[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004315298A - Apparatus and method for pulling single crystal - Google Patents

Apparatus and method for pulling single crystal Download PDF

Info

Publication number
JP2004315298A
JP2004315298A JP2003112408A JP2003112408A JP2004315298A JP 2004315298 A JP2004315298 A JP 2004315298A JP 2003112408 A JP2003112408 A JP 2003112408A JP 2003112408 A JP2003112408 A JP 2003112408A JP 2004315298 A JP2004315298 A JP 2004315298A
Authority
JP
Japan
Prior art keywords
single crystal
seed crystal
heat generating
diameter
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003112408A
Other languages
Japanese (ja)
Other versions
JP4273820B2 (en
Inventor
Hideki Watanabe
英樹 渡邉
Isamu Miyamoto
宮本  勇
Toshiyuki Fujiwara
俊幸 藤原
Shuichi Inami
修一 稲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumitomo Mitsubishi Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsubishi Silicon Corp filed Critical Sumitomo Mitsubishi Silicon Corp
Priority to JP2003112408A priority Critical patent/JP4273820B2/en
Priority to US10/820,885 priority patent/US7063743B2/en
Publication of JP2004315298A publication Critical patent/JP2004315298A/en
Application granted granted Critical
Publication of JP4273820B2 publication Critical patent/JP4273820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for pulling a single crystal, with which it is possible to further improve the non-dislocation rate of the single crystal being pulled by suppressing the generation of thermal stress and preventing the introduction of dislocations by making the temperature gradient in the vertical direction of a seed crystal and/or a neck part small in the case that the single crystal is pulled while heating the seed crystal and/or the neck part by using an auxiliary heating means. <P>SOLUTION: In the single crystal pulling apparatus equipped with a crucible 21 being filled with a melt 23, a heater 22 provided at the periphery of the crucible 21, a heat generating section 16a provided so as to surround the seed crystal 35 located in a position just above the melt 23, and the auxiliary heating means 16 constituted by including a moving mechanism for retreating the heating section 16a from a zone where the single crystal 36 passes, a covering part 16d for covering a space between the heat generating section 16a and the single crystal 36 is extended from the heat generating section 16a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は単結晶引き上げ装置及び単結晶引き上げ方法に関し、より詳細にはチョクラルスキー法(以下、CZ法と記す)に代表される引き上げ法により、シリコン等からなる単結晶を引き上げる際に使用される単結晶引き上げ装置及び単結晶引き上げ方法に関する。
【0002】
【従来の技術】
現在、大規模集積回路(LSI)等の回路素子形成用基板の製造に使用されているシリコン単結晶の大部分は、CZ法により引き上げられている。引き上げ単結晶を無転位化する方法としては、結晶の直径を数mm程度にまで細くすることで無転位化を図る、ダッシュネック法と呼ばれる方法が一般的に用いられている。近年、引き上げ単結晶の大口径化に伴い、単結晶重量が大きくなってきており、細いネック部に掛かる荷重がシリコンの引張強度を超え、単結晶の引き上げ中に結晶が落下する虞れが大きくなってきている。
【0003】
上記虞れに対処するため、移動可能な補助加熱手段を用いて種結晶を予熱し、種結晶を溶融液に接触させる際の熱ショックによる導入転位を抑制し、ネック部を形成することなく引き上げ単結晶を無転位化する方法(特許文献1参照)や、ダッシュネック法による無転位化作業時にネック部を補助加熱手段を用いて加熱することにより、ネック部の温度分布を制御してネック部に作用する熱応力を軽減し、通常よりも太い直径のネック部でも引き上げ単結晶を無転位化できる方法(特許文献1参照)が開発されている。
【0004】
また、本件出願人は、坩堝に充填された溶融液の直上に位置した状態の種結晶を取り囲むように位置させ得る発熱部と、該発熱部を単結晶の通過領域より退避させる移動機構とを含んで構成された補助加熱手段を備えた単結晶引き上げ装置を先に提案している(特許文献2参照)。
【0005】
図5は、補助加熱手段を備えた従来の単結晶引き上げ装置を模式的に示した断面図である。また、図6(a)、(b)は、従来の単結晶引き上げ装置における補助加熱手段を構成する発熱部の形態を模式的に示した斜視図及び平面図である。
【0006】
図中21は、坩堝を示しており、坩堝21は、有底円筒形状をした石英製坩堝21aと、この石英製坩堝21aの外側に嵌合された、同じく有底円筒形状をした黒鉛製坩堝21bとから構成されており、坩堝21は、図中の矢印A方向に所定の速度で回転する支持軸28に支持されている。この坩堝21の外側には、抵抗加熱式のメインヒ−タ22、メインヒータ22の外側には保温筒27が同心円状に配置されており、坩堝21内には、このメインヒータ22により溶融される結晶用原料である溶融液23が充填されるようになっている。また、坩堝21の中心軸上には、引き上げ棒あるいはワイヤー等からなる引き上げ軸24が吊設されており、この引き上げ軸24の先に、保持具24aを介して種結晶35が取り付けられるようになっている。
【0007】
また、図中25は整流治具を示しており、整流治具25の本体部25aは逆円錐台側面形状を有すると共に、引き上げられた単結晶36を取り囲むように位置し、本体部25aの下端部が坩堝21内に充填される溶融液23面の上方近傍に位置させ得るように配設されている。
【0008】
また、図中26は補助加熱手段を示しており、補助加熱手段26の発熱部26aは、図6(a)、(b)に示すように、種結晶35の水平方向に関する外周長さの半分以上を取り囲むと共に種結晶35から退避するための開口部26bを有し、溶融液23の直上に位置した状態の種結晶35を取り囲み得るように配設されている。発熱部26aには、発熱部26aに電力を供給するとともに、発熱部25aを下降又は上昇させる際の角度を決定するための電極25cが接続されている。またネック部36a形成後、メインボディ部36cを形成する際に発熱部25aを単結晶36の通過領域より退避させるための移動機構(図示せず)が装備されており、発熱部26a、電極26b、及び移動機構を含んで補助加熱手段26が構成されている。なお発熱部26aにおける発熱領域を図6(b)中にハッチで示している。移動機構を除くこれらの部材は、圧力の制御が可能な水冷式のチャンバ29内に納められている。
【0009】
上記した単結晶引き上げ装置を用いて単結晶36を引き上げる方法を、図7に基づいて説明する。図7(a)〜(e)は、単結晶を引き上げる各工程のうちの一部の工程における、種結晶の近傍を模式的に示した部分拡大正面図である。
【0010】
図7には示していないが、まずチャンバ29内を減圧した後、不活性ガスを導入してチャンバ29内を減圧の不活性ガス雰囲気とし、その後メインヒータ22により結晶用原料を溶融させ、しばらく放置して溶融液23中のガスを十分に放出させる。
【0011】
次に、支持軸28と同一軸心で逆方向に所定の速度で引き上げ軸24を回転させながら、保持具24aに取り付けられた種結晶35を降下させて、種結晶35の予熱を行う(図7(a))。次に、種結晶35を降下させ、種結晶35の先端部35aを溶融液23に浸漬する(図7(b))。
次に補助加熱手段26によって種結晶35と溶融液23との界面を加熱しながら、種結晶35をさらに降下させて溶融液23に漬け込む(図7(c))。
【0012】
次に、所定の引き上げ速度で種結晶35を引き上げ、この種結晶35の下部にこれと略同様の直径のネック部36aを形成する。このとき補助加熱手段26の発熱部26aによりネック部36aと溶融液23との界面を加熱し、ネック部36aの温度分布に起因する熱応力を軽減させ、ネック部36aを無転位化させる(無転位化工程、図7(d))。
【0013】
次に、移動手段(図示せず)を駆動させて発熱部26aをネック部36aから退避させ、その後引き上げ軸24の引き上げ速度(以下、単に引き上げ速度とも記す)を落としてネック部36aを所定の径まで成長させ、ショルダー36bを形成する(ショルダー形成工程)。その後、一定の速度で引き上げ軸24を引き上げることにより、一定の径、所定長さのメインボディ36cを形成する(メインボディ形成工程、図7(e))。
