[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004300109A - Method for producing animal protein, production apparatus and animal protein - Google Patents

Method for producing animal protein, production apparatus and animal protein Download PDF

Info

Publication number
JP2004300109A
JP2004300109A JP2003097779A JP2003097779A JP2004300109A JP 2004300109 A JP2004300109 A JP 2004300109A JP 2003097779 A JP2003097779 A JP 2003097779A JP 2003097779 A JP2003097779 A JP 2003097779A JP 2004300109 A JP2004300109 A JP 2004300109A
Authority
JP
Japan
Prior art keywords
acid
ultrafiltration
collagen
concentration
animal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003097779A
Other languages
Japanese (ja)
Inventor
Noboru Maruyama
昇 丸山
Satoru Mori
哲 毛利
Kazuhiko Arisumi
和彦 有住
Rumi Sakurada
ルミ 櫻田
Tadayoshi Onodera
忠義 小野寺
Takehiro Owada
健博 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONODERA TEKKOSHO KK
Miyagi Prefectural Government.
Original Assignee
ONODERA TEKKOSHO KK
Miyagi Prefectural Government.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONODERA TEKKOSHO KK, Miyagi Prefectural Government. filed Critical ONODERA TEKKOSHO KK
Priority to JP2003097779A priority Critical patent/JP2004300109A/en
Publication of JP2004300109A publication Critical patent/JP2004300109A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Cosmetics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing proteins such as collagen, gelatin and collagen peptide from animal body tissue in high purity and yield at a low cost. <P>SOLUTION: The method for the production of animal proteins is provided with a pretreatment step including the defatting and deodorizing treatment of raw material comprising an animal body tissue containing animal proteins, an extraction step to solubilize and dissolve an acid-soluble protein by immersing the raw material in an acid solution or an acid and acidic protease solution to obtain an extract containing the acid-soluble protein, a purification step to obtain purified acid-soluble protein from the extract, and a concentration step. The acid solution concentration of the acid solution or the acid and acidic protease solution in the extraction step is 0.3-2M and the weight ratio of the acid solution to the raw material for extraction is 1.5-10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、動物の体組織から動物蛋白質を抽出し、精製するための製造方法と製造装置、およびこれにより得られる動物蛋白質に関し、特に、酸溶液による抽出方法や限外ろ過を用いる精製方法を使用する製造方法に関する。
【0002】
【従来の技術】
動物の骨や皮を原料として、それに含有される蛋白質よりゼラチンやコラーゲンが抽出され、医薬用、食用、写真用、工業用など多くの用途に使われている。
コラーゲンは、3本の分子量10万前後のポリペプチド鎖(α鎖)の三重らせん構造である分子量約30万のγ鎖が基本単位である。
また、ゼラチンは、“動物の骨、皮、じん帯またはけんから得たコラーゲンを加水分解して製造”すると定義付けられている(非特許文献1参照)。加水分解してゼラチンを抽出する温度は、一般に陸生動物由来では40℃以上と言われ、コラーゲンの加水分解反応液からの抽出物は、加水分解反応の温度が比較的低い場合は、分子量10万前後のα鎖を主成分とするゼラチンであるが、加水分解温度を上げるに伴い、さらに低分子の蛋白質であるコラーゲンペプタイドが主成分となる。
【0003】
従来技術においては、動物の体組織から蛋白質を抽出するための前処理工程として、原料中の水溶性蛋白質、油脂分、臭い成分などを除く目的で、アルカリ溶液、酸溶液、エタノール溶液、有機溶媒に漬けたり、塩類を混合したりもしている。また、動物の体組織が皮からなる場合は、予めコラーゲンが多く含有されている真皮層を表皮から剥離し、分離した真皮層を用いて目的とする蛋白質を抽出する場合もある。
【0004】
石灰、苛性ソーダなどを用いたアルカリ溶液処理はゼラチン抽出の前処理として広く用いられている(特許文献1参照)。また、コラーゲン抽出の前処理としてアルカリ処理および塩漬けの組合せ例があるが、アルカリ性溶液にて可溶化したいわゆるアルカリ可溶性コラーゲンの抽出に関するものであり、かつ精製方法は、抽出したコラーゲンを同時に塩析した後、脱塩するものである(特許文献2参照)。
一方、原料が水生動物由来である場合は、臭い成分の除去が大きな課題であり、エタノールなどの有機溶媒処理をしたり、塩漬けして前処理する方法が知られている(特許文献3,4参照)。
海洋生物を原料として、精製・濃縮工程を直接限外ろ過で行う方法も知られているが、その前処理工程は、有機溶媒処理と塩溶液処理を組合せたものであり(特許文献5参照)、有機溶媒の引火爆発の危険を防止するため防爆などの付加的な安全設備が必要となり設備投資が大きく、また、食用に供するコラーゲンの場合、有機物残留が如何に微量であろうと、健康問題の見地からは有機溶媒の採用は困難である。
【0005】
脱脂・脱臭処理を含む前処理工程や抽出工程で、油脂分や臭い成分を所望の残留レベルにせず、精製・濃縮工程で最終的に所望の残留レベルにする方法も考えられる。しかしながら、このような方法では収率が落ち、結果コスト高になってしまう。また、前処理の脱脂・脱臭工程において、酸溶液浸漬を採用すると、臭気成分の除去機能はアルカリ溶液浸漬と同等だが、油脂成分の除去性は劣り、また効果を上げるため長期に漬けると、動物蛋白質は一般に弱酸性のため蛋白質の過剰の分解が起こり、収率を落とすという欠点がある。
また、アルカリ浸漬や酸浸漬、塩漬けを短期、または行わずに、界面活性剤や有機溶媒で油脂除去する方法もある。しかしながら、界面活性剤による脱脂の方法は、界面活性剤が蛋白質と吸着して、蛋白質抽出後の後処理として界面活性剤の水洗、除去に多大なコストがかかる。また、有機溶媒処理は、防爆装置の設置コストや、環境に優しい材料が求められる今の時代要求には相応しくない。
【0006】
以上のように、従来の公知技術においては、抽出した酸可溶性コラーゲンの精製として限外ろ過を行う場合において、その原料の油脂分や臭い成分の除去をアルカリ浸漬を含む処理工程で行う事例はこれまで知られておらず、またアルカリ浸漬の場合の最適な浸漬条件は未だ明らかにされていない。
【0007】
コラーゲンを可溶化する方法として、酸溶液に浸漬溶解するものと、蛋白質分解酵素(プロテアーゼ)を酸溶液に添加して、コラーゲン末端のテロペプチド部分を切断して可溶化を促進する方法がある。さらに、可溶化させる溶液のpH状態によっては、可溶化したコラーゲンの特性が一部異なるために、アルカリ溶液下で可溶化して抽出して得られるアルカリ可溶性コラーゲンや中性塩溶液下で可溶化して抽出して得られる中性塩可溶性コラーゲンもあるが、これらはコラーゲンが一部変性してゼラチン化するため、均一溶液にならないと言われている(非特許文献2参照)。
【0008】
酸性プロテアーゼを用いた酸可溶性コラーゲンの抽出例として、塩やアルカリで前処理して原料とする動物の体組織中の水溶性蛋白質や油脂分を除去し、さらに酸性条件で抽出することが行われている(特許文献6,7参照)。また、近年においては、プロテアーゼを工業的に利用することも行われているが、コラーゲン抽出方法の基本は変わりがない。
上記抽出液からコラーゲンを回収・精製する方法としては、塩添加やpH操作などの化学的な手法によりコラーゲンを沈殿析出させ、遠心分離により固液分離を行った後、分離された固形分を酸溶解して透析や限外ろ過を行ない所望のコラーゲンを得る方法が採られている(特許文献8,9参照)。また、コラーゲン抽出液を塩析やpH操作を行わず、物理的な限外ろ過法により直接的にコラーゲンを回収する方法も示されている(特許文献5参照)。
なお、アルカリ可溶性コラーゲンの抽出を行なう事例でも、その回収・精製には酸可溶性コラーゲンの場合と同様、上記塩析の手法を用いている(特許文献2参照)。
【0009】
ところで、動物の体組織からコラーゲンを可溶化させ、酸可溶性コラーゲンを抽出するための基本条件として、動物体組織と抽出に用いる酸および溶解する水の3者間の重量濃度比を最適な範囲に設定して、効率よく抽出を行う必要がある。従来技術としては、動物体組織の1重量部に対する酸溶液重量比を20重量倍かつその酸溶液濃度は0.5Mとするもの(特許文献8参照)、酸溶液重量比を10倍〜100倍で濃度を0.1〜5Mとしているものがある(特許文献9参照)。
【0010】
上記の条件では、抽出時間を効率良く短時間で行う狙いから、酸溶液重量比を多くしているが、使用済酸溶液の処分が大変であり、量産するためには大きな課題であった。また、大量の酸と接触することにより、狙いとする分子量30万程度のγ鎖(約10万分子量のポリペプチド鎖であるα鎖が3本組み合って構成される三重らせん構造が、可溶化して水素結合でゆるく結合している状態)が解離してα鎖やさらに低分子量のコラーゲンペプタイドに分解されるため、分子量分布がばらつき、従ってコラーゲン溶液が不均一で純度が落ちる欠点も有していた。
【0011】
従来技術の精製段階では、塩析などにより所望のγ鎖を含む高分子量画分のものを沈殿させ、沈殿物を遠心分離して得られる固形分の脱塩のために透析や限外ろ過して純度を高める方法が用いられるが、抽出後の精製段階が複雑で、高純度コラーゲンは得られるもののその収率が低くなっている。
また、酸可溶性コラーゲンの抽出において、酸溶液に溶解しない不溶性固形物を少なくするために抽出時間を長くすると、γ鎖のα鎖への解離を促進してコラーゲン純度が低くなる。この不溶性固形物を再び酸溶液に投入して再抽出する方法もあるが(特許文献5参照)、得られるコラーゲンは、同じく純度が低くなり、再抽出の目的に適うものとは言い難い場合がある。
以上に説明したように、従来の抽出条件では必要な精製・濃縮工程を考慮すると量産上経済的に問題を有しており、純度の高いコラーゲンを安定的に低コストで抽出、精製する条件や方法の改良が求められている。
【0012】
また、動物の体組織から分離される動物蛋白質の市場についてみると、γ鎖を含有するコラーゲンの市場は高価だが需要量は多くなく、一方α鎖を主成分とするゼラチンやさらに低分子量のコラーゲンペプタイドの市場は比較的安価だが需要量は多い。
ゼラチンの製造方法は、通常、動物の体組織を温水浴に漬けてγ鎖を分解してα鎖としてゼラチンを得る。また、コラーゲンペプタイドの製造方法は、上記γ鎖を分解した反応溶液の抽出液に蛋白分解酵素を添加して、さらに低分子量の蛋白質を抽出し、その抽出液を精密ろ過や限外ろ過を用いて所望の分子量のコラーゲンペプタイドを得る。従って、ゼラチンおよびコラーゲンペプタイドの製造方法は、コラーゲンの製造方法に比べて、抽出工程だけでなく、精製・濃縮工程でも異なる方法が採られている。
これらの点から、γ鎖を含むコラーゲンの他に、α鎖を主成分とするゼラチンないしはさらに低分子のコラーゲンペプタイドを同一の原料や同一の設備を用いて製造できれば設備コストを安くでき、精製プロセスを兼用して、目的とする動物蛋白質に対応して精製条件の変更などが行える製造方法の開発が求められている。
【0013】
【非特許文献1】
JISK6503−1996「にかわおよびゼラチン」
【非特許文献2】
日本にかわ・ゼラチン工業組合、「にかわとゼラチン」、丸善出版、昭和62年1月(p.133〜p141)
【特許文献1】
特開平7−247465号公報(第3頁)
【特許文献2】
特公昭46−15033号公報(第3頁)
【特許文献3】
特開2000−50811号公報(第2頁)
【特許文献4】
特開2000−256398号公報(第6頁)
【特許文献5】
特開2001−200000号公報(第5−7頁)
【特許文献6】
特公昭44−11037号公報(第1−2頁)
【特許文献7】
特公昭44−1175号公報(第1−2頁)
【特許文献8】
特開平5−93000号公報(第2−3頁)
【特許文献9】
特開平11−246598号公報(第3頁)
【0014】
【発明が解決しようとする課題】
本発明は、このような従来技術の問題点に鑑みてなされたもので、動物の体組織からコラーゲン、ゼラチン、コラーゲンペプタイドなどの蛋白質を製造するにあたり、収率や純度が高く、安価に生産できる製造方法を提供する目的でなされたものである。
【0015】
【課題を解決するための手段】
本発明は、動物の蛋白質を含む組織および/または動物の皮からなる動物の体組織を原料とし、該原料に含有の蛋白質の抽出に供する前処理を行う前処理工程と、該前処理を施した原料を、酸溶液または酸性プロテアーゼ溶液に浸漬して、酸可溶性蛋白質を可溶化、溶解させ、上記酸可溶性蛋白質を主成分とした抽出液を得る抽出工程と、該抽出液を濃縮して上記酸可溶性蛋白質を精製する精製・濃縮工程とを備えた動物蛋白質の製造方法において、上記抽出工程における酸溶液または酸および酸性プロテアーゼ溶液を、酸溶液濃度0.3M〜2Mとし、かつ抽出に供する原料との酸溶液重量比を1.5〜10倍とすることを特徴とする、動物蛋白質の製造方法に関する。
次に、本発明は、動物の蛋白質を含む組織および/または動物の皮からなる動物の体組織を原料とし、該原料含有の蛋白質の抽出に供する前処理を施す前処理装置と、該前処理を施した原料を、重量比が1.5〜10倍で、濃度が0.3M〜2Mである酸溶液または酸性プロテアーゼ溶液に浸漬し、酸可溶性蛋白質を主成分とした抽出液を得る抽出装置と、該抽出液を限外ろ過に投入して、該限外ろ過の循環液を濃縮して上記酸可溶性蛋白質を精製する精製・濃縮装置とを備えた、動物蛋白質の製造装置に関する。
【0016】
【発明の実施の形態】
本発明に用いられる原料の動物体組織としては、牛、豚などの陸生動物や魚、鮫、鮭、鯨などの水生動物の骨、皮などが挙げられ、陸生動物では他にじん帯またはけんなどが挙げられるが、これらに限定されるものではない。
コラーゲン、ゼラチンやコラーゲンペプタイドの抽出に供する原料は、通常、予め粉砕あるいはミンチ状にホモジネートする。動物の皮の場合は、ミンチ状にホモジネートするか、あるいは5mm角〜50mm角前後に細断しておく場合もある。
【0017】
動物の皮を原料として、動物蛋白質を抽出、精製・濃縮する場合、皮そのものを原料として抽出に供する場合もあるが、皮を構成する真皮層と表皮とを分離して、コラーゲンを多く含有する真皮層を抽出工程に供するのが一般である。
動物の皮から真皮層を剥ぎ取る方法は機械的、物理的に剥ぐ方法などあるが、本発明では、動物の皮を短い時間の間、温水に浸漬して、表皮と真皮層の組織間の結合力を弱め、効率的に真皮層を分離することができる。
【0018】
陸生動物由来の皮を用いる場合は、好ましくは40〜70℃、さらに好ましくは50〜60℃の温水に1分間〜10分間浸漬する。水生動物由来の皮の場合は、好ましくは30〜60℃、さらに好ましくは40〜50℃の温水に、好ましくは1〜10分、さらに好ましくは3〜5分浸漬することで、真皮層が容易に表皮と分離し易くなる。上記温度範囲は、組織間の結合を弱めるのに充分な高温であり、かつ蛋白質の熱変性が許容できる程度の温度範囲である。なお、浸漬時間は、真皮層中心部では熱変性が生じない程度の時間が好ましい。
真皮層を分離するには、上記温水浸漬後に手作業で表皮を剥離することも可能であるが、浸漬、水洗後、凍結させ、例えば、スライサー(田崎製作所製AC−300)などにより行うことができる。
なお、脱脂・脱臭工程前に真皮層を分離せずに、動物の皮そのものを用いて下記アルカリ浸漬を高温寄りで行った後に真皮層を分離すると、表皮と真皮層が分離し易くなる。
【0019】
本発明の前処理工程は、原料の脱脂・脱臭を施す脱脂・脱臭工程を含み、例えば、脱脂・脱臭工程として原料の油脂分や臭い成分、さらには水溶性蛋白質を除去するために、メタノール浸漬、エタノール浸漬、アルカリ浸漬、酸溶液浸漬、塩漬けやさらに界面活性剤、有機溶媒処理など幾つかの工程を含んでも良いが、アルカリ処理工程を含んでもよい。
なお、メタノール浸漬、エタノール浸漬は、有機溶媒処理に含まれる場合もある。
【0020】
アルカリ浸漬に使用するアルカリ剤としては、石灰、生石灰や水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。
アルカリ浸漬は、原料の2倍重量以上、好ましくは2〜20倍重量のアルカリ水溶液に漬け、pHを10以上、好ましくはpH10〜13に保って行う。アルカリ水溶液の濃度は、用いるアルカリ剤の種類によっても異なるが、通常、0.001〜5重量%、好ましくは0.01〜1重量%程度である。なお、石灰を用いて飽和沈殿状態で行うとpH管理が容易となる。
密閉状態で浸漬処理することも可能であるが、適宜、液交換や爆気、あるいはまた攪拌することで、油脂分の除去と共に臭い成分の除去が効率的に行える。
浸漬温度は、陸生動物由来の原料の場合は、好ましくは0〜40℃、さらに好ましくは5〜20℃、熱変性温度が低い水生動物由来の原料の場合は、好ましくは0〜30℃、さらに好ましくは0〜10℃である。浸漬期間は40℃の場合で好ましくは1〜3日、さらに好ましくは1〜2日であり、保持温度が40℃から10℃下がる毎に浸漬期間を2倍以上とすることが好ましい。
なお、脱脂・脱臭の浸漬処理する装置は、上記の温度範囲で温調できる付加設備を備えていることが望ましく、あるいはまた原料、浸漬液、装置を含む部屋全体を温調することが好ましい。
上記アルカリ浸漬された材料は、アルカリ溶液をデカント、ろ過、遠心分離などにより固液分離した後、必要に合わせ、適宜水洗など洗浄して、次の工程にかけられる。また、前処理を施した材料は、必要に合わせ、さらに細かく粉砕あるいは細断して、次の工程である抽出の効果を高めるのが望ましい。
【0021】
本発明の前処理工程においては、水溶性蛋白質、油脂、臭い成分などの除去のための脱脂・脱臭工程、および/または皮から真皮層を取り出す皮剥離工程を含み、これらの工程は、抽出工程の前段に設けることが好ましいが、抽出工程と精製・濃縮工程との間に設けることも可能である。
また、プロセス上の制約、都合などで、工程の異なる複数の工場を用いて、前処理工程、抽出工程、精製・濃縮工程を行う場合もある。この場合、各工程間を材料の熱変性防止や運搬費用の削減などの観点から凍結固化、解凍など付加的な工程が追加されるが、本発明はこのような場合にも同様に使うことができる。すなわち、本発明は連続生産プロセスでもあるいは分散生産プロセスでもよい。
【0022】
通常、動物蛋白質の残留油脂分や臭い成分(例えば残留アンモニア濃度)の許容限界値は、使われる製品用途により変わるが、調味料用途を除いた、実験、医療、化粧液、リンス、トリートメントや工業用途では、精製後に含まれる蛋白質の残留油脂分を0.1%以下(ドライ重量比)、残留アンモニア濃度を2ppm以下(ドライ重量比)にすることが望まれる。
本発明は、上記前処理工程により、原料の素性にもよるが、残留油脂分を0.1%以下(ドライ重量比)にし、なおかつ残留アンモニア濃度を1ppm以下(ドライ重量比)にすることが可能になる。
【0023】
本発明の抽出方法では、酸可溶性コラーゲンおよび酸性プロテアーゼ可溶性コラーゲンを主な対象とする。ここで、酸性プロテアーゼ可溶性コラーゲンとは、酸溶液下でペプシンなどの蛋白分解酵素のプロテアーゼを添加してγ鎖の分子末端のテロペプチド部分を可溶化させて得られるゼラチンおよびコラーゲンペプタイドを含むものである。本発明では、特に区別が必要でない限り、総称して酸可溶性コラーゲンと呼ぶ。
【0024】
酸溶液としては、酢酸、クエン酸、乳酸などの有機酸の他に、塩酸、硫酸などの無機酸が挙げられる。
酸性プロテアーゼとしては、動物胃粘膜由来のペプシンの他、工業用として市販されている酸性プロテアーゼ〔天野エンザイム(株)製商品名ニューラーゼ、キッコーマン(株)製商品名モルシンF、(株)ヤクルト製商品名プロテアーゼYP−SSなど〕が挙げられる。
【0025】
本発明の抽出工程では、動物の体組織、抽出に用いる酸および溶媒として使用する水の3者間の重量濃度比、すなわち材料に対する酸溶液または酸および酸性プロテアーゼ溶液の重量比と酸の濃度を最適な範囲に設定して、効率よく抽出を行うことが好ましい。
本発明では、材料に対し好ましくは1.5倍〜10倍の重量比、さらに好ましくは2〜8倍の重量比で、酸溶液濃度を好ましくは0.3M〜2M、さらに好ましくは0.5〜2Mとする。この範囲内において、γ鎖含量が高く純度が高い酸可溶性コラーゲンが得られ、従って精製・濃縮工程においてコラーゲン純度が低い従来の抽出方法では必要とした塩析、沈殿、遠心分離、塩除去のための透析または限外ろ過工程などの複雑なプロセスを採らずに、精密ろ過または限外ろ過などのみでよいという利点もある。
また、本発明の抽出を行った後に、塩析・透析などの従来プロセスで精製・濃縮した場合も利点がある。本発明の抽出条件では、比較的簡単にγ鎖含量の高いコラーゲンが可溶化、抽出でき、塩析〜透析を何回も繰り返し行って、所望の純度のコラーゲンに精製・濃縮する従来プロセスに供した場合にも、その繰り返し回数を少なくすることができ、従って従来のコラーゲンの精製プロセスにおける製造コストが安く、高純度で高品質になる。
重量比が1.5倍未満では、原料が酸溶液に充分に分散せず、酸可溶性コラーゲンの抽出がうまく進行しない。一方、重量比が10倍を超えると、γ鎖が分解してα鎖に解離し易くなり、コラーゲン純度が落ちる。酸溶液濃度が0.3M未満であると酸濃度が薄く抽出が十分に行われない。一方、2Mを超えると、γ鎖の可溶化のみならず、γ鎖が分解してα鎖への解離が進行すると共に、酸溶液のpHが2.0以下になり易いので、抽出の後に行われる工程でpHを中性寄りに近づける調整が困難になる。
【0026】
酸性プロテアーゼの添加量は、抽出に供する原料基質の乾燥重量100gに対し、好ましくは0.1〜10g、さらに好ましくは0.8〜1.2gである。0.1g未満であると酸性プロテアーゼが十分に作用せず、一方、10gを超えると、テロペプチド切断反応のみならず、コラーゲンそのものの分解反応も平行して進行し、コラーゲン純度が落ちる。
抽出液として酸および酸性プロテアーゼ溶液を使用した場合の抽出条件も、上記酸溶液による抽出条件と同様である。
なお、本発明は、中性塩可溶性コラーゲンやアルカリ可溶性コラーゲンの場合にも同様に適用することができる。具体的には、中性塩可溶性コラーゲンの場合は、酸を中性塩に置き換え、またアルカリ可溶性コラーゲンの場合は酸をアルカリに置き換えればよい。
【0027】
本発明の抽出において、陸生動物由来の原料では、抽出温度を好ましくは0〜40℃、さらに好ましくは0〜35℃に保持し、水生動物由来の原料では抽出温度を好ましくは0〜30℃、さらに好ましくは0〜25℃に保持する。上記温度範囲未満では抽出が進まない。一方、上記温度範囲を超えるとコラーゲンの熱変性が起こり易くなる。
