【0001】
【発明の属する技術分野】
本発明は、陽極化成箔と対向陰極箔とをセパレータを介して巻回してなる電解コンデンサに関するものである。
【0002】
【従来の技術】
電子機器のデジタル化に伴い、それに使用されるコンデンサにも小型、大容量で高周波領域における等価直列抵抗(以下、ESRと略す)の小さいものが求められるようになってきている。
【0003】
従来、高周波領域用のコンデンサとしてはプラスチックフイルムコンデンサ、積層セラミックコンデンサ等が多用されているが、これらは比較的小容量である。
【0004】
小型、大容量で低ESRのコンデンサとしては、二酸化マンガン、TCNQ錯塩等の電子電導性を陰極材として用いた電解コンデンサがある。ここでTCNQとは7,7,8,8−テトラシアノキノジメタンを意味する。
【0005】
又、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン等の導電性ポリマーを陰極材として用いた電解コンデンサも有望である。
【0006】
前記導電性ポリマーを陰極材として用いた電解コンデンサの従来製法においては、アルミニウム、タンタル等の弁作用金属からなる陽極焼結体あるいは陽極箔の表面に、化成皮膜、導電性ポリマー層、グラファイト層、銀ペイント層が順次形成され、そこへ陰極リード線が導電性接着剤等により接続されるが、この製法は、化成皮膜を形成した陽極箔と対向陰極箔とをセパレータを介して巻回したコンデンサ素子に電解液を含浸するという通常の電解コンデンサの製法に比べて、かなり煩雑である。又、上述の如き陰極引き出し法では、対向陰極箔を用いる場合に比べてESRが大きくなる。
【0007】
一方、前記導電性ポリマーは電解重合法や気相重合法、浸漬重合法等により形成されるが、巻回型のコンデンサ素子内に電解重合法や気相重合法により導電性ポリマー層を形成するのは容易でない。陽極箔上に化成皮膜及び導電性ポリマー層を形成した後、対向陰極箔と共に巻き取るという製法も考えられるが、化成皮膜や導電性ポリマー層を損傷することなく巻き取るのは困難である。
【0008】
又、気相重合法や浸漬重合法により形成される導電性ポリマーは、微粒子が堆積したような構造を有し、該微粒子間には微細な隙間が散在する。そして、斯かる構造の導電性ポリマーを陰極材とした電解コンデンサにおいては、ESRがあまり小さくならない。
【0009】
更に、導電性ポリマーを陰極材とした電解コンデンサにおいては、電解液を陰極材として用いた電解コンデンサに比べて、化成皮膜の欠陥部の修復作用が乏しく、漏れ電流が大きくなり易い。
【0010】
上記問題を解決するための手段として本出願人は、陽極化成箔と対向陰極箔とをセパレータを介して巻回してなるコンデンサ素子内に導電性ポリマー層を形成した後、該コンデンサ素子に電解液を含浸する方法を提案している(例えば特許文献1)。
【0011】
【特許文献1】
特開平11−186110号公報(第1頁)
【0012】
【発明が解決しようとする課題】
現在、電気機器の性能の向上は著しく、それに用いるコンデンサにも更なる性能の向上が求められている。本出願人は上記特許文献1の電解コンデンサにおいて、更なる実験を重ねた結果、電解コンデンサの特性を向上させる新たな手段を見出した。
【0013】
本発明は、従来品に比べ更にESRを減少させた電解コンデンサを提供する。
【0014】
【課題を解決するための手段】
本発明は、陽極化成箔と対向陰極箔とをセパレータを介して巻回してなるコンデンサ素子内に、導電性ポリマー層を形成した後、該コンデンサに電解液を含有する電解コンデンサにおいて、
前記コンデンサ素子に使用する陰極箔は、化成されていることを特徴とする。
【0015】
また、前記陰極箔への化成電圧は1V以上5V以下であることが好ましい。1V以下では化成処理の効果が得られにくく、また5V以上になると陰極容量が減少し、電解コンデンサ完成品としての静電容量が減少してしまう。
【0016】
上記方法を用いることにより、前記導電性ポリマー層と前記陰極箔との密着力が向上し、ESRが低減する。
【0017】
【発明の実施の形態】
以下に本発明の一実施の形態を図を用いて説明する。
(実施例1)
本発明の電解コンデンサは、図1に示すような巻回型のコンデンサ素子7が用いられる。
【0018】
このコンデンサ素子は、アルミニウム、タンタル、ニオブ、チタンからなる箔に粗面化のためのエッチング処理及び誘電体皮膜形成のための化成処理を施した陽極化成箔1と、対向陰極箔2とをセパレータ3を介して巻き取ることにより形成される。前記陽極化成箔1及び対向陰極箔2には、それぞれリードタブ61、62を介してリード線51、52が取り付けられている。4は巻き止めテープである。
