[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004358421A - Method and apparatus for decoloring colored beverage wastewater - Google Patents

Method and apparatus for decoloring colored beverage wastewater Download PDF

Info

Publication number
JP2004358421A
JP2004358421A JP2003162525A JP2003162525A JP2004358421A JP 2004358421 A JP2004358421 A JP 2004358421A JP 2003162525 A JP2003162525 A JP 2003162525A JP 2003162525 A JP2003162525 A JP 2003162525A JP 2004358421 A JP2004358421 A JP 2004358421A
Authority
JP
Japan
Prior art keywords
decolorizing
oxidizing agent
catalyst
colored beverage
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003162525A
Other languages
Japanese (ja)
Other versions
JP4465987B2 (en
Inventor
Keiichi Yokoyama
恵一 横山
寿夫 ▼登▲美川
Toshio Tomikawa
Naoki Nishikawa
尚希 西川
Mitsuomi Narita
光臣 成田
Takuya Ichikawa
卓哉 市川
Yoshihiro Eto
良弘 恵藤
Shogo Anzai
奨吾 安財
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Suntory Ltd
Original Assignee
Kurita Water Industries Ltd
Suntory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Suntory Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003162525A priority Critical patent/JP4465987B2/en
Publication of JP2004358421A publication Critical patent/JP2004358421A/en
Application granted granted Critical
Publication of JP4465987B2 publication Critical patent/JP4465987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for decoloring colored beverage wastewater which efficiently decolors the colored beverage wastewater without generating sludge. <P>SOLUTION: In the method for decoloring the colored beverage wastewater after oxidizing and decoloring colored components in the colored beverage wastewater by adding an oxidizing agent to the colored beverage wastewater and mixing them, the wastewater is treated with a catalyst to accelerate decolonization. The apparatus for decoloring the colored beverage wastewater has a regulation tank 11 having a mixing means 31, an oxidizing agent addition means that adds the oxidizing agent to the regulation tank 11, and a catalyst tower 13 into which overflow water from the regulation tank 11 is introduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は有色飲料排水の脱色方法及び装置に関し、詳細には、従来の脱色工程において行われていた凝集剤使用による汚泥等の廃棄物を生成することなく、有色飲料排水を効率的に脱色する方法及び装置に関する。
【0002】
【従来の技術】
飲料の製造工程で発生する排水(以下「飲料排水」と称す。)は、安全性、環境に配慮して種々の処理を施した後に河川等に放出される。飲料排水が有色である場合には、排水処理は脱色処理をもその対象としている。
【0003】
従来の有色飲料排水の脱色方法は、排水中の有色成分を凝集剤により凝集して沈澱分離するものである。即ち、図8に示されるように、まず有色飲料排水を反応槽a内に導入すると共にその反応槽a内に所定量の無機凝集剤、例えば塩化第2鉄を投入して有色成分とを反応させ、粒子の表面電荷を電気的に中和させて凝集物を形成させる。また、同時にpH調整剤、例えば苛性ソーダを投入して凝集物のpHを適正域とする。次に、反応が進んだ排水を凝集槽bに導入してその排水中に高分子凝集剤を投入して有色成分の凝集物の強度、粒径を増加させ、凝集物を含んだ排水を沈澱槽cに導入して、沈澱槽c内で凝集物dを沈澱させて分離する。有色成分が沈澱分離された沈澱槽cの上澄水は、次いで消毒工程で消毒された後に放流される。一方、沈澱した有色成分を含む凝集物dは沈澱槽cから定期的に取り出され、汚泥として別途処理された後に廃棄される。
【0004】
【発明が解決しようとする課題】
かかる従来の脱色方法は、飲料排水中の有色成分を無機凝集剤及び高分子凝集剤により凝集して沈澱分離するものであり、沈澱槽から汚泥が排出されるため、その処理のための費用と労力の問題がある。また、自然環境の保護の点からは廃棄物の発生の削減が強く求められている。
【0005】
本発明は上記従来の脱色方法の問題点を解決し、汚泥を発生させずに有色飲料排水を効率的に脱色する方法及び装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の有色飲料排水の脱色方法は、有色飲料排水を酸化剤の存在下に触媒と接触させる脱色工程を備える有色飲料排水の脱色方法であって、該脱色工程は、有色飲料排水に酸化剤を添加して混合する混合工程と、酸化剤が混合された有色飲料排水を触媒と接触させる接触工程とを含むことを特徴とする。
【0007】
本発明の有色飲料排水の脱色装置は、槽内液の混合手段を備える調整槽と、該調整槽に有色飲料排水を導入する手段と、該調整槽に導入される有色飲料排水及び/又は該調整槽に酸化剤を添加する酸化剤添加手段と、該調整槽からの流出水が導入される触媒塔とを備えることを特徴とする。
【0008】
本発明によれば、有色飲料排水に酸化剤を添加して混合することにより、有色飲料排水中の有色成分を酸化脱色し、その後、触媒と接触させることにより、脱色を促進して、有色飲料排水を高度に脱色し、良好な水質の処理水を安定かつ効率的に得ることができる。
【0009】
本発明によれば、有色成分の凝集による汚泥を発生させることなく、かつ極めて効率的に、従来と同レベル或いはそれ以上の脱色を行うことが可能であり、環境保護の点からも優れている。しかも、本発明によれば、有色飲料排水中の難分解成分の除去も可能であり、処理水の水質の向上に有効である。
【0010】
本発明においては、脱色処理水を更に活性炭で処理しても良い。従って、本発明の有色飲料排水の脱色装置においては、触媒塔の流出水が導入される活性炭塔を設けても良い。これにより、例えば、塩素系酸化剤を用いた脱色処理によって発生した塩素を活性炭により除去することができ、また、残留する難分解成分を活性炭により吸着して除去することも可能である。また、更に、脱色処理に先立ち、有色飲料排水を濾過して飲料排水中の異物を除去しても良い。
【0011】
更に、本発明において、酸化剤として塩素系酸化剤を用いる場合において、脱色処理直後に脱色処理水の残留塩素濃度を計測しても良い。従って、本発明の有色飲料排水の脱色装置において、触媒塔の流出水の残留塩素濃度を測定する測定手段を設けても良い。このようにすることにより、吸光度測定等により脱色処理水の色度を計測する煩雑な操作を必要とすることなく、計測された残留塩素濃度から、容易に脱色処理水の色度を算定することが可能となる。更に、本発明においては、この計測された残留塩素濃度に基いて塩素系酸化剤の添加量を制御することも可能であり、これにより、有色飲料排水に適正量の塩素系酸化剤を添加して、脱色処理水の色度を効率的に所定の設定値に近づけることが可能となる。
【0012】
本発明において、酸化剤としては、好ましくは、次亜塩素酸ナトリウムが挙げられる。また、触媒としては、好ましくは過酸化ニッケル担持触媒が挙げられる。
【0013】
本発明において、有色飲料排水と酸化剤との混合工程は、有色飲料排水と酸化剤との混合液の色度が所定の色度に達するまでの時間行うことが好ましい。該混合時間は、有色飲料排水の色度、酸化剤の添加量、目的とする色度等に応じて適宜設定されるが、混合を撹拌により行う場合、この混合時間は例えば10分以上行うことができる。
【0014】
また、この混合液と触媒との接触工程についても、得られる脱色処理水の色度が所定の色度に達するまでの時間行うことが好ましい。該接触時間も、有色飲料排水の水質及び処理量、酸化剤の添加量、触媒使用量、目的とする色度等に応じて適宜決定されるが、触媒塔への通水処理の場合、触媒塔内滞留時間(触媒塔を通り抜ける時間)で例えば6分以上とすることが好ましい。
【0015】
本発明においては、更に脱色処理水の一部を脱色工程へ戻して循環処理するようにしても良い。即ち、本発明の有色飲料排水の脱色装置において、触媒塔の流出水の一部を調整槽に戻す循環ラインを設けても良い。このようにして循環処理を行うことにより、色度が基準値以上の処理水を循環させて再度処理することが可能となり、確実な脱色処理を行うことができる。また、このように残留酸化剤を含む水を循環させることによって、触媒に付着している被酸化性物質の一部又は全部が除去され、通水停止期間中における金属酸化物と被酸化性物質との反応による金属成分の溶出を防止する効果により触媒の耐久性を向上させることが可能となる。
【0016】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
【0017】