抽出時間は、好ましくは1日〜3日、さらに好ましくは2〜3日である。1日未満では抽出が不十分であり、一方、3日を超えるとγ鎖のα鎖への解離が進み、その結果純度が低下する。
なお、抽出容器を含む抽出装置および酸溶液タンクなどの付帯装置は、上記の温度範囲で温調できる付加設備を備えていることが望ましく、あるいはまた原料、溶液、装置を含む部屋全体を温調することが好ましい。
なお、可溶化、抽出したコラーゲンは3本のポリペプチド鎖の分子鎖間が水素結合で結ばれている緩い結合なので、高い純度のコラーゲンを抽出したい場合は特に、抽出温度は前処理工程での保持温度よりも5℃以上下げて、抽出時の酸可溶性コラーゲンの熱変性によるα鎖への解離(ゼラチン化)を極力起こさせないようにするのが望ましい。材料を細かく粉砕あるいは細断して、抽出効果を高くする目的と両立することも可能となり、微細化、微粉化の副作用として懸念される、熱変性の恐れや分子量分布のバラツキ拡大の可能性を、低減、抑えることができる。
【0028】
また、抽出日数の短縮を目的に、上記条件の抽出工程においては、抽出条件に高温加熱抽出を付加することも可能である。加熱温度は好ましくは50℃〜150℃、さらに好ましくは80〜100℃、加熱時間は好ましくは1分〜10分、さらに好ましくは1〜2分である。数分程度の時間のため、大きな熱変性も起こさせず、純度の低下も余り起こさせずに酸可溶性コラーゲンの抽出ができる。時間が1分未満では、可溶化、溶解が行われずに、残留する抽出残さが多くなり、一方、時間が10分を超えると、熱変性が促進され、γ鎖のα鎖への解離、あるいは更に低分子蛋白質への分解が促進され、目的とするコラーゲンの抽出には適合しなくなる。
例えば、数Kg程度の水生動物由来の原料を用いて、酸溶液あるいは酸性プロテアーゼ溶液中にて保持温度0〜40℃で、仮に3日間かけて浸漬して抽出処理する場合を想定すると、始めの1〜2日間は0〜40℃で浸漬するが、この浸漬期間の間に粉砕原料内の組織が緩い結合になり、更なる微細化、微粉化が進み、また原料の単位重量当たりの酸溶液との接触する表面積が大きくなるので、残りの浸漬温度と時間を、例えば、100℃で5分間程度のフラッシュ的な加熱を与えることで、蛋白質コラーゲンの可溶化、溶解が促進され、かつ変性が少なく行うことができる。
酸性プロテアーゼ溶液を用いて、供試原料から蛋白質コラーゲンを抽出する場合、プロテアーゼである蛋白分解酵素は一般に60℃以上で死活し、60℃以上に浸漬温度を上げると、プロテアーゼによる抽出効果は低下するが、短時間のフラッシュ加熱を付与するもので、抽出工程の後半に付加することと併せ、大きな影響は受けにくい。
なお、ビーカ試験レベルではあるが、数g程度の原料を用いて、予めペースト状に0.1mmオーダ以下に微細化した原料を、抽出処理に供する場合は、100℃で数分程度の加熱浸漬を直接行っても、γ鎖を含有した蛋白質が可溶化、溶解し、抽出できることを確認している。これは、ペースト状に微細化することで、上記説明の抽出前半での作用、効果と類似の作用が予め与えられ、かつ原料の重量、容積が少ないので加熱付与が、酸溶液および、酸溶液中に分散する微細な原料に、均等にバラツキ少なく行われるためと理解できる。
【0029】
また、本発明の抽出工程では可溶化しないで残留する不溶性固形物、いわゆる抽出残滓が少なからず発生する場合がある。このような不溶性固形物を少なくし、かつ可溶化が均一に行われるように、抽出に供する材料はミートチョッパーなどで予め粉砕しておくことが好ましい。粉砕物の最大長は、好ましくは1cm以下、さらに好ましくは2mm以下である。原料の粉砕、微細化の加工時に、加工熱を発生させない、あるいは供試原料に加工熱を伝達しにくくするのが望ましく、冷却しながら行うのが好ましい。発熱を与えないようにすれば、ペースト状の0.1mmオーダ以下に粉砕、微細化しても良い。また、製造コストは上がるが、原料を予め凍結乾燥して微粉砕し、抽出処理に供することもできる。
本発明の酸溶液重量比と濃度の組合せの範囲内では、上記粉砕処理をしておけば、抽出残滓が少なく、かつ高収率、高純度で酸可溶性コラーゲンを得ることができる。
また、抽出操作において、原料を酸溶液または酸および酸性プロテアーゼ溶液に浸漬して、攪拌や振盪(しんとう)を伴う抽出容器を用いるのが望ましく、原料と酸溶液の混合物を攪拌や振盪しながら、粉砕物原料と溶液の分散、浸透を均等に行わせ、粉砕原料からの酸可溶性蛋白質の可溶化、溶解が、抽出容器内での場所的なムラ、バラツキが少なく均等に図られるように、抽出操作をすることが好ましい。ここで、攪拌としては、機械式攪拌のほかにエア攪拌などが挙げられ、比較的抽出処理容量が少ない場合は、抽出容器全体をシェイクして振盪する方法もとることができる。
【0030】
なお、上記好ましい抽出条件では、抽出液中の酸可溶性コラーゲンの濃度が高く抽出液粘度が高くなるため、抽出液からの不溶性固形物である抽出残さのろ過や精製・濃縮工程において取り扱い性にやや劣るが、抽出に使用する酸溶液を従来実施例のように予め多くして溶液粘度を低くすると、得られるコラーゲンの純度が低下する。溶液粘度の高い抽出液の取り扱い性を改善するためには、抽出液からの抽出残さのろ過の段階や精製・濃縮工程において、必要に応じ中性に近い弱酸性溶液を添加すればよい。なお、精製・濃縮工程において弱酸性溶液を添加しても、精製・濃縮工程は抽出工程に比べて短時間であり、さらに添加する弱酸性溶液は粘性の適正化が目的であるので中性に近くてもよいため、コラーゲンのγ鎖からα鎖またはコラーゲンペプタイドへの解離は余り促進されない。また後の製品用途を考えると、酸可溶性コラーゲンはできるだけ中性寄りに近い弱酸性が望まれるので、本発明の上記製造方法は製品用途上も都合が良い。
抽出での不溶性固形物である抽出残さを、得られた抽出液から、次の工程の精製、濃縮に掛ける前に、予め除去するのが望ましく、固液分離の方法として通常用いられる、デカント、ろ過、減圧ろ過、遠心分離などが挙げられる。本発明では、限外ろ過方式を用いた精製、濃縮を行うので、限外ろ過膜の目詰まり防止の為にも、抽出残さを生じにくくさせる前処理工程、抽出工程での条件の設定と共に、発生した抽出残さのろ過、除去には、十分に注意するのが望ましい。
このように、本発明は、酸可溶性コラーゲンが高純度・高品質でかつ高収率で抽出、精製が容易にでき、高い生産性を得ることができる。
【0031】
上記の抽出方法により得られた酸可溶性コラーゲン溶液から、コラーゲンを精製するために、本発明では限外ろ過処理を行なう。
抽出した酸可溶性コラーゲン溶液は、酸溶液とこれに可溶化、溶解したコラーゲンに加えて、少なからずゼラチンやコラーゲンペプタイドを含むので、上記限外ろ過に分画分子量を30,000〜100,000とする限外ろ過膜を用いると、分子量30万のγ鎖を多く含むコラーゲンが透過されずに循環液側で濃縮でき、また透過液より分子量10万のゼラチンおよび分子量10万以下のコラーゲンペプタイドの混合物を得ることができる。また、分画分子量が5,000〜30,000の限外ろ過膜を用いて限外ろ過すると、コラーゲンやゼラチンが透過されずに循環液側で濃縮でき、透過液よりコラーゲンペプタイドを得ることもできる。
【0032】
本発明の限外ろ過工程においては、精製・濃縮工程が、抽出液を限外ろ過装置にかけ、限外ろ過膜を透過しない酸可溶性蛋白質を含む残留液を必要に応じて濃縮して循環液として循環させ再度限外ろ過するものであってもよい。このように残留液を循環させることにより、連続的に濃縮することが可能となるという効果が得られる。
【0033】
循環液を循環させる場合、予め循環液中の酸可溶性蛋白質の濃度(循環液の粘度)を適正な上限以下に調整することが望ましい。適性な上限は、使用する限外ろ過膜が作動可能な透過抵抗の範囲、ろ過膜の目詰まりの起こりやすさ、使用する循環液の循環ポンプ(送液ポンプとも呼ぶ)の性能などを考慮して選択できる。
調整は、抽出液との混合手段や、下記循環液の総量制御のための弱酸性溶液添加手段を使用することもできる。なお、上記循環液中の酸可溶性蛋白質の濃度(循環液の粘度)の検知および/またはその調整は、間欠的に行なってもよく連続的に行なってもよい。
【0034】
本発明の限外ろ過方式を採る精製・濃縮工程では、抽出液中の酸溶液が限外ろ過膜を透過して透過液として排出されるため、動物蛋白質を循環液側で濃縮して純度を上げる操作を継続すると循環液側の酸溶液が少なくなる。しかしながら、精製、濃縮の操作上、循環液は一定の総量を保持することが望ましく、また循環液のpHは、後の製品用途を考えると、できるだけ中性寄りに近い弱酸性が望まれる。
このため、本発明では、循環液の総量を検知する総量検知工程と、抽出液とは独立して、精製・濃縮工程の直前に行われた工程で用いた酸溶液よりpHが中性に近い弱酸性溶液を循環液に添加する弱酸性溶液添加工程を有し、循環液の総量を所定の範囲に維持、制御することが好ましい。上記総量検知および/または弱酸性溶液添加は、連続的に行なっても間欠的に行なってもよい。これらの工程を有することにより、循環液中での動物蛋白質の濃縮と同時に濃縮後の循環液のpHを弱酸性状態にすることができる。
総液量の検知手段として具体的にはレベル計が挙げられる。弱酸性溶液添加手段としては弱酸性溶液補充タンクが挙げられる。
【0035】
また、本発明の精製・濃縮工程においては、循環液に含有される酸可溶性蛋白質の濃度、酸可溶性蛋白質の純度、循環液の粘度、および循環液の密度の群から選ばれた少なくとも1種を検知する工程とを有し、循環液の循環を制御し、目的とする純度となった時点で精製操作を終了することが好ましい。
酸可溶性蛋白質の濃度や純度の検知には、循環液に含有される酸可溶性蛋白質の濃度や純度を直接検知してもよく、また循環液の粘度や密度を検知して、循環液中に含有される酸可溶性蛋白質の純度を換算推定することもできる。循環液の循環の制御は、抽出液との混合操作、循環液の圧力(循環液の排出口、流入口の液圧差)の調整などにより行うことができる。上記要素の検知および循環制御は、連続的に行なっても間欠的に行なってもよい。なお、製品の製造ロット毎のデータと参照しながら精製・濃縮工程の制御精度、安定性を高めることは当然である。
酸可溶性蛋白質の濃度の検知手段としては、紫外線吸収測定機、示差屈折率検出器、光散乱検出器などが挙げられる。酸可溶性蛋白質の純度の検知手段としては、旋光度計(例えば堀場製作所製SEPA−200)、円二色性測定装置などが挙げられる。循環液の粘度の検知手段としては、回転式粘度計、落球式粘度計などが挙げられる。循環液の密度の検知手段としては、振動式密度計、浮ひょう式比重計などが挙げられる。
【0036】
なお、循環液中の酸溶液が弱酸性溶液に置換されるに伴い、循環液中の酸可溶性蛋白質も所望の純度レベルに精製・濃縮され、溶液の酸性度と純度とは互いに高い相関関係を示す。そのため、循環液のpHまたは電気伝導度が変化して一定になることを検知するためpH計または電気伝導度計を用いることにより、動物蛋白質の純度の換算、推定ができる。上記換算、推定は、動物蛋白質の製造量がロット毎で同一の場合は特に、限外ろ過の開始からの時間変化に応じて得られた製品の純度データと参照することで行うことができる。
これら検知手段は、動物蛋白質の精製・濃縮装置にビルトインして、連続的に循環液の状態を検知、制御する装置の構成とすることが望ましいが、間欠的な循環液のサンプル抜き取り、計測による検知によっても、所望の目的に対して代用可能であれば、それでもかまわない。
【0037】
限外ろ過を用いた精製では、限外ろ過膜の目詰まりが量産上の大きな問題であり、この防止のために、不溶性残さのろ過、精密ろ過による抽出液からの分離、除去が一般に行われるが、本発明では、目詰まりによる精製・濃縮の運転操作の停止を回避する方法として、複数台の限外ろ過装置を設けて、各々の限外ろ過の循環液を連通させる構成をとることができる。この構成により、コンパクトで安価で、かつ目詰まりのし難いプロセスとすることができる。
各々の限外ろ過膜の分画分子量は、目的とする動物蛋白質により選択することができ同一でもあるいは異なっていても良い。
複数台の限外ろ過装置を使用する場合、全ての装置が同時に目詰まりを起こす頻度は少ない。また、一台の装置が目詰まりを起こした場合は、適宜循環液を短絡して残りの装置で運転し、その間に目詰まりを除去して復帰させることができるため、運転停止の必要が少なく連続大量生産には好適なプロセスとなる。
なお、目詰まりの検知は、限外ろ過装置の循環液投入口および循環液出口の圧力差を、各々検知しながら行うことが好ましい。
【0038】
また、限外ろ過膜の分画分子量が異なる限外ろ過を二段階で構成し、第一段には、分画分子量30,000〜100,000の限外ろ過膜、第二段には、分画分子量5,000〜30,000の限外ろ過膜を備え、第一段の限外ろ過で得られる透過液を第二段の限外ろ過の循環液に投入することで、第一段の循環液よりγ鎖を含むコラーゲンを、第一段の透過液、すなわち第二段の循環液よりα鎖を主成分とするゼラチンを、第二段の透過液よりα鎖よりさらに低分子量のコラーゲンペプタイドを生産することができる。ここで、第一段の限外ろ過への抽出液の投入および/または第二段の限外ろ過への第一段の透過液の投入は、間欠的に行なってもよく連続的に行なってもよい。
なお、コラーゲンペプタイドを多量に作る場合には、ゼラチンを多く含有する第一段の透過液および/または第二段の循環液に、蛋白質分解酵素を添加して加水分解する方法が挙げられる。
【0039】
精製、濃縮工程の保持温度は、抽出工程の保持温度と基本的に同じであり、陸生動物由来の原料では、好ましくは0〜40℃、さらに好ましくは0〜35℃に保持し、水生動物由来の原料では好ましくは0〜30℃、さらに好ましくは0〜25℃に保持する。また前処理工程での保持温度よりも5℃以上下げるのが好ましい。精製に供する抽出液や精製・濃縮装置は、上記の温度範囲で温調できる付加設備を備えていることが望ましく、あるいはまた抽出液、装置および精製した酸可溶性蛋白質溶液の保存漕、さらには精製後の後工程にて、必要に合わせて適宜使用される滅菌装置や乾燥装置、製品素材の保存庫および、これらを含む部屋全体を温調することが好ましい。
【0040】
酸溶液または酸性プロテアーゼ溶液に溶解しない不溶性固形物が発生する場合があるが、本発明においては、上記不溶性固形物からは加水分解性のゼラチンおよびコラーゲンペプタイドを温水浸漬にて抽出することができる。
また、得られる動物蛋白質の製品市場の見地からは、コラーゲンの需要量は少ないが、ゼラチンやコラーゲンペプタイドの需要量は多いので、酸可溶性蛋白質の抽出において不溶性固形物が残留する程度に留め、積極的に残留した不溶性固形物を温水浸漬してゼラチンやコラーゲンペプタイドを多量に抽出、精製した方が生産上都合が良い場合もある。
【0041】
あるいはまた、脱脂・脱臭を含む前処理を施した原料を、予め二つの群に分け、一つの群は酸溶液または酸および酸性プロテアーゼ溶液に浸漬して得る酸可溶性蛋白質の抽出、精製に供し、また他の一つの群は、上記酸抽出の不溶性残さと共に、温水に浸漬して抽出、精製を行い、加水分解性のゼラチンやコラーゲンペプタイドを得るように、生産配分し、なおかつ、抽出や精製・濃縮に用いる装置、設備は、両者で兼用、共用する製造プロセスをとることもできる。
【0042】
なお、本発明では、温水浴に浸漬して加水分解により抽出したゼラチン、コラーゲンペプタイドを、酸溶液または酸および酸性プロテアーゼ溶液に浸漬して得られる酸可溶性蛋白質のコラーゲン、ゼラチン、コラーゲンペプタイドと区別するため、温水浸漬により得られる動物蛋白質を温水可溶性蛋白質と呼ぶ。
例えば、上記酸可溶性蛋白質の抽出液からデカント、ろ過、遠心分離などで単離した不溶性固形分、および/または脱脂・脱臭処理を含む前処理を施した原料を、必要に応じて適宜洗浄してから、温水浴に温水浸漬し、温水可溶性蛋白質を可溶化、溶解し抽出する。温水抽出の温度は、陸生動物由来の原料では好ましくは50℃〜100℃、さらに好ましくは80〜90℃、水生動物由来では好ましくは40℃〜100℃、さらに好ましくは80〜90℃である。温水抽出時間は、好ましくは1〜20時間、さらに好ましくは2〜5時間である。
温水浸漬して得られる温水可溶性蛋白質の抽出液を、分画分子量5,000〜30,000の限外ろ過膜を備えた限外ろ過装置に投入することにより、限外ろ過膜を透過しないゼラチンおよびろ過膜を透過するコラーゲンペプタイドをそれぞれ精製することができる。なお、上記と同様に、限外ろ過膜を透過しない温水可溶性蛋白質を含む残留液を濃縮して循環液として循環させ再度限外ろ過し、循環液よりゼラチンを、透過液よりコラーゲンペプタイドを得ることもできる。
【0043】
また、温水抽出時にプロテアーゼを添加して加水分解し、積極的にコラーゲンペプタイドを得ることも可能である。プロテアーゼとしては、既述の酸性プロテアーゼのほか、中性プロテアーゼ、アルカリプロテアーゼも使用可能で、例えば天野エンザイム(株)製商品名プロテアーゼアマノ、合同酒精(株)製商品名GOLD−BNP、新日本化学工業(株)製商品名スミチーム、大和化成(株)製商品名プロチン、同デスキン、同サモアーゼ、エイチビイアイ(株)製商品名オリエンターゼ、(株)ヤクルト製商品名パンチダーゼ、ノボザイムス(株)製商品名PNT、同ノボザイム、ナガセケムテックス(株)製ビオプラーゼなどが挙げられる。プロテアーゼの添加量は、基質の乾燥重量100gに対し、好ましくは0.1〜10g、さらに好ましくは0.8〜1.2gである。加水分解条件は、基質濃度は水溶液中に好ましくは0.1〜50重量%、さらに好ましくは1〜30重量%である。蛋白分解酵素プロテアーゼの活性を過剰にさせない目的と、また酵素は一般に60℃以上で死活するので、上記のプロテアーゼを添加しない単純な温水抽出時の温度よりも低めに制御するのが望ましく、純度や分子量分布のバラツキなど品質を高める目的で、温度は好ましくは10〜60℃、さらに好ましくは25〜50℃であり、時間は好ましくは1〜50時間、さらに好ましく2〜10時間である。
【0044】
上記のとおり、温水可溶性蛋白質の抽出は、酸可溶性蛋白質の抽出と比べると、抽出に用いる酸溶液の代わりに温水を用いて原料を浸漬し、可溶化、溶解するので、抽出容器や装置は新たに付設しても、あるいは、酸可溶性蛋白質の抽出容器、装置と兼用、共用してもよい。兼用、共用する場合は、抽出容器に供給する酸溶液の貯蔵タンクを温水供給タンクに切り替えて使用してもよいが、望ましくは酸溶液貯蔵タンクの他に温水供給タンクあるいは温水供給源を別に付設しておくのが望ましい。
【0045】
また、温水浸漬して得られる抽出液の精製・濃縮に用いる限外ろ過装置は、装置仕様的に、上記の酸可溶性蛋白質のゼラチン、コラーゲンペプタイドの精製、濃縮に用いる限外ろ過膜、装置と、同一であるので、温水可溶性蛋白質を精製、濃縮する設備は新たに付設しても、あるいは、酸可溶性蛋白質の精製に供する限外ろ過装置と兼用、共用してもよい。これらは生産上、製造コスト上の都合で判断される。
【0046】
このようにすることで、例えば、前処理を施した原料を二つの群に分け、一つの群の原料を、まず酸可溶性蛋白質の抽出、精製の製造に供し、用いた装置を水洗、洗浄してから、上記酸抽出液から分離、回収した不溶性残さおよび/または他の一つの群の原料を用いて、次に温水可溶性蛋白質の抽出、精製の製造に供するプロセスをとることができ、生産コスト上、都合がよい。なお、酸可溶性蛋白質の抽出液から固液分離して得られる不溶性残さは比較的少量なので、低温で回収、保存して、生産ロット毎の不溶性残さが蓄積した時点で、まとめて温水浸漬し、温水可溶性蛋白質の抽出と精製・濃縮を行うことも当然考えられる。
【0047】
本発明の酸可溶性コラーゲン溶液の精製・濃縮装置の一例を図1に示す。図1において、精製・濃縮装置10は、限外ろ過装置1に限外ろ過膜を備えており、循環液供給タンク2に投入された抽出液は、送液ポンプ5により限外ろ過装置1に流入し、絞り4による送液抵抗の付与により、限外ろ過された透過液11が回収され、透過されないコラーゲン含有溶液は限外ろ過装置1を通過して適宜濃縮され、循環液12となり循環液供給タンク2に循環される。循環液供給タンク2中の循環液の総量はレベル計6により検知され、必要に応じて弱酸性溶液添加タンク3より弱酸性溶液13が循環液供給タンク2へ投入される。
【0048】
コラーゲンの純度目安として、電気泳動法を用いた分子量分布の測定において、少なくとも、γ鎖の30万分子量に相当する位置にバンドがあることがコラーゲンの判定基準として一般に用いられる。
また物性的には、旋光物質をNaD線が通過する時の偏光面の回転角度(いわゆる比旋光度、理化年表、物理化学部、物102,1980年)が、コラーゲン溶液の場合は負方向に生じ、ゼラチン溶液よりも負方向の角度が大きくなることを利用して、コラーゲンの純度を分子量分布に加えて、比旋光度で評価する場合もある。本発明では、比旋光度[α]20 が−360°より負方向に大きい場合を、純度の高いコラーゲンの目安に考えている。
【0049】
上記の精製、濃縮された酸可溶性蛋白質溶液および温水可溶性蛋白質溶液は、製品用途や保存の必要度などに合わせて、殺菌、除菌の工程を伴う場合もあり、また液状保存や乾燥保存などの形態を、適宜とる。また、細胞培養などの生化学バイオ分野や医薬カプセル用途では精製された動物蛋白質のアレルゲン除去も併せて行う場合がある。食用や医療用の用途では、衛生管理の上から、無菌室にて行う場合もある。
除菌、滅菌としては、0.2μm程度のフィルターろ過が一般であり、また殺菌を目的にした紫外線照射、γ線などの放射線照射の方法もある。
液状で保存する場合は、希有機酸や希無機酸で適宜希釈して、コラーゲン溶液の場合は、0.005%〜1%程度の濃度状態で、通常、保存する。化粧品用途では、コラーゲン濃度0.1%程度で、グリセリンを添加してγ鎖間の会合防止と保湿性向上を図る場合がある。
ゼラチンは一般に乾燥保存されるが、コラーゲンの場合も長期保存が必要な場合は、品質劣化や菌増殖の恐れが少ない乾燥処理をとる場合がある。乾燥方法としては、凍結乾燥やスプレードライ法がある。スプレードライ法では、溶液濃度10%程度の溶液から粉末化する方法も知られており、減圧蒸気下で行うなどの熱変性を避ける工夫を加えれば、凍結乾燥に比べ、生産効率が良い。また、溶液を押し出し法を利用して、多列のペレット状、ヌードル麺状に押出し、表面積を大きくして、効果的に乾燥する方法もとることができる。
【0050】
最終製品の用途としては、動物蛋白質の幾つかの特性を利用して、医薬品、医療品、化粧品、リンス、トリートメント、健康食品、調味料、工業用途など多くの用途に使うことができる。例えば、医薬、医療用としては、消化管粘膜保護作用、骨形成促進作用、血圧上昇抑制作用、発育、免疫能向上作用などがあることが知られ、胃潰瘍出血予防、骨粗鬆症や高脂血症予防などを目的とした医薬品や健康食品に用いることができる。化粧品用途では、保湿作用を利用した皮膚の美容促進効果を目的に、また化粧品の一部のリンス、トリートメント用途では、頭皮、頭髪の保水、保湿性効果と併せ、高粘性を利用した起泡性効果を目的に使うことができる。
【0051】
【実施例】
以下、実施例を挙げて本発明の効果を詳細に説明するが、本発明はこれらに限定されるものではない。
【0052】
参考例1
原料としてサメ生皮6.0kg〔湿重量、水分83%、油脂分0.4%、アンモニア88ppm(油脂分、アンモニアはドライ重量比)〕を、pH11.5の石灰液12kgに5℃で保温して3週間アルカリ浸漬した。石灰液のpHはpH計(堀場製作所(株)製カスタニーLAB−F20 II)により毎日計測し、適宜石灰または水を加えることにより11.5に保ち、浸漬期間中は毎日液交換を行った。浸漬後、サメ皮を水洗した後、凍結させ、スライサー(田崎製作所(株)製AC−300)にて表皮を剥いで、サメ皮の真皮層1.11kg(水分含有量86.3%)を得た。
【0053】
参考例2
参考例1と同様の原料および石灰液を使用し、同様の温度、期間にて浸漬を行ない、サメ皮の真皮層1.05kg(水分含有量85.7%)kgを得た。浸漬期間中はpH調整のみで、参考例1と異なり密閉して液交換は行わなかった。
【0054】
参考例3
参考例1と同様の原料を使用し、pH4.0の酢酸溶液を使用して、同様の温度、期間で浸漬を行ない、サメ皮の真皮層2.12kgを得た。pHはpH計(堀場製作所製(株)カスタニーLAB−F20 II)により計測し適宜水または酢酸を添加することによりpH3.9〜4.1の範囲に保ち、浸漬期間中はpH調整のみで、密閉して液交換は行わなかった。
【0055】
参考例1〜3で得られた真皮層に含まれる残留油脂分、残留アンモニアを測定し、結果を表1に示した。
なお、残留油脂分量の測定は、熱塩酸処理後のヘキサン抽出物重量を測定することにより行った(上記非特許文献1参照)。残留アンモニア量の測定は、皮から過塩素酸により抽出して得られた溶液について、Russelの方法により比色定量行った(菅原・副島著、「蛋白質の定量法」、学会出版センター、東京、1971年9月、p.51−52参照)。
油脂分は、参考例1,2のアルカリ浸漬の方が参考例3の酸浸漬より減少効果が大きかった。特に、参考例1で液交換しながらアルカリ浸漬を行うと、21日目で0.09%まで減少した。アンモニアも、参考例1では20.5ppmから2.9ppmまで減少した。同様の効果は参考例3の酸浸漬でも見られ(20.5ppmから3.1ppm)、長期浸漬が脱臭作用も持つことが示されたが、脱脂の面では効果が少かった。また浸漬処理後のサメ皮の乾燥重量では、アルカリ浸漬がいずれも98%だったのに対し、酸浸漬では65%と低下しており、浸漬液に既に溶解していることが判る。
なお、アルカリ漬けで爆気を追加して行うことは十分可能であり、この場合には、請求項の範囲の下限に近い日数で行えることを確認した。
【0056】
【表1】