その後、図7には示していないが、最後に急激な温度変化により単結晶36に高密度の転位が導入されないように、単結晶36の直径を徐々に絞って単結晶36全体の温度を徐々に降下させ、終端コーンを形成する。その後、単結晶36を溶融液23から切り離し、冷却して単結晶36の引き上げを完了させる。
【0014】
【特許文献1】
特開平11−189488号公報
【特許文献2】
特開2000−137986号公報
【0015】
【発明が解決しようとする課題】
上記した従来の単結晶引き上げ装置においては、補助加熱手段26の発熱部26aにより種結晶35と溶融液23との界面を加熱することにより、着液時の熱ショックが軽減され、着液時の導入転位数を減少させることができ、また、ネック部36aを加熱することによりネック部36aの径方向の温度勾配が小さくなり、熱応力が軽減され、ネック部36aでの転位除去能力が増大され、引き上げる単結晶の無転位化を図ることができるとしている。
【0016】
しかしながら、発熱部26aが平面視U字形状の抵抗加熱ヒータから構成されており、その発熱領域が種結晶35の水平方向に関する外周長さの50〜70%に設定されているので、発熱部26aからの熱が種結晶35との間の空隙から上方へ放射されやすく、種結晶35やネック部36aの鉛直方向の温度分布を小さくすることがやや困難で、その結果、熱応力が発生して、転位が導入される虞れも残っていたという課題があった。
【0017】
本発明は上記課題に鑑みなされたものであって、補助加熱手段を用いて種結晶及び/又はネック部を加熱して単結晶を引き上げる場合に、前記種結晶及び/又は前記ネック部の鉛直方向の温度勾配を極力小さくして、熱応力の発生を抑制し、転位の導入を阻止して、引き上げる単結晶の無転位化率をさらに向上させることのできる単結晶引き上げ装置及び単結晶引き上げ方法を提供することを目的としている。
【0018】
【課題を解決するための手段及びその効果】
上記目的を達成するために本発明に係る単結晶引き上げ装置(1)は、溶融液が充填される坩堝、該坩堝の周辺に位置するヒータ、及び前記溶融液の直上に位置した状態の種結晶を取り囲むように位置させ得る発熱部と、該発熱部を単結晶の通過領域より退避させる移動機構とを含んで構成された補助加熱手段等を備えた単結晶引き上げ装置において、前記発熱部と前記種結晶との間の空隙を覆う被覆部が前記発熱部から延設されていることを特徴としている。
【0019】
上記単結晶引き上げ装置(1)によれば、前記被覆部により前記発熱部上方への放熱が抑制され、前記発熱部と前記種結晶との間における鉛直方向の熱分布を均一化させることができ、前記種結晶の鉛直方向の温度分布を小さくすることができる。その結果、前記種結晶の先端の成長界面の形状を下に凸形状とすることができ、熱応力が軽減され、転移の導入を阻止することができ、引き上げる単結晶の無転位化率を一層向上させることができる。また、前記種結晶からネック部が形成される場合でも、上記同様の効果を得ることができ、前記ネック部での転移除去能力を増大させることができ、転移を伝播させることなく単結晶を引き上げることができる。
【0020】
また本発明に係る単結晶引き上げ装置(2)は、上記単結晶引き上げ装置(1)において、前記被覆部が保温部又は発熱部として機能することを特徴としている。
【0021】
上記単結晶引き上げ装置(2)によれば、前記被覆部が前記保温部として機能することにより、前記被覆部から外部への放熱を抑制することができ、前記発熱部と前記種結晶との間における保温特性を向上させることができる。また、前記被覆部が前記発熱部として機能することにより、前記発熱部と前記種結晶との間における鉛直方向の熱分布をより一層均一化させることができる。
【0022】
また本発明に係る単結晶引き上げ装置(3)は、上記単結晶引き上げ装置(1)又は(2)において、前記被覆部が前記種結晶を通過させるための第1の開口部を有し、該第1の開口部の直径が前記種結晶の直径の1.25〜3.0倍の範囲で設定されていることを特徴としている。
【0023】
上記単結晶引き上げ装置(3)によれば、前記第1の開口部の直径が前記種結晶の直径の1.25〜3.0倍の範囲で設定されているので、前記第1の開口部と前記種結晶との間の空隙から上方への放熱を抑制することができ、前記発熱部と前記被覆部とで覆われる前記種結晶や、該種結晶から形成されるネック部の鉛直方向の温度勾配を小さくすることができる。したがって、前記種結晶や前記ネック部の先端面の成長界面の形状を下に凸形状とすることができ、転位の伝播を抑制することができ、前記転位を効率よく排除することができる。
【0024】
なお、前記第1の開口部の直径が、前記種結晶の直径の3.0倍より大きくなると、前記第1の開口部と前記種結晶との間の空隙から上方への放熱が大きくなるため、前記種結晶や前記ネック部の鉛直方向の温度勾配が大きくなり、前記成長界面の形状を下に凸形状とすることが困難となり、転位の伝播を十分に抑制することができず、転位が導入されやすくなり、好ましくない。
また、前記第1の開口部の直径が、前記種結晶の直径の1.25倍より小さくなると、前記開口部において前記被覆部と前記種結晶とが接触する恐れがあり、好ましくない。
【0025】
また本発明に係る単結晶引き上げ装置(4)は、上記単結晶引き上げ装置(1)〜(3)のいずれかにおいて、前記発熱部及び前記被覆部が前記種結晶の通過領域から退避させるための第2の開口部を有し、該第2の開口部の幅が前記種結晶の直径の1.25〜3.0倍の範囲で設定されていることを特徴としている。
【0026】
上記単結晶引き上げ装置(4)によれば、前記第2の開口部の幅が前記種結晶の直径の1.25〜3.0倍の範囲で設定されているので、前記第2の開口部から側方への放熱を抑制することができ、前記種結晶や該種結晶から形成されるネック部の水平方向(径方向)の温度勾配を小さくすることができる。したがって、前記種結晶や前記ネック部での熱応力が軽減され、転位の導入を効果的に阻止することができる。
【0027】
なお前記第2の開口部の幅が前記種結晶の直径の3.0倍より大きくなると、前記第2の開口部からの放熱が大きくなり、径方向の温度勾配が大きくなるため、前記種結晶及び前記ネック部での転位除去能力が低下し、新たな転位を誘発する熱応力の発生によって無転位化を図ることが困難となり、好ましくない。
また、前記第2の開口部の幅が前記種結晶の直径の1.25倍より小さくなると、前記種結晶からの退避時に前記開口部と前記種結晶とが接触する恐れがあり、好ましくない。
【0028】
また本発明に係る単結晶引き上げ方法(1)は、上記単結晶引き上げ装置(1)〜(4)のいずれかを用いた単結晶引き上げ方法であって、直径が8〜14mmである種結晶を用いることを特徴としている。
【0029】
上記単結晶引き上げ方法(1)によれば、直径が8mm以上であるので、メインボディ部の直径が約12インチで、重量が300kg程度の大重量の単結晶を引き上げる場合においても、十分に支持することができる。また、直径が14mm以下であるので、前記溶融液への着液前に前記種結晶の先端部を十分に加熱することができ、径方向の温度勾配を小さくすることができ、着液時の熱ショックによる転位の導入を阻止することができる。
【0030】
【発明の実施の形態】
以下、本発明に係る単結晶引き上げ装置及び単結晶引き上げ方法の実施の形態を図面に基づいて説明する。尚、図5に示した従来の単結晶引き上げ装置と同一の機能を有する構成部品については同一の符号を付してその説明を省略することとする。
本実施の形態に係る単結晶引き上げ装置は、12インチ(約300mm)以上の大口径、いわゆる大重量単結晶の引き上げを前提としている。
【0031】
図1は、実施の形態に係る単結晶引き上げ装置の要部を模式的に示した断面図であり、図2は、この装置における補助加熱手段の要部を模式的に示した図であり、(a)は平面図、(b)は正面図、(c)は(a)におけるC−C線断面図である。
【0032】
図中16は補助加熱手段を示しており、補助加熱手段16は、図2に示すように、溶融液23の直上に位置した状態の種結晶35を取り囲むように位置させ得る略円筒形状の発熱部16aと、発熱部16aの上端から内側斜め上方に延設された略円錐台側面形状の被覆部16dと、この発熱部16aに電力を供給するとともに、発熱部16aを下降又は上昇させる際の角度を決定するための電極16cと、ネック部36a形成後、メインボディ部36c(図4)を形成する際に被覆部16dが設けられた発熱部16aを単結晶36(図4)の通過領域より退避させるための移動機構(図示せず)とを含んで構成されている。
【0033】
発熱部16aと被覆部16dとには、種結晶35から退避させるための側面開口部16bが設けられている。また、略円錐台側面形状からなる被覆部16dの上面には、種結晶35やネック部36aを通過させるための上面開口部16eが設けられており、上面開口部16eと側面開口部16bとがつながるように形成されている。
【0034】
上面開口部16eの直径Dは、使用される種結晶35の直径の1.25〜3.0倍の範囲で設定される。また、側面開口部16bの幅Wも、使用される種結晶35の直径の1.25〜3.0倍の範囲で設定される。被覆部16dは、発熱部としてではなく保温部として機能するようになっている。
【0035】
補助加熱手段16の少なくとも発熱部16aと被覆部16dとは、炭素材及び炭素材の表面にコ−ティングされた炭化珪素材から形成されており、移動機構も炭素材及び炭素材の表面にコ−ティングされた炭化珪素材から形成されていることがより望ましく、このように補助加熱手段16を炭素材及び炭素材の表面にコ−ティングされた炭化珪素材から形成することにより、発熱部16aや被覆部16dが高温になっても、発熱部16aや被覆部16dから不純物が発生して引き上げられる単結晶36に悪影響を与えるといった事態の発生を阻止することができる。
【0036】
発熱部16a下端と溶融液23面とのギャップGは、溶融液23と発熱部16aとが接触しない程度でかつ種結晶35の先端部35aを着液前に効率よく高温化できる距離、例えば5〜30mmの範囲に設定し得るようになっている。ギャップGが5mm未満になると溶融液23との接触の恐れがあり、好ましくなく、また、ギャップGが30mmを越えると固液界面での転位の除去に必要な温度勾配の減少を実現しにくくなり、好ましくない。
【0037】
なお上記実施の形態に係る補助加熱手段16の被覆部16dは保温部として構成されているが、別の実施の形態に係る補助加熱手段では、被覆部が発熱部として構成されていてもよい。被覆部が発熱部として構成されることにより、発熱部16aと種結晶35との間の鉛直方向の熱分布をより均一化させることができ、発熱部16aと被覆部とにより覆われる種結晶35やネック部36aの鉛直方向の温度分布を一層均一化させることができる。
【0038】
また上記実施の形態では、被覆部16dとして、発熱部16aの上端から内側斜め上方に延設させた略円錐台側面形状のものを採用した場合について説明したが、被覆部16dの配設位置や形状は、上記実施の形態に限定されるものではなく、例えば、図3に示すように、発熱部16aの上部内壁から水平方向に保温部又は発熱部として延設されて被覆部16dが形成されていてもよく、要は種結晶35やネック部36aの鉛直方向の温度分布の均一化を図ることができるように、発熱部16aと種結晶35との間の空隙を覆うことができる形状の被覆部を発熱部から延設するようにすればよい。