図1は、本発明の有色飲料排水の脱色装置(以下単に「脱色装置」と言う。)10の実施の形態を示す系統図である。このような脱色装置は、例えば、図2に示す有色飲料排水の処理システムの脱色処理部4に組み込まれる。図2に示す有色飲料排水の処理システム1は、生物処理部2と、濾過処理部3と、脱色処理部4と、消毒処理部5とを備えており、有色飲料排水はこれらの処理部で処理された後放流される。生物処理部2、濾過処理部3及び消毒処理部5は従来の処理システムにおけるものと同様の構造及び機能のものを採用することが可能であり、これらの詳細な説明は省略する。
【0018】
図1に示す脱色装置10は、原水槽3Aと濾過器3Bとを備える濾過処理部3から導管20により処理すべき有色飲料排水が導入され、これを収容する調整槽11と、調整槽11に供給する酸化剤を貯える酸化剤貯槽12と、調整槽11より下流側(排水の流れ方向で見て)に、導管21を介して調整槽11に接続された触媒塔13と、触媒塔13より下流側(排水の流れ方向で見て)に、バルブ41付きの導管22を介して触媒塔13に接続された活性炭塔14とを備えている。酸化剤貯槽12には、少なくとも1本の供給パイプ24が接続され、酸化剤貯槽12内に貯えられた酸化剤をポンプ33により供給パイプ24を介して調整槽11内に供給するようになっている。従って、この実施の形態では酸化剤貯槽12とポンプ33及び供給パイプ24が酸化剤添加手段を構成している。酸化剤としては、本実施の形態では、液状の次亜塩素酸ナトリウムを使用しているが、その他の塩素系化合物を用いた酸化剤を使用することもできる。調整槽11には少なくとも1基(この実施の形態では2基)の攪拌機31が設けられ、有色飲料排水と酸化剤とを攪拌により混合することができるようになっている。
【0019】
調整槽11に接続された導管21には調整槽11に隣接してポンプ32が接続され、そのポンプ32により調整槽11から導管21を介して所望の流量で触媒塔13に酸化脱色した飲料排水と酸化剤との混合液を送るようになっている。触媒塔13内には所望量の金属酸化物触媒が公知の方法で充填されており、触媒塔13内において調整槽11内で酸化脱色された飲料排水と酸化剤との混合液がその金属酸化物触媒と接触できるようになっている。このような金属酸化物触媒の一例として本実施の形態では、過酸化ニッケル担持触媒を使用しているが、金属の酸化還元反応を促す他の触媒を使用することも可能である。活性炭塔14内には公知の活性炭が充填され、触媒塔13から送られてきた脱色処理水と接触してその水中の塩素及び難分解成分を除去するようになっている。活性炭塔14の出口側にはバルブ42が設けられた導管23が接続され、活性炭塔14で処理された水を消毒処理部5に送るようになっている。導管23には活性炭塔14とバルブ42との間で、バルブ43が設けられた戻り導管25の一端が接続され、その戻り導管25は戻り流を調整槽11内に戻すようになっている。触媒塔13の出口側に接続された導管22にはバルブ44が設けられた分岐管26の一端が接続され、分岐管26の他端は戻り導管25に接続されている。また、導管22の触媒塔13側には、塩素濃度計測器47が設けられている。
【0020】
なお、27は、触媒塔13から送られてきた脱色処理水を用いて活性炭塔14を逆洗するための導管であり、45はこの導管27に設けられたバルブである。29は、活性炭塔14の逆洗排水を雑排水槽15へ送液するための導管であり、46は、この導管29に設けられたバルブである。また、触媒塔13及び活性炭塔14にはバルブ付きのエア抜きライン28が接続されている。
【0021】
なお、本実施例においては、触媒塔13及び活性炭塔14を各々1基設けているが、有色飲料排水の処理条件に応じて、これらをそれぞれ複数直列及び/又は並列に設けるようにしても構わない。
【0022】
次に、この脱色装置10の動作について説明する。
【0023】
濾過処理部3から送られてきた濾過済みの有色飲料排水は調整槽11に導入される。調整槽11内には酸化剤貯槽12より導管24を介して液状の酸化剤として例えば次亜塩素酸ナトリウム水溶液が供給される。調整槽11内では飲料排水と酸化剤とが攪拌機31により攪拌され、酸化剤と飲料排水とが混合される。液状酸化剤の添加量は、飲料排水の種類及びその色度によって異なり、例えば飲料排水1リットル当たり次亜塩素酸ナトリウムとして10〜800mg−Cl/Lであり、調整槽11内で飲料排水と次亜塩素酸ナトリウムとが攪拌機31により、所望時間、例えば10分以上、望ましくは10〜20分間攪拌されるようにする。調整槽11内において、飲料排水は酸化されて有色成分が部分的に脱色された後、ポンプ32により導管21を介して触媒塔13内に送られる。触媒塔13内では酸化された飲料排水が触媒(この実施例では過酸化ニッケル担持触媒)と接触することにより有色成分の脱色が促進される。触媒塔13内での調整槽11からの流入水と触媒との必要接触時間は、飲料排水の種類、量、色度、酸化剤及び触媒の種類及び量等によって異なるが、調整槽内での酸化剤による酸化によって脱色できなかった有色成分を許容可能な値まで脱色できる範囲であり、本実施例においては6分間以上、例えば6〜30分接触させるのが望ましい。
【0024】
触媒塔13内での触媒との接触により許容可能な範囲内に脱色された水は、活性炭塔14に送られ、その中に充填された活性炭と接触され、残留する酸化剤成分、例えば残留塩素及び難分解成分が除去される。この活性炭塔14の流出水は、消毒処理部5に送られる。
【0025】
活性炭塔14の流出水の一部を調整槽11に戻す場合には、バルブ43を開いて戻り導管25を介して戻す。
【0026】
また、塩素濃度計測器47は触媒塔13の出口に設置され、触媒塔13で処理された脱色処理水の残留塩素濃度を計測し、所定の濃度より低い場合は、バルブ44を開き、触媒塔13の流出水を戻り導管25を通して調整槽11に戻して、または、異物の調整槽11への混入を防止するためバルブ42を閉じ、バルブ43を開いて、活性炭塔14の流出水を戻り導管25を通して調整槽11に戻して再び酸化脱色処理するように構成されている。また、この残留塩素濃度の計測値に基いて、酸化剤貯槽12のポンプ33を制御して、酸化剤添加量を調整することもできる。
【0027】
なお、図1において、48及び49は触媒塔13内の触媒の洗浄のために使用するバルブである。触媒の洗浄においては、バルブ44及びバルブ49を開き、バルブ48を閉じて触媒塔13内に洗浄水を通し、触媒を洗浄して、洗浄後の洗浄水は原水槽に排出する。
【0028】
ところで、図1に示すような脱色装置において、金属酸化物触媒を充填した触媒塔に、酸化剤を添加した飲料排水を通水して処理する場合、水量変動や、休日、装置の保守点検等のために、装置の運転を停止することがある。この場合、所定時間運転を停止した後、再び触媒塔への飲料排水の通水を再開すると、得られる脱色処理水中に金属酸化物触媒の金属成分が溶出し、これにより、運転再開時の処理水の水質が低下すると共に、金属成分の溶出で触媒塔内の金属酸化物触媒が劣化し、触媒性能が低下することがある。
【0029】
この原因は、触媒塔への飲料排水の通水を停止したときに、触媒塔内で酸化剤が分解除去され、触媒表面の金属酸化物の酸素と、触媒に吸着して残留している飲料排水中の有色成分等の被酸化性物質とが反応することにより、触媒の金属酸化物が還元されて金属成分が溶出するためである。
【0030】
従って、本発明においては、このような金属酸化物触媒からの金属成分の溶出を防止するために、装置の運転停止時の通水停止に先立って、触媒塔に通水される水中の酸化剤濃度を高めるようにしても良い。このようにすることにより、触媒に付着している被酸化性物質の一部又は全部が除去され、通水停止期間中における金属酸化物と被酸化性物質との反応による金属成分の溶出を防止することができる。
【0031】
触媒塔に通水される水中の酸化剤濃度を増大させるには、有色飲料排水への酸化剤の添加量を増大させるだけでも良いが、有色飲料排水中の有色成分との反応により酸化剤濃度が低減することなどから、酸化剤の濃度管理が難しい。そこで、有色飲料排水の代わりに、市水や工水など被酸化性物質濃度の低い水を用い、この市水や工水に酸化剤を添加して触媒塔に通水しても良い。また、触媒塔に導入される水中の酸化剤濃度を増大させると共に、触媒塔からの流出水を再度触媒塔に通水させるように循環させても良い。
【0032】
具体的には、図1の脱色装置において、通水を停止するに際しては、調整槽11に有色飲料排水の代りに市水又は工水を導入し、且つ酸化剤の濃度が通常運転時よりも高くなるようにする。そして、バルブ43を閉、バルブ44,48を開として、この調整槽11内の水を触媒塔13に通水し、触媒塔13からの流出水の全量を該調整槽11に戻し、循環させる。これにより、酸化剤濃度の高い水が触媒塔13に循環流通されるようになり、触媒塔13内の触媒に付着残留していた有色成分等の被酸化性物質が分解除去されるようになる。この場合、循環中に酸化剤濃度の高い水が系外に流出しないので、そのための処理コストが抑制されると共に、触媒塔13から流出した酸化剤が再利用されるので、酸化剤薬剤コストを低減できる。
【0033】
なお、高酸化剤濃度の水を循環させる場合、触媒に付着した有色成分等の被酸化性物質が分解し尽くされた後もさらに酸化剤含有水の循環を継続しても良く、運転停止の全期間中にわたり循環を継続しても良い。このようにすれば、この循環中に触媒作用等によって酸化剤が徐々に自己分解し、触媒塔内の水中の酸化剤濃度が低下するようになる。この結果、運転再開時に触媒塔から流出する水中の酸化剤濃度が低いものとなり、触媒塔初期流出水に対し酸化剤除去処理を施すことが不要となったり、あるいはその処理が簡単なもので足りるようになる。
【0034】
通水停止に際して水中の酸化剤濃度を増大させる場合、触媒塔流入水中の酸化剤濃度が通常運転時の触媒塔流入水中の酸化剤濃度の1.0〜40倍特に2.0〜10倍となるようにすることが好ましい。また、この高酸化剤濃度の水を触媒塔に対し触媒塔容積の30倍以上の量、特に50倍以上通水し、付着した有色成分等の被酸化性物質を十分に分解することが望ましい。
【0035】
運転停止期間が終了した後、運転を再開する際には、有色飲料排水の通水を再開するのであるが、運転の再開初期には、触媒塔からの流出水中に酸化剤が多く含まれることがある。図1の装置では、残留する酸化剤が活性炭塔14で除去されるが、通水再開初期の触媒塔流出水を調整槽11へ返送して希釈したり、他の処理系統へ移送して処理しても良い。
【0036】
本発明において、有色飲料排水に添加する酸化剤としては、塩素系酸化剤が好ましい。塩素系酸化剤には特に制限はなく、前述の如く次亜塩素酸ナトリウムの他、例えば、塩素、次亜塩素酸カリウム、次亜塩素酸カルシウムなどの次亜塩素酸塩、亜塩素酸ナトリウム、亜塩素酸カリウムなどの亜塩素酸塩、塩素酸ナトリウム、塩素酸カリウム、塩素酸カルシウムなどの塩素酸塩、過塩素酸ナトリウム、過塩素酸カルシウムなどの過塩素酸塩などを挙げることができる。これらの中で、次亜塩素酸ナトリウム等の次亜塩素酸塩は適度の酸化性を有するので、好適に使用することができる。
【0037】
有色飲料排水への酸化剤の添加量は、少な過ぎると脱色処理が不十分となり、多過ぎると、処理水中に酸化剤が多量に残留するおそれがある。酸化剤が塩素系酸化剤である場合には、該塩素系酸化剤を有色飲料排水の残留塩素濃度が10〜400mg−Cl/Lとなるように添加することが好ましい。なお、「mg−Cl/L」とは、処理水中に残留する塩素系酸化剤を塩素に換算して示される水中の残留塩素濃度である。
【0038】