Figure 2004300109
【0057】
実施例1
図2(A)に例示する本発明の動物蛋白質の一例である製造工程を用い、コラーゲンを製造した。
すなわち、参考例1と同様の原料を使用してアルカリ浸漬後、サメ皮の表皮を剥いで、サメ皮の真皮層1.11kgを得た。得られた真皮層1.11kg(湿重量)の水分含有量は86.3%であり、油脂分は0.1%へ、アンモニアは2.2ppmまで減少していた(いずれもドライ重量比)。これにより、残留油脂分は目標(0.1%以下)を達成し、アンモニア残留分も目標(2ppm以下)にほぼ近づいた。
得られた真皮層をミートチョッパー(日本キャリア工業製#22GM−D)にて最大2mm角程度に粉砕した。抽出は、30L容積の攪拌式容器を用い、粉砕物1.11kg(湿重量)に、0.5M酢酸水溶液8.88kg(真皮層重量に対し8倍量)、ペプシン(ブタ胃粘膜由来、シグマ社製)1.52g(真皮層固形分乾燥重量に対して1%)を添加し、4℃で120回転/分、3日間攪拌して酸可溶性コラーゲンの抽出液9.98kgを得た。なお、得られた抽出液中の固形分乾燥重量は、抽出操作前の、アルカリ浸漬後の真皮層の乾燥重量を100%としたとき98%であり、抽出液固形分に含まれる残留油脂分は0.1%、アンモニアは1.4ppmであった(いずれもドライ重量比)。
得られた抽出液は粘性が高く不溶性残さの測定には不向きなので、100gを採りだし、この抽出液へ、粘度が高いため透過抵抗を低くするために1mM酢酸500gを加え、ろ紙〔アドバンテック東洋(株)製No.5A、2枚重ね〕にて不溶性残さを減圧ろ過した。不溶性残さはほとんどトレースのみであった。pHは2.6程度であった。
【0058】
同じく抽出液100gに1mM酢酸500gを加えて、希釈した抽出液600gについて、図1に示す精製・濃縮装置を使用して限外ろ過操作を行なった。精製・濃縮装置は、限外ろ過装置に(株)ミリポア製ペリコンXLバイオマックス−30(分画分子量30,000)を膜モジュールとして備えており、循環液流速25mL/分となるように送液ポンプおよび出口側に設けた絞り4を調節し、透過液速度2〜3mL/分で運転した。図示していないが、限外ろ過装置には、循環液のpHおよび電気伝導度を検知するpHメータ(例えば堀場製作所製(株)カスタニーLAB−F20II)および電気伝導度計(例えば堀場製作所製(株)カスタニーLAB−DS)が備えられている。
限外ろ過装置中のチューブなどに循環液が約100mL存在するため、循環液供給タンク中の液量は当初約500mLになっていた。このため、循環液供給タンク中の液量は、常に400〜500mLになるよう弱酸性溶液添加タンクより適宜1mM酢酸(pH4.0)を循環液に加えて限外ろ過を行ない、約6時間経過後、循環液のpHの上昇および塩濃度を示す電気伝導度(測定単位μS/cm)の減少が見られなくなった。その後、約12時間経過時まで限外ろ過を継続したが、循環液のpHおよび電気伝導度の変化が見られず、またコーラゲンの純度も所望のレベルに達したので、限外ろ過を終了した。限外ろ過を終了して、得られた循環液中の固形分乾燥重量は、限外ろ過操作前の抽出液中の固形分ドライ重量を100%として、99%であり、アンモニア濃度は1.4ppmから0.8ppm(ドライ重量比)へと減少していた。
得られた循環液を−80℃にて凍結させ、10Pa、20℃の条件で12時間凍結乾燥し、乾燥コラーゲン107g(水分0.1%)を得た。収率は、アルカリ浸漬後の真皮層の乾燥重量基準で70.0%であった。
【0059】
本実施例で得られた乾燥コラーゲンを1mM酢酸にて再溶解して、電気泳動法で分子量分布を調べたところ、γ鎖を多く含んでいることを確認した。使用した機器は、アトー(株)製ラピダス・ミニスラブにより、アクリルアミドゲル濃度が7.5%のゲルで泳動した。
また得られた乾燥コラーゲンの比旋光度を測定した。乾燥コラーゲンを0.005M酢酸で希釈した0.1%溶液を、4℃にて12時間スターラ攪拌溶解し、18,000rpm(重力加速度36,000g)、4℃にて40分程度遠心分離(日立製作所製高速冷却遠心機、2OPR−520)にかけ、その上清液10mLについて、比旋光度を測定した(堀場製作所(株)製SEPA−200、使用条件20℃)。比旋光度の値は、コラーゲンの純度目安と考える[α]20 −360°〜−420°の間にあった。
【0060】
なお、10分間当たり5℃変化させる時間−温度直線勾配での比旋光度の測定においても、5℃から30℃にかけては、ほぼ−370°前後であったが、30℃近辺から急激に低下し、35℃では−150°前後の値を示した。40℃より再び温度を低下させても、20℃の比旋光度[α]20 は−360°には戻らず、−150°のままであり、強制的に60℃温水浴加熱を与えたゼラチンの場合の測定値とおよそ変わらなくなった。既に熱変性によりゼラチンに変性したものと見られる。
また、得られた乾燥コラーゲンの残留油脂分、塩分、アンモニアの含量は、それぞれ0.1%、0.1%、0.5ppmであり、トリメチルアミンは検出されず、臭い官能評価の結果も、パネラーの75%が無臭と判定した。
なお、塩分量の測定は強熱残分として得られた灰分として測定した(上記非特許文献1参照)。トリメチルアミン量の測定は、皮から過塩素酸により抽出して得られた溶液について、ピクラート法により比色定量行った(日本食品工業学会・食品分析法編集委員会編、「食品分析法」、光琳、東京、1982年10月、p.673−681参照)。
臭い官能評価は、パネラーとして20人使用して下記評価基準で行なった。
○;無臭
△;わずかに臭気あり
×;有臭
【0061】
実施例2
実施例1と同様に0.5M酢酸8倍量の酸溶液抽出条件にて得られた酸可溶性蛋白質の抽出液を用いて、精製、濃縮の方法として、実施例1の限外ろ過に代わり、塩析、透析でも行った。得られた抽出液100gに、塩化ナトリウムおよび酢酸がそれぞれ1モル/Lおよび0.5モル/Lとなるよう加え、析出した沈殿物を18,000rpm(重力加速度36,000g)、4℃にて遠心分離にかけ、固液分離した。分離した沈殿物を1mM酢酸中に再溶解し、20倍量の1mM酢酸中で透析を行い脱塩した。透析外液の塩化ナトリウム濃度が一定の値を示すまでに3時間を要し、その度に透析外液の交換を行い、透析外液の交換は4回行った。従って1回の透析操作に要した時間は12時間である。透析を終了したコラーゲン溶液に、上記と同様に、再び塩化ナトリウムを1Mになるよう加え、塩析による沈殿、遠心分離による固形分の分離、固形分の再溶解、透析して脱塩する、塩析、透析の操作を5回繰り返して、精製を終了した。従って、塩析、透析の正味の所要時間は12×5=60時間(約2.5日)であった。
本実施例の塩析、透析による方法においては、実施例1の限外ろ過と比べて、精製、濃縮の日数はかかるが、同様に、比較的純度の高いコラーゲン溶液が得られることを確認できた。なお、抽出処理投入前の真皮層の乾燥重量基準で、得られたコラーゲン収率は50%程度であった。
また、従来公知例の酸溶液20倍量の抽出条件で抽出液を得て、精製操作を塩析、透析で行った場合を、後述する比較例3に示しているが、これと比べると、本実施例の0.5M酢酸溶液8倍量の酸抽出条件で得られた抽出液を用いることで、塩析、透析の回数が少なくても、比較的純度の高いコラーゲン溶液が精製できることを示している。
【0062】
実施例3
実施例1〜2と同様に、サメ生皮をアルカリ浸漬し、表皮を剥いで真皮層1.05kgを得た。真皮層の水分含有量は87%であり、油脂分は0.1%、アンモニアは2.5ppmであった。
得られた真皮層をミートチョッパー(日本キャリア工業製#22GM−D)にて最大長2mm程度に粉砕した。容積30Lの攪拌式容器を用いて、粉砕物1.05kg(湿重量)に、0.5M酢酸水溶液21kg(真皮層重量に対し20倍量)、ペプシン(ブタ胃粘膜由来、シグマ社製)1.37g(真皮層固形分重量に対して1%)を添加し、4℃で120回転/分、3日間攪拌して抽出液22.0kgを得た。得られた抽出液中の固形分乾燥重量は、抽出操作前のアルカリ浸漬後の真皮層の乾燥重量を100%としたとき97%であり、油脂分は0.1%、アンモニアは1.6ppmであった(いずれもドライ重量比)。
実施例1と異なり、1mM酢酸で希釈しないで、直接、不溶性残さをろ過し、抽出液22.0Kgを得た。pHは2.5程度であった。不溶性残さはトレースであった。限外ろ過は、実施例1と同じ装置、同じ条件で行なった。循環液のpHおよび電気伝導度の変化が見られなくなり、またコラーゲンの純度も所望のレベルに達するまでの時間は40時間(実施例1の3倍以上)であった。これは、抽出操作において、0.5M酢酸水溶液を真皮層重量に対し20倍量と実施例1に比べ多くして行った為に、抽出液中の分子量分布がバラツキ、即ちコラーゲン純度が低下し、従って循環液中のコラーゲン濃度も薄いため、所望のレベルに達するまでの限外ろ過操作による循環液側の精製、濃縮の時間が長くなったものと思われる。限外ろ過を終了して、得られた循環液中の固形分乾燥重量は、限外ろ過操作前の抽出液中の固形分ドライ重量を100%として、75%であり、アンモニア濃度は1.6ppmから0.9ppm(ドライ重量比)へと減少していた。
【0063】
得られた循環液を実施例1と同様に凍結乾燥し、乾燥コラーゲン0.372g(水分0.1%)を得た。アルカリ浸漬後の真皮層の乾燥重量基準での収率は60%であった。
得られた乾燥コラーゲンを1mM酢酸にて再溶解して、電気泳動法で分子量分布を調べたところ、α鎖、β鎖、γ鎖を確認したが、実施例1で得られたコラーゲンに比べるとα鎖のバンドは強いのに対し、γ鎖のバンドは弱かった。また、比旋光度は[α]20 −280であり、コラーゲン純度の低いものであった。この純度が低かった理由として、抽出工程においてγ鎖の可溶化のみならず、γ鎖が分解され低分子のα鎖になったためと考えられる。γ鎖の分解が促進された理由としては、抽出に供した酸溶液の重量がサメ真皮層に対し20倍重量とかなり大きいため、酵素反応や加水分解が進みやすい環境であったためと考えられる。
【0064】
比較例1
比較のため、図2(B)に例示する従来プロセスの一例によるサメ皮コラーゲンの製造方法を示す。
まず、サメ皮の表皮を剥離して、膨潤処理を施して、コラーゲンが可溶化し易いように含有水分を高めた真皮層4kg(水分95.26%)を使用した。
この真皮層4kg(乾燥重量189.6g)を上記と同様にミートチョッパーにて粉砕し、脱脂を目的に界面活性剤(Bayer社製、PRODUCT A)の1%水溶液を加え、4℃で12時間撹拌した。脱脂終了後、8,000回転(重力加速度13,000g)、30分の遠心分離により真皮層を沈殿させ、上清に含まれる界面活性剤溶液を除いた。さらに回収した真皮層に、約2重量倍量(約8kg)の水を加え撹拌後に上記と同条件で遠心分離して、水洗を行った。水洗後の真皮層重量は3.96kg(水分93.46%、乾燥重量258.9g)であった。原料とした真皮層に対する回収率は、乾燥重量基準では137%となり、見掛け上増える結果となった。これは、脱脂後の水洗が不充分で界面活性剤を完全には除去できなかったためと考えられる。
【0065】
脱脂水洗操作後の真皮層3.96kgに、0.5M酢酸水溶液7.93kg(真皮層重量に対し2倍量)、さらにペプシン(ブタ胃粘膜由来、シグマ社製)1.9g(真皮層固形分重量の1%)を添加し、4℃で120回転/分、3日間攪拌してコラーゲンの可溶化および抽出を行った。この後、不溶性残さを8,000回転(重力加速度13,000g)、30分の遠心分離により除き、抽出液10.2kgを得た。不溶性残さはトレースであった。
【0066】
得られた抽出液10.2kgへ塩化ナトリウムおよび酢酸がそれぞれ1モル/Lおよび0.5モル/Lとなるよう加え、析出した沈殿物を8,000回転(重力加速度13,000g)、30分の遠心分離にかけて分離した。分離した沈殿物を1mM酢酸中に再溶解し、20倍量の1mM酢酸中で透析を行い脱塩した。透析外液の塩化ナトリウム濃度が一定の値を示すまでに3時間を要し、その度に透析外液の交換を行い、透析外液の交換は4回行った。従って1回の透析操作に要した時間は12時間である。透析を終了したコラーゲン溶液に、上記と同様に、再び塩化ナトリウムを1Mになるよう加え、塩析による沈殿、遠心分離による固形分の分離、固形分の再溶解、透析して脱塩する、塩析、透析の操作を5回繰り返して、精製を終了した。従って、塩析、透析の正味の所要時間は12×5=60時間であった。
その後、実施例1と同様に凍結乾燥し、乾燥コラーゲン108.8g(水分12.12%)を得た。アルカリ浸漬後の真皮層の乾燥重量基準で収率は50.42%であったが、混在している塩分および油分を除去すると収率は49.18%であった。残留油脂分、塩分、アンモニアの濃度は、それぞれ0.47%、2.0%、3ppmと不純物含量が高く、また0.1%溶液(0.005M酢酸中)の比旋光度も[α]20 −256°と低くコラーゲン純度も低かった。
【0067】
比較例2
前処理および抽出処理は実施例32と同様に行ない、得られた抽出液100gを比較例1と同様に塩析、透析を行い脱塩した。透析は、4回の外液交換を行いながら12時間を要して行った。さらに塩析、透析の操作を5回繰り返して、精製を終了した。
その後、実施例1と同様に凍結乾燥し、乾燥コラーゲン0.299g(水分0.1%)を得た。アルカリ浸漬後のサメ皮真皮層の乾燥重量基準で収率は48.20%であった。残留油脂分、塩分、アンモニアの濃度は、それぞれ0.1%、2.0%、1.5ppmであり、1%溶液(0.005M酢酸中)の比旋光度も[α]20 −250°であった。
【0068】
比較例3
実施例3と同様に処理を行ない、得られた抽出液に対し比較例1と同様に塩析・透析により精製操作を行ったが、比較例1や比較例2に対して2倍となる10回行なった。
得られた乾燥コラーゲンを1mM酢酸にて再溶解して、電気泳動法で分子量分布を調べたところ、α鎖、β鎖、γ鎖を確認した。比較例2で得られたコラーゲンよりもさらにα鎖のバンドは弱く、実施例1と同程度にγ鎖のバンドが強かった。
得られた乾燥コラーゲンの比旋光度は[α]20 −360°となり、純度の高いコラーゲンの所望のレベルに入った。このとき、残留油脂分、塩分、アンモニアの濃度も、それぞれ0.1%、0.1%、0.5ppmと低下していたが、収率は30.0%に低下していた。
【0069】
実施例3で得られたコラーゲンは、比較例1に比べれば残留油脂分が低い点では優れるが、これは前処理工程を界面活性剤による脱脂ではなくアルカリ浸漬で行った効果の寄与が大きい。実施例32では精製・濃縮工程で塩析、透析に代わり限外ろ過を用いているため、元々塩分が少なく残留塩分を減らすことができたが、比旋光度で示されるコラーゲン純度や、電気泳動で示されるγ鎖の比率は、同じ限外ろ過法で精製を行った実施例1よりも低かった。これは抽出工程における酸溶液の重量比が20倍と過剰であったためと考えられる。また、比較例2,3で精製を塩析、透析で行った場合には、分子量分布のγ鎖のバンドや、比旋光度を純度の高いコラーゲンの所望のレベルにするためには、10回以上の塩析、透析を必要とした。
実施例1〜3および比較例1〜3により得られたコラーゲンの諸性質を、表2に示した。
【0070】
実施例4
サメ生皮を原料に、表皮を剥離して真皮層を得るための温度および時間を検討した。生皮200g(湿重量、水分含量83%)を、表3に示す温度に設定した温水約5Lに投じ、表3に示す時間で浸漬した。浸漬後は手指および包丁を用いて手作業で表皮を剥離し真皮層を回収し、得られた真皮層を、110℃で乾燥させた後の乾燥重量を測定した。
30℃×1分以下の浸漬では、浸漬前の性状との差異が見られなかった。浸漬の温度および時間の上昇に伴い、真皮層の回収率が向上した。特に、40℃×5分、または50℃×3分の浸漬で、手指にて多くの部分を剥離可能であった。60℃×5分の浸漬を超えると、コラーゲンがゼラチンへ変性し、温水への溶解が起こるため、真皮層の回収率が低下した。
【0071】
実施例5
実施例4で用いたものと同じサメ生皮を原料に、アルカリ処理工程における浸漬時間および温度の影響を検討した。生皮200g(湿重量、水分含量83%)を、1Lの石灰の飽和溶液(pH11.5)中で、表4に示す温度および日数で浸漬し、表皮を除去した真皮層に含まれる油脂分、アンモニア含量を測定した。
その結果を表4に示した。
5℃で浸漬を行った場合、14日後に、抽出・精製前の工程で所望とするレベルである油脂分0.2%以下、アンモニア10ppm以下に達し、さらに21日後に油脂分0.09%、アンモニア2.9ppmまで減少した。浸漬の温度を変えた場合、所望のレベルに達するまでに、20℃では8日、30℃では2日、40℃では1日であった。高温であれば短期間で油脂分、アンモニアを除去することができるが、コラーゲンの熱変性を起こさないようにするためには、できるだけ低温で行うことが望ましい。
【0072】
実施例6
参考例1で得たサメ皮真皮層を原料として、抽出日数の短縮を目的に、高温での加熱抽出を行った。
ビーカ試験レベルではミンチ粉砕の更に細かいペースト状にした原料を用いた場合は、真皮層1g(湿重量、水分含量は86.3%)に、9mLの0.5モル/Lの酢酸水溶液を加え、100℃で1分間、5分間、10分間、20分間加熱し、その後実施例1と同様に抽出、精製し、電気泳動法で分子量分布を調べた。但し少ない材料なので、抽出の浸漬処理には、振盪式のマルチシェーカ(東京理科器械製MMS)を用いた。1〜5分の加熱では、実施例1とほぼ同比率でγ鎖が見られたが、10分間加熱ではγ鎖のバンドが薄くなり、一方20分間加熱すると電気泳動のバンド測定では、分子量50,000以下が多く、γ鎖は全く見られず、分子量10万のα鎖のバンドもほとんど見られなかった。このことから、100℃×1〜10分程度の加熱に抑えれば、γ鎖の解離やゼラチンへの変性が許容できる範囲にあることが判る。
さらに、参考例1で得たサメ皮真皮層1.0kgを原料とした試験では、実施例1に示した方法と同様に、0.5M酢酸水溶液8.0kgおよびペプシン1.37gを加え、4℃で120回転/分の撹拌速度で抽出を行った。ただし、抽出の日数は半分の1.5日に留め、この後、100℃で5分間の短時間加熱抽出を付加した。その後も実施例1と同様に、残さのろ過分別、限外ろ過による精製、凍結乾燥を行ったところ、乾燥コラーゲン96g(水分0.1%)を得た。得られたコラーゲンは、実施例1で得られたコラーゲンとほぼ同量のγ鎖を含んでおり、比旋光度、残留油脂分、残留アンモニアともに、純度の高いコラーゲンの所望のレベルに達していた。本短時間加熱工程を付加することで、実施例1で3日要した抽出工程が、半分で済んだ。
【0073】
【表2】
Figure 2004300109
【0074】
*1:膨潤済・表皮なし真皮の乾燥重量基準
*2:0.1%溶液(5mM酢酸中)
【0075】
【表3】
Figure 2004300109
【0076】
【表4】
Figure 2004300109
【0077】
【発明の効果】
本発明により、品質、純度が高いコラーゲン、ゼラチン、コラーゲンペプタイドなどの動物蛋白質を、動物の体組織から低コストで収率が高く、かつ多量に分離回収できる製造方法と製造装置を提供することができる。また、本発明により得られる動物蛋白質は、医薬品、化粧液、リンス、トリートメント、工業用途、健康食品、調味料などに好適な材料として使用できる。
【図面の簡単な説明】
【図1】本発明の精製・濃縮装置の一例の構成概略図である。
【図2】(A)は本発明の動物蛋白質の製造方法の一例を示す全体工程図の例示であり、(B)は従来プロセスの動物蛋白質の製造方法の一例を示す全体工程図の例示である。
【符号の説明】
1:限外ろ過装置
2:循環液供給タンク
3:弱酸性液補充タンク
4:絞り
5:送液ポンプ
6:レベル計
10:精製・濃縮装置
11:透過液の流れ
12:循環液の流れ
13:弱酸性液の流れ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a production method and a production apparatus for extracting and purifying animal protein from animal body tissues, and an animal protein obtained by the method.In particular, the present invention relates to an extraction method using an acid solution and a purification method using ultrafiltration. It relates to the manufacturing method used.
[0002]
[Prior art]
Gelatin and collagen are extracted from the protein contained in animal bones and skins as raw materials, and are used in many applications such as medicine, food, photography, and industry.
The basic unit of collagen is a γ chain having a molecular weight of about 300,000, which is a triple helical structure of three polypeptide chains (α chains) having a molecular weight of about 100,000.
Further, gelatin is defined as "produced by hydrolyzing collagen obtained from animal bone, skin, ligament or tendon" (see Non-Patent Document 1). The temperature at which gelatin is extracted by hydrolysis is generally said to be 40 ° C. or higher for terrestrial animals. An extract from a collagen hydrolysis reaction solution has a molecular weight of 100,000 when the hydrolysis reaction temperature is relatively low. Gelatin is mainly composed of α-chains before and after, but as the hydrolysis temperature is raised, collagen peptide, which is a low-molecular protein, becomes the main component.
[0003]
In the prior art, as a pretreatment step for extracting proteins from animal body tissues, an alkaline solution, an acid solution, an ethanol solution, an organic solvent, for the purpose of removing water-soluble proteins, oils and fats, odor components and the like in raw materials. They are pickled and mixed with salt. When the body tissue of an animal is made of skin, the dermis layer containing a large amount of collagen may be peeled off from the epidermis, and the target protein may be extracted using the separated dermis layer.
[0004]
Alkaline solution treatment using lime or caustic soda is widely used as a pretreatment for gelatin extraction (see Patent Document 1). In addition, there is a combination example of alkali treatment and salting as a pretreatment for collagen extraction, but it relates to the extraction of so-called alkali-soluble collagen solubilized with an alkaline solution, and the purification method involves salting out the extracted collagen simultaneously. Then, it is desalted (see Patent Document 2).
On the other hand, when the raw material is derived from aquatic animals, removal of odor components is a major problem, and a method of treating with an organic solvent such as ethanol or pretreating with salt is known (Patent Documents 3 and 4). reference).
A method is also known in which a purification and concentration step is directly performed by ultrafiltration using a marine organism as a raw material, but the pretreatment step is a combination of an organic solvent treatment and a salt solution treatment (see Patent Document 5). However, additional safety equipment such as explosion proof is required to prevent the danger of the organic solvent igniting and exploding, which requires a large investment in equipment.In the case of collagen used for food, no matter how small the amount of organic matter remaining, there is no health problem. From the point of view, the adoption of organic solvents is difficult.
[0005]
A method is also conceivable in which the fats and oils and odorous components are not brought to a desired residual level in the pretreatment step including the degreasing / deodorizing treatment or the extraction step, but finally to the desired residual level in the purification / concentration step. However, in such a method, the yield is reduced and the cost is increased. In addition, if acid solution immersion is adopted in the pre-treatment degreasing / deodorizing process, the odor component removal function is equivalent to that of the alkali solution immersion, but the oil / fat component removal performance is inferior. Since proteins are generally weakly acidic, there is a drawback that excessive degradation of the protein occurs and the yield is reduced.
There is also a method of removing fats and oils with a surfactant or an organic solvent without performing alkali immersion, acid immersion, or salting for a short period of time. However, in the degreasing method using a surfactant, the surfactant is adsorbed on the protein, and a large amount of cost is required for washing and removing the surfactant as a post-treatment after protein extraction. Further, the organic solvent treatment is not suitable for the installation cost of the explosion-proof device and the demand of the present age where environmentally friendly materials are required.
[0006]
As described above, in the conventional known technology, in the case of performing ultrafiltration as purification of the extracted acid-soluble collagen, the case where the removal of fats and oils and odor components of the raw material is performed in a treatment step including alkali immersion is this case. The optimum immersion conditions for alkaline immersion have not yet been elucidated.
[0007]
As a method of solubilizing collagen, there are a method of immersing and dissolving in an acid solution and a method of adding a protease to the acid solution to cut the telopeptide portion at the end of collagen to promote solubilization. Furthermore, since the properties of the solubilized collagen partially differ depending on the pH state of the solution to be solubilized, alkali-soluble collagen obtained by solubilization and extraction under an alkaline solution or solubilization under a neutral salt solution is used. There is also a neutral salt-soluble collagen obtained by extraction after extraction, but it is said that these do not become a homogeneous solution because the collagen is partially denatured and gelatinized (see Non-Patent Document 2).
[0008]
As an example of extraction of acid-soluble collagen using an acidic protease, water-soluble proteins and oils and fats in animal body tissues as a raw material are removed by pretreatment with a salt or an alkali, and further extracted under acidic conditions. (See Patent Documents 6 and 7). In recent years, proteases have been industrially used, but the basics of the collagen extraction method remain unchanged.
As a method for recovering and purifying collagen from the above-mentioned extract, collagen is precipitated by a chemical method such as salt addition or pH control, and solid-liquid separation is performed by centrifugation. A method of dissolving and performing dialysis or ultrafiltration to obtain a desired collagen is employed (see Patent Documents 8 and 9). There is also disclosed a method of directly collecting collagen by a physical ultrafiltration method without performing salting out or pH manipulation of the collagen extract (see Patent Document 5).
In the case where alkali-soluble collagen is extracted, the above-mentioned salting-out technique is used for its recovery and purification as in the case of acid-soluble collagen (see Patent Document 2).
[0009]
By the way, as a basic condition for solubilizing collagen from animal body tissue and extracting acid-soluble collagen, the weight concentration ratio between the animal body tissue and the acid used for extraction and the water to be dissolved is adjusted to an optimal range. It is necessary to set and extract efficiently. As a prior art, the weight ratio of the acid solution to 1 part by weight of the animal body tissue is 20 times and the concentration of the acid solution is 0.5 M (see Patent Document 8), and the weight ratio of the acid solution is 10 to 100 times. And a concentration of 0.1 to 5 M (see Patent Document 9).
[0010]
Under the above conditions, the acid solution weight ratio is increased in order to efficiently perform the extraction time in a short time. However, disposal of the used acid solution is difficult, and this is a major problem for mass production. In addition, by contacting with a large amount of acid, the target γ-chain with a molecular weight of about 300,000 (a triple helical structure composed of three α-chains, which are polypeptide chains with a molecular weight of about 100,000) is solubilized. (A state in which they are loosely bonded by hydrogen bonds) and dissociates into α-chains or collagen peptides of lower molecular weight, resulting in a variation in the molecular weight distribution, and hence a disadvantage that the collagen solution is non-uniform and the purity is reduced. Was.
[0011]
In the purification step of the prior art, a high molecular weight fraction containing the desired γ chain is precipitated by salting out or the like, and the precipitate is subjected to dialysis or ultrafiltration for desalting of a solid obtained by centrifugation. Although a method of increasing purity is used, the purification step after extraction is complicated, and high-purity collagen is obtained, but the yield is low.
Further, in the extraction of acid-soluble collagen, if the extraction time is lengthened to reduce the amount of insoluble solids that do not dissolve in the acid solution, the dissociation of γ chains into α chains is promoted, and collagen purity is reduced. There is also a method of re-extracting this insoluble solid by re-introducing it into an acid solution (see Patent Document 5), but the obtained collagen also has a low purity, and it may not be said that the collagen is suitable for the purpose of re-extraction. is there.
As described above, the conventional extraction conditions have a problem in terms of mass production when considering the necessary purification / concentration steps, and conditions for stable and low-cost extraction and purification of high-purity collagen and There is a need for improved methods.
[0012]
Looking at the market for animal proteins isolated from animal body tissues, the market for collagen containing γ chains is expensive but the demand is not large. The market for peptides is relatively cheap, but demand is high.
In the method for producing gelatin, usually, a body tissue of an animal is immersed in a warm water bath to decompose a γ chain to obtain gelatin as an α chain. In addition, the method for producing a collagen peptide involves adding a protease to an extract of the reaction solution decomposing the γ chain, further extracting a low-molecular-weight protein, and using the extract by microfiltration or ultrafiltration. To obtain a collagen peptide having a desired molecular weight. Therefore, the method for producing gelatin and collagen peptide is different from that for producing collagen in not only the extraction step but also the purification / concentration step.
From these points, in addition to collagen containing γ chains, gelatin containing α chains as a main component or a low molecular weight collagen peptide can be produced using the same raw materials and the same equipment, so that equipment costs can be reduced and the purification process can be reduced. There is also a demand for the development of a production method capable of changing the purification conditions and the like corresponding to the target animal protein.
[0013]
[Non-patent document 1]
JISK6503-1996 "Glue and gelatin"
[Non-patent document 2]
Japan glue and gelatin industry association, "glue and gelatin", Maruzen Publishing, January 1987 (p.133-p141)
[Patent Document 1]
JP-A-7-247465 (page 3)
[Patent Document 2]
JP-B-46-15033 (page 3)
[Patent Document 3]
JP-A-2000-50811 (page 2)
[Patent Document 4]
JP-A-2000-256398 (page 6)
[Patent Document 5]
JP 2001-200000 A (pages 5-7)
[Patent Document 6]
Japanese Patent Publication No. 44-11037 (page 1-2)
[Patent Document 7]
Japanese Patent Publication No. 44-1175 (page 1-2)
[Patent Document 8]
JP-A-5-93000 (pages 2-3)
[Patent Document 9]
JP-A-11-246598 (page 3)
[0014]
[Problems to be solved by the invention]
The present invention has been made in view of such problems of the related art, and in producing proteins such as collagen, gelatin, and collagen peptides from animal body tissues, the yield and purity are high and the production can be performed at low cost. The purpose is to provide a manufacturing method.
[0015]
[Means for Solving the Problems]
The present invention provides a pretreatment step in which a tissue containing an animal protein and / or an animal body tissue made of animal skin is used as a raw material, and a pretreatment step is performed for extracting a protein contained in the raw material; The obtained raw material is immersed in an acid solution or an acidic protease solution to solubilize and dissolve the acid-soluble protein, and an extraction step of obtaining an extract containing the acid-soluble protein as a main component, and concentrating the extract, and A method for producing an animal protein comprising a purification / concentration step of purifying an acid-soluble protein, wherein the acid solution or the acid and acid protease solution in the extraction step is adjusted to an acid solution concentration of 0.3 M to 2 M, and is subjected to extraction. And an acid solution weight ratio of 1.5 to 10 times.
Next, the present invention relates to a pretreatment device that performs pretreatment for using a tissue containing an animal protein and / or an animal body tissue consisting of animal skin as a raw material and subjecting the raw material-containing protein to extraction, Extraction apparatus in which the raw material subjected to the above is immersed in an acid solution or an acidic protease solution having a weight ratio of 1.5 to 10 times and a concentration of 0.3 M to 2 M to obtain an extract containing an acid-soluble protein as a main component. And a purification / concentration device for introducing the extract into ultrafiltration and concentrating the circulating fluid of the ultrafiltration to purify the acid-soluble protein.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the animal body tissue of the raw material used in the present invention include bones and skins of terrestrial animals such as cows and pigs and aquatic animals such as fish, sharks, salmon and whales, and terrestrial animals include ligaments or tendons. But are not limited to these.
The raw material to be used for extracting collagen, gelatin or collagen peptide is usually ground or minced in advance. In the case of animal skin, it may be minced or homogenized, or cut into pieces of about 5 mm square to 50 mm square.
[0017]
In the case of extracting, purifying and concentrating animal protein using animal skin as a raw material, the skin itself may be used as a raw material for extraction, but the dermis layer and epidermis constituting the skin are separated to contain a large amount of collagen. Generally, the dermis layer is subjected to an extraction step.
Methods for peeling the dermis layer from animal skin include mechanical and physical peeling methods.In the present invention, the animal skin is immersed in warm water for a short period of time, and the tissue between the epidermis and dermis layer is removed. The binding force is weakened, and the dermis layer can be efficiently separated.
[0018]
