
US (2) | US20040221516A1 (en) |
JP (1) | JP2004331852A (en) |
KR (1) | KR100808758B1 (en) |
CN (1) | CN1330733C (en) |
TW (1) | TW200424036A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277025A (en) * | 2006-04-04 | 2007-10-25 | Tama Kagaku Kogyo Kk | Method for producing colloidal silica stable in acidity |
WO2014142018A1 (en) * | 2013-03-13 | 2014-09-18 | 株式会社 フジミインコーポレーテッド | Slurry for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating |
WO2015146942A1 (en) * | 2014-03-28 | 2015-10-01 | 山口精研工業株式会社 | Polishing agent composition and method for polishing magnetic disk substrate |
WO2015146941A1 (en) * | 2014-03-28 | 2015-10-01 | 山口精研工業株式会社 | Polishing agent composition and method for polishing magnetic disk substrate |
WO2017051770A1 (en) * | 2015-09-25 | 2017-03-30 | 山口精研工業株式会社 | Abrasive material composition and method for polishing magnetic disk substrate |
US10196536B2 (en) | 2013-03-13 | 2019-02-05 | Fujimi Incorporated | Slurry for thermal spraying, thermal spray coating, and method for forming thermal spray coating |
US10196729B2 (en) | 2015-09-25 | 2019-02-05 | Fujimi Incorporated | Slurry for thermal spraying, sprayed coating, and method for forming sprayed coating |
WO2020066998A1 (en) * | 2018-09-26 | 2020-04-02 | 株式会社バイコウスキージャパン | Polishing liquid, concentrate of same, method for producing polished article using polishing liquid, and polishing method of substrate using polishing liquid |
US11066734B2 (en) | 2014-09-03 | 2021-07-20 | Fujimi Incorporated | Thermal spray slurry, thermal spray coating and method for forming thermal spray coating |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005244123A (en) * | 2004-02-27 | 2005-09-08 | Fujimi Inc | Polishing composition |
US7056192B2 (en) * | 2004-09-14 | 2006-06-06 | International Business Machines Corporation | Ceria-based polish processes, and ceria-based slurries |
JP2006086462A (en) * | 2004-09-17 | 2006-03-30 | Fujimi Inc | Polishing composition and manufacturing method of wiring structure using the same |
KR100497413B1 (en) * | 2004-11-26 | 2005-06-23 | 에이스하이텍 주식회사 | Slurry for tungsten-chemical mechanical polishing and method for manufacturing of the same |
US7294044B2 (en) * | 2005-04-08 | 2007-11-13 | Ferro Corporation | Slurry composition and method for polishing organic polymer-based ophthalmic substrates |
US7467988B2 (en) * | 2005-04-08 | 2008-12-23 | Ferro Corporation | Slurry composition and method for polishing organic polymer-based ophthalmic substrates |
JP2007103463A (en) * | 2005-09-30 | 2007-04-19 | Sumitomo Electric Ind Ltd | POLISHING SLURRY, SURFACE TREATMENT METHOD OF GaxIn1-xAsyP1-y CRYSTAL, AND GaxIn1-xAsyP1-y CRYSTAL SUBSTRATE |
JP4983603B2 (en) * | 2005-10-19 | 2012-07-25 | 日立化成工業株式会社 | Cerium oxide slurry, cerium oxide polishing liquid, and substrate polishing method using the same |
CN101560373B (en) * | 2005-11-11 | 2013-09-04 | 日立化成株式会社 | Polishing agent for silica, additive liquid and polishing method |
TWI414811B (en) * | 2006-03-23 | 2013-11-11 | Sumitomo Chemical Co | Method for producing a layered material containing a layer of inorganic particles |
US20100062287A1 (en) * | 2008-09-10 | 2010-03-11 | Seagate Technology Llc | Method of polishing amorphous/crystalline glass to achieve a low rq & wq |
US20100243670A1 (en) * | 2009-03-24 | 2010-09-30 | Ferro Corporation | Methods and products for replenishing a polishing slurry in a polishing apparatus |
US9368367B2 (en) * | 2009-04-13 | 2016-06-14 | Sinmat, Inc. | Chemical mechanical polishing of silicon carbide comprising surfaces |