【0039】
次に、上記実施の形態に係る単結晶引き上げ装置を用いた単結晶引き上げ方法について説明する。図4(a)〜(e)は、実施の形態に係る単結晶引き上げ方法の各工程のうちの、一部の工程を実施する際の、種結晶35の近傍を模式的に示した部分拡大正面図である。
以下に説明する工程以前の工程は、「従来の技術」の項で説明した方法と同様の方法で行う。
【0040】
支持軸28(図5)と同一軸心で逆方向に所定の速度で引き上げ軸24(図1)を回転させながら、保持具24a(図1)に取り付けられた種結晶35を溶融液23の直上まで降下させ、種結晶35の予熱を行い、種結晶35の先端部35aの温度を上昇させる(図4(a))。
【0041】
種結晶35の直径を小さくすることにより、先端部35aの熱容量が減少し、種結晶35を溶融液23に着液させる際の温度変化が容易となり、着液時の径方向の温度分布が小さくなり、作用する熱応力が軽減され、着液時の導入転位数を減少させることができるが、種結晶35の直径Dが8mm未満であると、12インチ程度の直径で300kgを超える重量の単結晶36を安定して支持するのが難しくなる。他方、種結晶35の直径Dが14mmを超えると、単結晶36を支持するのには十分であるが、種結晶35の径が大きすぎて補助加熱手段16を用いての均一加熱が困難となり、種結晶35に発生する熱応力が増大して転位を除去することが困難になる。従って、種結晶35の直径は8〜14mmの範囲で設定することが好ましい。
【0042】
前記予熱時間を5〜60分程度とることにより、種結晶35の先端部35aの温度が上昇し、1200〜1300℃程度の温度となる。着液前予熱時の溶融液23と種結晶35の先端部35aとの距離は、1〜30mmの範囲で設定することが好ましく、種結晶35を出来る限り溶融液23表面温度に近づけるために、より好ましくは5mm以下の距離に設定する。
【0043】
前記予熱の後、さらに種結晶35の先端部35aを補助加熱手段16の発熱部16aを用いて加熱し、先端部35aの温度を1380〜1420℃まで上昇させておく。種結晶35の先端部35aの温度が1380℃以上であれば、種結晶35を降下させて先端部35aを溶融液23に接触させる過程において、熱応力に起因する転位の発生を著しく抑制することができる。
【0044】
但し、種結晶35の先端部35aの温度が1420℃を超えると、種結晶35が補助加熱手段16に近い部分から溶融し始め、種結晶35を降下させて先端部35aを溶融液23に接触させる過程において、溶融液23の温度が予想よりも高い場合や、溶融液23の表面の温度変動が大きい場合に、溶断してしまう可能性もでてくる。
【0045】
次に、種結晶35を降下させ、種結晶35の先端部35aを溶融液23に着液させる(図4(b))。この着液時において、種結晶35の先端部35aは、溶融液23との温度差が小さくなっているので、温度差に起因して種結晶35中に発生する熱応力は小さい。そのため種結晶35として無転位のものを使用した場合には転位が導入されることはほとんどない。また、単結晶36の引き上げ中に有転位化した場合の単結晶36の再溶融後など、種結晶35に若干の転位を含む場合の再引き上げ時に、種結晶35を溶融液23へ再度接触させても転位が増殖、伸展することがない。
【0046】
次に、種結晶35の先端に結晶を成長させていくが、このとき後述するメインボディ36cの形成速度よりも速い速度で引き上げ軸24を引き上げ、単結晶36の成長界面(ネック部36aの先端面)の形状を下に凸形状としてネック部36aを形成する(図4(c))。本実施の形態に係る装置では、径が太くても転位除去可能なネック部36aを形成することができる。それは、育成中のネック部36aへの発熱部15aからの輻射量が増大するため、ネック部36a結晶内の熱分布を平面化し、熱応力が軽減されることにより、ネック部36aでの転位除去能力が増大するからである。
【0047】
ネック部6aの直径は7〜12mmが好ましく、12mmより大きいとネック部36aの育成中に平面的な熱分布が得られにくいため、熱応力が大きくなり、転位除去能力が低下してしまう。したがって、直径が8〜12mmの種結晶35を用いる場合には、種結晶35と同径のネック部36aを形成すればよく、また直径12mmを越える大きさの種結晶35を用いる場合には、ネック部36aが12mm以下となるように縮径させればよい。
【0048】
万一、種結晶35の溶融により完全に無転位化を図ることができずに転位が僅かに残った場合でも、ネック部36aの熱応力が低減されてネック部36aの形成中に転位が除去され、ネック部36a下部より成長させる単結晶36が確実に無転位化されるため、ネック部36aを引き上げる際には、補助加熱手段16を用いてネック部36a近傍を引き続き加熱することが望ましい。
【0049】
次に、補助加熱手段16への電力供給を停止し、発熱部16aをネック部36aの周囲から退避させた後、単結晶36を所定の径(12インチ程度)まで成長させて、ショルダー36bを形成する。この後、所定の引き上げ速度で単結晶36を引き上げて、メインボディ36cを形成する(図4(d)、(e))。
【0050】
その後は、「従来の技術」の項で説明した方法と略同様の方法により単結晶36を引き上げ、溶融液23から切り離して冷却させることにより単結晶36の引上げを完了する。
【0051】
なお、上記実施の形態では、CZ法に本発明を適用した場合について説明したが、本発明は何らCZ法への適用に限定されるものではなく、例えば磁場を印加するMCZ法にも同様に適用可能である。
また、上記実施の形態では、種結晶35が略円柱形状である場合について説明したが、別の実施の形態では種結晶が多角柱形状であっても良く、この場合もネック部36aの直径が7〜12mmの範囲になるようにすれば良い。
【0052】
また、上記実施の形態に係る単結晶引き上げ装置を用いて、種結晶35及びネック部36aのいずれにも発熱部16aによる加熱により輻射量が増大される場合の単結晶引き上げ方法についてのみ、ここでは説明しているが、種結晶35への輻射量だけを増大させて、ネック部36aを形成せずに単結晶36を引き上げることや、ネック部36aへの輻射量だけを増大させて、ネック部36aでの転位除去能力の増大を図ることにより、単結晶36を引き上げることができることは、言うまでもない。
【0053】
【実施例及び比較例】
以下、実施例及び比較例に係る単結晶引き上げ装置及び単結晶引き上げ方法を説明する。以下、その条件を記載する。

Figure 2004315298
【0054】
[比較例1〜3の条件]
比較例1〜3の場合、従来の加熱補助手段26(発熱部26aに被覆部が延設されておらず、発熱部26aにおける発熱領域が、種結晶35の水平方向に関する外周長さの50%のもの)を備えた単結晶引き上げ装置(図6)を用い、直径の異なる種結晶35を使用し、種結晶35と略同径のネック部36aを形成して単結晶36の引き上げを行った。
【0055】
[実施例1〜20の条件]
実施例1〜20の場合、図1に示した実施の形態に係る単結晶引き上げ装置を用い、直径の異なる種結晶35を使用し、種結晶35に対応させて被覆部16dの上面開口部16e径と、側面開口部16b幅とを変化させて、種結晶35と略同径のネック部36aを形成して単結晶36の引き上げを行った。なお、保温部材からなる被覆部16dと、発熱部材からなる被覆部とを各条件ごとに使用した。
【0056】
[試験方法(実施例1〜20及び比較例1〜3に共通)]
発熱部16aの下端と溶融液23とのギャップGを一定にして、種結晶35を溶融液23に着液した際に適温となるように発熱部16a又は発熱部16aと発熱部としての被覆部とを加熱する。その後、種結晶35を溶融液23上面から5mm程度上に位置させ、30分間予熱後着液させる。
安定後、種結晶35とほぼ同径のネック部36aを150mm育成し、ネック部36aより発熱部16aを退避させて、その後増径させてメインボディ36cを200mm育成し、この育成範囲で単結晶が有転位化し結晶軸の軸切れを生じなかった場合を無転位(DF:Dislocation Free)とした。
その後単結晶36を溶融液23中へ溶かし込み、溶融液23量を同一にして次サンプルの育成を開始した。
【0057】
下記の表1に、個別条件とそれぞれの場合の単結晶36のDF(Dislocation Free)率とを示している。なお、ここでの開口径比率は、種結晶35の直径に対する上面開口部16eの直径の比率を示し、開口幅比率は、種結晶35の幅(直径)に対する側面開口部16bの幅の比率を示している。
【表1】
Figure 2004315298
【0058】
表1に示した比較例1〜3の結果から明らかなように、従来型の平面視U字形状の発熱部26aを備えた比較例1〜3は、使用する種結晶35の径が大きくなると共にDF率が低下した。300kgの大重量結晶を安定に保持可能な直径8mmでのDF率は60%であった。また、直径14mmの種結晶を用いた比較例3ではDF率が0%となり、種結晶の直径が14mm以上になると、引き上げる単結晶を無転位化させることができなかった。
【0059】
実施例1〜4の結果から明らかなように、開口径比率及び開口幅比率が共に1.25に設定された場合、いずれの場合もDF率は100%となり良好であった。
また、実施例5〜8の結果から明らかなように、開口径比率が3.00、開口幅比率が1.25に設定された場合、種結晶35の径が8mmであれば、被覆部を保温部、発熱部のどちらにしてもDF率は100%となった(実施例5、6)。一方、種結晶35の径が14mmになると、発熱部としての被覆部とした場合(実施例8)では、DF率は100%であったが、保温部としての被覆部16dとした場合(実施例7)は、DF率は90%となった。これは、開口径比率を高めた分、上面開口部16eから上方への放熱が増え、保温部による保温効果が少し低下したためと考えられる。
【0060】
また、実施例9〜12の結果から明らかなように、開口径比率が4.00、開口幅比率が1.25に設定された場合、種結晶35の径が8mmであれば、被覆部を保温部、発熱部のいずれにしてもDF率は100%となり良好であった(実施例9、10)。一方、種結晶35の径が14mmで、発熱部としての被覆部とした場合(実施例12)、DF率は70%まで低下し、また保温部としての被覆部16dとした場合(実施例11)、DF率が50%にまで低下した。これは、開口径比率をさらに高めた分、上面開口部16eから上方への放熱がさらに増え、被覆部16dよる放熱抑制効果が小さくなったためと考えられる。また開口径比率を4.00まで高めると発熱部としての被覆部としても、種結晶35の鉛直方向の温度勾配を小さくすることができなくなった。
【0061】
また、実施例13〜16の結果から明らかなように、開口径比率が3.00、開口幅比率が3.00に設定された場合、種結晶35の径が8mmであれば、保温部としての被覆部16d(実施例13)、発熱部としての被覆部(実施14)のいずれであってもDF率は100%となり良好であった。また、種結晶35の径が14mmで、発熱部としての被覆部とした場合(実施例16)、DF率は100%であったが、保温部としての被覆部16dとした場合(実施例15)、DF率は90%となった。これは、開口径比率と開口幅比率とを高めた分、上面開口部16eから上方、側面開口部16bから側方への放熱が増え、保温部としての被覆部16dでは、その保温効果を十分発揮できなかったためと考えられる。