When a terrestrial animal-derived skin is used, it is immersed in warm water of preferably 40 to 70 ° C, more preferably 50 to 60 ° C for 1 minute to 10 minutes. In the case of a skin derived from an aquatic animal, the dermis layer is easily formed by immersion in warm water of preferably 30 to 60 ° C, more preferably 40 to 50 ° C, preferably 1 to 10 minutes, more preferably 3 to 5 minutes. It is easy to separate from the epidermis. The above temperature range is a temperature high enough to weaken the bond between tissues and a temperature range in which thermal denaturation of the protein is acceptable. The immersion time is preferably such that heat denaturation does not occur in the central part of the dermis layer.
In order to separate the dermis layer, it is possible to peel off the epidermis manually after immersion in the above-mentioned warm water. However, after immersion, washing with water and freezing, for example, a slicer (AC-300 manufactured by Tazaki Seisakusho) can be used. it can.
In addition, if the dermis layer is separated after performing the following alkaline immersion at a high temperature using the animal skin itself without separating the dermis layer before the degreasing / deodorizing step, the epidermis and the dermis layer can be easily separated.
[0019]
The pretreatment step of the present invention includes a degreasing / deodorizing step of degreasing / deodorizing the raw material.For example, as a degreasing / deodorizing step, immersion in methanol to remove fats and oils and odorous components of the raw material, as well as water-soluble proteins. It may include several steps such as ethanol immersion, alkali immersion, acid solution immersion, salting, and furthermore, treatment with a surfactant and an organic solvent, but may also include an alkali treatment step.
Note that methanol immersion and ethanol immersion may be included in the organic solvent treatment.
[0020]
Examples of the alkaline agent used for alkali immersion include lime, quicklime, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and the like.
The alkali immersion is carried out by immersing the raw material in an aqueous alkali solution having a weight of twice or more, preferably 2 to 20 times the weight of the raw material, and keeping the pH at 10 or more, preferably at pH 10 to 13. The concentration of the aqueous alkali solution varies depending on the type of the alkaline agent used, but is usually about 0.001 to 5% by weight, preferably about 0.01 to 1% by weight. In addition, when it is performed in a saturated precipitation state using lime, pH control becomes easy.
Although it is possible to perform the immersion treatment in a closed state, it is possible to efficiently remove the oil and fat and the odor component efficiently by exchanging the liquid, explosion, or stirring as appropriate.
The immersion temperature is preferably 0 to 40 ° C., more preferably 5 to 20 ° C. in the case of raw materials derived from terrestrial animals, and preferably 0 to 30 ° C. in the case of raw materials derived from aquatic animals having a low heat denaturation temperature. Preferably it is 0-10 degreeC. The immersion period is preferably 1 to 3 days, more preferably 1 to 2 days at 40 ° C, and it is preferable that the immersion period be doubled or more every time the holding temperature falls from 40 ° C to 10 ° C.
It is preferable that the apparatus for immersion treatment for degreasing and deodorization is provided with additional equipment capable of controlling the temperature within the above temperature range, or it is preferable to control the temperature of the entire room including the raw materials, the immersion liquid and the apparatus.
The alkali-immersed material is subjected to solid-liquid separation by decanting, filtering, centrifuging or the like of the alkali solution, and then, if necessary, washing and appropriately washing with water, followed by the next step. Further, it is desirable that the pretreated material is further pulverized or shredded as necessary to enhance the effect of the next step of extraction.
[0021]
The pretreatment step of the present invention includes a degreasing / deodorizing step for removing water-soluble proteins, oils and fats, and odor components, and / or a peeling step for removing a dermis layer from the skin. Is preferably provided in the preceding stage, but may be provided between the extraction step and the purification / concentration step.
In some cases, the pretreatment step, the extraction step, and the purification / concentration step are performed using a plurality of factories having different steps due to process restrictions and circumstances. In this case, additional steps such as freeze-solidification and thawing are added from the viewpoint of preventing heat denaturation of the material and reducing transportation costs between the respective steps, but the present invention can be used in such a case as well. it can. That is, the present invention may be a continuous production process or a distributed production process.
[0022]
Normally, the allowable limit value of residual oil and fat components and odor components (for example, residual ammonia concentration) of animal protein varies depending on the product application used, but excluding seasoning applications, experiments, medical care, cosmetic liquids, rinses, treatments and industrial In use, it is desired that the residual oil and fat content of the protein contained after purification is 0.1% or less (dry weight ratio) and the residual ammonia concentration is 2 ppm or less (dry weight ratio).
In the present invention, the above pretreatment step can reduce the residual fat and oil to 0.1% or less (dry weight ratio) and the residual ammonia concentration to 1 ppm or less (dry weight ratio), depending on the nature of the raw materials. Will be possible.
[0023]
In the extraction method of the present invention, acid-soluble collagen and acidic protease-soluble collagen are mainly used. Here, the acidic protease-soluble collagen includes gelatin and collagen peptides obtained by adding a protease of a proteolytic enzyme such as pepsin in an acid solution to solubilize the telopeptide moiety at the molecular end of the γ chain. In the present invention, unless otherwise required, they are collectively referred to as acid-soluble collagen.
[0024]
Examples of the acid solution include organic acids such as acetic acid, citric acid, and lactic acid, and inorganic acids such as hydrochloric acid and sulfuric acid.
Examples of the acidic protease include pepsin derived from animal gastric mucosa and commercially available acidic protease [Newase, trade name, manufactured by Amano Enzyme Co., Ltd .; Morcin F, trade name, manufactured by Kikkoman Corp .; Trade name protease YP-SS, etc.].
[0025]
In the extraction step of the present invention, the weight concentration ratio of the body tissue of the animal, the acid used for extraction and the water used as the solvent among the three, that is, the weight ratio of the acid solution or the acid and acid protease solution to the material and the acid concentration are determined. It is preferable to set the optimum range and perform extraction efficiently.
In the present invention, the acid solution concentration is preferably 0.3 M to 2 M, more preferably 0.5 to 10 times, more preferably 2 to 8 times the weight ratio of the material. 22M. Within this range, acid-soluble collagen having a high γ-chain content and high purity can be obtained, and thus, in the purification / concentration process, the conventional extraction method having low collagen purity requires salting out, precipitation, centrifugation, and salt removal. There is also an advantage that only complicated steps such as microfiltration or ultrafiltration are required without using complicated processes such as dialysis or ultrafiltration steps.
There is also an advantage in the case where after the extraction of the present invention is performed, purification and concentration are performed by conventional processes such as salting out and dialysis. Under the extraction conditions of the present invention, collagen having a high γ-chain content can be relatively easily solubilized and extracted, and the salting-out and dialysis are repeated many times to provide a conventional process for purifying and concentrating collagen to a desired purity. In this case, the number of repetitions can be reduced, so that the production cost in the conventional collagen purification process is low, and high purity and high quality are obtained.
If the weight ratio is less than 1.5 times, the raw materials are not sufficiently dispersed in the acid solution, and the extraction of the acid-soluble collagen does not proceed well. On the other hand, when the weight ratio exceeds 10 times, the γ chain is decomposed and easily dissociated into the α chain, and the collagen purity is reduced. If the acid solution concentration is less than 0.3 M, the acid concentration is too low to extract sufficiently. On the other hand, if it exceeds 2M, not only the solubilization of the γ chain, but also the decomposition of the γ chain and the dissociation into the α chain proceeds, and the pH of the acid solution tends to be 2.0 or less. It is difficult to adjust the pH to be closer to neutral in the step to be performed.
[0026]
The amount of the acidic protease to be added is preferably 0.1 to 10 g, more preferably 0.8 to 1.2 g, based on 100 g of the dry weight of the raw material substrate to be extracted. When the amount is less than 0.1 g, the acidic protease does not sufficiently act. On the other hand, when the amount exceeds 10 g, not only the cleavage reaction of the telopeptide but also the decomposition reaction of the collagen itself proceeds in parallel, and the collagen purity is reduced.
The extraction conditions when an acid and an acidic protease solution are used as the extract are the same as the extraction conditions using the acid solution.
The present invention can be similarly applied to neutral salt-soluble collagen and alkali-soluble collagen. Specifically, in the case of neutral salt-soluble collagen, the acid may be replaced with a neutral salt, and in the case of alkali-soluble collagen, the acid may be replaced with an alkali.
[0027]
In the extraction of the present invention, for terrestrial animal-derived materials, the extraction temperature is preferably maintained at 0 to 40 ° C, more preferably 0 to 35 ° C, and for aquatic animal-derived materials, the extraction temperature is preferably 0 to 30 ° C. More preferably, the temperature is maintained at 0 to 25 ° C. Extraction does not proceed below the above temperature range. On the other hand, when the temperature exceeds the above temperature range, thermal denaturation of collagen is likely to occur.
The extraction time is preferably 1 to 3 days, more preferably 2 to 3 days. If it is less than 1 day, the extraction is insufficient, while if it is more than 3 days, the dissociation of the γ chain into the α chain proceeds, resulting in a decrease in purity.
It is desirable that the extraction device including the extraction container and the auxiliary devices such as the acid solution tank are provided with additional equipment capable of controlling the temperature within the above-mentioned temperature range, or the temperature of the entire room including the raw materials, the solution and the device is controlled. Is preferred.
In addition, since the solubilized and extracted collagen is a loose bond in which the molecular chains of the three polypeptide chains are connected by hydrogen bonds, especially when it is desired to extract high-purity collagen, the extraction temperature is set in the pretreatment step. It is desirable to lower the holding temperature by 5 ° C. or more so as to minimize dissociation (gelatinization) of acid-soluble collagen into α chains due to thermal denaturation during extraction. It is also possible to finely crush or shred the material to be compatible with the purpose of enhancing the extraction effect, and to reduce the possibility of heat denaturation and the possibility of expanding the variation in molecular weight distribution, which is a concern as a side effect of miniaturization and pulverization. , Reduction and suppression.
[0028]
For the purpose of shortening the number of extraction days, high-temperature heating extraction can be added to the extraction conditions in the extraction step under the above conditions. The heating temperature is preferably 50C to 150C, more preferably 80C to 100C, and the heating time is preferably 1 minute to 10 minutes, more preferably 1 to 2 minutes. Because of the time of about several minutes, the acid-soluble collagen can be extracted without causing significant thermal denaturation and little decrease in purity. When the time is less than 1 minute, solubilization and dissolution are not performed, and the remaining extraction residue increases. On the other hand, when the time exceeds 10 minutes, thermal denaturation is promoted and dissociation of γ chain into α chain, or Furthermore, the decomposition into low molecular weight proteins is promoted, and it is no longer suitable for extracting the target collagen.
For example, assuming a case where a few kg of raw material derived from aquatic animals is used for immersion in an acid solution or an acidic protease solution at a holding temperature of 0 to 40 ° C. for 3 days to perform an extraction treatment, The immersion is performed at 0 to 40 ° C. for 1 to 2 days. During this immersion period, the structure in the pulverized raw material becomes loosely bonded, further miniaturization and pulverization proceeds, and an acid solution per unit weight of the raw material is used. Since the surface area in contact with is increased, the remaining immersion temperature and time are, for example, flash-like heating at 100 ° C. for about 5 minutes to promote solubilization and dissolution of protein collagen and denaturation. Can be done less.
When protein collagen is extracted from a test raw material using an acidic protease solution, protease, which is a protease, is generally alive at 60 ° C or higher, and when the immersion temperature is increased to 60 ° C or higher, the extraction effect of the protease decreases. However, this method gives a short-time flash heating, and is hardly affected by the addition in the latter half of the extraction step.
In addition, although it is a beaker test level, when using a raw material of about several g and preliminarily refining the raw material in the form of a paste to 0.1 mm or less in order to perform an extraction treatment, it is immersed in heat at 100 ° C. for several minutes. It has been confirmed that the protein containing the γ-chain can be solubilized, dissolved and extracted even when the reaction is directly performed. This is because the action similar to the action and effect in the first half of the extraction described above is previously given by pulverizing into a paste form, and since the weight and volume of the raw material are small, heating is applied to an acid solution and an acid solution. It can be understood that the dispersion is carried out evenly with the fine raw materials dispersed therein.
[0029]
Further, in the extraction step of the present invention, insoluble solids that remain without being solubilized, so-called extraction residues, may be generated in a considerable amount. The material to be extracted is preferably ground in advance with a meat chopper or the like so that such insoluble solids are reduced and solubilization is performed uniformly. The maximum length of the pulverized material is preferably 1 cm or less, more preferably 2 mm or less. It is desirable that no processing heat is generated or that the processing heat is hardly transmitted to the test raw material during the processing of the pulverization and miniaturization of the raw material, and it is preferable to perform the processing while cooling. As long as heat is not generated, the paste may be pulverized and refined to 0.1 mm or less. In addition, although the production cost is increased, the raw material can be freeze-dried in advance, finely pulverized, and subjected to an extraction treatment.
Within the range of the combination of the acid solution weight ratio and the concentration according to the present invention, by performing the above-mentioned pulverization treatment, it is possible to obtain an acid-soluble collagen with a low extraction residue, a high yield and a high purity.
Further, in the extraction operation, it is preferable to use an extraction vessel with stirring or shaking (shinto) by immersing the raw material in an acid solution or an acid and an acidic protease solution, and while stirring or shaking the mixture of the raw material and the acid solution, Disperse and disperse the raw material and solution uniformly, and extract so that the acid-soluble protein from the raw material can be solubilized and dissolved evenly in the extraction container with little unevenness and dispersion. It is preferable to operate. Here, the stirring includes air stirring in addition to mechanical stirring. When the extraction processing capacity is relatively small, a method of shaking and shaking the entire extraction container can be employed.
[0030]
In the above preferable extraction conditions, the concentration of the acid-soluble collagen in the extract is high and the viscosity of the extract is high, so that it is slightly easier to handle in the filtration and purification / concentration steps of the extraction residue that is an insoluble solid from the extract. Although inferior, when the acid solution used for the extraction is increased in advance and the solution viscosity is lowered as in the conventional example, the purity of the obtained collagen is lowered. In order to improve the handleability of an extract having a high solution viscosity, a weakly acidic solution close to neutral may be added as needed in the stage of filtration of the extraction residue from the extract and in the purification / concentration step. Even if a weakly acidic solution is added in the purification / concentration step, the purification / concentration step is shorter than the extraction step, and the weak acid solution to be added is neutralized because the purpose is to optimize the viscosity. Since it may be close, dissociation of the collagen from the γ chain to the α chain or collagen peptide is not significantly promoted. Further, considering the later use of the product, it is desirable that the acid-soluble collagen is as weakly acidic as possible as close to neutrality as possible. Therefore, the above-mentioned production method of the present invention is advantageous in terms of the use of the product.
Extraction residue, which is an insoluble solid in the extraction, is preferably removed beforehand from the obtained extract before being subjected to purification and concentration in the next step, and is usually used as a solid-liquid separation method. Filtration, vacuum filtration, centrifugation and the like can be mentioned. In the present invention, since purification and concentration using an ultrafiltration method are performed, also in order to prevent clogging of the ultrafiltration membrane, a pretreatment step that hardly generates an extraction residue, along with setting conditions in the extraction step, It is desirable to pay close attention to the filtration and removal of the generated extraction residue.
As described above, according to the present invention, acid-soluble collagen can be easily extracted and purified with high purity and high quality and in high yield, and high productivity can be obtained.
[0031]
In the present invention, an ultrafiltration treatment is performed in order to purify collagen from the acid-soluble collagen solution obtained by the above extraction method.
Since the extracted acid-soluble collagen solution contains not only gelatin but also collagen peptide in addition to the acid solution and the collagen solubilized and dissolved therein, the ultrafiltration has a molecular weight cut-off of 30,000 to 100,000. When the ultrafiltration membrane is used, collagen containing a large amount of γ-chain having a molecular weight of 300,000 can be concentrated in the circulating fluid side without being permeated, and a mixture of gelatin having a molecular weight of 100,000 and collagen peptide having a molecular weight of 100,000 or less than the permeated solution can be obtained. Can be obtained. In addition, when ultrafiltration is performed using an ultrafiltration membrane having a molecular weight cutoff of 5,000 to 30,000, collagen and gelatin can be concentrated in the circulating fluid side without being permeated, and a collagen peptide can be obtained from the permeated liquid. it can.
[0032]
In the ultrafiltration step of the present invention, in the purification / concentration step, the extract is subjected to an ultrafiltration device, and the residual liquid containing the acid-soluble protein that does not pass through the ultrafiltration membrane is concentrated as necessary to form a circulating liquid. Circulation and ultrafiltration may be performed again. By circulating the residual liquid in this manner, the effect of being able to continuously concentrate is obtained.
[0033]
When circulating the circulating fluid, it is desirable to previously adjust the concentration of the acid-soluble protein in the circulating fluid (viscosity of the circulating fluid) to an appropriate upper limit or less. The appropriate upper limit is determined in consideration of the range of permeation resistance in which the ultrafiltration membrane to be used can operate, the likelihood of clogging of the filtration membrane, and the performance of the circulating fluid circulation pump (also called a liquid feed pump) to be used. Can be selected.
For the adjustment, a means for mixing with the extract and a means for adding a weakly acidic solution for controlling the total amount of the circulating liquid described below can also be used. The detection and / or adjustment of the concentration of the acid-soluble protein (viscosity of the circulating fluid) in the circulating fluid may be performed intermittently or continuously.
[0034]
In the purification / concentration step employing the ultrafiltration method of the present invention, since the acid solution in the extract passes through the ultrafiltration membrane and is discharged as a permeate, the animal protein is concentrated on the circulating fluid side to reduce the purity. When the raising operation is continued, the amount of the acid solution on the circulating liquid side decreases. However, in the operation of purification and concentration, it is desirable that the circulating liquid maintain a constant total amount, and the pH of the circulating liquid is desirably as weak as possible to be as neutral as possible in view of the application of the product to be used later.
For this reason, in the present invention, the pH is closer to neutral than the acid solution used in the step performed immediately before the purification / concentration step, independently of the extract, and the total amount detection step of detecting the total amount of the circulating liquid. It is preferable that the method further includes a step of adding a weakly acidic solution to the circulating liquid, and that the total amount of the circulating liquid be maintained and controlled within a predetermined range. The detection of the total amount and / or the addition of the weakly acidic solution may be performed continuously or intermittently. By having these steps, the pH of the circulating fluid after concentration can be made weakly acidic simultaneously with the concentration of the animal protein in the circulating fluid.