US20130260027A1 (en) * | 2010-12-29 | 2013-10-03 | Hoya Corporation | Method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk |
KR20140088535A (en) * | 2011-11-01 | 2014-07-10 | 아사히 가라스 가부시키가이샤 | Method for producing glass substrate |
CN102709523A (en) * | 2012-06-13 | 2012-10-03 | 湖南丰源业翔晶科新能源股份有限公司 | Process for dispersing carbon nanotubes in electroconductive adhesive of lithium ion battery |
TWI535730B (en) * | 2015-10-26 | 2016-06-01 | 中日合成化學股份有限公司 | Flame retardant composition and application thereof |
CN105838260B (en) * | 2016-03-30 | 2018-03-27 | 济南汇川硅溶胶厂 | A kind of novel nano sapphire polishing liquid and preparation method thereof |
CN107629701B (en) * | 2017-11-02 | 2021-04-13 | 东旭光电科技股份有限公司 | Polishing solution and preparation method thereof |
JP6702385B2 (en) * | 2018-09-27 | 2020-06-03 | 住友大阪セメント株式会社 | Electrostatic chuck device |
CN115074087A (en) * | 2022-06-24 | 2022-09-20 | 广东优贝精细化工有限公司 | Glass grinding agent and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4462188A (en) * | 1982-06-21 | 1984-07-31 | Nalco Chemical Company | Silica sol compositions for polishing silicon wafers |
US5264010A (en) * | 1992-04-27 | 1993-11-23 | Rodel, Inc. | Compositions and methods for polishing and planarizing surfaces |
JP4113282B2 (en) * | 1998-05-07 | 2008-07-09 | スピードファム株式会社 | Polishing composition and edge polishing method using the same |
US6428392B1 (en) * | 1999-03-23 | 2002-08-06 | Seimi Chemical Co., Ltd. | Abrasive |
JP4273475B2 (en) * | 1999-09-21 | 2009-06-03 | 株式会社フジミインコーポレーテッド | Polishing composition |
US6261476B1 (en) | 2000-03-21 | 2001-07-17 | Praxair S. T. Technology, Inc. | Hybrid polishing slurry |
KR100826072B1 (en) * | 2000-05-12 | 2008-04-29 | 닛산 가가쿠 고교 가부시키 가이샤 | Polishing composition |
-
2003
- 2003-05-09 JP JP2003131025A patent/JP2004331852A/en active Pending
-
2004
- 2004-01-20 TW TW093101645A patent/TW200424036A/en not_active IP Right Cessation
- 2004-02-04 KR KR1020040007302A patent/KR100808758B1/en active IP Right Grant
- 2004-02-18 CN CNB2004100055621A patent/CN1330733C/en not_active Expired - Lifetime
- 2004-02-18 US US10/779,680 patent/US20040221516A1/en not_active Abandoned
-
2006
- 2006-10-31 US US11/589,779 patent/US20070094936A1/en not_active Abandoned
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277025A (en) * | 2006-04-04 | 2007-10-25 | Tama Kagaku Kogyo Kk | Method for producing colloidal silica stable in acidity |
US10377905B2 (en) | 2013-03-13 | 2019-08-13 | Fujimi Incorporated | Slurry for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating |
WO2014142018A1 (en) * | 2013-03-13 | 2014-09-18 | 株式会社 フジミインコーポレーテッド | Slurry for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating |
JPWO2014142018A1 (en) * | 2013-03-13 | 2017-02-16 | 株式会社フジミインコーポレーテッド | Thermal spray slurry, thermal spray coating, and method of forming thermal spray coating |
US10196536B2 (en) | 2013-03-13 | 2019-02-05 | Fujimi Incorporated | Slurry for thermal spraying, thermal spray coating, and method for forming thermal spray coating |
WO2015146941A1 (en) * | 2014-03-28 | 2015-10-01 | 山口精研工業株式会社 | Polishing agent composition and method for polishing magnetic disk substrate |
US9856401B2 (en) | 2014-03-28 | 2018-01-02 | Yamaguchi Seiken Kogyo Co., Ltd. | Polishing composition and method for polishing magnetic disk substrate |
JPWO2015146942A1 (en) * | 2014-03-28 | 2017-04-13 | 山口精研工業株式会社 | Abrasive composition and method for polishing magnetic disk substrate |
WO2015146942A1 (en) * | 2014-03-28 | 2015-10-01 | 山口精研工業株式会社 | Polishing agent composition and method for polishing magnetic disk substrate |
US9862863B2 (en) | 2014-03-28 | 2018-01-09 | Yamaguchi Seiken Kogyo Co., Ltd. | Polishing composition and method for polishing magnetic disk substrate |