また、本発明において、触媒としては、金属酸化物触媒が好ましく、金属酸化物触媒としては、触媒成分の金属酸化物を担体に担持したものが好ましい。この担体としては各種タイプのゼオライトやアルミナ等の1種又は2種以上を用いることができる。
【0039】
触媒成分の金属としては、ニッケル、コバルト、銅、銀等、好ましくはニッケル、コバルトが挙げられ、特にニッケルが好ましい。これらの触媒金属も1種を単独で用いても良く、2種以上を混合して用いても良い。
【0040】
本発明で用いる金属酸化物触媒は、これらの触媒金属を金属酸化物、好ましくは金属過酸化物として担体に担持したものであることが好ましく、担体への金属酸化物担持量は、ニッケル、コバルト等の触媒金属換算の担持量で、0.1〜100g−金属/1000g−dry担体であることが好ましい。この担持量よりも少ないと、金属酸化物の触媒作用を十分に得ることができず、これよりも多量に担持させることは、触媒の調製上困難である。
【0041】
本発明に好適な金属過酸化物担持触媒は、例えば、次のようにして、ニッケル等の触媒金属を担体に担持させた後、酸化剤と反応させて調製することができる。
【0042】
まず、ニッケル等の触媒金属の硫酸塩、硝酸塩、塩化物等の水溶液、或いはこれらの混合物の水溶液を調製し、この触媒金属水溶液に担体を浸漬する。或いは、担体を充填したカラムに触媒金属水溶液を一過式又は循環式にて通水して接触させる。この触媒金属水溶液の濃度や接触時間は、調製する金属過酸化物担持触媒の金属担持量に応じて適宜設定される。このようにしてニッケル等の触媒金属をイオン交換により担持した担体を水洗した後、酸化剤を含むアルカリ水溶液と接触させる。この接触方法は、上述の担持法と同様、浸漬又はカラムへの通水等により行うことができる。この触媒担持のための酸化剤としては、次亜塩素酸ナトリウム等の次亜塩素酸塩や塩素ガス等を用いることができる。触媒担持のためのアルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム等の水溶液を用いることができる。この酸化剤を含むアルカリ水溶液の酸化剤濃度やアルカリ濃度については特に制限はないが、通常、酸化剤濃度0.5〜10重量%、特に1〜5重量%で、アルカリ濃度0.1〜10重量%、特に0.5〜2.5重量%の水溶液であることが好ましい。
【0043】
このようにしてニッケル等の触媒金属を担持した担体を、酸化剤を含むアルカリ水溶液に接触された後、水洗することにより、本発明に好適な金属過酸化物担持触媒を得ることができる。
【0044】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明する。
【0045】
有色飲料排水を生物処理部2において、従来と同様に生物処理した後、濾過処理部3にて濾過処理を行った。濾過処理後の飲料排水の色度は1200であった。この飲料排水を図8に示す従来の凝集剤を用いた脱色方法で処理した場合、処理水の色度は100〜200であった。
【0046】
このような色度を有する飲料排水の脱色試験を図3に示す試験装置50を用いて行った。
【0047】
原水槽51内の上記飲料排水をポンプPにより調整槽53内に180トン/hの流量で導入し、酸化剤貯槽52内の次亜塩素酸ナトリウム水溶液をポンプPにより所定の割合で調整槽53内に添加した。そして、調整槽53内で飲料排水と次亜塩素酸ナトリウムとを攪拌機53Aで所定の時間攪拌混合して脱色処理した。この混合液をポンプPにより触媒塔54内に、混合液と触媒とが所定の時間連続して接触するような流速で通して触媒脱色処理した後、活性炭塔55内に通した。触媒としては、過酸化ニッケル担持触媒を使用した。
【0048】
この試験において、調整槽53内での飲料排水と次亜塩素酸ナトリウムとの反応による脱色の状態を、次亜塩素酸ナトリウムの添加量を、100、200、400又は800mg−Cl/Lの割合で変化させ、また、調整槽53内での攪拌時間を10分から1080分の間で種々変えて行った場合の、攪拌時間と酸化脱色処理水(調整槽53の流出水)の色度との関係を求めたところ、図4に示す結果が得られた。また、酸化脱色処理水の残留塩素濃度と攪拌時間との関係は図5に示す通りであった。
【0049】
図4からも明らかなように、次亜塩素酸ナトリウムの添加量を種々変化させた場合でも、約10分間の攪拌により被処理水である飲料排水の色度が200〜400まで急激に低下し、一定時間攪拌した後は攪拌を続けても色度が殆ど変化しないことがわかる。また、従来の脱色方法の処理能力と同じレベルである飲料排水の色度を100まで脱色するには、攪拌時間を1080分とらなければならなかった。一方、酸化脱色処理水中の残留塩素濃度も、図5から明らかなように数分間の攪拌までは減少していくが、その後は殆ど減少しないことがわかる。また、残留塩素濃度は次亜塩素酸ナトリウムの添加量が多くなればそれに応じて多くなることも分かる。
【0050】
これらの結果から、酸化剤による脱色の程度は添加する酸化剤濃度毎に所定の攪拌時間を設定することで決定することができ、この制御は、残留塩素濃度を測定することにより可能であることがわかる。
【0051】
同様の試験を、次亜塩素酸ナトリウムの添加量を150、300、470mg−Cl/Lの割合で変化させ、色度が1193の飲料排水(テスト1)、色度が780の飲料排水(テスト2)、色度が1183の飲料排水(テスト3)、色度が1272の飲料排水(テスト4)について、各々行い、攪拌時間が20分のときの酸化脱色処理水の色度と次亜塩素酸ナトリウム添加量との関係を調べたところ、図6に示す通りであった。この結果から、次亜塩素酸ナトリウムの添加量が所定量(約150mg−Cl/L)を超えると、その添加量が多くなっても脱色後の色度に殆ど変化が無いこと、従って、添加する酸化剤の濃度は、目的とする色度に応じて決定することができることが分かる。
【0052】
更に、次亜塩素酸ナトリウムを470mg−Cl/L添加して、20分攪拌混合することにより酸化脱色した後の水と触媒塔54内の触媒との接触時間と接触後の脱色処理水(触媒塔出口の水)の色度との関係を調べたところ、図7に示す通りであった。図7から、触媒と酸化脱色処理水との接触時間を6分以上にすることにより、色度80近くの排水を色度50程度まで低下させることができることがわかる。接触時間をそれより長くすると色度も低くすることができるが6分以上では顕著な減少効果はみられない。
【0053】
本実施例では、次亜塩素酸ナトリウムの添加量を180mg−Cl/Lとして、調整槽53内での攪拌時間を10分として酸化脱色後、酸化脱色処理水と触媒塔54内の触媒との接触時間を6分とすることで、色度が100以下、平均で70の脱色処理水を得ることができた。
【0054】
【発明の効果】
以上詳述した通り、本発明の有色飲料排水の脱色方法及び脱色装置によれば、以下のような効果を得ることが可能である。
(イ) 有色飲料排水を酸化脱色した後触媒処理により脱色を促進するものであり、従来法のように汚泥が発生せず、汚泥処理の問題を解消した上で、従来法と同等以上の脱色効果を得ることができる。
(ロ) 触媒処理を行って脱色を促進させることにより、極めて効率的に高度な脱色を行うことができ、高水質の処理水を安定に得ることができる。また、難分解成分の除去も可能となる。
【図面の簡単な説明】
【図1】本発明の有色飲料排水の脱色装置の実施の形態を示す系統図である。
【図2】有色飲料排水の処理システムの系統図である。
【図3】実施例で用いた試験装置を示す系統図である。
【図4】攪拌時間と色度との関係を示すグラフ図である。
【図5】攪拌時間と残留塩素濃度との関係を示すグラフ図である。
【図6】次亜塩素酸ナトリウム添加量と色度との関係を示すグラフ図である。
【図7】触媒との接触時間と色度との関係を示すグラフ図である。
【図8】従来の有色飲料排水の脱色方法を説明する概略図である。
【符号の説明】
3 濾過処理部
5 消毒処理部
10 脱色装置
11 調整槽
12 酸化剤貯槽
13 触媒塔
14 活性炭塔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for decolorizing colored beverage wastewater, and in particular, efficiently decolorizes colored beverage wastewater without generating waste such as sludge due to the use of a flocculant performed in a conventional decolorizing process. Method and apparatus.
[0002]
[Prior art]
Wastewater generated in the beverage manufacturing process (hereinafter referred to as “drinkage wastewater”) is discharged to rivers and the like after various treatments in consideration of safety and the environment. If the drinking water is colored, the wastewater treatment is intended for decolorization.
[0003]
A conventional method for decolorizing colored beverage wastewater involves agglomerating a colored component in the wastewater with a flocculant to precipitate and separate. That is, as shown in FIG. 8, first, colored beverage wastewater is introduced into the reaction tank a, and a predetermined amount of an inorganic coagulant, for example, ferric chloride is charged into the reaction tank a to react with the colored component. To electrically neutralize the surface charge of the particles to form aggregates. At the same time, a pH adjuster, for example, caustic soda is added to adjust the pH of the aggregate to an appropriate range. Next, the waste water having undergone the reaction is introduced into the flocculation tank b, and a polymer flocculant is introduced into the waste water to increase the strength and particle size of the aggregate of the colored component, and the waste water containing the aggregate is precipitated. The mixture is introduced into the tank c, and the aggregate d is precipitated and separated in the precipitation tank c. The supernatant water of the sedimentation tank c from which the colored components are sedimented and separated is then discharged after being disinfected in a disinfection step. On the other hand, the aggregates d containing the precipitated colored components are periodically removed from the sedimentation tank c, and are separately treated as sludge and then discarded.