As a means for detecting the total liquid amount, a level meter is specifically mentioned. The weakly acidic solution adding means includes a weakly acidic solution replenishing tank.
[0035]
In the purification / concentration step of the present invention, at least one selected from the group consisting of the concentration of the acid-soluble protein contained in the circulating fluid, the purity of the acid-soluble protein, the viscosity of the circulating fluid, and the density of the circulating fluid is used. It is preferable to control the circulation of the circulating liquid and terminate the purification operation when the target purity is reached.
For the detection of the concentration and purity of the acid-soluble protein, the concentration and purity of the acid-soluble protein contained in the circulating fluid may be directly detected. The purity of the resulting acid-soluble protein can also be estimated in terms of conversion. The control of the circulation of the circulating fluid can be performed by a mixing operation with the extract, adjusting the pressure of the circulating fluid (difference between the circulating fluid outlet and the inlet). The above element detection and circulation control may be performed continuously or intermittently. It is natural that the control accuracy and stability of the purification / concentration process are improved while referring to the data for each production lot of the product.
Examples of the means for detecting the concentration of the acid-soluble protein include an ultraviolet absorption measuring instrument, a differential refractive index detector, and a light scattering detector. Examples of means for detecting the purity of the acid-soluble protein include a polarimeter (for example, SEPA-200 manufactured by Horiba, Ltd.) and a circular dichroism measuring device. As a means for detecting the viscosity of the circulating liquid, a rotary viscometer, a falling ball viscometer, and the like can be given. As a means for detecting the density of the circulating liquid, a vibration type densitometer, a floating type specific gravity meter and the like can be mentioned.
[0036]
As the acid solution in the circulating fluid is replaced with a weakly acidic solution, the acid-soluble protein in the circulating fluid is also purified and concentrated to a desired purity level, and the acidity of the solution and the purity have a high correlation with each other. Show. Therefore, by using a pH meter or an electric conductivity meter to detect that the pH or electric conductivity of the circulating fluid changes and becomes constant, it is possible to convert and estimate the purity of the animal protein. The above conversion and estimation can be performed by referring to the purity data of the product obtained according to the time change from the start of ultrafiltration, particularly when the production amount of the animal protein is the same for each lot.
It is desirable that these detecting means be built in an animal protein purification / concentration device to continuously detect and control the state of the circulating fluid. Even if it can be substituted for a desired purpose by detection, it may be used.
[0037]
In purification using ultrafiltration, clogging of the ultrafiltration membrane is a major problem in mass production. To prevent this, filtration of insoluble residues and separation and removal from the extract by microfiltration are generally performed. However, in the present invention, as a method of avoiding the stoppage of the operation of purification / concentration due to clogging, a plurality of ultrafiltration devices may be provided, and a configuration may be adopted in which the circulating liquid of each ultrafiltration is communicated. it can. With this configuration, a compact, inexpensive, and hardly clogging process can be achieved.
The molecular weight cut-off of each ultrafiltration membrane can be selected depending on the target animal protein, and may be the same or different.
When multiple ultrafiltration devices are used, the frequency of clogging of all devices at the same time is low. In addition, when one device is clogged, the circulating fluid is appropriately short-circuited, the remaining device is operated, and during that time, clogging can be removed and the device can be returned, so that there is little need to stop operation. This is a suitable process for continuous mass production.
The detection of the clogging is preferably performed while detecting the pressure difference between the circulating liquid inlet and the circulating liquid outlet of the ultrafiltration device.
[0038]
Further, ultrafiltration in which the fractionation molecular weights of the ultrafiltration membranes are different from each other is constituted in two stages, the first stage comprises an ultrafiltration membrane having a fractionation molecular weight of 30,000 to 100,000, and the second stage comprises: It is equipped with an ultrafiltration membrane having a cut-off molecular weight of 5,000 to 30,000, and the permeate obtained by the first-stage ultrafiltration is introduced into the circulating fluid of the second-stage ultrafiltration, whereby the first-stage ultrafiltration is performed. Collagen containing γ-chain from the circulating fluid of the first stage permeate, that is, gelatin containing α-chain as the main component from the circulating fluid of the second stage, and a lower molecular weight than the α-chain than the permeate of the second stage. Collagen peptides can be produced. Here, the introduction of the extract into the first stage ultrafiltration and / or the introduction of the first stage permeate into the second stage ultrafiltration may be performed intermittently or continuously. Is also good.
In the case where a large amount of collagen peptide is produced, a method of adding a protease to a first-stage permeate and / or a second-stage circulating solution containing a large amount of gelatin and hydrolyzing the same may be used.
[0039]
The holding temperature in the purification and concentration steps is basically the same as the holding temperature in the extraction step. In the case of raw materials derived from terrestrial animals, it is preferably kept at 0 to 40 ° C, more preferably at 0 to 35 ° C, and Is preferably maintained at 0 to 30 ° C, more preferably 0 to 25 ° C. Further, it is preferable to lower the holding temperature in the pretreatment step by 5 ° C. or more. The extract or purification / concentration device to be used for purification is desirably equipped with additional equipment capable of controlling the temperature within the above temperature range. Alternatively, the extract, the device and a storage tank for the purified acid-soluble protein solution, and furthermore, the purification In a subsequent post-process, it is preferable to control the temperature of a sterilizing device and a drying device that are appropriately used as necessary, a storage of product materials, and the entire room including these.
[0040]
In some cases, an insoluble solid that does not dissolve in the acid solution or the acidic protease solution is generated. In the present invention, hydrolyzable gelatin and collagen peptide can be extracted from the insoluble solid by immersing in warm water.
In addition, from the viewpoint of the animal protein product market, the demand for collagen is low, but the demand for gelatin and collagen peptides is high, so that insoluble solids remain in the extraction of acid-soluble proteins. In some cases, it may be more convenient to extract and purify a large amount of gelatin or collagen peptide by immersing the remaining insoluble solid material in hot water to extract and purify a large amount of gelatin or collagen peptide.
[0041]
Alternatively, the raw material that has been subjected to pretreatment including degreasing and deodorization is divided into two groups in advance, and one group is subjected to extraction and purification of an acid-soluble protein obtained by dipping in an acid solution or an acid and an acidic protease solution, Another group, along with the insoluble residue of the above-mentioned acid extraction, is immersed in warm water for extraction and purification, and production and distribution are performed so as to obtain hydrolyzable gelatin and collagen peptides. The apparatus and equipment used for the concentration can also be used for a production process that is shared and shared by both.
[0042]
In the present invention, gelatin and collagen peptides extracted by hydrolysis by immersion in a warm water bath are distinguished from collagen, gelatin, and collagen peptides of acid-soluble proteins obtained by immersion in an acid solution or an acid and acid protease solution. Therefore, an animal protein obtained by immersion in warm water is called a warm water soluble protein.
For example, the insoluble solids isolated from the acid-soluble protein extract by decanting, filtration, centrifugation, etc., and / or raw materials that have been subjected to pretreatment including degreasing / deodorizing treatment may be appropriately washed as necessary. Immersed in warm water in warm water to solubilize, dissolve and extract the warm water soluble protein. The temperature of hot water extraction is preferably 50 ° C to 100 ° C, more preferably 80 to 90 ° C for raw materials derived from terrestrial animals, and preferably 40 ° C to 100 ° C, more preferably 80 to 90 ° C for raw materials derived from aquatic animals. The hot water extraction time is preferably 1 to 20 hours, more preferably 2 to 5 hours.
Gelatin that does not pass through the ultrafiltration membrane is introduced into the ultrafiltration apparatus equipped with an ultrafiltration membrane having a molecular weight cut-off of 5,000 to 30,000 by introducing the extract of the hot water-soluble protein obtained by immersion in hot water. And a collagen peptide that permeates the filtration membrane can be purified. In the same manner as described above, the residual liquid containing the warm water-soluble protein that does not pass through the ultrafiltration membrane is concentrated, circulated as a circulating liquid, and ultrafiltrated again to obtain gelatin from the circulating liquid and collagen peptide from the permeated liquid. You can also.
[0043]
It is also possible to add a protease during hot water extraction and hydrolyze to positively obtain a collagen peptide. As the protease, in addition to the acidic protease described above, a neutral protease and an alkaline protease can also be used. For example, protease Amano (trade name, manufactured by Amano Enzyme Co., Ltd.), GOLD-BNP (trade name, manufactured by Godo Shusei Co., Ltd.), and Shin Nippon Chemical Co., Ltd. Sumiteam (trade name), Protin, Deskin, Samoase (trade name) manufactured by Daiwa Kasei Co., Ltd., Orientase (trade name) manufactured by HBI Co., Ltd. PNT, Novozyme, bioseparase manufactured by Nagase ChemteX Corporation, and the like. The amount of protease added is preferably 0.1 to 10 g, more preferably 0.8 to 1.2 g, based on 100 g of the dry weight of the substrate. Regarding the hydrolysis conditions, the substrate concentration is preferably 0.1 to 50% by weight, more preferably 1 to 30% by weight in the aqueous solution. For the purpose of not increasing the activity of the protease, and since the enzyme is generally alive at 60 ° C. or higher, it is desirable to control the temperature to be lower than the temperature at the time of simple hot water extraction without adding the above protease, and to improve the purity and the like. The temperature is preferably 10 to 60 ° C, more preferably 25 to 50 ° C, and the time is preferably 1 to 50 hours, more preferably 2 to 10 hours, for the purpose of improving quality such as variation in molecular weight distribution.
[0044]
As described above, the extraction of hot-water-soluble protein is different from the extraction of acid-soluble protein in that the raw materials are immersed, solubilized and dissolved using hot water instead of the acid solution used for extraction. Or an extraction container and apparatus for acid-soluble proteins. In the case of dual use or common use, the storage tank for the acid solution supplied to the extraction vessel may be switched to a hot water supply tank, but it is preferable to separately provide a hot water supply tank or a hot water supply source in addition to the acid solution storage tank. It is desirable to keep.
[0045]
The ultrafiltration device used for purification and concentration of the extract obtained by immersing in hot water is, in terms of device specifications, an ultrafiltration membrane and a device used for purification and concentration of the above-mentioned acid-soluble protein gelatin and collagen peptide. Therefore, the equipment for purifying and concentrating the hot water soluble protein may be newly provided, or may be shared with or used as an ultrafiltration apparatus for purifying the acid soluble protein. These are determined on account of production and production costs.
[0046]
In this way, for example, the pretreated raw materials are divided into two groups, and one group of raw materials is first subjected to the extraction and purification of acid-soluble proteins, and the apparatus used is washed and washed. Then, using the insoluble residue separated and recovered from the acid extract and / or one other group of raw materials, a process for extracting and purifying hot water-soluble proteins can be performed. Above is convenient. Since the insoluble residue obtained by solid-liquid separation from the acid-soluble protein extract is relatively small, it is collected and stored at a low temperature, and when the insoluble residue for each production lot accumulates, it is immersed in hot water at once. It is of course conceivable to perform extraction, purification and concentration of the hot water soluble protein.
[0047]
FIG. 1 shows an example of an apparatus for purifying and concentrating an acid-soluble collagen solution of the present invention. In FIG. 1, a purification / concentration device 10 is provided with an ultrafiltration membrane in the ultrafiltration device 1, and the extract put in the circulating liquid supply tank 2 is sent to the ultrafiltration device 1 by a liquid sending pump 5. The permeated liquid 11 that has flowed in and is subjected to ultra-filtration by the application of the liquid sending resistance by the throttle 4 is recovered, and the collagen-containing solution that is not permeated passes through the ultrafiltration device 1 and is appropriately concentrated to become a circulating liquid 12, which becomes a circulating liquid 12. Circulated in the supply tank 2. The total amount of the circulating liquid in the circulating liquid supply tank 2 is detected by the level meter 6, and the weakly acidic solution 13 is supplied to the circulating liquid supply tank 2 from the weakly acidic solution addition tank 3 as necessary.
[0048]
As a standard of collagen purity, in the measurement of molecular weight distribution using an electrophoresis method, at least a band at a position corresponding to 300,000 molecular weight of γ chain is generally used as a criterion for determining collagen.
In terms of physical properties, the rotation angle (so-called specific rotation, scientific chronology, physical chemistry department, object 102, 1980) of the polarization plane when the NaD line passes through the optical rotatory substance is negative in the case of a collagen solution. Utilizing the fact that the angle in the negative direction becomes larger than that of the gelatin solution, the purity of the collagen is added to the molecular weight distribution, and the specific rotation may be evaluated. In the present invention, the specific rotation [α]20 DIs larger than -360 ° in the negative direction, as a guideline for collagen having high purity.
[0049]
The above purified, concentrated acid-soluble protein solution and hot water-soluble protein solution may be accompanied by sterilization and sterilization steps, depending on the product application and the necessity of storage, and also include liquid storage and dry storage. The form is taken as appropriate. Further, in the biochemical biotechnology field such as cell culture and the use of pharmaceutical capsules, allergen removal of purified animal proteins may be performed at the same time. In the case of food and medical use, it may be performed in a sterile room from the viewpoint of hygiene management.
As a disinfection and sterilization, filtration with a filter of about 0.2 μm is generally used, and there is also a method of irradiation with ultraviolet rays or γ rays for sterilization.
When stored in a liquid form, it is appropriately diluted with a dilute organic acid or dilute inorganic acid, and in the case of a collagen solution, it is usually stored at a concentration of about 0.005% to 1%. In cosmetics, glycerin may be added at a collagen concentration of about 0.1% to prevent association between γ chains and improve moisture retention.
Gelatin is generally stored dry, but when collagen is also required to be stored for a long period of time, a drying process may be performed with less risk of quality deterioration and bacterial growth. Drying methods include freeze drying and spray drying. In the spray-drying method, a method of pulverizing a solution having a solution concentration of about 10% is also known, and the production efficiency is better than freeze-drying if some measures are taken to avoid thermal denaturation, such as under reduced pressure steam. Further, a method of extruding the solution into a multi-row pellet shape or noodle noodle shape by using an extrusion method, increasing the surface area, and effectively drying the solution can be adopted.
[0050]
The final product can be used in many applications, such as pharmaceuticals, medical products, cosmetics, rinses, treatments, health foods, seasonings, and industrial applications, utilizing some of the properties of animal proteins. For example, it is known that it has a protective effect on gastrointestinal mucosa, a promoting effect on bone formation, a suppressing effect on blood pressure, a growth effect, an improving effect on immunity, etc. for pharmaceuticals and medical use, preventing gastric ulcer hemorrhage, preventing osteoporosis and hyperlipidemia. It can be used for medicines and health foods for such purposes. For cosmetics, the purpose is to promote the beauty of the skin by using the moisturizing effect. For some rinsing and treatment applications of cosmetics, foaming properties that use the high viscosity together with the water and moisturizing effects of the scalp and hair. Can be used for effects.
[0051]
【Example】
Hereinafter, the effects of the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
[0052]
Reference Example 1
As a raw material, 6.0 kg of shark rawhide (wet weight, water content 83%, fat / oil content 0.4%, ammonia 88 ppm (oil / fat content, ammonia dry weight ratio)) was kept warm at 5 ° C. in 12 kg of lime liquid having a pH of 11.5. For 3 weeks. The pH of the lime solution was measured daily using a pH meter (Castany LAB-F20 II manufactured by Horiba Seisakusho Co., Ltd.), and the pH was maintained at 11.5 by appropriately adding lime or water, and the solution was changed daily during the immersion period. After immersion, the shark skin was washed with water, frozen, and the skin was peeled off with a slicer (AC-300, manufactured by Tasaki Seisakusho Co., Ltd.) to remove 1.11 kg (water content 86.3%) of the shark skin dermis layer. Obtained.
[0053]
Reference Example 2
Using the same raw material and lime solution as in Reference Example 1, immersion was performed at the same temperature and for the same period to obtain 1.05 kg of a shark skin dermis layer (water content: 85.7%). During the immersion period, only the pH was adjusted, and unlike Reference Example 1, the solution was sealed and no liquid exchange was performed.
[0054]
Reference Example 3
The same raw material as in Reference Example 1 was used, and immersion was performed at the same temperature and for the same period using an acetic acid solution having a pH of 4.0 to obtain 2.12 kg of a dermis layer of shark skin. The pH was measured with a pH meter (manufactured by Horiba, Ltd., Castany LAB-F20 II), and the pH was maintained in the range of 3.9 to 4.1 by appropriately adding water or acetic acid. The solution was sealed and liquid exchange was not performed.
[0055]
The residual oil and fat and residual ammonia contained in the dermis layer obtained in Reference Examples 1 to 3 were measured, and the results are shown in Table 1.
The measurement of the amount of residual fats and oils was performed by measuring the weight of the hexane extract after the hot hydrochloric acid treatment (see Non-Patent Document 1). The amount of residual ammonia was measured by colorimetric determination of the solution obtained by extracting perchloric acid from the skin with perchloric acid by the method of Russel (Sugawara and Soejima, "Quantitative Determination of Proteins", Gakkai Shuppan Center, Tokyo, Japan). September 1971, pp. 51-52).
The oil and fat content of the alkali immersion in Reference Examples 1 and 2 was greater than the reduction effect of the acid immersion of Reference Example 3. In particular, when alkali immersion was performed while exchanging the liquid in Reference Example 1, the content decreased to 0.09% on the 21st day. Ammonia also decreased from 20.5 ppm to 2.9 ppm in Reference Example 1. A similar effect was observed in the acid immersion of Reference Example 3 (from 20.5 ppm to 3.1 ppm), indicating that long-term immersion also had a deodorizing effect, but was less effective in degreasing. The dry weight of the shark skin after the immersion treatment was 98% for the alkali immersion and 65% for the acid immersion, indicating that the shark skin was already dissolved in the immersion liquid.
It should be noted that it is sufficiently possible to add explosive gas by immersion in an alkali, and in this case, it was confirmed that the explosion could be performed in a number of days close to the lower limit of the scope of the claims.
[0056]
[Table 1]
Figure 2004300109
[0057]
Example 1
Collagen was produced using a production process which is an example of the animal protein of the present invention illustrated in FIG. 2 (A).
That is, after the same raw material as in Reference Example 1 was immersed in an alkali, the skin of the shark skin was peeled off to obtain 1.11 kg of a dermal layer of the shark skin. The moisture content of the obtained dermis layer (1.11 kg (wet weight)) was 86.3%, the fat and oil content was reduced to 0.1%, and the ammonia was reduced to 2.2 ppm (all in dry weight ratio). . As a result, the residual fat and oil achieved the target (0.1% or less), and the ammonia residual almost approached the target (2 ppm or less).
The obtained dermis layer was pulverized with a meat chopper (# 22GM-D manufactured by Nippon Carrier Industry Co., Ltd.) into a maximum of about 2 mm square. Extraction was carried out using a 30 L stirred container, and 1.11 kg (wet weight) of pulverized material, 8.88 kg of 0.5 M acetic acid aqueous solution (8 times the weight of the dermis layer), pepsin (porcine gastric mucosa, Sigma) 1.52 g (1% based on the dry weight of the solid content of the dermis layer) was added and stirred at 4 ° C. at 120 rpm for 3 days to obtain 9.98 kg of an acid-soluble collagen extract. In addition, the dry weight of the solid content in the obtained extract is 98% when the dry weight of the dermis layer after the alkali immersion is 100% before the extraction operation, and the residual oil and fat contained in the solid content of the extract is 98%. Was 0.1% and ammonia was 1.4 ppm (all in dry weight ratio).