JPWO2015146941A1 (en) * | 2014-03-28 | 2017-04-13 | 山口精研工業株式会社 | Abrasive composition and method for polishing magnetic disk substrate |
US11066734B2 (en) | 2014-09-03 | 2021-07-20 | Fujimi Incorporated | Thermal spray slurry, thermal spray coating and method for forming thermal spray coating |
WO2017051770A1 (en) * | 2015-09-25 | 2017-03-30 | 山口精研工業株式会社 | Abrasive material composition and method for polishing magnetic disk substrate |
US10822525B2 (en) | 2015-09-25 | 2020-11-03 | Yamaguchi Seiken Kogyo Co., Ltd. | Polishing composition and method for polishing magnetic disk substrate |
US10196729B2 (en) | 2015-09-25 | 2019-02-05 | Fujimi Incorporated | Slurry for thermal spraying, sprayed coating, and method for forming sprayed coating |
WO2020066998A1 (en) * | 2018-09-26 | 2020-04-02 | 株式会社バイコウスキージャパン | Polishing liquid, concentrate of same, method for producing polished article using polishing liquid, and polishing method of substrate using polishing liquid |
Also Published As
Publication number | Publication date |
---|---|
TWI298666B (en) | 2008-07-11 |
KR100808758B1 (en) | 2008-02-29 |
CN1330733C (en) | 2007-08-08 |
US20070094936A1 (en) | 2007-05-03 |
KR20040095615A (en) | 2004-11-15 |
US20040221516A1 (en) | 2004-11-11 |
TW200424036A (en) | 2004-11-16 |
CN1550537A (en) | 2004-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004331852A (en) | Abrasive slurry excellent in dispersion stability, and manufacturing method for substrate | |
JP5287174B2 (en) | Abrasive and polishing method | |
JP4983603B2 (en) | Cerium oxide slurry, cerium oxide polishing liquid, and substrate polishing method using the same | |
JP3649279B2 (en) | Substrate polishing method | |
JP3457144B2 (en) | Polishing composition | |
JP4113282B2 (en) | Polishing composition and edge polishing method using the same | |
JP2010153782A (en) | Polishing method for substrate | |
JPH11116942A (en) | Abrasive composition | |
JP2004297035A (en) | Abrasive agent, polishing method, and manufacturing method of electronic component | |
TWI828668B (en) | Polishing composition and polishing method using the same | |
EP1747849A1 (en) | Composition for polishing | |
JP4963825B2 (en) | Polishing silica sol and polishing composition containing the same | |
JP7356932B2 (en) | Polishing composition and polishing method | |
JP3840343B2 (en) | Chemical mechanical polishing aqueous dispersion for use in semiconductor device manufacture and method for manufacturing semiconductor device | |
JPH10154673A (en) | Cerium oxide abrasive material and substrate polishing method | |
JP2000248263A (en) | Cmp grinding liquid | |
JPH10106990A (en) | Cerium oxide abrasive material and polishing method of substrate | |
JP2004200268A (en) | Cmp polishing agent and polishing method of substrate | |
JP2009266882A (en) | Abrasive powder, polishing method of base using same, and manufacturing method of electronic component | |
JP2003158101A (en) | Cmp abrasive and manufacturing method therefor | |
JP2001277106A (en) | Polishing method and polishing device | |
JP2003017445A (en) | Cmp abrasive and method for polishing substrate | |
JP2003017447A (en) | Cmp abrasives and method for polishing substrate | |
JP4878728B2 (en) | CMP abrasive and substrate polishing method | |
JP4608925B2 (en) | Additive for CMP abrasives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080407 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080714 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080929 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20081017 |