【0062】
また、実施例17〜20の結果から明らかなように、開口径比率が3.00、開口幅比率が4.00に設定された場合、種結晶35の径が8mmで、発熱部としての被覆部とした場合(実施例18)、DF率は90%となり、比較的良好であったものの、保温部としての被覆部16dとした場合(実施例17)、DF率は60%に低下した。また、種結晶35の径が14mmで、保温部としての被覆部16dとした場合(実施例19)、DF率は20%まで低下し、発熱部としての被覆部とした場合(実施例20)、DF率が50%にまで低下した。これは、開口径比率と開口幅比率をさらに高めた分、上面開口部16eから上方へ、また側面開口部16bから側方への放熱がさらに増え、被覆部による放熱抑制効果が小さくなったためと考えられる。また、開口径比率を4.00まで高めると発熱部としての被覆部としても、種結晶35の鉛直方向の温度勾配を小さくすることができなくなった。
【0063】
以上実施例1〜20と比較例1〜3とにおける結果から
▲1▼発熱部16aと種結晶35との間の空隙に被覆部16dを設けることによって、種結晶35やネック部36aでの鉛直方向の温度勾配が小さくなり、熱応力が軽減されることにより、転位除去能力を増大させることができ、被覆部が設けられていない比較例1〜3と比べて、径の大きな種結晶を用いた場合でも引き上げられる単結晶の無転位化率を向上できることが確認された。
▲2▼種結晶35の直径に対応して、適切な上面開口部16e径及び側面開口部16b幅を設定することにより、引き上げられる単結晶の無転位化率を向上させることが可能であることが確認された。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る単結晶引き上げ装置の要部を模式的に示した部分断面図である。
【図2】実施の形態に係る発熱部の形態を模式的に示した図であり、(a)は平面図、(b)は正面図、(c)は(a)におけるC−C線断面図である。
【図3】別の実施の形態に係る発熱部の形態を模式的に示した図であり、(a)は平面図、(b)は正面図、(c)は(a)におけるC−C線断面図である。
【図4】(a)〜(e)は、実施の形態に係る単結晶引き上げ装置を用いた単結晶引き上げ工程のうちの、一部を実施する際の、種結晶の近傍を模式的に示した部分拡大正面図である。
【図5】従来の単結晶引き上げ装置の要部を模式的に示した部分断面図である。
【図6】従来の発熱部の形態を模式的に示した図であり、(a)は斜視図、(b)は平面図である。
【図7】(a)〜(e)は、従来の単結晶引き上げ装置を用いた単結晶引き上げ工程のうちの、一部を実施する際の、種結晶の近傍を模式的に示した部分拡大正面図である。
【符号の説明】
16、16A、26 補助加熱手段
16a、26a 発熱部
16b 側面開口部
16d、16d 被覆部
16e 上面開口部
21 坩堝
22 メインヒータ
23 溶融液
35 種結晶
36 単結晶[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a single crystal pulling apparatus and a single crystal pulling method, and more particularly, to a single crystal pulling method typified by the Czochralski method (hereinafter, referred to as a CZ method) used for pulling a single crystal made of silicon or the like. And a method for pulling a single crystal.
[0002]
[Prior art]
At present, most silicon single crystals used for manufacturing substrates for forming circuit elements such as large-scale integrated circuits (LSI) are pulled up by the CZ method. As a method of eliminating dislocations in a pulled single crystal, a method called a dash neck method is generally used, in which the diameter of the crystal is reduced to about several mm to eliminate dislocations. In recent years, with the increase in the diameter of the pulled single crystal, the weight of the single crystal has been increasing, and the load applied to the thin neck exceeds the tensile strength of silicon, and there is a high possibility that the crystal will fall during the pulling of the single crystal. It has become to.
[0003]
In order to cope with the above-mentioned fear, the seed crystal is pre-heated by using a movable auxiliary heating means, the dislocation caused by heat shock when the seed crystal is brought into contact with the melt is suppressed, and the seed crystal is pulled up without forming a neck portion. The temperature distribution of the neck portion is controlled by controlling the temperature distribution of the neck portion by using a method of dislocation-free single crystal (see Patent Literature 1) or by using the auxiliary heating means during the dislocation-free work by the dash neck method. A method has been developed in which the thermal stress acting on the single crystal can be reduced and the single crystal can be pulled out even in a neck portion having a diameter larger than usual (see Patent Document 1).
[0004]
In addition, the applicant of the present invention has a heat generating portion that can be positioned to surround a seed crystal positioned immediately above a melt filled in a crucible, and a moving mechanism that retracts the heat generating portion from a single crystal passage region. A single crystal pulling apparatus provided with an auxiliary heating means including the above has been proposed (see Patent Document 2).
[0005]
FIG. 5 is a sectional view schematically showing a conventional single crystal pulling apparatus provided with an auxiliary heating means. FIGS. 6 (a) and 6 (b) are a perspective view and a plan view schematically showing a form of a heat generating portion constituting an auxiliary heating means in a conventional single crystal pulling apparatus.
[0006]
In the drawing, reference numeral 21 denotes a crucible. The crucible 21 is a quartz crucible 21a having a cylindrical shape with a bottom, and a graphite crucible also having a cylindrical shape with a bottom fitted to the outside of the quartz crucible 21a. The crucible 21 is supported by a support shaft 28 that rotates at a predetermined speed in the direction of arrow A in the figure. A main heater 22 of a resistance heating type is arranged outside the crucible 21, and a heat insulating cylinder 27 is arranged concentrically outside the main heater 22, and the inside of the crucible 21 is melted by the main heater 22. A melt 23 as a raw material for crystallization is filled. A pulling shaft 24 made of a pulling rod or a wire is suspended from the center axis of the crucible 21, and a seed crystal 35 is attached to the tip of the pulling shaft 24 via a holder 24a. Has become.