The obtained extract is so viscous that it is not suitable for measurement of insoluble residue, so 100 g is taken. To this extract, 500 g of 1 mM acetic acid is added to reduce the permeation resistance due to the high viscosity, and filter paper [Advantech Toyo ( No. 5A, two sheets overlapped], and the insoluble residue was filtered under reduced pressure. The insoluble residue was almost trace only. The pH was around 2.6.
[0058]
Similarly, 500 g of 1 mM acetic acid was added to 100 g of the extract, and 600 g of the diluted extract was subjected to ultrafiltration using the purification / concentration apparatus shown in FIG. The purification / concentration apparatus is equipped with an ultrafiltration apparatus equipped with Pellicon XL Biomax-30 (fraction molecular weight 30,000) manufactured by Millipore Co., Ltd. as a membrane module, and sends the liquid at a circulating liquid flow rate of 25 mL / min. The pump and the throttle 4 provided on the outlet side were adjusted, and the pump was operated at a permeate speed of 2 to 3 mL / min. Although not shown, the ultrafiltration apparatus includes a pH meter (for example, Castani LAB-F20II, manufactured by Horiba, Ltd.) and an electric conductivity meter (for example, manufactured by Horiba, Ltd.) (Castany LAB-DS).
Since about 100 mL of the circulating liquid is present in a tube or the like in the ultrafiltration device, the amount of the liquid in the circulating liquid supply tank was initially about 500 mL. For this reason, 1 mM acetic acid (pH 4.0) is appropriately added to the circulating liquid from the weakly acidic solution adding tank so that the amount of liquid in the circulating liquid supply tank is always 400 to 500 mL, and ultrafiltration is performed. Thereafter, the electric conductivity (measurement unit μS / cm) indicating the rise of the pH of the circulating fluid and the salt concentration2) No longer decreased. Thereafter, the ultrafiltration was continued until about 12 hours had elapsed. However, no change in the pH and electric conductivity of the circulating fluid was observed, and the purity of the collagen also reached the desired level. . After the ultrafiltration was completed, the dry weight of the solid content in the obtained circulating liquid was 99%, where the dry weight of the solid content in the extract before the ultrafiltration operation was 100%, and the ammonia concentration was 1. It decreased from 4 ppm to 0.8 ppm (dry weight ratio).
The obtained circulating liquid was frozen at −80 ° C. and freeze-dried at 10 Pa and 20 ° C. for 12 hours to obtain 107 g of dried collagen (water content: 0.1%). The yield was 70.0% based on the dry weight of the dermis layer after alkali immersion.
[0059]
The dried collagen obtained in this example was redissolved in 1 mM acetic acid, and the molecular weight distribution was examined by electrophoresis. As a result, it was confirmed that the collagen contained a large amount of γ chains. The instrument used was electrophoresed on a gel having an acrylamide gel concentration of 7.5% using Rapidos Minislab manufactured by ATTO Corporation.
The specific rotation of the obtained dried collagen was measured. A 0.1% solution of dried collagen diluted with 0.005 M acetic acid was dissolved by stirring with a stirrer at 4 ° C. for 12 hours, and centrifuged at 18,000 rpm (gravity acceleration 36,000 g) at 4 ° C. for about 40 minutes (Hitachi, Japan). The supernatant was subjected to a high-speed cooling centrifuge (manufactured by Seisakusho Co., Ltd., 2 OPR-520), and the specific rotation was measured for 10 mL of the supernatant (SEPA-200 manufactured by Horiba, Ltd., use conditions: 20 ° C.). The value of specific rotation is considered to be a measure of collagen purity [α]20 DIt was between -360 ° and -420 °.
[0060]
In addition, also in the measurement of the specific rotation with a time-temperature linear gradient of changing 5 ° C. per 10 minutes, from 5 ° C. to 30 ° C., it was approximately −370 °, but it dropped sharply from around 30 ° C. , At 35 ° C., the value was around −150 °. Even if the temperature is lowered again below 40 ° C., the specific rotation [α] at 20 ° C.20 DDid not return to -360 °, remained at -150 °, and remained approximately the same as the measured value for gelatin which was forcibly heated to 60 ° C in a hot water bath. It is considered that gelatin was already denatured by heat denaturation.
The residual collagen, fat, and ammonia contents of the obtained dried collagen were 0.1%, 0.1%, and 0.5 ppm, respectively. Trimethylamine was not detected. Of the samples was determined to be odorless.
The amount of salt was measured as ash obtained as a residue on ignition (see Non-Patent Document 1). The amount of trimethylamine was measured colorimetrically by the picrate method on the solution obtained by extracting perchloric acid from the skin (edited by the Japan Society of Food Industry, Food Analysis Method Editing Committee, “Food Analysis Method”, Kourin) , Tokyo, October 1982, pp. 673-681).
The odor sensory evaluation was performed according to the following evaluation criteria using 20 panelists.
○: Odorless
△: Slight odor
×: Odor
[0061]
Example 2
Using the extract of the acid-soluble protein obtained under the same conditions as in Example 1 but under an acid solution extraction condition of 0.5 M acetic acid 8 times, as a purification and concentration method, in place of the ultrafiltration of Example 1, Salting out and dialysis were also performed. Sodium chloride and acetic acid were added to 100 g of the obtained extract at a concentration of 1 mol / L and 0.5 mol / L, respectively, and the precipitate was deposited at 18,000 rpm (gravity acceleration 36,000 g) at 4 ° C. The mixture was centrifuged and separated into solid and liquid. The separated precipitate was redissolved in 1 mM acetic acid, dialyzed against 20 volumes of 1 mM acetic acid, and desalted. It took 3 hours for the sodium chloride concentration of the dialysate to show a constant value, and each time the dialysate was replaced, and the dialysate was changed four times. Therefore, the time required for one dialysis operation is 12 hours. To the collagen solution after completion of the dialysis, sodium chloride is again added to 1 M in the same manner as described above, precipitation by salting out, separation of solids by centrifugation, re-dissolution of solids, dialysis and desalting, The operation of analysis and dialysis was repeated five times to complete the purification. Therefore, the net required time for salting out and dialysis was 12 × 5 = 60 hours (about 2.5 days).
In the method by salting out and dialysis of this example, it takes more days for purification and concentration than the ultrafiltration of Example 1, but it can be confirmed that a collagen solution having relatively high purity can be obtained. Was. In addition, the collagen yield obtained was about 50% based on the dry weight of the dermis layer before the introduction of the extraction treatment.
In addition, a case where an extract was obtained under an extraction condition of a 20-fold amount of an acid solution of a conventionally known example, and a purification operation was performed by salting out and dialysis is shown in Comparative Example 3 described later. The use of the extract obtained under the acid extraction conditions of 8 times the amount of 0.5 M acetic acid solution of this example shows that a relatively high-purity collagen solution can be purified even if the number of times of salting out and dialysis is small. ing.
[0062]
Example 3
In the same manner as in Examples 1 and 2, shark rawhide was immersed in alkali and the epidermis was peeled off to obtain 1.05 kg of a dermis layer. The moisture content of the dermis layer was 87%, the fat content was 0.1%, and the ammonia was 2.5 ppm.
The obtained dermis layer was ground to a maximum length of about 2 mm with a meat chopper (# 22GM-D manufactured by Nippon Carrier Industry). Using a 30 L stirred container, 21 kg of a 0.5 M acetic acid aqueous solution (20 times the weight of the dermis layer), pepsin (derived from porcine gastric mucosa, manufactured by Sigma) were added to 1.05 kg (wet weight) of the pulverized material. .37 g (1% based on the weight of the solid content of the dermis layer) was added, and the mixture was stirred at 4 ° C. at 120 rpm for 3 days to obtain 22.0 kg of an extract. The dry weight of the solid content in the obtained extract is 97% when the dry weight of the dermis layer after alkali immersion before the extraction operation is 100%, the fat and oil content is 0.1%, and the ammonia is 1.6 ppm. (All in dry weight ratio).
Unlike Example 1, the insoluble residue was directly filtered without diluting with 1 mM acetic acid to obtain 22.0 kg of an extract. The pH was around 2.5. The insoluble residue was a trace. Ultrafiltration was performed under the same apparatus and under the same conditions as in Example 1. Changes in the pH and electrical conductivity of the circulating fluid were no longer observed, and the time required for the collagen purity to reach the desired level was 40 hours (three times or more that of Example 1). This is because the 0.5 M acetic acid aqueous solution was increased to 20 times the weight of the dermis layer in comparison with Example 1 in the extraction operation, so that the molecular weight distribution in the extract was uneven, that is, the collagen purity was reduced. Therefore, since the collagen concentration in the circulating fluid is low, it is considered that the time required for purification and concentration on the circulating fluid side by an ultrafiltration operation until the desired level is reached is prolonged. After the ultrafiltration, the dry weight of the solid content in the obtained circulating liquid is 75%, where the dry weight of the solid content in the extract before the ultrafiltration operation is 100%, and the ammonia concentration is 1. It decreased from 6 ppm to 0.9 ppm (dry weight ratio).
[0063]
The obtained circulating liquid was freeze-dried in the same manner as in Example 1 to obtain 0.372 g of dried collagen (water content: 0.1%). The yield based on the dry weight of the dermis layer after alkali immersion was 60%.
When the obtained dried collagen was redissolved in 1 mM acetic acid and the molecular weight distribution was examined by electrophoresis, α-chain, β-chain, and γ-chain were confirmed, but compared with the collagen obtained in Example 1, The band of the α chain was strong, while the band of the γ chain was weak. The specific rotation is [α]20 D-280, indicating a low collagen purity. It is considered that the reason why the purity was low was not only the solubilization of the γ chain but also the decomposition of the γ chain into a low-molecular α chain in the extraction step. It is considered that the reason why the decomposition of the γ chain was promoted was that the acid solution subjected to the extraction was 20 times the weight of the shark dermis layer, which was much larger than that of the shark dermis layer.
[0064]
Comparative Example 1
For comparison, a method for producing shark skin collagen according to an example of a conventional process illustrated in FIG. 2B is shown.
First, 4 kg (95.26% water) of the dermis layer in which the skin of shark skin was peeled off and subjected to swelling treatment to increase the water content so that collagen was easily solubilized was used.
4 kg (dry weight: 189.6 g) of this dermis layer was pulverized by a meat chopper in the same manner as described above, and a 1% aqueous solution of a surfactant (PRODUCT A, manufactured by Bayer) was added for the purpose of degreasing, followed by 12 hours at 4 ° C. Stirred. After the completion of defatting, the dermis layer was precipitated by centrifugation at 8,000 rotations (gravity acceleration: 13,000 g) for 30 minutes, and the surfactant solution contained in the supernatant was removed. Further, about 2 times by weight (about 8 kg) of water was added to the collected dermis layer, stirred, centrifuged under the same conditions as above, and washed with water. The weight of the dermis layer after washing with water was 3.96 kg (water content 93.46%, dry weight 258.9 g). The recovery rate for the dermis layer used as the raw material was 137% on a dry weight basis, which resulted in an apparent increase. This is probably because the water washing after degreasing was insufficient and the surfactant could not be completely removed.
[0065]
To 3.96 kg of the dermis layer after the degreased water washing operation, 7.93 kg of 0.5 M acetic acid aqueous solution (2 times the weight of the dermis layer), and 1.9 g of pepsin (derived from pig gastric mucosa, manufactured by Sigma) (dermis layer solid) (1% of the weight per minute) and stirred at 4 ° C. for 120 rotations / minute for 3 days to perform solubilization and extraction of collagen. Thereafter, the insoluble residue was removed by centrifugation at 8,000 rotations (gravity acceleration 13,000 g) for 30 minutes to obtain 10.2 kg of an extract. The insoluble residue was a trace.
[0066]
Sodium chloride and acetic acid were added to 10.2 kg of the obtained extract at 1 mol / L and 0.5 mol / L, respectively, and the deposited precipitate was rotated at 8,000 rpm (gravity acceleration 13,000 g) for 30 minutes. For centrifugation. The separated precipitate was redissolved in 1 mM acetic acid, dialyzed against 20 volumes of 1 mM acetic acid, and desalted. It took 3 hours for the sodium chloride concentration of the dialysate to show a constant value, and each time the dialysate was replaced, and the dialysate was changed four times. Therefore, the time required for one dialysis operation is 12 hours. To the collagen solution after completion of the dialysis, sodium chloride is again added to 1 M in the same manner as described above, and precipitation by salting out, separation of solids by centrifugation, re-dissolution of solids, dialysis and desalting, The operation of analysis and dialysis was repeated five times to complete the purification. Therefore, the net required time for salting out and dialysis was 12 × 5 = 60 hours.
After that, it was freeze-dried in the same manner as in Example 1 to obtain 108.8 g of dried collagen (water content: 12.12%). The yield was 50.42% based on the dry weight of the dermis layer after alkali immersion, but the yield was 49.18% when the mixed salt and oil were removed. Concentrations of residual fat, salt, and ammonia are as high as 0.47%, 2.0%, and 3 ppm, respectively, and the specific optical rotation of a 0.1% solution (in 0.005 M acetic acid) is [α].20 DThe collagen purity was as low as -256 °.
[0067]
Comparative Example 2
Pretreatment and extraction were performed in the same manner as in Example 32, and 100 g of the obtained extract was subjected to salting out and dialysis in the same manner as in Comparative Example 1 to desalinate. The dialysis was performed for 12 hours while exchanging the external solution four times. Further, the operations of salting out and dialysis were repeated five times to complete the purification.
Then, it freeze-dried similarly to Example 1, and obtained 0.299 g (0.1% of water) of dry collagen. The yield was 48.20% based on the dry weight of the shark skin dermis layer after alkali immersion. The concentrations of the residual fat, salt, and ammonia are 0.1%, 2.0%, and 1.5 ppm, respectively, and the specific rotation of a 1% solution (in 0.005 M acetic acid) is also [α].20 D-250 °.
[0068]
Comparative Example 3
The same treatment as in Example 3 was carried out, and the obtained extract was subjected to purification by salting out and dialysis in the same manner as in Comparative Example 1, but was twice as large as Comparative Examples 1 and 2. Performed twice.
The obtained dried collagen was redissolved in 1 mM acetic acid, and the molecular weight distribution was examined by electrophoresis. As a result, α chain, β chain, and γ chain were confirmed. The α chain band was weaker than that of the collagen obtained in Comparative Example 2, and the γ chain band was as intense as in Example 1.
The specific rotation of the obtained dried collagen is [α]20 D-360 °, the desired level of high purity collagen. At this time, the concentrations of the residual fats, oils, salts, and ammonia also decreased to 0.1%, 0.1%, and 0.5 ppm, respectively, but the yield decreased to 30.0%.
[0069]
The collagen obtained in Example 3 is superior to Comparative Example 1 in that the residual fat and oil content is low, but this is largely due to the effect of performing the pretreatment step by alkali immersion instead of degreasing with a surfactant. In Example 32, ultrafiltration was used in place of salting out and dialysis in the purification / concentration step, so that the original salt was low in salt content and the residual salt content could be reduced. However, collagen purity indicated by specific rotation, electrophoresis, etc. Is lower than that of Example 1 in which purification was performed by the same ultrafiltration method. This is considered to be because the weight ratio of the acid solution in the extraction step was excessive, that is, 20 times. In addition, when purification was performed by salting out and dialysis in Comparative Examples 2 and 3, in order to bring the γ-chain band of the molecular weight distribution and the specific rotation to a desired level of high-purity collagen, 10 times. The above salting out and dialysis were required.
Table 2 shows various properties of the collagens obtained in Examples 1 to 3 and Comparative Examples 1 to 3.
[0070]
Example 4
Using shark rawhide as a raw material, the temperature and time for peeling the epidermis and obtaining a dermis layer were examined. 200 g of rawhide (wet weight, water content 83%) was poured into about 5 L of warm water set to the temperature shown in Table 3 and immersed for the time shown in Table 3. After immersion, the epidermis was manually peeled off using a finger and a kitchen knife, and the dermis layer was collected. The obtained dermis layer was dried at 110 ° C., and the dry weight was measured.
The immersion at 30 ° C. × 1 minute or less did not show any difference from the properties before immersion. As the immersion temperature and time increased, the recovery of the dermis layer improved. In particular, by immersion at 40 ° C. × 5 minutes or 50 ° C. × 3 minutes, many parts could be peeled off with fingers. When the immersion was performed at 60 ° C. for 5 minutes, the collagen was denatured into gelatin and dissolved in warm water, so that the recovery rate of the dermis layer was reduced.
[0071]
Example 5
Using the same shark rawhide as the raw material used in Example 4, the effects of immersion time and temperature in the alkali treatment step were examined. 200 g of rawhide (wet weight, water content 83%) was immersed in 1 L of a saturated solution of lime (pH 11.5) at the temperature and days shown in Table 4 to remove oil and fat contained in the dermis layer from which the epidermis was removed. The ammonia content was measured.
Table 4 shows the results.
When immersion is performed at 5 ° C., after 14 days, the fat and oil content reaches 0.2% or less and ammonia 10 ppm or less, which are the levels desired in the process before extraction and purification, and the oil and fat content 0.09% after 21 days. , Ammonia to 2.9 ppm. When the immersion temperature was changed, it took 8 days at 20 ° C., 2 days at 30 ° C. and 1 day at 40 ° C. to reach the desired level. If the temperature is high, fats and oils and ammonia can be removed in a short period of time, but in order to prevent the thermal denaturation of collagen, it is desirable to perform the process at as low a temperature as possible.
[0072]
Example 6
Using the shark skin dermis layer obtained in Reference Example 1 as a raw material, heat extraction was performed at a high temperature for the purpose of shortening the extraction days.
At the beaker test level, when using a finer raw material obtained by minced pulverization, add 9 mL of 0.5 mol / L acetic acid aqueous solution to 1 g of dermis layer (wet weight, water content: 86.3%). After heating at 100 ° C. for 1 minute, 5 minutes, 10 minutes and 20 minutes, extraction and purification were performed in the same manner as in Example 1, and the molecular weight distribution was examined by electrophoresis. However, since it is a small material, a shaking multi-shaker (MMS manufactured by Tokyo Rika Instruments) was used for the immersion treatment for extraction. When heated for 1 to 5 minutes, γ chains were observed at substantially the same ratio as in Example 1. However, when heated for 10 minutes, the band of γ chains became thinner, and when heated for 20 minutes, the band weight of electrophoresis showed a molecular weight of 50. In most cases, no γ chain was observed, and almost no α chain band having a molecular weight of 100,000 was observed. From this, it can be seen that if the heating is suppressed to 100 ° C. for about 1 to 10 minutes, the dissociation of the γ chain and the denaturation to gelatin are within an acceptable range.
Further, in a test using 1.0 kg of the shark skin dermis layer obtained in Reference Example 1 as a raw material, 8.0 kg of a 0.5 M acetic acid aqueous solution and 1.37 g of pepsin were added in the same manner as in the method shown in Example 1. Extraction was performed at 120 ° C. at a stirring speed of 120 revolutions / minute. However, the number of days for extraction was reduced to half of 1.5 days, and thereafter, a short-time heat extraction at 100 ° C. for 5 minutes was added. Thereafter, the residue was filtered and separated, purified by ultrafiltration, and freeze-dried in the same manner as in Example 1 to obtain 96 g of dry collagen (water content: 0.1%). The obtained collagen contained approximately the same amount of γ chain as the collagen obtained in Example 1, and both the specific rotation, the residual oil and fat, and the residual ammonia reached the desired level of high-purity collagen. . By adding this short-time heating step, the extraction step that required three days in Example 1 was reduced to half.
[0073]
[Table 2]
Figure 2004300109
[0074]
* 1: Based on the dry weight of the swelled, non-skinned dermis
* 2: 0.1% solution (in 5 mM acetic acid)
[0075]
[Table 3]
Figure 2004300109
[0076]
[Table 4]
Figure 2004300109
[0077]
【The invention's effect】
According to the present invention, it is possible to provide a production method and a production apparatus capable of separating and recovering animal proteins such as collagen, gelatin, and collagen peptides having high quality and purity from animal body tissues at a low cost with a high yield and in a large amount. it can. Further, the animal protein obtained by the present invention can be used as a material suitable for pharmaceuticals, cosmetic liquids, rinses, treatments, industrial uses, health foods, seasonings, and the like.
[Brief description of the drawings]
FIG. 1 is a schematic view of the configuration of an example of the purification / concentration device of the present invention.
FIG. 2 (A) is an example of an overall process diagram showing an example of a method for producing an animal protein of the present invention, and FIG. 2 (B) is an example of an overall process diagram showing an example of a method for producing an animal protein in a conventional process. is there.
[Explanation of symbols]
1: Ultrafiltration device
2: Circulating fluid supply tank
3: Weak acid solution replenishment tank
4: Aperture
5: Liquid pump
6: Level meter
10: Purification / concentration equipment
11: Flow of permeate
12: Flow of circulating fluid
13: Flow of weakly acidic liquid