【0019】
前記コンデンサ素子にモノマーを含浸した後、該コンデンサ素子を過硫酸アンモニウム、過硫酸ナトリウム等の酸化剤の水溶液に浸漬することにより、前記モノマーを酸化重合させて導電性ポリマー層を形成する。実施例ではアルミニウム箔を用い、前記酸化剤として過硫酸アンモニウム40wt%と、m−ベンゼンジスルホン酸ジナトリウム35wt%とが含まれるものを用いた。
【0020】
上記構成の電解コンデンサにおいて、陰極箔に1Vの電圧で化成処理を行ったものを用いた。
【0021】
次に上記導電性ポリマー層を形成したコンデンサ素子を水洗いし、乾燥炉内で乾燥させた後、電解液を含浸する。該電解液の溶媒としては、γ−ブチロラクトン、又はエチレングリコール等が用いられ、前記電解液の溶質としてはフタル酸アミジン塩、フタル酸テトラメチルアンモニウム、アジピン酸アンモニウム、フタル酸トリエチルアミン、又はボロジサリチル酸トリメチルアミン等が用いられる。
【0022】
実施例では、溶媒としてγ−ブチロラクトン80wt%、溶質としてフタル酸アミジン塩20wt%からなる電解液を用いた。
【0023】
その後、図2に示すように、このコンデンサ素子を有底筒状のアルミニウム製ケースに収納しその開口部にゴムパッキングを装着するとともに、絞り加工及びカーリング加工を施した後、定格電流を印加しながら125℃で約1時間のエージング処理を行う事により、所望の電解コンデンサが完成する。
【0024】
実施例では外形φ10mm×H12.5mm、定格4V−1000μFのアルミニウム巻回型コンデンサを作製した。
【0025】
(実施例2)
陰極箔に5Vの電圧で化成処理を行ったこと以外は、実施例1と同様の方法で電解コンデンサを作製した。
【0026】
(実施例3)
陰極箔に7Vの電圧で化成処理を行ったこと以外は、実施例1と同様の方法で電解コンデンサを作製した。
【0027】
(比較例)
陰極箔に化成処理を行なわいこと以外は、実施例1と同様の方法で電解コンデンサを作製した。
【0028】
上記実施例1〜3及び比較例について、それぞれ105℃×1000時間の高温負荷試験を行った。高温負荷試験前の静電容量:C、高温負荷試験前後における静電容量変化率:ΔC/C、損失角の正接:tanδ、定格電圧を印加してから15秒後の漏れ電流:LC、100kHzでの等価直列抵抗:ESRの測定結果を表1に示す。
【0029】
【表1】
【0030】
表1からわかるように陰極箔に化成処理を施していない比較例1に比べ、実施例1〜3の電解コンデンサはESRが低くなっている。しかし化成処理における電圧をあまり高くすると、静電容量が小さくなり、実用的ではないため、具体的には1V以上、5V以下であることが好ましい
陰極箔に化成処理を施すと、箔が厚くなるなりESRが向上するため、あまり用いられていないが、本出願人が提案したコンデンサ素子内に導電性ポリマー層を形成した後、該コンデンサ素子に電解液を含浸する電解コンデンサの陰極箔に化成処理を施したものを用いると、箔が厚くなることによるESRの向上よりも、ポリピロール等からなる導電性ポリマー層と、陰極箔との密着性が良くなることによるESR低減効果が上回り、電解コンデンサ完成品としてESRを低減することができる。
【0031】
実施例では、導電性ポリマー層としてポリピロールを形成したが導電性ポリマー層としてポリチオフェン、ポリフラン、ポニアニリン等を用いても同様の効果を得ることができ、特にポリエチレンジオキシチオフェンを用いると、ESRの低減効果が大きい。
【0032】
【発明の効果】
本発明によれば、陽極化成箔と対向陰極箔とをセパレータを介して巻回してなるコンデンサ素子内に、導電性ポリマー層を形成した後、該コンデンサに電解液を含有する電解コンデンサにおいて、従来品に比べ更にESRを減少させた電解コンデンサを提供できる。
【図面の簡単な説明】
【図1】本発明の実施例に用いられるコンデンサ素子の分解斜視図である。
【図2】本発明の実施例に用いられる電解コンデンサの断面図である。
【符号の説明】
1 陽極化成箔
2 対向陰極箔
3 セパレータ
4 巻止めテープ
51 陽極リード線
52 陰極リード線
61 陽極リードタブ
62 陰極リードタブ
7 コンデンサ素子
8 外層ケース
9 ゴムパッキン[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolytic capacitor formed by winding an anodized foil and a counter cathode foil via a separator.