[0007]
In the figure, reference numeral 25 denotes a rectifying jig. The main body 25a of the rectifying jig 25 has an inverted truncated cone side shape and is positioned so as to surround the single crystal 36 that has been pulled up. The portion is disposed so as to be located near and above the surface of the melt 23 filled in the crucible 21.
[0008]
In the figure, reference numeral 26 denotes an auxiliary heating means, and the heat generating portion 26a of the auxiliary heating means 26 has a half of the outer peripheral length of the seed crystal 35 in the horizontal direction as shown in FIGS. An opening 26b for surrounding the seed crystal 35 and retracting from the seed crystal 35 is provided, and is arranged so as to surround the seed crystal 35 located immediately above the melt 23. The heating unit 26a is connected to an electrode 25c for supplying power to the heating unit 26a and determining an angle at which the heating unit 25a is lowered or raised. Further, after the neck portion 36a is formed, a moving mechanism (not shown) for retracting the heat generating portion 25a from the passage region of the single crystal 36 when forming the main body portion 36c is provided, and the heat generating portion 26a and the electrode 26b are provided. , And the auxiliary heating means 26 including the moving mechanism. The heat generating area in the heat generating portion 26a is indicated by hatching in FIG. These members except the moving mechanism are housed in a water-cooled chamber 29 capable of controlling the pressure.
[0009]
A method for pulling the single crystal 36 using the single crystal pulling apparatus described above will be described with reference to FIG. FIGS. 7A to 7E are partially enlarged front views schematically showing the vicinity of a seed crystal in some of the steps for pulling a single crystal.
[0010]
Although not shown in FIG. 7, first, the inside of the chamber 29 is depressurized, and then an inert gas is introduced to make the inside of the chamber 29 a depressurized inert gas atmosphere. The gas in the molten liquid 23 is sufficiently released by leaving it to stand.
[0011]
Next, the seed crystal 35 attached to the holder 24a is lowered while the pulling shaft 24 is rotated at a predetermined speed in the opposite direction at the same axis as the support shaft 28, and the seed crystal 35 is preheated (FIG. 7 (a)). Next, the seed crystal 35 is lowered, and the tip portion 35a of the seed crystal 35 is immersed in the melt 23 (FIG. 7B).
Next, while the interface between the seed crystal 35 and the melt 23 is heated by the auxiliary heating means 26, the seed crystal 35 is further lowered and immersed in the melt 23 (FIG. 7C).
[0012]
Next, the seed crystal 35 is pulled up at a predetermined pulling speed, and a neck portion 36a having a diameter substantially similar to this is formed below the seed crystal 35. At this time, the interface between the neck portion 36a and the melt 23 is heated by the heating portion 26a of the auxiliary heating means 26, the thermal stress caused by the temperature distribution of the neck portion 36a is reduced, and the dislocation portion of the neck portion 36a is eliminated. Dislocation step, FIG. 7 (d)).
[0013]
Next, the moving means (not shown) is driven to retract the heat generating portion 26a from the neck portion 36a, and thereafter, the pulling speed of the pulling shaft 24 (hereinafter, also simply referred to as pulling speed) is lowered to move the neck portion 36a to a predetermined position. The shoulder 36b is formed by growing to a diameter (shoulder forming step). Thereafter, the pulling shaft 24 is pulled up at a constant speed to form a main body 36c having a constant diameter and a predetermined length (main body forming step, FIG. 7E).
Thereafter, although not shown in FIG. 7, finally, the diameter of the single crystal 36 is gradually reduced to gradually reduce the temperature of the entire single crystal 36 so that high-density dislocations are not introduced into the single crystal 36 due to a rapid temperature change. To form a terminal cone. Thereafter, the single crystal 36 is separated from the melt 23 and cooled to complete the pulling of the single crystal 36.
[0014]
[Patent Document 1]
JP-A-11-189488
[Patent Document 2]
JP 2000-137986 A
[0015]
[Problems to be solved by the invention]
In the conventional single crystal pulling apparatus described above, the heat shock at the time of liquid contact is reduced by heating the interface between the seed crystal 35 and the melt 23 by the heating section 26a of the auxiliary heating means 26. The number of introduced dislocations can be reduced, and by heating the neck portion 36a, the temperature gradient in the radial direction of the neck portion 36a is reduced, the thermal stress is reduced, and the dislocation removal capability at the neck portion 36a is increased. It is stated that dislocation-free single crystal to be pulled can be achieved.
[0016]
However, since the heat generating portion 26a is formed of a resistance heater having a U-shape in plan view, and the heat generating region is set to 50 to 70% of the outer peripheral length of the seed crystal 35 in the horizontal direction, the heat generating portion 26a Is easily radiated upward from a gap between the seed crystal 35 and the seed crystal 35, and it is somewhat difficult to reduce the vertical temperature distribution of the seed crystal 35 and the neck portion 36a. As a result, thermal stress is generated. However, there is a problem that the possibility that dislocations are introduced remains.
[0017]
The present invention has been made in view of the above problems, and when a single crystal is pulled by heating a seed crystal and / or a neck portion by using an auxiliary heating means, a vertical direction of the seed crystal and / or the neck portion is provided. A single crystal pulling apparatus and a single crystal pulling method capable of suppressing the generation of thermal stress, inhibiting the introduction of dislocations, and further improving the dislocation-free rate of the single crystal to be pulled. It is intended to provide.
[0018]
Means for Solving the Problems and Their Effects
In order to achieve the above object, a single crystal pulling apparatus (1) according to the present invention comprises a crucible filled with a melt, a heater positioned around the crucible, and a seed crystal positioned immediately above the melt. A single crystal pulling apparatus including an auxiliary heating means configured to include a heat generating portion that can be positioned to surround the heat generating portion and a moving mechanism that retracts the heat generating portion from the single crystal passage region. A coating portion for covering a gap between the seed crystal and the seed crystal extends from the heat generating portion.
[0019]
According to the single crystal pulling apparatus (1), heat radiation to the upper side of the heat generating portion is suppressed by the covering portion, and the heat distribution in the vertical direction between the heat generating portion and the seed crystal can be made uniform. The temperature distribution in the vertical direction of the seed crystal can be reduced. As a result, the shape of the growth interface at the tip of the seed crystal can be made convex downward, thermal stress can be reduced, the introduction of dislocation can be prevented, and the dislocation-free ratio of the single crystal to be pulled can be further increased. Can be improved. Further, even when the neck portion is formed from the seed crystal, the same effect as described above can be obtained, the ability to remove dislocation at the neck portion can be increased, and the single crystal is pulled without propagating the dislocation. be able to.
[0020]
Further, a single crystal pulling apparatus (2) according to the present invention is characterized in that, in the single crystal pulling apparatus (1), the coating portion functions as a heat retaining section or a heat generating section.
[0021]
According to the single crystal pulling apparatus (2), since the covering portion functions as the heat retaining portion, heat radiation from the covering portion to the outside can be suppressed, and the gap between the heating portion and the seed crystal can be reduced. In this case, the heat retention characteristics can be improved. Further, since the covering portion functions as the heat generating portion, the heat distribution in the vertical direction between the heat generating portion and the seed crystal can be further uniformed.
[0022]
Further, in the single crystal pulling apparatus (3) according to the present invention, in the single crystal pulling apparatus (1) or (2), the coating portion has a first opening for allowing the seed crystal to pass therethrough. The diameter of the first opening is set in a range of 1.25 to 3.0 times the diameter of the seed crystal.
[0023]
According to the single crystal pulling apparatus (3), the diameter of the first opening is set in a range of 1.25 to 3.0 times the diameter of the seed crystal. And heat radiation upward from a gap between the seed crystal and the seed crystal covered with the heat generating portion and the covering portion, and a vertical portion of a neck portion formed from the seed crystal. The temperature gradient can be reduced. Therefore, the shape of the seed crystal and the growth interface at the tip end face of the neck portion can be made convex downward, so that propagation of dislocations can be suppressed and the dislocations can be efficiently eliminated.
[0024]
If the diameter of the first opening is larger than 3.0 times the diameter of the seed crystal, the heat radiation upward from the gap between the first opening and the seed crystal increases. The temperature gradient in the vertical direction of the seed crystal and the neck portion becomes large, and it becomes difficult to make the shape of the growth interface convex downward, so that propagation of dislocations cannot be sufficiently suppressed, and It is easy to introduce and is not preferable.
Further, if the diameter of the first opening is smaller than 1.25 times the diameter of the seed crystal, the coating may come into contact with the seed crystal in the opening, which is not preferable.
[0025]
Further, the single crystal pulling apparatus (4) according to the present invention, in any one of the single crystal pulling apparatuses (1) to (3), wherein the heating section and the covering section are evacuated from the seed crystal passage region. It has a second opening, and the width of the second opening is set in a range of 1.25 to 3.0 times the diameter of the seed crystal.