Claims (25)

動物の蛋白質を含む組織および/または動物の皮からなる動物の体組織を原料とし、原料の脱脂・脱臭処理を含む前処理工程と、前処理した原料を酸溶液または酸および酸性プロテアーゼ溶液に浸漬して、酸可溶性蛋白質を可溶化、溶解させ、酸可溶性蛋白質を含有する抽出液を得る抽出工程と、該抽出液から酸可溶性蛋白質を精製、濃縮する精製・濃縮工程とを備えた動物蛋白質の製造方法において、抽出工程に供する原料と溶液の関係が、原料に対する酸溶液または酸および酸性プロテアーゼ溶液の重量比が1.5〜10倍で、酸の濃度が0.3M〜2Mであることを特徴とする、動物蛋白質の製造方法。Using a tissue containing animal protein and / or an animal body tissue consisting of animal skin as a raw material, a pretreatment step including degreasing and deodorizing treatment of the raw material, and immersing the pretreated raw material in an acid solution or an acid and acid protease solution An animal protein comprising an extraction step of solubilizing and dissolving the acid-soluble protein to obtain an extract containing the acid-soluble protein, and a purification / concentration step of purifying and concentrating the acid-soluble protein from the extract. In the production method, the relationship between the raw material and the solution to be subjected to the extraction step is such that the weight ratio of the acid solution or the acid and the acidic protease solution to the raw material is 1.5 to 10 times, and the concentration of the acid is 0.3 M to 2 M. A method for producing an animal protein. 上記前処理工程、抽出工程および精製・濃縮工程の温度が、上記原料が、陸生動物由来では0〜40℃、水生動物由来では0〜30℃に保温され、また抽出工程および/または精製・濃縮工程の温度を前処理工程の温度より5℃以上低く保温する、請求項1に記載の動物蛋白質の製造方法。The temperature of the pretreatment step, the extraction step and the purification / concentration step is maintained at 0 to 40 ° C. for the terrestrial animal and 0 to 30 ° C. for the aquatic animal, and the extraction step and / or purification / concentration. The method for producing an animal protein according to claim 1, wherein the temperature of the step is kept at least 5 ° C lower than the temperature of the pretreatment step. 上記精製・濃縮工程が、限外ろ過膜を用いた精製、濃縮の方法からなり、上記抽出液を限外ろ過装置に投入して、限外ろ過膜を透過しない酸可溶性蛋白質を含む残留液を濃縮して循環液として循環させ、再度、限外ろ過するものである、請求項1または請求項2に記載の動物蛋白質の製造方法。The purification / concentration step comprises a purification / concentration method using an ultrafiltration membrane, and the extract is put into an ultrafiltration apparatus, and a residual liquid containing an acid-soluble protein that does not pass through the ultrafiltration membrane is removed. The method for producing an animal protein according to claim 1 or 2, wherein the animal protein is concentrated, circulated as a circulating solution, and then subjected to ultrafiltration again. 上記精製・濃縮工程において、上記循環液の総量を検知する総量検知手段と、上記抽出工程に用いる溶液よりpHが中性に近い弱酸性溶液を循環液に添加する弱酸性溶液添加手段とを有し、該循環液の総量を所定の範囲に、間欠的あるいは連続的に維持、制御する、請求項3に記載の動物蛋白質の製造方法。In the purification / concentration step, there is provided a total amount detecting means for detecting a total amount of the circulating liquid, and a weakly acidic solution adding means for adding a weakly acidic solution having a pH closer to neutral than the solution used in the extracting step to the circulating liquid. The method for producing an animal protein according to claim 3, wherein the total amount of the circulating fluid is maintained and controlled intermittently or continuously within a predetermined range. 上記精製・濃縮工程において、上記循環液が含有する酸可溶性蛋白質の濃度、酸可溶性蛋白質の純度、循環液の粘度、循環液の密度、循環液の酸性度、および循環液の電気伝導度の群から選ばれた少なくとも1種を連続的または間欠的に検知する手段ならびに循環液の循環を制御する手段を有し、該酸可溶性蛋白質の精製、濃縮を制御する、請求項3または請求項4に記載の動物蛋白質の製造方法。In the purification / concentration step, a group of the concentration of the acid-soluble protein contained in the circulating fluid, the purity of the acid-soluble protein, the viscosity of the circulating fluid, the density of the circulating fluid, the acidity of the circulating fluid, and the electric conductivity of the circulating fluid 5. The method according to claim 3, further comprising a means for continuously or intermittently detecting at least one selected from the group consisting of: and a means for controlling circulation of a circulating fluid, and controlling purification and concentration of the acid-soluble protein. A method for producing the animal protein according to the above. 上記精製・濃縮工程において、限外ろ過膜の分画分子量が互いに同一あるいは異なる限外ろ過装置を複数台備え、該複数台の限外ろ過の循環液が互いに連通可能な、請求項3〜請求項5のいずれか1項に記載の動物蛋白質の製造方法。In the purification / concentration step, the ultrafiltration membrane has a plurality of ultrafiltration devices having the same or different molecular weight cutoffs, and the circulating liquids of the ultrafiltration can communicate with each other. Item 6. The method for producing an animal protein according to any one of items 5. 上記精製・濃縮工程において、限外ろ過に分画分子量30,000〜100,000の限外ろ過膜を用い、該限外ろ過の循環液よりコラーゲン、および/または、該限外ろ過の透過液よりゼラチンまたはコラーゲンペプタイドを得る請求項3〜請求項6のいずれか1項に記載の動物蛋白質の製造方法。In the purification / concentration step, an ultrafiltration membrane having a molecular weight cut off of 30,000 to 100,000 is used for ultrafiltration, and collagen and / or permeate of the ultrafiltration are removed from the circulating liquid of the ultrafiltration. The method for producing an animal protein according to any one of claims 3 to 6, wherein a gelatin or collagen peptide is obtained more. 上記精製・濃縮工程において、限外ろ過に分画分子量5,000〜30,000の限外ろ過膜を用い、該限外ろ過の循環液よりコラーゲンまたはゼラチン、および/または、該限外ろ過の透過液よりコラーゲンペプタイドを得る請求項3〜請求項6のいずれか1項に記載の動物蛋白質の製造方法。In the above purification / concentration step, an ultrafiltration membrane having a molecular weight cutoff of 5,000 to 30,000 is used for ultrafiltration, and collagen or gelatin and / or The method for producing an animal protein according to any one of claims 3 to 6, wherein a collagen peptide is obtained from the permeate. 上記精製・濃縮工程において、限外ろ過膜の分画分子量が異なる限外ろ過を二段階で構成し、第一段には分画分子量30,000〜100,000の限外ろ過膜を、第二段には分画分子量5,000〜30,000の限外ろ過膜を備え、第一段の限外ろ過で得られる透過液を、第二段の限外ろ過の循環液に間欠的または連続的に投入して、第一段の循環液よりコラーゲン、第二段の循環液よりゼラチン、および/または、第二段の透過液よりコラーゲンペプタイドを得る請求項3〜請求項6のいずれか1項に記載の動物蛋白質の製造方法。In the above-mentioned purification / concentration step, ultrafiltration having different molecular weight cutoffs of the ultrafiltration membrane is constituted in two stages, and the first stage is provided with an ultrafiltration membrane having a molecular weight cutoff of 30,000 to 100,000, The second stage is equipped with an ultrafiltration membrane having a molecular weight cut-off of 5,000 to 30,000, and the permeate obtained in the first stage ultrafiltration is intermittently or circulated into the circulating fluid of the second stage ultrafiltration. 7. The method according to any one of claims 3 to 6, wherein the collagen is continuously fed to obtain collagen from the first-stage circulating fluid, gelatin from the second-stage circulating fluid, and / or collagen peptide from the second-stage permeate. 2. The method for producing an animal protein according to claim 1. 上記抽出工程において、酸溶液または酸および酸性プロテアーゼ溶液に浸漬する温度を50〜150℃として1〜10分間加熱する請求項1〜請求項9のいずれか1項に記載の動物蛋白質の製造方法。The method for producing an animal protein according to any one of claims 1 to 9, wherein in the extraction step, the temperature for immersion in an acid solution or an acid and an acid protease solution is 50 to 150 ° C and heating is performed for 1 to 10 minutes. 上記抽出工程において、上記抽出液にて可溶化、溶解しないで残留する不溶残さ、および/または、上記脱脂・脱臭処理を含む前処理を施した原料を、温水に浸漬して温水可溶性蛋白質を可溶化、溶解させ抽出液を得、該抽出液を分画分子量5,000〜30,000の限外ろ過膜からなる限外ろ過装置に投入し、限外ろ過膜を透過しない温水可溶性蛋白質を含む残留液を濃縮して循環液として循環させ、再度、限外ろ過し、循環液よりゼラチンを、および/または、透過液よりコラーゲンペプタイドを得るものである、温水可溶性蛋白質の製造工程を付加した、請求項1〜請求項10のいずれか1項に記載の動物蛋白質の製造方法。In the extraction step, the insoluble residue remaining without being solubilized and dissolved in the extract and / or the raw material subjected to the pretreatment including the degreasing / deodorizing treatment is immersed in warm water to remove the warm water soluble protein. An extract is obtained by solubilization and dissolution, and the extract is introduced into an ultrafiltration apparatus comprising an ultrafiltration membrane having a molecular weight cut-off of 5,000 to 30,000, and contains warm water soluble protein which does not pass through the ultrafiltration membrane. The residual liquid was concentrated and circulated as a circulating liquid, and again subjected to ultrafiltration to obtain gelatin from the circulating liquid, and / or a collagen peptide from the permeated liquid. A method for producing an animal protein according to any one of claims 1 to 10. 上記温水浸漬の温度が、陸生動物由来の原料では50〜100℃、水生動物由来の原料では40〜100℃である、請求項11に記載の動物蛋白質の製造方法。The method for producing an animal protein according to claim 11, wherein the temperature of the hot water immersion is 50 to 100C for raw materials derived from terrestrial animals, and 40 to 100C for raw materials derived from aquatic animals. 上記前処理工程において、動物の体組織が動物の皮である場合において、上記動物の皮が陸生由来では40〜70℃、水生由来では30〜60℃の温度範囲で1〜10分間温水に浸漬して、表皮を剥離して真皮層を得る皮剥離工程を含むものである、請求項1〜請求項12のいずれか1項に記載の動物蛋白質の製造方法。In the pretreatment step, when the animal body tissue is an animal skin, the animal skin is immersed in warm water at a temperature range of 40 to 70 ° C for terrestrial origin and 30 to 60 ° C for aquatic origin for 1 to 10 minutes. The method for producing an animal protein according to any one of claims 1 to 12, further comprising a peeling step of peeling the epidermis to obtain a dermis layer. 上記前処理工程において、上記動物の体組織または上記真皮層を原料として、アルカリ液中に浸漬し、該浸漬の条件が、浸漬温度0〜40℃、浸漬時間が1〜32日間であり、温度40℃で最短浸漬時間1日を基準として、10℃下がるごとに最短浸漬時間が2倍以上とする、請求項1〜請求項13のいずれか1項に記載の動物蛋白質の製造方法。In the pretreatment step, the body tissue of the animal or the dermis layer is used as a raw material, and the material is immersed in an alkaline solution. The method for producing an animal protein according to any one of claims 1 to 13, wherein the minimum immersion time is twice or more each time the temperature is lowered by 10 ° C based on the minimum immersion time of 1 day at 40 ° C. 動物の蛋白質を含む組織および/または動物の皮からなる動物の体組織を原料とし、原料の脱脂・脱臭処理を含む前処理を施す前処理装置と、原料を酸溶液または酸および酸性プロテアーゼ溶液に浸漬して酸可溶性蛋白質を可溶化、溶解させ、酸可溶性蛋白質を含有する抽出液を得る抽出装置と、該抽出液から酸可溶性蛋白質を精製、濃縮する精製・濃縮装置とを備えた動物蛋白質の製造装置において、抽出工程に供する原料と溶液の関係が、原料に対する酸溶液または酸および酸性プロテアーゼ溶液の重量比が1.5〜10倍で、酸の濃度を0.3M〜2Mの範囲で調整する抽出装置であることを特徴とする、動物蛋白質の製造装置。A pretreatment device for performing pretreatment including degreasing and deodorizing treatment of a raw material using a tissue containing animal protein and / or an animal body tissue composed of animal skin, and converting the raw material into an acid solution or an acid and acid protease solution An animal protein comprising an extraction device for solubilizing and dissolving the acid-soluble protein by immersion to obtain an extract containing the acid-soluble protein, and a purification / concentration device for purifying and concentrating the acid-soluble protein from the extract. In the manufacturing apparatus, the relationship between the raw material and the solution to be subjected to the extraction step is adjusted such that the weight ratio of the acid solution or the acid and the acidic protease solution to the raw material is 1.5 to 10 times, and the acid concentration is in the range of 0.3 M to 2 M. An apparatus for producing an animal protein, comprising: 上記精製・濃縮装置が、限外ろ過膜を用いた精製、濃縮の方法を含んでなり、上記抽出液を限外ろ過装置に投入して、該限外ろ過膜を透過しない酸可溶性蛋白質を含む残留液を濃縮して循環液として循環させ、再度、限外ろ過するものである、請求項15に記載の動物蛋白質の製造装置。The purification / concentration device includes a method for purification and concentration using an ultrafiltration membrane, and the extract is charged into an ultrafiltration device, and contains an acid-soluble protein that does not pass through the ultrafiltration membrane. The apparatus for producing an animal protein according to claim 15, wherein the residual liquid is concentrated, circulated as a circulating liquid, and subjected to ultrafiltration again. 上記精製・濃縮装置において、上記限外ろ過の循環液の総量を検知する総量検知手段と、抽出工程で用いた酸溶液よりpHが中性に近い弱酸性溶液を該循環液に添加する弱酸性溶液添加手段とを備えて、該循環液の総量を所定の範囲に、間欠的あるいは連続的に維持、制御する請求項16に記載の動物蛋白質の製造装置。In the above-mentioned purification / concentration apparatus, a total amount detecting means for detecting the total amount of the circulating liquid of the ultrafiltration, and a weakly acidic solution in which a weakly acidic solution whose pH is closer to neutral than the acid solution used in the extraction step is added to the circulating liquid. 17. The animal protein production apparatus according to claim 16, further comprising a solution adding means, wherein the total amount of the circulating fluid is maintained and controlled intermittently or continuously within a predetermined range. 上記精製・濃縮装置において、上記循環液が含有する酸可溶性蛋白質の濃度、酸可溶性蛋白質の純度、循環液の粘度、循環液の密度、循環液の酸性度、および循環液の電気伝導度の群から選ばれた少なくとも一種を検知する手段、ならびに循環液の循環制御手段を備えて、循環液の酸可溶性蛋白質の濃縮を制御する、請求項16または請求項17に記載の動物蛋白質の製造装置。In the above-mentioned purification / concentration apparatus, a group of the concentration of the acid-soluble protein contained in the circulating fluid, the purity of the acid-soluble protein, the viscosity of the circulating fluid, the density of the circulating fluid, the acidity of the circulating fluid, and the electric conductivity of the circulating fluid. 18. The animal protein production device according to claim 16, further comprising means for detecting at least one selected from the group consisting of: and a circulating fluid circulation controlling means for controlling the concentration of the acid-soluble protein in the circulating fluid. 上記精製・濃縮装置において、限外ろ過膜の分画分子量が互いに同一あるいは異なる限外ろ過装置を複数台備え、該複数台の限外ろ過の循環液が互いに連通可能な、請求項16〜請求項18のいずれか1項に記載の動物蛋白質の製造装置。The purification / concentration device, wherein the ultrafiltration membrane has a plurality of ultrafiltration devices having the same or different molecular weight cutoffs, and the plurality of ultrafiltration circulating liquids can communicate with each other. Item 18. An apparatus for producing an animal protein according to any one of Items 18. 上記抽出装置において、上記抽出液にて可溶化、溶解しないで残留する不溶残さ、および/または、上記脱脂・脱臭処理を含む前処理を施した原料を、温水に浸漬して温水可溶性蛋白質を可溶化、溶解させ抽出液を得る温水抽出装置と、該抽出液を分画分子量5,000〜30,000の限外ろ過膜からなる限外ろ過装置に投入し、限外ろ過膜を透過しない温水可溶性蛋白質を含む残留液を濃縮して循環液として循環させ、再度、限外ろ過し、循環液よりゼラチンを、および/または、透過液よりコラーゲンペプタイドを得る精製・濃縮装置とからなる、温水可溶性蛋白質の製造装置を付設して設けるか、および/または上記酸可溶性蛋白質の製造に供する抽出装置と限外ろ過装置とを兼用、共用して温水可溶性蛋白質の製造に供する、請求項16〜請求項19のいずれか1項に記載の動物蛋白質の製造装置。In the extraction device, the insoluble residue remaining without being dissolved and dissolved in the extract and / or the raw material subjected to the pretreatment including the degreasing / deodorizing treatment is immersed in warm water to remove the warm water soluble protein. A hot water extraction device for solubilizing and dissolving to obtain an extract, and the extract is put into an ultrafiltration device comprising an ultrafiltration membrane having a molecular weight cutoff of 5,000 to 30,000, and hot water not passing through the ultrafiltration membrane. A purification / concentration apparatus comprising a purification / concentration device for concentrating the residual liquid containing the soluble protein, circulating it as a circulating liquid, ultrafiltrating again, and obtaining gelatin from the circulating liquid and / or collagen peptide from the permeated liquid. Claims: A protein production device is additionally provided, and / or an extraction device and an ultrafiltration device used for production of the acid-soluble protein are used and commonly used for production of hot water-soluble protein. Animal protein production apparatus according to any one of 16 claims 19. 動物の表皮を剥離して真皮層を分離する皮剥離装置を備えた、請求項15〜請求項20のいずれか1項に記載の動物蛋白質の製造装置。The animal protein production device according to any one of claims 15 to 20, further comprising a skin peeling device that peels an animal epidermis to separate a dermis layer. 請求項1〜請求項14いずれか1項記載の動物蛋白質の製造方法によって得られるコラーゲン、ゼラチン、およびコラーゲンペプタイドの群から選ばれた少なくとも1種の動物蛋白質。15. At least one animal protein selected from the group consisting of collagen, gelatin, and collagen peptide obtained by the method for producing an animal protein according to any one of claims 1 to 14. 請求項22記載のコラーゲン、ゼラチン、およびコラーゲンペプタイドの群から選ばれた少なくとも1種の動物蛋白質を含有する化粧料。A cosmetic comprising at least one animal protein selected from the group consisting of collagen, gelatin and collagen peptide according to claim 22. 請求項22記載のコラーゲン、ゼラチン、およびコラーゲンペプタイドの群から選ばれた少なくとも1種の動物蛋白質を含有する医薬品。A medicament comprising at least one animal protein selected from the group consisting of collagen, gelatin and collagen peptide according to claim 22. 請求項22記載のコラーゲン、ゼラチン、およびコラーゲンペプタイドの群から選ばれた少なくとも1種の動物蛋白質を含有する健康食品。A health food comprising at least one animal protein selected from the group consisting of collagen, gelatin and collagen peptide according to claim 22.
JP2003097779A 2003-04-01 2003-04-01 Method for producing animal protein, production apparatus and animal protein Pending JP2004300109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097779A JP2004300109A (en) 2003-04-01 2003-04-01 Method for producing animal protein, production apparatus and animal protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097779A JP2004300109A (en) 2003-04-01 2003-04-01 Method for producing animal protein, production apparatus and animal protein