[0004]
[Problems to be solved by the invention]
Such a conventional decolorization method involves coagulating and sedimenting colored components in beverage wastewater with an inorganic coagulant and a polymer coagulant.Since sludge is discharged from a sedimentation tank, cost and cost for the treatment are increased. There is a labor problem. Also, from the viewpoint of protection of the natural environment, there is a strong demand for reduction of waste generation.
[0005]
An object of the present invention is to solve the problems of the above-mentioned conventional decoloring method and to provide a method and an apparatus for efficiently decolorizing colored beverage wastewater without generating sludge.
[0006]
[Means for Solving the Problems]
The method for decolorizing colored beverage effluent of the present invention is a method for decolorizing colored beverage effluent comprising a decolorizing step of bringing the colored beverage effluent into contact with a catalyst in the presence of an oxidizing agent. And a contacting step of bringing the colored beverage wastewater mixed with the oxidizing agent into contact with a catalyst.
[0007]
The apparatus for decolorizing colored beverage wastewater of the present invention comprises an adjusting tank provided with a mixing means for the liquid in the tank, a means for introducing colored beverage wastewater into the adjusted tank, and a colored beverage wastewater introduced into the adjusted tank and / or It is characterized by comprising an oxidizing agent adding means for adding an oxidizing agent to the adjusting tank, and a catalyst tower into which effluent from the adjusting tank is introduced.
[0008]
According to the present invention, the oxidizing agent is added to and mixed with the colored beverage wastewater to oxidize and decolorize the colored components in the colored beverage wastewater, and thereafter, by contacting with a catalyst, the decolorization is promoted, and the colored beverage is promoted. The wastewater can be highly decolorized, and treated water of good quality can be obtained stably and efficiently.
[0009]
ADVANTAGE OF THE INVENTION According to this invention, it is possible to perform decoloring of the same level or more as before, without generating sludge due to aggregation of colored components, and extremely efficiently, and is also excellent in terms of environmental protection. . Moreover, according to the present invention, it is possible to remove hardly decomposable components in colored beverage wastewater, which is effective for improving the quality of treated water.
[0010]
In the present invention, the decolorized water may be further treated with activated carbon. Therefore, in the decolorizing apparatus for colored beverage wastewater of the present invention, an activated carbon tower into which the effluent of the catalyst tower is introduced may be provided. Thereby, for example, chlorine generated by the decolorizing treatment using a chlorine-based oxidizing agent can be removed by activated carbon, and the remaining hardly decomposable components can be removed by adsorbing the activated carbon. Further, prior to the decolorization treatment, the colored beverage wastewater may be filtered to remove foreign substances in the beverage wastewater.
[0011]
Further, in the present invention, when a chlorine-based oxidizing agent is used as the oxidizing agent, the residual chlorine concentration of the decolorized water may be measured immediately after the decolorizing treatment. Therefore, in the apparatus for decolorizing colored beverage wastewater of the present invention, a measuring means for measuring the residual chlorine concentration of the effluent of the catalyst tower may be provided. By doing so, it is possible to easily calculate the chromaticity of the decolorized water from the measured residual chlorine concentration without requiring a complicated operation of measuring the chromaticity of the decolorized water by absorbance measurement or the like. Becomes possible. Further, in the present invention, it is also possible to control the amount of the chlorine-based oxidizing agent to be added based on the measured residual chlorine concentration, thereby adding an appropriate amount of the chlorine-based oxidizing agent to the colored beverage wastewater. Thus, the chromaticity of the decolorized water can be efficiently brought close to a predetermined set value.