[0002]
[Prior art]
With the digitization of electronic devices, there has been a growing demand for capacitors used therein to have small size, large capacity, and small equivalent series resistance (hereinafter abbreviated as ESR) in a high frequency region.
[0003]
Conventionally, plastic film capacitors, multilayer ceramic capacitors, and the like have been frequently used as high-frequency capacitors, but these have relatively small capacities.
[0004]
As a small-sized, large-capacity, low-ESR capacitor, there is an electrolytic capacitor using electron conductivity such as manganese dioxide, TCNQ complex salt or the like as a cathode material. Here, TCNQ means 7,7,8,8-tetracyanoquinodimethane.
[0005]
Further, an electrolytic capacitor using a conductive polymer such as polypyrrole, polythiophene, polyfuran, or polyaniline as a cathode material is also promising.
[0006]
In the conventional method for producing an electrolytic capacitor using the conductive polymer as a cathode material, aluminum, a surface of an anode sintered body or an anode foil made of a valve metal such as tantalum, a chemical conversion film, a conductive polymer layer, a graphite layer, A silver paint layer is sequentially formed, and a cathode lead wire is connected thereto by a conductive adhesive or the like.This method is based on a capacitor in which an anode foil on which a chemical conversion film is formed and an opposite cathode foil are wound via a separator. This is considerably more complicated than the usual method of manufacturing an electrolytic capacitor in which an element is impregnated with an electrolytic solution. Also, in the above-described cathode drawing method, the ESR becomes larger than in the case where the opposed cathode foil is used.
[0007]
On the other hand, the conductive polymer is formed by an electrolytic polymerization method, a gas phase polymerization method, an immersion polymerization method, etc., and a conductive polymer layer is formed in a wound capacitor element by an electrolytic polymerization method or a gas phase polymerization method. Not easy. A method of forming the chemical conversion film and the conductive polymer layer on the anode foil and winding the same together with the opposite cathode foil is also conceivable, but it is difficult to wind the chemical conversion film and the conductive polymer layer without damaging them.
[0008]
Further, the conductive polymer formed by the gas phase polymerization method or the immersion polymerization method has a structure in which fine particles are deposited, and fine gaps are scattered between the fine particles. And, in an electrolytic capacitor using a conductive polymer having such a structure as a cathode material, the ESR does not become so small.
[0009]
Furthermore, in an electrolytic capacitor using a conductive polymer as a cathode material, a repair action of a defective portion of a chemical conversion film is poor and a leakage current is likely to be large as compared with an electrolytic capacitor using an electrolytic solution as a cathode material.
[0010]
As a means for solving the above problem, the present applicant has formed an electroconductive polymer layer in a capacitor element formed by winding an anodized foil and an opposing cathode foil via a separator, and then formed an electrolytic solution on the capacitor element. (For example, Patent Document 1).
[0011]
[Patent Document 1]
JP-A-11-186110 (page 1)
[0012]
[Problems to be solved by the invention]
At present, the performance of electric equipment has been remarkably improved, and capacitors used therein are required to have further improved performance. As a result of further experiments on the electrolytic capacitor of Patent Document 1, the present applicant has found a new means for improving the characteristics of the electrolytic capacitor.
[0013]
The present invention provides an electrolytic capacitor having a further reduced ESR as compared with a conventional product.
[0014]
[Means for Solving the Problems]
The present invention provides, in a capacitor element obtained by winding an anodized foil and a counter cathode foil through a separator, after forming a conductive polymer layer, in an electrolytic capacitor containing an electrolytic solution in the capacitor,
The cathode foil used for the capacitor element is characterized by being formed.
[0015]
Further, the formation voltage to the cathode foil is preferably 1 V or more and 5 V or less. When the voltage is 1 V or less, the effect of the chemical conversion treatment is hardly obtained, and when the voltage is 5 V or more, the cathode capacity decreases, and the capacitance as a completed electrolytic capacitor product decreases.
[0016]
By using the above method, the adhesion between the conductive polymer layer and the cathode foil is improved, and the ESR is reduced.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
(Example 1)
As the electrolytic capacitor of the present invention, a wound capacitor element 7 as shown in FIG. 1 is used.