[0026]
According to the single crystal pulling apparatus (4), since the width of the second opening is set in a range of 1.25 to 3.0 times the diameter of the seed crystal, the second opening is formed. The heat radiation from the side to the side can be suppressed, and the temperature gradient in the horizontal direction (radial direction) of the seed crystal and the neck portion formed from the seed crystal can be reduced. Therefore, thermal stress in the seed crystal and the neck portion is reduced, and the introduction of dislocations can be effectively prevented.
[0027]
When the width of the second opening is larger than 3.0 times the diameter of the seed crystal, heat radiation from the second opening increases and the temperature gradient in the radial direction increases. In addition, the dislocation removing ability at the neck portion is reduced, and it is difficult to eliminate dislocations due to the generation of thermal stress that induces new dislocations, which is not preferable.
If the width of the second opening is smaller than 1.25 times the diameter of the seed crystal, the opening may come into contact with the seed crystal when the seed crystal is retracted, which is not preferable.
[0028]
Further, the single crystal pulling method (1) according to the present invention is a single crystal pulling method using any one of the single crystal pulling apparatuses (1) to (4), wherein a seed crystal having a diameter of 8 to 14 mm is used. It is characterized in that it is used.
[0029]
According to the single crystal pulling method (1), since the diameter is 8 mm or more, even when pulling a heavy single crystal having a main body part diameter of about 12 inches and a weight of about 300 kg, it is sufficiently supported. can do. In addition, since the diameter is 14 mm or less, the tip of the seed crystal can be sufficiently heated before immersion in the melt, the temperature gradient in the radial direction can be reduced, The introduction of dislocation due to heat shock can be prevented.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a single crystal pulling apparatus and a single crystal pulling method according to the present invention will be described with reference to the drawings. Components having the same functions as those of the conventional single crystal pulling apparatus shown in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted.
The single crystal pulling apparatus according to the present embodiment is premised on pulling a large diameter single crystal of 12 inches (about 300 mm) or more, that is, a so-called heavy single crystal.
[0031]
FIG. 1 is a cross-sectional view schematically illustrating a main part of a single crystal pulling apparatus according to an embodiment, and FIG. 2 is a diagram schematically illustrating a main part of an auxiliary heating unit in the apparatus. (A) is a plan view, (b) is a front view, and (c) is a cross-sectional view taken along line CC in (a).
[0032]
In the drawing, reference numeral 16 denotes an auxiliary heating means. As shown in FIG. 2, the auxiliary heating means 16 has a substantially cylindrical heat generation which can be positioned so as to surround the seed crystal 35 located immediately above the melt 23. A portion 16a, a substantially frustoconical side-shaped covering portion 16d extending diagonally inward and upward from the upper end of the heat generating portion 16a, and supplying power to the heat generating portion 16a and lowering or raising the heat generating portion 16a. After the formation of the electrode 16c for determining the angle and the formation of the main body portion 36c (FIG. 4) after the formation of the neck portion 36a, the heat generating portion 16a provided with the covering portion 16d is passed through the single crystal 36 (FIG. 4) passing region. And a moving mechanism (not shown) for further retracting.
[0033]
The heat generating portion 16a and the covering portion 16d are provided with side opening portions 16b for retreating from the seed crystal 35. An upper surface opening 16e for passing the seed crystal 35 and the neck portion 36a is provided on the upper surface of the covering portion 16d having a substantially frustoconical side surface shape, and the upper surface opening 16e and the side surface opening 16b are formed. It is formed to be connected.
[0034]
The diameter D of the upper surface opening 16e is set in a range of 1.25 to 3.0 times the diameter of the seed crystal 35 used. Also, the width W of the side opening 16b is set within a range of 1.25 to 3.0 times the diameter of the seed crystal 35 used. The coating portion 16d functions not as a heat generating portion but as a heat retaining portion.
[0035]
At least the heat generating portion 16a and the covering portion 16d of the auxiliary heating means 16 are formed of a carbon material and a silicon carbide material coated on the surface of the carbon material. More preferably, the auxiliary heating means 16 is formed from a carbon material and a silicon carbide material coated on the surface of the carbon material, so that the heating portion 16a is formed. Even when the temperature of the coating portion 16d becomes high, it is possible to prevent a situation in which impurities are generated from the heating portion 16a and the coating portion 16d and adversely affect the single crystal 36 to be pulled.
[0036]
The gap G between the lower end of the heat generating portion 16a and the surface of the melt 23 is such that the melt 23 does not come into contact with the heat generating portion 16a, and the distance at which the tip 35a of the seed crystal 35 can be efficiently heated to a high temperature before the liquid contact, It can be set to a range of up to 30 mm. If the gap G is less than 5 mm, there is a risk of contact with the melt 23, which is not preferable. If the gap G exceeds 30 mm, it is difficult to reduce the temperature gradient required for removing dislocations at the solid-liquid interface. Is not preferred.
[0037]
Although the covering portion 16d of the auxiliary heating means 16 according to the above embodiment is configured as a heat retaining portion, in the auxiliary heating means according to another embodiment, the covering portion may be configured as a heat generating portion. Since the covering portion is configured as a heating portion, the heat distribution in the vertical direction between the heating portion 16a and the seed crystal 35 can be made more uniform, and the seed crystal 35 covered by the heating portion 16a and the covering portion can be more uniform. The temperature distribution in the vertical direction of the neck portion 36a can be made more uniform.
[0038]
Further, in the above-described embodiment, a case has been described in which the covering portion 16d has a substantially frustoconical side shape extending obliquely upward and inward from the upper end of the heat generating portion 16a. The shape is not limited to the above-described embodiment. For example, as shown in FIG. 3, the covering portion 16d is extended horizontally from the upper inner wall of the heating portion 16a as a heat retaining portion or a heating portion. 2 In other words, the gap between the heat generating portion 16a and the seed crystal 35 is covered so that the vertical temperature distribution of the seed crystal 35 and the neck portion 36a can be made uniform. What is necessary is just to extend the covering part of a possible shape from a heat generation part.
[0039]
Next, a single crystal pulling method using the single crystal pulling apparatus according to the above embodiment will be described. FIGS. 4A to 4E are partially enlarged views schematically showing the vicinity of the seed crystal 35 when performing some of the steps of the single crystal pulling method according to the embodiment. It is a front view.
Steps before the steps described below are performed in the same manner as the method described in the section of “Prior Art”.
[0040]
While rotating the lifting shaft 24 (FIG. 1) at a predetermined speed in the opposite direction at the same axis as the support shaft 28 (FIG. 5), the seed crystal 35 attached to the holder 24a (FIG. The seed crystal 35 is preheated by lowering it to just above, and the temperature of the tip 35a of the seed crystal 35 is increased (FIG. 4A).
[0041]
By reducing the diameter of the seed crystal 35, the heat capacity of the tip 35a is reduced, the temperature change when the seed crystal 35 is immersed in the melt 23 becomes easy, and the radial temperature distribution at the time of immersion is reduced. Thus, the acting thermal stress is reduced, and the number of dislocations introduced at the time of immersion can be reduced. However, if the diameter D of the seed crystal 35 is less than 8 mm, a single crystal having a diameter of about 12 inches and a weight exceeding 300 kg can be obtained. It is difficult to stably support the crystal 36. On the other hand, if the diameter D of the seed crystal 35 exceeds 14 mm, it is sufficient to support the single crystal 36, but the diameter of the seed crystal 35 is too large to make uniform heating using the auxiliary heating means 16 difficult. In addition, thermal stress generated in seed crystal 35 increases, making it difficult to remove dislocations. Therefore, the diameter of the seed crystal 35 is preferably set in the range of 8 to 14 mm.
[0042]
By setting the preheating time to about 5 to 60 minutes, the temperature of the tip portion 35a of the seed crystal 35 rises to reach a temperature of about 1200 to 1300 ° C. The distance between the melt 23 and the tip 35a of the seed crystal 35 at the time of preheating before liquid landing is preferably set in a range of 1 to 30 mm. In order to bring the seed crystal 35 as close as possible to the surface temperature of the melt 23, More preferably, the distance is set to 5 mm or less.
[0043]
After the preheating, the tip portion 35a of the seed crystal 35 is further heated using the heating portion 16a of the auxiliary heating means 16, and the temperature of the tip portion 35a is raised to 1380 to 1420 ° C. If the temperature of the tip portion 35a of the seed crystal 35 is 1380 ° C. or higher, the generation of dislocations due to thermal stress in the process of lowering the seed crystal 35 and bringing the tip portion 35a into contact with the melt 23 is significantly suppressed. Can be.
[0044]
However, if the temperature of the tip 35a of the seed crystal 35 exceeds 1420 ° C., the seed crystal 35 starts to melt from a portion near the auxiliary heating means 16, lowers the seed crystal 35, and contacts the tip 35a with the molten liquid 23. In the process of melting, if the temperature of the melt 23 is higher than expected, or if the temperature of the surface of the melt 23 fluctuates greatly, there is a possibility of melting.