[0012]
In the present invention, the oxidizing agent preferably includes sodium hypochlorite. Further, as the catalyst, preferably, a nickel peroxide-supported catalyst is used.
[0013]
In the present invention, the step of mixing the colored beverage wastewater and the oxidant is preferably performed for a time until the chromaticity of the mixed liquid of the colored beverage wastewater and the oxidant reaches a predetermined chromaticity. The mixing time is appropriately set according to the chromaticity of the colored beverage wastewater, the amount of the oxidizing agent added, the desired chromaticity, and the like. When the mixing is performed by stirring, the mixing time is, for example, 10 minutes or more. Can be.
[0014]
Also, the contacting step between the mixed solution and the catalyst is preferably performed for a time until the chromaticity of the obtained decolorized water reaches a predetermined chromaticity. The contact time is also appropriately determined according to the water quality and treatment amount of the colored beverage effluent, the amount of the oxidizing agent added, the amount of the catalyst used, the desired chromaticity, and the like. The residence time in the column (time passing through the catalyst column) is preferably, for example, 6 minutes or more.
[0015]
In the present invention, a part of the decolorization treatment water may be returned to the decolorization step and subjected to the circulation treatment. That is, in the apparatus for decolorizing colored beverage wastewater of the present invention, a circulation line for returning part of the effluent of the catalyst tower to the adjustment tank may be provided. By performing the circulation processing in this manner, it becomes possible to circulate the treated water having the chromaticity equal to or higher than the reference value and to perform the processing again, and it is possible to perform the decoloring processing reliably. In addition, by circulating the water containing the residual oxidizing agent in this manner, a part or all of the oxidizable substance attached to the catalyst is removed, and the metal oxide and the oxidizable substance during the water supply stop period are removed. It is possible to improve the durability of the catalyst by the effect of preventing the elution of the metal component due to the reaction with the catalyst.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
FIG. 1 is a system diagram showing an embodiment of a decolorizing device (hereinafter, simply referred to as a “decolorizing device”) 10 for colored beverage wastewater of the present invention. Such a decolorizing apparatus is incorporated in, for example, the decolorizing processing section 4 of the colored beverage wastewater treatment system shown in FIG. The colored beverage wastewater treatment system 1 shown in FIG. 2 includes a biological treatment unit 2, a filtration treatment unit 3, a decolorization treatment unit 4, and a disinfection treatment unit 5, and the colored beverage wastewater is treated by these treatment units. Released after processing. The biological processing unit 2, the filtration processing unit 3, and the disinfection processing unit 5 can have the same structure and function as those in the conventional processing system, and a detailed description thereof will be omitted.
[0018]
In the decolorizing apparatus 10 shown in FIG. 1, the colored beverage wastewater to be treated by the conduit 20 is introduced from the filtration processing unit 3 including the raw water tank 3A and the filter 3B, and the regulating tank 11 and the regulating tank 11 for accommodating the same. An oxidizing agent storage tank 12 for storing the oxidizing agent to be supplied, a catalyst tower 13 connected to the adjusting tank 11 via a conduit 21 downstream of the adjusting tank 11 (as viewed in the flow direction of wastewater), and a catalyst tower 13 On the downstream side (as viewed in the flow direction of the wastewater), there is provided an activated carbon tower 14 connected to the catalyst tower 13 via a conduit 22 with a valve 41. At least one supply pipe 24 is connected to the oxidant storage tank 12, and the oxidant stored in the oxidant storage tank 12 is supplied to the adjustment tank 11 via the supply pipe 24 by the pump 33. I have. Therefore, in this embodiment, the oxidizing agent storage tank 12, the pump 33, and the supply pipe 24 constitute oxidizing agent adding means. In the present embodiment, liquid sodium hypochlorite is used as the oxidizing agent, but an oxidizing agent using another chlorine-based compound can also be used. The regulating tank 11 is provided with at least one (two in this embodiment) stirrer 31 so that the colored beverage wastewater and the oxidizing agent can be mixed by stirring.
[0019]
A pump 32 is connected to the conduit 21 connected to the regulating tank 11 adjacent to the regulating tank 11, and the pump 32 oxidizes and decolorizes the drinking water from the regulating tank 11 to the catalyst tower 13 at a desired flow rate via the conduit 21. And an oxidizing agent. The catalyst tower 13 is filled with a desired amount of a metal oxide catalyst by a known method, and the mixed solution of the drinking water and the oxidizing agent that is oxidized and decolorized in the adjusting tank 11 in the catalyst tower 13 is subjected to the metal oxidation. It can be brought into contact with the catalyst. In the present embodiment, a nickel peroxide-carrying catalyst is used as an example of such a metal oxide catalyst, but another catalyst that promotes the oxidation-reduction reaction of a metal may be used. The activated carbon tower 14 is filled with known activated carbon, and comes into contact with decolorized water sent from the catalyst tower 13 to remove chlorine and hardly decomposable components in the water. A conduit 23 provided with a valve 42 is connected to the outlet side of the activated carbon tower 14 so that the water treated in the activated carbon tower 14 is sent to the disinfection processing section 5. One end of a return conduit 25 provided with a valve 43 is connected to the conduit 23 between the activated carbon tower 14 and the valve 42, and the return conduit 25 returns the return flow into the regulating tank 11. One end of a branch pipe 26 provided with a valve 44 is connected to the conduit 22 connected to the outlet side of the catalyst tower 13, and the other end of the branch pipe 26 is connected to the return conduit 25. Further, a chlorine concentration measuring device 47 is provided on the catalyst tower 13 side of the conduit 22.
[0020]
In addition, 27 is a conduit for backwashing the activated carbon tower 14 using the decolorized water sent from the catalyst tower 13, and 45 is a valve provided in the conduit 27. Reference numeral 29 denotes a conduit for sending backwash wastewater from the activated carbon tower 14 to the gray water drainage tank 15, and reference numeral 46 denotes a valve provided in the conduit 29. An air vent line 28 with a valve is connected to the catalyst tower 13 and the activated carbon tower 14.
[0021]
In the present embodiment, one catalyst tower 13 and one activated carbon tower 14 are provided, but a plurality of these may be provided in series and / or in parallel according to the treatment conditions of colored beverage wastewater. Absent.
[0022]
Next, the operation of the decolorizing apparatus 10 will be described.
[0023]
The filtered colored beverage wastewater sent from the filtration unit 3 is introduced into the adjusting tank 11. A liquid oxidizing agent, for example, an aqueous solution of sodium hypochlorite is supplied from the oxidizing agent storage tank 12 through the conduit 24 into the adjusting tank 11. In the adjustment tank 11, the beverage effluent and the oxidant are stirred by the stirrer 31, and the oxidant and the beverage effluent are mixed. The amount of the liquid oxidizing agent varies depending on the type and the chromaticity of the drinking water, and is, for example, 10 to 800 mg-Cl / L as sodium hypochlorite per liter of the drinking water. Sodium chlorite is stirred by the stirrer 31 for a desired time, for example, 10 minutes or more, preferably 10 to 20 minutes. In the regulating tank 11, the drinking water is oxidized and the colored components are partially decolorized, and then sent to the catalyst tower 13 via the conduit 21 by the pump 32. In the catalyst tower 13, the oxidized beverage wastewater comes into contact with a catalyst (in this embodiment, a nickel peroxide-supported catalyst), thereby facilitating decolorization of the colored component. The required contact time between the inflow water from the adjustment tank 11 and the catalyst in the catalyst tower 13 varies depending on the type, amount, chromaticity, type and amount of the oxidizing agent and the catalyst, etc. This is a range in which colored components that could not be decolorized by oxidation with an oxidizing agent can be decolorized to an acceptable value, and in this embodiment, it is desirable that the contact be performed for 6 minutes or more, for example, 6 to 30 minutes.
[0024]
The water decolorized to an acceptable range by contact with the catalyst in the catalyst tower 13 is sent to the activated carbon tower 14 where it is brought into contact with the activated carbon filled therein, and the remaining oxidizing agent component such as residual chlorine And hardly decomposable components are removed. The effluent from the activated carbon tower 14 is sent to the disinfection processing section 5.