[0018]
In this capacitor element, a foil made of aluminum, tantalum, niobium, and titanium is subjected to an etching treatment for roughening and a chemical treatment for forming a dielectric film, and an opposing cathode foil 2 is separated from a cathode foil 1. 3 and is formed by winding. Lead wires 51 and 52 are attached to the anodized foil 1 and the opposing cathode foil 2 via lead tabs 61 and 62, respectively. Reference numeral 4 denotes a winding tape.
[0019]
After the capacitor element is impregnated with a monomer, the capacitor element is immersed in an aqueous solution of an oxidizing agent such as ammonium persulfate or sodium persulfate, whereby the monomer is oxidized and polymerized to form a conductive polymer layer. In the example, an aluminum foil was used, and an oxidizing agent containing 40 wt% of ammonium persulfate and 35 wt% of disodium m-benzenedisulfonate was used.
[0020]
In the electrolytic capacitor having the above configuration, a cathode foil subjected to a chemical conversion treatment at a voltage of 1 V was used.
[0021]
Next, the capacitor element on which the conductive polymer layer is formed is washed with water, dried in a drying furnace, and then impregnated with an electrolytic solution. As a solvent for the electrolytic solution, γ-butyrolactone, ethylene glycol, or the like is used. Trimethylamine or the like is used.
[0022]
In the examples, an electrolytic solution comprising 80 wt% of γ-butyrolactone as a solvent and 20 wt% of a phthalic acid amidine salt as a solute was used.
[0023]
After that, as shown in FIG. 2, the capacitor element is housed in a bottomed cylindrical aluminum case, a rubber packing is attached to the opening thereof, a drawing process and a curling process are performed, and a rated current is applied. By performing the aging treatment at 125 ° C. for about 1 hour, a desired electrolytic capacitor is completed.
[0024]
In the example, an aluminum wound capacitor having an outer diameter of 10 mm × H12.5 mm and a rating of 4 V-1000 μF was manufactured.
[0025]
(Example 2)
An electrolytic capacitor was produced in the same manner as in Example 1 except that the cathode foil was subjected to a chemical conversion treatment at a voltage of 5 V.
[0026]
(Example 3)
An electrolytic capacitor was produced in the same manner as in Example 1 except that the cathode foil was subjected to a chemical conversion treatment at a voltage of 7 V.
[0027]
(Comparative example)
An electrolytic capacitor was produced in the same manner as in Example 1 except that the cathode foil was not subjected to a chemical conversion treatment.
[0028]
A high-temperature load test of 105 ° C. × 1000 hours was performed for each of Examples 1 to 3 and Comparative Example. Capacitance before high-temperature load test: C, capacitance change rate before and after high-temperature load test: ΔC / C, tangent of loss angle: tan δ, leakage current 15 seconds after application of rated voltage: LC, 100 kHz Table 1 shows the measurement results of the equivalent series resistance (ESR) of ESR.
[0029]
[Table 1]
[0030]
As can be seen from Table 1, the ESR of the electrolytic capacitors of Examples 1 to 3 is lower than that of Comparative Example 1 in which the cathode foil is not subjected to the chemical conversion treatment. However, if the voltage in the chemical conversion treatment is too high, the capacitance becomes small, which is not practical. Therefore, when the chemical conversion treatment is applied to the cathode foil, which is preferably 1 V or more and 5 V or less, the foil becomes thick. It is not often used to improve ESR, but after forming a conductive polymer layer in a capacitor element proposed by the present applicant, the capacitor element is impregnated with an electrolytic solution to form a cathode foil of an electrolytic capacitor. When using a material that has been subjected to the above, the effect of reducing the ESR due to the improved adhesion between the conductive polymer layer made of polypyrrole and the cathode foil exceeds the improvement in ESR due to the increase in the thickness of the foil, and the electrolytic capacitor is completed. ESR can be reduced as a product.
[0031]
In the example, polypyrrole was formed as the conductive polymer layer, but the same effect can be obtained by using polythiophene, polyfuran, ponyaniline, etc. as the conductive polymer layer. In particular, when polyethylene dioxythiophene is used, the ESR is reduced. Great effect.
[0032]
【The invention's effect】
According to the present invention, an electrolytic capacitor containing an electrolytic solution in a capacitor after forming a conductive polymer layer in a capacitor element formed by winding an anodized foil and an opposite cathode foil via a separator is conventionally used. It is possible to provide an electrolytic capacitor with further reduced ESR as compared with a product.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a capacitor element used in an embodiment of the present invention.
FIG. 2 is a sectional view of an electrolytic capacitor used in an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Anodized chemical foil 2 Opposite cathode foil 3 Separator 4 Winding tape 51 Anode lead wire 52 Cathode lead wire 61 Anode lead tab 62 Cathode lead tab 7 Capacitor element 8 Outer case 9 Rubber packing