[0045]
Next, the seed crystal 35 is lowered, and the tip 35a of the seed crystal 35 is immersed in the melt 23 (FIG. 4B). At this time, the temperature difference between the tip portion 35a of the seed crystal 35 and the melt 23 is small, so that the thermal stress generated in the seed crystal 35 due to the temperature difference is small. Therefore, when a dislocation-free seed crystal 35 is used, dislocations are hardly introduced. Further, at the time of re-pulling when the seed crystal 35 contains some dislocations, such as after re-melting of the single crystal 36 when dislocation is formed during the pulling of the single crystal 36, the seed crystal 35 is brought into contact with the melt 23 again. However, the dislocations do not proliferate and extend.
[0046]
Next, a crystal is grown at the tip of the seed crystal 35. At this time, the pulling shaft 24 is pulled up at a speed higher than the formation speed of the main body 36c to be described later, and the growth interface of the single crystal 36 (the tip of the neck portion 36a). The shape of the (surface) is convex downward, and the neck portion 36a is formed (FIG. 4C). In the device according to the present embodiment, it is possible to form the neck portion 36a capable of dislocation removal even if the diameter is large. This is because the amount of radiation from the heat generating portion 15a to the growing neck portion 36a increases, so that the heat distribution in the crystal of the neck portion 36a is planarized, and the thermal stress is reduced. This is because the ability increases.
[0047]
The diameter of the neck portion 6a is preferably 7 to 12 mm. If it is larger than 12 mm, it is difficult to obtain a planar heat distribution during the growth of the neck portion 36a, so that the thermal stress increases and the dislocation removing ability decreases. Therefore, when a seed crystal 35 having a diameter of 8 to 12 mm is used, a neck portion 36 a having the same diameter as the seed crystal 35 may be formed. When a seed crystal 35 having a diameter exceeding 12 mm is used, The diameter of the neck portion 36a may be reduced to 12 mm or less.
[0048]
Even if dislocations cannot be completely eliminated due to melting of seed crystal 35 and dislocations remain slightly, thermal stress in neck portion 36a is reduced and dislocations are removed during formation of neck portion 36a. Since the dislocation of the single crystal 36 grown from the lower portion of the neck portion 36a is ensured, it is desirable to use the auxiliary heating means 16 to continuously heat the vicinity of the neck portion 36a when pulling up the neck portion 36a.
[0049]
Next, the power supply to the auxiliary heating means 16 is stopped, and the heat generating portion 16a is retracted from around the neck portion 36a. Then, the single crystal 36 is grown to a predetermined diameter (about 12 inches), and the shoulder 36b is removed. Form. Thereafter, the single crystal 36 is pulled up at a predetermined pulling speed to form the main body 36c (FIGS. 4D and 4E).
[0050]
Thereafter, the single crystal 36 is pulled up by a method substantially similar to the method described in the section of “Prior Art”, separated from the melt 23 and cooled to complete the pulling of the single crystal 36.
[0051]
In the above embodiment, the case where the present invention is applied to the CZ method has been described. However, the present invention is not limited to the application to the CZ method at all, and for example, similarly applies to the MCZ method applying a magnetic field. Applicable.
In the above embodiment, the case where the seed crystal 35 has a substantially cylindrical shape has been described. However, in another embodiment, the seed crystal may have a polygonal column shape, and in this case, the diameter of the neck portion 36a is also reduced. What is necessary is just to set it as the range of 7-12 mm.
[0052]
Further, only the single crystal pulling method in the case where the amount of radiation is increased by heating by the heat generating portion 16a to both the seed crystal 35 and the neck portion 36a using the single crystal pulling apparatus according to the above embodiment, As described above, by increasing only the amount of radiation to the seed crystal 35 and pulling up the single crystal 36 without forming the neck 36a, or by increasing only the amount of radiation to the neck 36a, It is needless to say that the single crystal 36 can be pulled up by increasing the dislocation removing capability at 36a.
[0053]
[Examples and Comparative Examples]
Hereinafter, a single crystal pulling apparatus and a single crystal pulling method according to Examples and Comparative Examples will be described. Hereinafter, the conditions will be described.
Figure 2004315298
[0054]
[Conditions of Comparative Examples 1 to 3]
In the case of Comparative Examples 1 to 3, the conventional heating auxiliary means 26 (the heating portion 26a does not have the coating portion extended, and the heating region in the heating portion 26a is 50% of the outer circumferential length of the seed crystal 35 in the horizontal direction. Using a single crystal pulling apparatus (FIG. 6) equipped with a seed crystal 35 having different diameters, forming a neck portion 36a having substantially the same diameter as the seed crystal 35 and pulling the single crystal 36. .
[0055]
[Conditions of Examples 1 to 20]
In the case of Examples 1 to 20, the single crystal pulling apparatus according to the embodiment shown in FIG. 1 is used, and seed crystals 35 having different diameters are used. By changing the diameter and the width of the side opening 16b, a neck portion 36a having substantially the same diameter as the seed crystal 35 was formed, and the single crystal 36 was pulled up. In addition, the coating | coated part 16d which consists of a heat retention member, and the coating | coated part which is a heat generating member were used for each condition.
[0056]
[Test method (common to Examples 1 to 20 and Comparative Examples 1 to 3)]
The gap G between the lower end of the heat generating portion 16a and the melt 23 is kept constant, and the heat generating portion 16a or the heat generating portion 16a and the covering portion as the heat generating portion are adjusted to have an appropriate temperature when the seed crystal 35 is immersed in the melt 23. And heat. Thereafter, the seed crystal 35 is positioned about 5 mm above the upper surface of the melt 23, and is preheated for 30 minutes and then allowed to reach the surface.
After the stabilization, the neck portion 36a having substantially the same diameter as the seed crystal 35 is grown by 150 mm, the heat generating portion 16a is retracted from the neck portion 36a, and then the diameter is increased to grow the main body 36c by 200 mm. Is dislocation-free (DF: Dislocation Free) when no dislocation is caused and the crystal axis is not broken.
Thereafter, the single crystal 36 was dissolved in the melt 23, and the growth of the next sample was started with the same amount of the melt 23.
[0057]
Table 1 below shows the individual conditions and the DF (Dislocation Free) ratio of the single crystal 36 in each case. Here, the opening diameter ratio indicates the ratio of the diameter of upper surface opening 16e to the diameter of seed crystal 35, and the opening width ratio indicates the ratio of the width of side opening 16b to the width (diameter) of seed crystal 35. Is shown.
[Table 1]
Figure 2004315298
[0058]
As is clear from the results of Comparative Examples 1 to 3 shown in Table 1, Comparative Examples 1 to 3 including the conventional heat generating portion 26a having a U-shape in plan view have a larger diameter of the seed crystal 35 used. At the same time, the DF rate decreased. The DF ratio at a diameter of 8 mm capable of stably holding a 300 kg heavy crystal was 60%. In Comparative Example 3 using a seed crystal having a diameter of 14 mm, the DF ratio was 0%, and when the diameter of the seed crystal was 14 mm or more, the single crystal to be pulled could not be dislocation-free.
[0059]
As is clear from the results of Examples 1 to 4, when the ratio of the opening diameter and the ratio of the opening width were both set to 1.25, the DF ratio was 100% in each case, which was excellent.
Further, as is apparent from the results of Examples 5 to 8, when the opening diameter ratio was set to 3.00 and the opening width ratio was set to 1.25, if the diameter of the seed crystal 35 was 8 mm, the covering portion was not formed. The DF ratio was 100% for both the heat retaining section and the heat generating section (Examples 5 and 6). On the other hand, when the diameter of the seed crystal 35 was 14 mm, the DF ratio was 100% in the case of the covering portion as the heat generating portion (Example 8), but in the case of the covering portion 16d as the heat retaining portion (Execution Example). In Example 7), the DF ratio was 90%. This is presumably because the heat radiation upward from the upper surface opening 16e increased due to the increase in the opening diameter ratio, and the heat retaining effect of the heat retaining portion was slightly reduced.
[0060]
Further, as is clear from the results of Examples 9 to 12, when the opening diameter ratio was set to 4.00 and the opening width ratio was set to 1.25, if the diameter of the seed crystal 35 was 8 mm, the covering portion was changed. The DF ratio was 100%, which was good for both the heat retaining portion and the heat generating portion (Examples 9 and 10). On the other hand, in the case where the diameter of the seed crystal 35 is 14 mm and the coated portion is used as the heat generating portion (Example 12), the DF ratio is reduced to 70%, and the coated portion 16d is used as the heat retaining portion (Example 11). ), The DF ratio was reduced to 50%. This is considered to be because the heat radiation upward from the upper surface opening 16e was further increased by the further increase in the opening diameter ratio, and the heat radiation suppression effect by the covering portion 16d was reduced. Further, when the opening diameter ratio is increased to 4.00, the temperature gradient in the vertical direction of the seed crystal 35 cannot be reduced even as the covering portion as the heat generating portion.