[0025]
When returning a part of the effluent of the activated carbon tower 14 to the regulating tank 11, the valve 43 is opened and returned via the return conduit 25.
[0026]
Further, a chlorine concentration measuring device 47 is provided at the outlet of the catalyst tower 13 to measure the residual chlorine concentration of the decolorized water treated in the catalyst tower 13, and when the concentration is lower than a predetermined concentration, the valve 44 is opened and the catalyst tower is opened. 13 is returned to the regulating tank 11 through the return conduit 25, or the valve 42 is closed and the valve 43 is opened to prevent foreign matter from entering the regulating tank 11, and the effluent of the activated carbon tower 14 is returned to the return conduit 25. It is configured to return to the adjustment tank 11 through 25 and perform the oxidative decolorization treatment again. Further, based on the measured value of the residual chlorine concentration, the pump 33 of the oxidizing agent storage tank 12 can be controlled to adjust the oxidizing agent addition amount.
[0027]
In FIG. 1, valves 48 and 49 are used for cleaning the catalyst in the catalyst tower 13. In the cleaning of the catalyst, the valve 44 and the valve 49 are opened, the valve 48 is closed, and the washing water is passed through the catalyst tower 13 to wash the catalyst, and the washed washing water is discharged to the raw water tank.
[0028]
By the way, in the decoloring apparatus as shown in FIG. 1, when the treatment is performed by passing drinking effluent containing an oxidizing agent through a catalyst tower filled with a metal oxide catalyst, the amount of water varies, holidays, maintenance and inspection of the apparatus, and the like. Therefore, the operation of the device may be stopped. In this case, after the operation is stopped for a predetermined time, when the flow of the drinking water to the catalyst tower is resumed, the metal component of the metal oxide catalyst is eluted into the obtained decolorized water, whereby the processing at the time of restarting the operation is performed. As the water quality of water decreases, the metal oxide catalyst in the catalyst tower deteriorates due to elution of the metal component, and the catalyst performance may decrease.
[0029]
This is because when the flow of beverage wastewater to the catalyst tower is stopped, the oxidizing agent is decomposed and removed in the catalyst tower, and the oxygen of the metal oxide on the catalyst surface and the remaining beverage adsorbed on the catalyst This is because the metal oxide of the catalyst is reduced and the metal component is eluted by the reaction with the oxidizable substance such as the colored component in the waste water.
[0030]
Therefore, in the present invention, in order to prevent such metal components from being eluted from the metal oxide catalyst, the oxidizing agent in the water passed through the catalyst tower before stopping the flow of water when the operation of the apparatus is stopped. The density may be increased. By doing so, part or all of the oxidizable substance adhered to the catalyst is removed, and elution of the metal component due to the reaction between the metal oxide and the oxidizable substance during the water suspension period is prevented. can do.
[0031]
In order to increase the oxidizing agent concentration in the water passed through the catalyst tower, it is only necessary to increase the amount of the oxidizing agent added to the colored beverage effluent. Therefore, it is difficult to control the concentration of the oxidizing agent. Therefore, instead of colored drinking water, water having a low oxidizable substance concentration such as city water or industrial water may be used, and an oxidizing agent may be added to the city water or industrial water to flow through the catalyst tower. Further, the concentration of the oxidizing agent in the water introduced into the catalyst tower may be increased, and the effluent from the catalyst tower may be circulated again so as to flow through the catalyst tower.
[0032]
Specifically, in the decoloring apparatus of FIG. 1, when stopping the water supply, city water or industrial water is introduced into the regulating tank 11 instead of the colored drinking water drainage, and the concentration of the oxidizing agent is lower than that in the normal operation. Make it higher. Then, the valve 43 is closed, the valves 44 and 48 are opened, and the water in the adjustment tank 11 is passed through the catalyst tower 13, and the entire amount of the effluent from the catalyst tower 13 is returned to the adjustment tank 11 and circulated. . As a result, water having a high oxidizing agent concentration is circulated and circulated through the catalyst tower 13, and oxidizable substances such as colored components remaining on the catalyst in the catalyst tower 13 are decomposed and removed. . In this case, since water having a high oxidant concentration does not flow out of the system during the circulation, the treatment cost for that purpose is suppressed, and the oxidant flowing out of the catalyst tower 13 is reused, so that the oxidant chemical cost is reduced. Can be reduced.
[0033]
In the case of circulating water having a high oxidizing agent concentration, the oxidizing agent-containing water may be further circulated even after the oxidizable substances such as the colored components attached to the catalyst are decomposed and exhausted. Circulation may be continued throughout the entire period. In this case, the oxidizing agent gradually decomposes by the action of a catalyst during the circulation, and the concentration of the oxidizing agent in the water in the catalyst tower decreases. As a result, the concentration of the oxidizing agent in the water flowing out of the catalyst tower at the time of restarting the operation becomes low, and it is not necessary to perform the oxidizing agent removal treatment on the initial effluent of the catalyst tower, or a simple one is sufficient. Become like
[0034]
When increasing the oxidant concentration in the water at the time of stopping the flow of water, the oxidant concentration in the catalyst tower inflow water is 1.0 to 40 times the oxidant concentration in the catalyst tower inflow water during normal operation, particularly 2.0 to 10 times. Preferably. Further, it is desirable that the water having a high oxidizing agent concentration be passed through the catalyst tower in an amount of at least 30 times the volume of the catalyst tower, particularly at least 50 times, to sufficiently decompose the oxidizable substances such as attached colored components. .
[0035]
When the operation is restarted after the operation suspension period ends, the flow of colored beverage wastewater is restarted.However, in the early stage of operation restart, the effluent from the catalyst tower contains a large amount of oxidizing agent. There is. In the apparatus of FIG. 1, the remaining oxidant is removed by the activated carbon tower 14. However, the effluent of the catalyst tower at the initial stage of the resumption of water flow is returned to the adjustment tank 11 for dilution or transferred to another processing system for processing. You may.
[0036]
In the present invention, the oxidizing agent added to the colored beverage wastewater is preferably a chlorine-based oxidizing agent. The chlorinated oxidizing agent is not particularly limited, and in addition to sodium hypochlorite as described above, for example, chlorine, potassium hypochlorite, hypochlorite such as calcium hypochlorite, sodium chlorite, Examples include chlorites such as potassium chlorite, chlorates such as sodium chlorate, potassium chlorate and calcium chlorate, and perchlorates such as sodium perchlorate and calcium perchlorate. Of these, hypochlorites such as sodium hypochlorite have suitable oxidizing properties and can be suitably used.
[0037]
If the amount of the oxidizing agent added to the colored beverage wastewater is too small, the decolorizing treatment becomes insufficient, and if it is too large, a large amount of the oxidizing agent may remain in the treated water. When the oxidizing agent is a chlorine-based oxidizing agent, it is preferable to add the chlorine-based oxidizing agent such that the residual chlorine concentration in the colored beverage wastewater is 10 to 400 mg-Cl / L. In addition, "mg-Cl / L" is a residual chlorine concentration in water, which is obtained by converting a chlorine-based oxidizing agent remaining in treated water into chlorine.
[0038]
In the present invention, as the catalyst, a metal oxide catalyst is preferable, and as the metal oxide catalyst, a metal oxide as a catalyst component supported on a carrier is preferable. As the carrier, one or more of various types of zeolite and alumina can be used.
[0039]
Examples of the metal of the catalyst component include nickel, cobalt, copper, silver and the like, preferably nickel and cobalt, and particularly preferably nickel. One of these catalyst metals may be used alone, or two or more thereof may be used in combination.
[0040]
The metal oxide catalyst used in the present invention is preferably such that these catalyst metals are supported on a carrier as a metal oxide, preferably a metal peroxide. It is preferable that the carrier is 0.1 to 100 g-metal / 1000 g-dry carrier in terms of the amount of catalyst metal supported. If the amount is less than this, the catalytic action of the metal oxide cannot be sufficiently obtained, and it is difficult to support the metal oxide in a larger amount in preparation of the catalyst.
[0041]
The metal peroxide-supported catalyst suitable for the present invention can be prepared, for example, by allowing a catalyst metal such as nickel to be supported on a carrier and then reacting with an oxidizing agent as follows.