Publications (1)

Publication Number Publication Date
JP2004300109A true JP2004300109A (en) 2004-10-28

Family

ID=33409478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097779A Pending JP2004300109A (en) 2003-04-01 2003-04-01 Method for producing animal protein, production apparatus and animal protein

Country Status (1)

Country Link
JP (1) JP2004300109A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532512A (en) * 2005-03-08 2008-08-21 ウォール・プロセス・システムズ・アーエス Hydrolysis process of raw materials from fishery and meat processing industries and tanks for use in it
JP2010068867A (en) * 2008-09-16 2010-04-02 Sunmax Biotechnology Co Ltd Long-acting collagen and method for preparing the same
JP2011525197A (en) * 2009-07-27 2011-09-15 國立成功大學 Preparation of high purity collagen
CN102219829A (en) * 2011-05-18 2011-10-19 福州大学 Antioxidant polypeptide prepared by enzymatic hydrolysis of sharkskin collagen with acid protease
CN102219830A (en) * 2011-05-18 2011-10-19 福州大学 Oxidation resisting polypeptide and preparation method thereof
KR101416479B1 (en) 2012-01-19 2014-07-14 농업회사법인 (주) 참옻들 Animal collagen including lacquer ingredients and manufacturing method of it
JP2018532410A (en) * 2015-11-23 2018-11-08 セウォン セロンテック カンパニー リミテッドSewon Cellontech Co.,Ltd. Method for increasing the yield of collagen, and collagen produced using the same
CN112899335A (en) * 2021-04-13 2021-06-04 德兰梅勒(北京)分离技术股份有限公司 Preparation method of fish skin collagen peptide
CN113603768A (en) * 2021-07-14 2021-11-05 烟台德胜海洋生物科技有限公司 Preparation method of fish-derived collagen
CN114395598A (en) * 2021-12-31 2022-04-26 兆鑫堂(山东)生物科技有限公司 Production method of collagen peptide

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532512A (en) * 2005-03-08 2008-08-21 ウォール・プロセス・システムズ・アーエス Hydrolysis process of raw materials from fishery and meat processing industries and tanks for use in it
JP2010068867A (en) * 2008-09-16 2010-04-02 Sunmax Biotechnology Co Ltd Long-acting collagen and method for preparing the same
JP2011525197A (en) * 2009-07-27 2011-09-15 國立成功大學 Preparation of high purity collagen
CN102219829A (en) * 2011-05-18 2011-10-19 福州大学 Antioxidant polypeptide prepared by enzymatic hydrolysis of sharkskin collagen with acid protease
CN102219830A (en) * 2011-05-18 2011-10-19 福州大学 Oxidation resisting polypeptide and preparation method thereof
KR101416479B1 (en) 2012-01-19 2014-07-14 농업회사법인 (주) 참옻들 Animal collagen including lacquer ingredients and manufacturing method of it
JP2018532410A (en) * 2015-11-23 2018-11-08 セウォン セロンテック カンパニー リミテッドSewon Cellontech Co.,Ltd. Method for increasing the yield of collagen, and collagen produced using the same
CN112899335A (en) * 2021-04-13 2021-06-04 德兰梅勒(北京)分离技术股份有限公司 Preparation method of fish skin collagen peptide
CN113603768A (en) * 2021-07-14 2021-11-05 烟台德胜海洋生物科技有限公司 Preparation method of fish-derived collagen
CN113603768B (en) * 2021-07-14 2024-01-23 烟台德胜海洋生物科技有限公司 Preparation method of fish-source collagen
CN114395598A (en) * 2021-12-31 2022-04-26 兆鑫堂(山东)生物科技有限公司 Production method of collagen peptide

Similar Documents

Publication Publication Date Title
CN101061827B (en) Industry method of producing fish collagen peptide from fish skin and bone by an enzyme method
JP2017537692A (en) Method for producing high-concentration collagen for use as a medical material
CN106174436A (en) A kind of preparation method of complex enzyme hydrolysis fishbone hormone
CN107278208B (en) Chitin, hydrolysate and production of at least one target product from insects by means of enzymatic hydrolysis
CN101363040A (en) Method for preparing collagen protein
JP2004300109A (en) Method for producing animal protein, production apparatus and animal protein
Drummond et al. Proteins recovery from meat processing coproducts
KR101489916B1 (en) A method for extracting high purity collagen from animal byproducts
JP4863433B2 (en) Method for obtaining fish scale collagen
JP2001178492A (en) Method of extracting useful substance from aquatic life
CN106032546A (en) Method for extracting medical material-based collagen from fish scales
Ramakrishnan et al. Salmon processing discards: a potential source of bioactive peptides–a review
KR100532153B1 (en) producing method of protein hydrolysates from fish scale
JP4587711B2 (en) Soluble fish collagen, method for producing the same and collagen cosmetic
CN111493205A (en) A kind of fish protein hydrolyzate and preparation method thereof
CN106632665A (en) Method for extracting collagen from freshwater fish skin by lactic acid
JP2004149736A (en) Chondroitin sodium sulfate, chondroitin sulfate-containing substance, and method for producing them
CN106367461A (en) Method for extracting low molecular weight active collagen peptide from pigskins
JP2006158354A (en) Method for extracting eggshell membrane hydrolysis protein containing collagen from eggshell membrane using ultrasonic wave
JP2005343851A (en) Peptide derived from fishes and method for producing the same
JP2004059437A (en) New collagen and use thereof
KR100679712B1 (en) How to make collagen from starfish
JP3979576B2 (en) Production method of raw skin to obtain non-brominated collagen and gelatin derived from aquatic animals
EP3967151A1 (en) Valorisation of marine animal by-products
CN107815480A (en) With the method for catfish fish guts protease extraction collagen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090204