[0061]
Also, as is clear from the results of Examples 13 to 16, when the opening diameter ratio was set to 3.00 and the opening width ratio was set to 3.00, and the diameter of the seed crystal 35 was 8 mm, the heat insulating portion was used. The DF ratio was 100%, which was good for both the coated portion 16d (Example 13) and the coated portion (Example 14) as the heat generating portion. When the diameter of the seed crystal 35 was 14 mm and the covering portion was used as a heat generating portion (Example 16), the DF ratio was 100%, but when the covering portion 16d was used as a heat retaining portion (Example 15). ), The DF rate was 90%. This is because the increase in the opening diameter ratio and the opening width ratio increases the heat radiation upward from the upper surface opening 16e and laterally from the side opening 16b, and the covering portion 16d as the heat retaining portion has a sufficient heat retaining effect. Probably because it could not be demonstrated.
[0062]
Further, as is clear from the results of Examples 17 to 20, when the opening diameter ratio was set to 3.00 and the opening width ratio was set to 4.00, the diameter of the seed crystal 35 was 8 mm, and the coating as the heat generating portion was formed. DF rate was 90% when it was set as a part (Example 18), and was relatively good. However, when the coating part 16d was used as a heat retaining part (Example 17), the DF rate was reduced to 60%. When the diameter of the seed crystal 35 is 14 mm and the coating part 16d is used as a heat retaining part (Example 19), the DF ratio is reduced to 20%, and the coating part is used as a heating part (Example 20). , And the DF ratio decreased to 50%. This is because the heat radiation from the upper surface opening 16e upward and from the side surface opening 16b to the side is further increased by the further increase in the opening diameter ratio and the opening width ratio, and the heat radiation suppressing effect by the covering portion is reduced. Conceivable. Further, when the opening diameter ratio is increased to 4.00, the temperature gradient in the vertical direction of the seed crystal 35 cannot be reduced even as the covering portion as the heat generating portion.
[0063]
From the results of Examples 1 to 20 and Comparative Examples 1 to 3,
{Circle around (1)} By providing the covering portion 16d in the gap between the heat generating portion 16a and the seed crystal 35, the temperature gradient in the vertical direction at the seed crystal 35 and the neck portion 36a is reduced, and the thermal stress is reduced. In addition, the dislocation removing ability can be increased, and the dislocation-free ratio of a single crystal that can be pulled even when a seed crystal having a large diameter is used can be improved as compared with Comparative Examples 1 to 3 in which the coating portion is not provided. confirmed.
(2) It is possible to improve the dislocation-free ratio of the single crystal to be pulled by setting an appropriate diameter of the upper surface opening 16e and a width of the side surface opening 16b in accordance with the diameter of the seed crystal 35. Was confirmed.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view schematically showing a main part of a single crystal pulling apparatus according to an embodiment of the present invention.
FIGS. 2A and 2B are diagrams schematically illustrating a form of a heat generating unit according to the embodiment, wherein FIG. 2A is a plan view, FIG. 2B is a front view, and FIG. 2C is a cross-sectional view taken along line CC in FIG. FIG.
3A and 3B are diagrams schematically illustrating a form of a heat generating unit according to another embodiment, wherein FIG. 3A is a plan view, FIG. 3B is a front view, and FIG. 3C is CC in FIG. It is a line sectional view.
FIGS. 4A to 4E schematically show the vicinity of a seed crystal when performing a part of a single crystal pulling process using the single crystal pulling apparatus according to the embodiment. It is the fragmentary enlarged front view.
FIG. 5 is a partial cross-sectional view schematically showing a main part of a conventional single crystal pulling apparatus.
6A and 6B are diagrams schematically showing a configuration of a conventional heat generating unit, wherein FIG. 6A is a perspective view and FIG. 6B is a plan view.
FIGS. 7A to 7E are partially enlarged views schematically showing the vicinity of a seed crystal when performing a part of a single crystal pulling process using a conventional single crystal pulling apparatus. It is a front view.
[Explanation of symbols]
16, 16A, 26 auxiliary heating means
16a, 26a Heating part
16b side opening
16d, 16d 2 Coating
16e top opening
21 crucible
22 Main heater
23 Melt
35 seed crystals
36 single crystal

Claims (5)

溶融液が充填される坩堝、該坩堝の周辺に位置するヒータ、及び前記溶融液の直上に位置した状態の種結晶を取り囲むように位置させ得る発熱部と、該発熱部を単結晶の通過領域より退避させる移動機構とを含んで構成された補助加熱手段等を備えた単結晶引き上げ装置において、
前記発熱部と前記種結晶との間の空隙を覆う被覆部が前記発熱部から延設されていることを特徴とする単結晶引き上げ装置。
A crucible filled with the melt, a heater positioned around the crucible, and a heat generating portion that can be positioned to surround the seed crystal positioned immediately above the melt, and a single crystal passing region formed by the heat generating portion. In a single crystal pulling apparatus provided with an auxiliary heating means and the like configured to include a moving mechanism for retracting more,
A single crystal pulling apparatus, wherein a covering portion for covering a gap between the heat generating portion and the seed crystal extends from the heat generating portion.
前記被覆部が保温部又は発熱部として機能することを特徴とする請求項1記載の単結晶引き上げ装置。The single crystal pulling apparatus according to claim 1, wherein the covering portion functions as a heat retaining portion or a heat generating portion. 前記被覆部が前記種結晶を通過させるための第1の開口部を有し、該第1の開口部の直径が前記種結晶の直径の1.25〜3.0倍の範囲で設定されていることを特徴とする請求項1又は請求項2記載の単結晶引き上げ装置。The covering portion has a first opening for allowing the seed crystal to pass therethrough, and a diameter of the first opening is set in a range of 1.25 to 3.0 times a diameter of the seed crystal. 3. The single crystal pulling apparatus according to claim 1, wherein 前記発熱部及び前記被覆部が前記種結晶の通過領域から退避させるための第2の開口部を有し、該第2の開口部の幅が前記種結晶の直径の1.25〜3.0倍の範囲で設定されていることを特徴とする請求項1〜3のいずれかの項に記載の単結晶引き上げ装置。The heat generating part and the covering part have a second opening for retreating from the passage area of the seed crystal, and the width of the second opening is 1.25 to 3.0 of the diameter of the seed crystal. The single crystal pulling apparatus according to any one of claims 1 to 3, wherein the single crystal pulling apparatus is set to be twice as large. 請求項1〜4のいずれかの項に記載の単結晶引き上げ装置を用いた単結晶引き上げ方法であって、
直径が8〜14mmである種結晶を用いることを特徴とする単結晶引き上げ方法。
A single crystal pulling method using the single crystal pulling apparatus according to any one of claims 1 to 4,
A method for pulling a single crystal, comprising using a seed crystal having a diameter of 8 to 14 mm.
JP2003112408A 2003-04-11 2003-04-17 Single crystal pulling method Expired - Lifetime JP4273820B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003112408A JP4273820B2 (en) 2003-04-17 2003-04-17 Single crystal pulling method
US10/820,885 US7063743B2 (en) 2003-04-11 2004-04-09 Apparatus and method for pulling single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112408A JP4273820B2 (en) 2003-04-17 2003-04-17 Single crystal pulling method

Publications (2)

Publication Number Publication Date
JP2004315298A true JP2004315298A (en) 2004-11-11
JP4273820B2 JP4273820B2 (en) 2009-06-03

Family

ID=33472619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112408A Expired - Lifetime JP4273820B2 (en) 2003-04-11 2003-04-17 Single crystal pulling method

Country Status (1)

Country Link
JP (1) JP4273820B2 (en)

Also Published As

Publication number Publication date
JP4273820B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP5413354B2 (en) Silicon single crystal pulling apparatus and silicon single crystal manufacturing method
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
JP3065076B1 (en) Single crystal pulling method and single crystal pulling apparatus
JPH10101482A (en) Production unit for single crystal silicon and its production
KR100717237B1 (en) Process for preparing single crystal silicon having uniform thermal history
JP3267225B2 (en) Single crystal pulling method and single crystal pulling apparatus
JP3760769B2 (en) Method for producing silicon single crystal
CN114929951B (en) Single crystal manufacturing apparatus
EP1538242B1 (en) Heater for crystal formation, apparatus for forming crystal and method for forming crystal
US6755910B2 (en) Method for pulling single crystal
JP2005053722A (en) Single crystal production apparatus and single crystal production method
KR20110024866A (en) Single crystal grower having structure for reducing quartz degradation and seed chuck structure thereof
KR101596550B1 (en) Apparutus and Method for Growing Ingot
US20090293802A1 (en) Method of growing silicon single crystals
JPH09235186A (en) Seed crystal for lifting single crystal and lifting of single crystal with the seed crystal
JP4273820B2 (en) Single crystal pulling method
JP3129187B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP6451478B2 (en) Method for producing silicon single crystal
WO1999037833A1 (en) Single crystal pull-up apparatus
JP4389465B2 (en) Single crystal pulling method
JP2004292288A (en) Method for melting raw material for silicon single crystal
KR100835293B1 (en) Manufacturing method of silicon single crystal ingot
JP3721977B2 (en) Single crystal pulling method
KR100581045B1 (en) Method for porducing silicon single crystal
JP4055351B2 (en) Crystal growth method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Ref document number: 4273820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term