[0042]
First, an aqueous solution of a sulfate, nitrate, chloride, or the like of a catalyst metal such as nickel, or an aqueous solution of a mixture thereof is prepared, and the carrier is immersed in the aqueous solution of the catalyst metal. Alternatively, the catalyst metal aqueous solution is passed through the column filled with the carrier in a one-time or circulation manner to make contact therewith. The concentration of the catalyst metal aqueous solution and the contact time are appropriately set according to the amount of metal supported on the prepared metal peroxide-supported catalyst. After the carrier carrying the catalyst metal such as nickel by ion exchange is washed with water in this manner, the carrier is brought into contact with an alkaline aqueous solution containing an oxidizing agent. This contacting method can be carried out by immersion or by passing water through a column, as in the above-described supporting method. As the oxidizing agent for supporting the catalyst, hypochlorite such as sodium hypochlorite, chlorine gas, or the like can be used. As the alkaline aqueous solution for supporting the catalyst, an aqueous solution of sodium hydroxide, potassium hydroxide or the like can be used. The concentration of the oxidizing agent and the alkali in the aqueous alkali solution containing the oxidizing agent are not particularly limited, but are usually 0.5 to 10% by weight, particularly 1 to 5% by weight, and the alkali concentration is 0.1 to 10%. It is preferably an aqueous solution having a concentration of 0.5% by weight, particularly 0.5 to 2.5% by weight.
[0043]
In this way, the carrier supporting the catalyst metal such as nickel is brought into contact with an alkaline aqueous solution containing an oxidizing agent, and then washed with water, whereby a metal peroxide-supported catalyst suitable for the present invention can be obtained.
[0044]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0045]
The colored beverage wastewater was biologically treated in the biological treatment section 2 in the same manner as in the related art, and then filtered in the filtration treatment section 3. The chromaticity of the drinking water after filtration was 1200. When this drinking water was treated by the conventional decoloring method using a coagulant shown in FIG. 8, the chromaticity of the treated water was 100 to 200.
[0046]
A decolorization test of beverage wastewater having such chromaticity was performed using a test device 50 shown in FIG.
[0047]
Pumping the above-mentioned drinking water in the raw water tank 51 1 To the adjusting tank 53 at a flow rate of 180 tons / h, and pump the sodium hypochlorite aqueous solution in the oxidizing agent storage tank 52 with the pump P. 2 To the adjustment tank 53 at a predetermined ratio. Then, in the adjustment tank 53, the beverage wastewater and sodium hypochlorite were stirred and mixed for a predetermined time by the stirrer 53A to perform a decolorizing treatment. Pump P 3 Then, the mixture was passed through the catalyst tower 54 at a flow rate such that the mixed solution and the catalyst were continuously contacted for a predetermined time, followed by decolorizing the catalyst. As the catalyst, a nickel peroxide-supported catalyst was used.
[0048]
In this test, the state of decolorization due to the reaction between the beverage wastewater and sodium hypochlorite in the adjustment tank 53 was determined by adding the amount of sodium hypochlorite to 100, 200, 400, or 800 mg-Cl / L. In the case where the stirring time in the adjusting tank 53 is variously changed from 10 minutes to 1080 minutes, the stirring time and the chromaticity of the oxidized decolorized water (outflow water of the adjusting tank 53) are changed. When the relationship was obtained, the result shown in FIG. 4 was obtained. In addition, the relationship between the residual chlorine concentration of the oxidative decolorization treated water and the stirring time was as shown in FIG.
[0049]
As is clear from FIG. 4, even when the amount of sodium hypochlorite added is variously changed, the chromaticity of the drinking water, which is the water to be treated, rapidly decreases to 200 to 400 by stirring for about 10 minutes. It can be seen that, after stirring for a certain period of time, the chromaticity hardly changes even if stirring is continued. Further, in order to decolorize the chromaticity of the beverage wastewater to 100, which is the same level as the processing ability of the conventional decoloring method, the stirring time had to be 1080 minutes. On the other hand, the residual chlorine concentration in the oxidatively decolorized water also decreases until stirring for several minutes, as shown in FIG. 5, but hardly decreases thereafter. It can also be seen that the residual chlorine concentration increases with an increase in the amount of sodium hypochlorite added.
[0050]
From these results, the degree of decolorization by the oxidizing agent can be determined by setting a predetermined stirring time for each oxidizing agent concentration to be added, and this control can be performed by measuring the residual chlorine concentration. I understand.
[0051]
In the same test, the amount of sodium hypochlorite added was changed at a rate of 150, 300, or 470 mg-Cl / L, and the drinking water having a chromaticity of 1193 (Test 1) and the drinking water having a chromaticity of 780 (Test 1) were used. 2) Drinking wastewater with a chromaticity of 1183 (Test 3) and drinking water with a chromaticity of 1272 (Test 4), respectively. When the relationship with the amount of sodium acid added was examined, it was as shown in FIG. From these results, it can be seen that when the amount of sodium hypochlorite added exceeds a predetermined amount (about 150 mg-Cl / L), the chromaticity after decolorization hardly changes even if the amount of addition is large. It can be seen that the concentration of the oxidizing agent can be determined according to the desired chromaticity.
[0052]
Further, 470 mg-Cl / L of sodium hypochlorite was added, and the mixture was stirred and mixed for 20 minutes, and the contact time between the water after oxidative decolorization and the catalyst in the catalyst tower 54 and the decolorized water after contact (catalyst) The relationship with the chromaticity of the water at the tower outlet) was examined, and the result was as shown in FIG. From FIG. 7, it can be seen that by setting the contact time between the catalyst and the oxidatively decolorized water to 6 minutes or more, the wastewater near the chromaticity of 80 can be reduced to about 50. If the contact time is longer, the chromaticity can be lowered, but if the contact time is longer than 6 minutes, no significant reduction effect is observed.
[0053]
In the present embodiment, the amount of sodium hypochlorite added was 180 mg-Cl / L, and the stirring time in the adjustment tank 53 was 10 minutes. By setting the contact time to 6 minutes, decolorized water having a chromaticity of 100 or less and an average of 70 could be obtained.
[0054]
【The invention's effect】
As described in detail above, according to the method and apparatus for decolorizing colored beverage wastewater of the present invention, the following effects can be obtained.
(A) Decolorization of colored beverage wastewater is promoted by catalytic treatment after oxidative decolorization, and no sludge is generated unlike the conventional method, eliminating the problem of sludge treatment and decoloring at least equivalent to the conventional method. The effect can be obtained.
(B) By promoting the decolorization by performing a catalyst treatment, highly efficient decolorization can be performed very efficiently, and high-quality treated water can be stably obtained. In addition, it becomes possible to remove hardly decomposable components.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a colored beverage waste water decoloring apparatus of the present invention.
FIG. 2 is a system diagram of a treatment system for colored beverage wastewater.
FIG. 3 is a system diagram showing a test apparatus used in an example.
FIG. 4 is a graph showing the relationship between stirring time and chromaticity.
FIG. 5 is a graph showing a relationship between a stirring time and a residual chlorine concentration.
FIG. 6 is a graph showing the relationship between the amount of added sodium hypochlorite and chromaticity.
FIG. 7 is a graph showing a relationship between a contact time with a catalyst and chromaticity.
FIG. 8 is a schematic diagram illustrating a conventional method for decolorizing colored beverage wastewater.
[Explanation of symbols]
3 Filtration section
5 Disinfection processing section
10 Decoloring device
11 adjustment tank
12 Oxidant storage tank
13 Catalyst tower
14 Activated carbon tower

Claims (13)

有色飲料排水を酸化剤の存在下に触媒と接触させる脱色工程を備える有色飲料排水の脱色方法であって、
該脱色工程は、有色飲料排水に酸化剤を添加して混合する混合工程と、酸化剤が混合された有色飲料排水を触媒と接触させる接触工程とを含むことを特徴とする有色飲料排水の脱色方法。
A method for decolorizing colored beverage wastewater comprising a decolorizing step of contacting colored beverage wastewater with a catalyst in the presence of an oxidizing agent,
The decolorizing step includes a mixing step of adding and mixing an oxidizing agent to the colored beverage wastewater and a contacting step of bringing the colored beverage wastewater mixed with the oxidizing agent into contact with a catalyst, wherein the decolorizing of the colored beverage wastewater is performed. Method.
請求項1に記載の飲料排水の脱色方法において、前記脱色工程の処理水を活性炭で処理する活性炭処理工程を備えることを特徴とする有色飲料排水の脱色方法。The method for decolorizing drinking water according to claim 1, further comprising an activated carbon treatment step of treating the treated water in the decolorizing step with activated carbon. 請求項1又は2に記載の有色飲料排水の脱色方法において、前記脱色工程に供給する有色飲料排水を濾過する濾過工程を備えることを特徴とする有色飲料排水の脱色方法。The method for decolorizing colored beverage wastewater according to claim 1 or 2, further comprising a filtration step of filtering the colored beverage wastewater to be supplied to the decolorizing step. 請求項1ないし3のいずれかに記載の有色飲料排水の脱色方法において、前記酸化剤が塩素系酸化剤であり、前記脱色工程の処理水の残留塩素濃度を計測することを特徴とする有色飲料排水の脱色方法。The method for decolorizing colored beverage wastewater according to any one of claims 1 to 3, wherein the oxidizing agent is a chlorine-based oxidizing agent, and a residual chlorine concentration of the treated water in the decolorizing step is measured. How to decolor wastewater. 請求項4に記載の有色飲料排水の脱色方法において、計測された残留塩素濃度に応じて、前記混合工程における塩素系酸化剤の添加量を制御することを特徴とする有色飲料排水の脱色方法。The method for decolorizing colored beverage wastewater according to claim 4, wherein the amount of the chlorine-based oxidizing agent added in the mixing step is controlled in accordance with the measured residual chlorine concentration. 請求項1ないし5のいずれかに記載の有色飲料排水の脱色方法において、前記酸化剤が次亜塩素酸ナトリウムであることを特徴とする有色飲料排水の脱色方法。The method for decolorizing colored beverage wastewater according to any one of claims 1 to 5, wherein the oxidizing agent is sodium hypochlorite. 請求項1ないし6のいずれかに記載の有色飲料排水の脱色方法において、前記混合工程は、有色飲料排水と酸化剤との混合液が所定の色度に達するまでの時間行うことを特徴とする有色飲料排水の脱色方法。The method for decolorizing colored beverage wastewater according to any one of claims 1 to 6, wherein the mixing step is performed for a time until a mixed solution of the colored beverage wastewater and the oxidant reaches a predetermined chromaticity. A method for decolorizing colored beverage wastewater. 請求項1ないし7のいずれかに記載の有色飲料排水の脱色方法において、前記触媒が過酸化ニッケル担持触媒であることを特徴とする有色飲料排水の脱色方法。The method for decolorizing colored beverage wastewater according to any one of claims 1 to 7, wherein the catalyst is a nickel peroxide-supported catalyst. 請求項1ないし8のいずれかに記載の有色飲料排水の脱色方法において、前記接触工程は、処理水の色度が所定の色度に達するまでの時間行うことを特徴とする有色飲料排水の脱色方法。The method for decolorizing colored beverage wastewater according to any one of claims 1 to 8, wherein the contacting step is performed for a time until the chromaticity of the treated water reaches a predetermined chromaticity. Method. 槽内液の混合手段を備える調整槽と、
該調整槽に有色飲料排水を導入する手段と、
該調整槽に導入される有色飲料排水及び/又は該調整槽に酸化剤を添加する酸化剤添加手段と、
該調整槽からの流出水が導入される触媒塔と
を備えることを特徴とする有色飲料排水の脱色装置。
An adjustment tank provided with a mixing means for the liquid in the tank,
Means for introducing colored beverage wastewater into the adjustment tank,
Oxidizing agent adding means for adding an oxidizing agent to the colored drinking water drainage introduced into the adjusting tank and / or the adjusting tank;
A decolorizer for colored beverage wastewater, comprising: a catalyst tower into which effluent from the adjustment tank is introduced.
請求項10に記載の有色飲料排水の脱色装置において、前記触媒塔の流出水が導入される活性炭塔を備えることを特徴とする有色飲料排水の脱色装置。The decolorizing apparatus for colored beverage wastewater according to claim 10, further comprising an activated carbon tower into which the effluent of the catalyst tower is introduced. 請求項11に記載の有色飲料排水の脱色装置において、前記酸化剤が塩素系酸化剤であり、前記触媒塔の流出水の残留塩素濃度を測定する測定手段を備えることを特徴とする有色飲料排水の脱色装置。The colored beverage wastewater decoloring apparatus according to claim 11, wherein the oxidizing agent is a chlorine-based oxidizing agent, and further comprising a measuring unit for measuring a residual chlorine concentration of the effluent of the catalyst tower. Decolorizer. 請求項10ないし12のいずれかに記載の有色飲料排水の脱色装置において、前記触媒塔の流出水の一部を前記調整槽に戻す循環ラインを備えることを特徴とする有色飲料排水の脱色装置。13. The decolorizing apparatus for colored beverage wastewater according to claim 10, further comprising a circulation line for returning a part of the effluent of the catalyst tower to the adjustment tank.
JP2003162525A 2003-06-06 2003-06-06 Decolorization method and decolorization device for colored beverage drainage Expired - Fee Related JP4465987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162525A JP4465987B2 (en) 2003-06-06 2003-06-06 Decolorization method and decolorization device for colored beverage drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162525A JP4465987B2 (en) 2003-06-06 2003-06-06 Decolorization method and decolorization device for colored beverage drainage

Publications (2)

Publication Number Publication Date
JP2004358421A true JP2004358421A (en) 2004-12-24
JP4465987B2 JP4465987B2 (en) 2010-05-26

Family

ID=34054649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162525A Expired - Fee Related JP4465987B2 (en) 2003-06-06 2003-06-06 Decolorization method and decolorization device for colored beverage drainage

Country Status (1)

Country Link
JP (1) JP4465987B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167398A (en) * 2008-12-22 2010-08-05 Tosoh Corp Cod removal method and cod decomposition catalyst packed tower
JP2018183746A (en) * 2017-04-26 2018-11-22 オルガノ株式会社 Method for reducing chromaticity of water to be treated and device for reducing chromaticity of water to be treated
CN113354064A (en) * 2021-06-22 2021-09-07 成都瀚江新材科技股份有限公司 Method for decoloring colored circulating water in production process of colored glass wool product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167398A (en) * 2008-12-22 2010-08-05 Tosoh Corp Cod removal method and cod decomposition catalyst packed tower
JP2018183746A (en) * 2017-04-26 2018-11-22 オルガノ株式会社 Method for reducing chromaticity of water to be treated and device for reducing chromaticity of water to be treated
CN113354064A (en) * 2021-06-22 2021-09-07 成都瀚江新材科技股份有限公司 Method for decoloring colored circulating water in production process of colored glass wool product

Also Published As

Publication number Publication date
JP4465987B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
US11655171B2 (en) Apparatus and method for electrochemical treatment of wastewater
JP2000288560A (en) Water purifying treatment apparatus and method
US4534867A (en) System for removing iron and/or other chemically reducing substances from potable water
JPH08500050A (en) Method and apparatus for the decomposition of free and complex cyanide, AOX, mineral oil, complexing agents, COD, nitrite, chromate, and metal separation in wastewater
IL281874B2 (en) Systems for reducing hydrogen peroxide in wastewater
JP2008043898A (en) Water treatment system and water treatment method
JP2009022940A (en) Method of decoloring livestock wastewater and colored wastewater containing hardly decomposable ingredient
AU2009200113A1 (en) Water purification
JP2014087787A (en) Processing method and processing device for manganese-containing water
JPH10137542A (en) Treatment of flue gas desulfurization waste water
JP5259311B2 (en) Water treatment method and water treatment system used therefor
JP2007319816A (en) Water treatment apparatus and water treatment method
JP4465987B2 (en) Decolorization method and decolorization device for colored beverage drainage
JPH119908A (en) Operation method of sand filtration/ozonation apparatus
JP4538881B2 (en) Membrane module cleaning method
JP2020037059A (en) Membrane filtration system, and membrane filtration method
JPS5930153B2 (en) Treatment method for wastewater containing sterilization/disinfectant
JP4650764B2 (en) Decolorization control method, decolorization control device and wastewater treatment system for dyeing wastewater
JP2000263049A (en) Method and apparatus for cleaning barn effluent
JP2000350997A (en) Method and apparatus for treating sewage
GB2141119A (en) Apparatus and process for removing iron and/or other chemically reducing substances from potable water
JP4407165B2 (en) Treatment method for water containing oxidizable substances
JPH11347576A (en) Method and apparatus for treating water
JPH07275874A (en) Ozone treatment apparatus
WO2020012786A1 (en) Water treatment device and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4465987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees