[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4650764B2 - Decolorization control method, decolorization control device and wastewater treatment system for dyeing wastewater - Google Patents

Decolorization control method, decolorization control device and wastewater treatment system for dyeing wastewater Download PDF

Info

Publication number
JP4650764B2
JP4650764B2 JP2005213372A JP2005213372A JP4650764B2 JP 4650764 B2 JP4650764 B2 JP 4650764B2 JP 2005213372 A JP2005213372 A JP 2005213372A JP 2005213372 A JP2005213372 A JP 2005213372A JP 4650764 B2 JP4650764 B2 JP 4650764B2
Authority
JP
Japan
Prior art keywords
tank
decolorization
wastewater
chlorine
decoloring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005213372A
Other languages
Japanese (ja)
Other versions
JP2007029797A (en
Inventor
只房 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2005213372A priority Critical patent/JP4650764B2/en
Publication of JP2007029797A publication Critical patent/JP2007029797A/en
Application granted granted Critical
Publication of JP4650764B2 publication Critical patent/JP4650764B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、染色排水の脱色制御方法及び脱色制御装置並びに排水処理システム、特に、染色排水の脱色処理を確実に制御することができ、設備費、維持管理費を安価に抑えることができる染色排水の脱色制御方法及び脱色制御装置並びに排水処理システムに関するものである。   The present invention relates to a dyeing drainage decoloring control method, a decoloring control device, and a wastewater treatment system, and in particular, a dyeing drainage that can reliably control decoloring treatment of dyeing wastewater, and can keep equipment costs and maintenance costs low. The present invention relates to a decoloring control method, a decoloring control device, and a wastewater treatment system.

染色工場等では、布地を始めとする各種織布や皮革製品等に対し、直接染料、酸性染料、分散染料、反応性染料等の各種の染料、顔料及び染色助剤を用いて染色を行っている。被染色物の染色や水洗の際に、染料、顔料等を含む多量の染色排水が生じる。染色排水は、主に染料、顔料、糊等の物質で構成されている。染色排水を河川に放流する際には、放流基準の観点から、(1)有機物の除去、(2)固形浮遊物(SS)の除去、(3)酸、アルカリの中和等が必要となる。なお、色度成分については、放流基準が設定されていないが、河川が着色すると、環境保全や環境美化の点から問題となる場合がある。   In dyeing factories, various woven fabrics and leather products such as fabrics are dyed using various dyes such as direct dyes, acid dyes, disperse dyes and reactive dyes, pigments and dyeing assistants. Yes. When dyeing an object to be dyed or washing with water, a large amount of dye wastewater containing dyes, pigments, etc. is generated. Dyeing wastewater is mainly composed of substances such as dyes, pigments, and glue. When discharging dyed wastewater into rivers, it is necessary to (1) remove organic matter, (2) remove solid suspended solids (SS), (3) neutralize acid and alkali, etc. from the viewpoint of release standards. . In addition, although the discharge | release standard is not set about a chromaticity component, when a river colors, it may become a problem from the point of environmental conservation or environmental beautification.

従来は、生物処理と凝集沈殿を組み合わせた方法で、糊成分等の有機物の除去や顔料、布等の固形浮遊物の除去が行われていたが、水に溶解している染料の除去は困難であり、着色したまま染色排水を河川に放流する場合もある。   Conventionally, organic treatments such as paste components and solid suspended solids such as pigments and cloths have been removed by a method that combines biological treatment and coagulation sedimentation, but it is difficult to remove dyes dissolved in water. In some cases, the dyed wastewater is discharged into the river while being colored.

染色排水の色度成分を除去するためには、次のような各種の方法が行われている。まず、過酸化水素と鉄塩添加による脱色法であるフェントン法では、ほとんどの着色物質の脱色ができるが、設備が複雑で設備費が高く、薬品注入量の制御等維持管理も複雑で、薬品代、スラッジ処理費が高い。また、オゾン処理法では、色素成分のアゾ基のヒドラジン基が酸化されカルボン酸になるため退色するが、酸化力が弱く完全分解できないため、全有機体炭素(TOC)はほとんど変化せず、BODは増加する傾向にある。また、オゾン発生装置等の設備費が非常に高く、色素が残留する場合がある。   In order to remove the chromaticity component of the dyed wastewater, the following various methods are performed. First, the Fenton method, which is a decolorization method by adding hydrogen peroxide and iron salt, can decolor most of the colored substances, but the equipment is complicated and the equipment costs are high, and the maintenance and management such as the control of the chemical injection amount are also complicated. And sludge treatment costs are high. In the ozone treatment method, the hydrazine group of the azo group of the dye component is oxidized and becomes carboxylic acid, and thus the color fades. However, since the oxidizing power is weak and cannot be completely decomposed, the total organic carbon (TOC) hardly changes, and BOD Tend to increase. In addition, the cost of equipment such as an ozone generator is very high, and pigments may remain.

活性炭吸着法では、活性炭吸着塔の設備費は比較的安価であるが、有機物が残留する着色排水を吸着除去する場合、色度成分のみを選択的に吸着除去できず、ランニングコストが非常に高くなるという欠点がある。   In the activated carbon adsorption method, the equipment cost of the activated carbon adsorption tower is relatively low, but when colored wastewater with organic matter remaining is removed by adsorption, only the chromaticity component cannot be selectively removed by adsorption, and the running cost is very high. There is a drawback of becoming.

さらに、特許文献1には、染色排水に次亜塩素酸ナトリウム液を添加して染料成分を分解処理し、次いでその処理水を濾布と活性炭により処理することが開示されている。特許文献1では、染色廃水に次亜塩素酸ナトリウム液を添加することによって染色廃水を酸化脱色し、活性炭により色度成分を吸着しており、次亜塩素酸ナトリウム液と活性炭とを併用することにより脱色を行っている。   Further, Patent Document 1 discloses that a dye component is decomposed by adding a sodium hypochlorite solution to dyeing waste water, and then the treated water is treated with a filter cloth and activated carbon. In Patent Document 1, the dyeing wastewater is oxidatively decolorized by adding sodium hypochlorite liquid to the dyeing wastewater, the chromaticity component is adsorbed by activated carbon, and sodium hypochlorite liquid and activated carbon are used in combination. Decolorization is performed.

また、特許文献2には、染色工程廃水を塩素化イソシアヌール酸を含む錠剤に接触させる染色工程廃水の浄化方法が開示されている。特許文献2では、染色工程廃水に塩素化イソシアヌール酸を含む錠剤を接触させることによって、錠剤中から溶出した塩素化イソシアヌール酸が廃水中の溶存染料を分解して脱色すると共に、廃水のCOD(化学的酸素要求量)及びBOD(生物化学的酸素要求量)を低減している。   Patent Document 2 discloses a method for purifying dyeing process wastewater in which the dyeing process wastewater is brought into contact with a tablet containing chlorinated isocyanuric acid. In Patent Document 2, by contacting a tablet containing chlorinated isocyanuric acid with the dyeing process wastewater, the chlorinated isocyanuric acid eluted from the tablet decomposes the dissolved dye in the wastewater and decolorizes it. (Chemical oxygen demand) and BOD (biochemical oxygen demand) are reduced.

特開平7−100469号公報Japanese Patent Laid-Open No. 7-100469 特公昭63−1114号公報Japanese Examined Patent Publication No. 63-1114

しかしながら、特許文献1においては、次亜塩素酸ナトリウムの添加量を染色廃水の色の濃度に応じて加減することが記載されているが、変色の終点に応じて次亜塩素酸ナトリウムの添加量を制御することについては、意図していない。また、有機物が残留する場合は、有機物の吸着に活性炭が使われるが、有機物の吸着が飽和に達した際には活性炭を交換しなければならず、ランニングコストが高くなる欠点がある。さらに、特許文献2においては、廃水の脱色、浄化を効率よく達成するために、廃水の流速及び塩素化イソシアヌール酸を含む錠剤の接触表面積を適当に選定することにより行っているが、廃水の流速及び錠剤の接触表面積をどのように制御するかについては、開示していない。   However, Patent Document 1 describes that the addition amount of sodium hypochlorite is adjusted according to the color concentration of dyeing wastewater, but the addition amount of sodium hypochlorite according to the end point of discoloration. It is not intended to control. Moreover, when organic matter remains, activated carbon is used for adsorption of organic matter. However, when the adsorption of organic matter reaches saturation, the activated carbon must be replaced, and there is a disadvantage that running cost becomes high. Furthermore, in Patent Document 2, in order to efficiently achieve decolorization and purification of wastewater, the wastewater flow rate and the contact surface area of the tablet containing chlorinated isocyanuric acid are appropriately selected. It is not disclosed how to control the flow rate and the contact surface area of the tablets.

次亜塩素酸ナトリウム等の添加量が適切に調整されていないと、添加する次亜塩素酸ナトリウム等を過剰に加える場合を生じ、このような処理水をそのまま河川に放流することは、環境保全上望ましくない。また、過剰に添加された次亜塩素酸ナトリウム等を中和するために、還元剤を添加することが必要となるが、過剰な次亜塩素酸ナトリウム等及びこれを中和する還元剤のために不要なコストを生じるという問題点があった。   If the amount of sodium hypochlorite added is not properly adjusted, excessive sodium hypochlorite may be added. Discharging such treated water directly into the river is environmental conservation. Not desirable. In addition, it is necessary to add a reducing agent to neutralize excessive sodium hypochlorite and the like, but for excessive sodium hypochlorite and the like and a reducing agent that neutralizes this. There was a problem that unnecessary costs were incurred.

本発明者は、着色状況の異なる染色排水について、次亜塩素酸ナトリウムを添加し脱色前後の吸光度、残留塩素及び酸化還元電位を測定した。その結果、吸光度を測定した場合、580nm付近で吸光度が最大になり、次亜塩素酸ナトリウムの添加により吸光度が確実に減少することが確認できた。ところが、脱色終点の吸光度は染色排水の着色度合いによりばらつきがあるため、吸光度を指標として脱色終点を制御することは困難であった。   The present inventor added sodium hypochlorite and measured the absorbance, residual chlorine, and redox potential before and after decolorization for dyeing wastewater with different coloring conditions. As a result, when the absorbance was measured, it was confirmed that the absorbance was maximized at around 580 nm, and the absorbance was surely decreased by the addition of sodium hypochlorite. However, since the absorbance at the end point of decolorization varies depending on the coloring degree of the dye waste water, it is difficult to control the end point of decolorization using the absorbance as an index.

また、染色排水に次亜塩素酸ナトリウムを添加し脱色前後の残留塩素を測定したところ、残留塩素は次亜塩素酸ナトリウムを染色排水に添加した当初から計測され、脱色の途中段階と終点とで残留塩素量の値に大きな変化がなく、残留塩素量を指標として脱色終点を制御することは困難であった。   In addition, when sodium hypochlorite was added to the dyeing wastewater and the residual chlorine before and after decoloring was measured, the residual chlorine was measured from the beginning when sodium hypochlorite was added to the dyeing wastewater. There was no significant change in the amount of residual chlorine, and it was difficult to control the decolorization end point using the amount of residual chlorine as an index.

これに対して、染色排水に次亜塩素酸ナトリウムを添加し脱色前後の酸化還元電位を測定したところ、着色の度合いが異なる染色排水のいずれにおいても、脱色終点近辺の酸化還元電位は同程度の値であった。すなわち、次亜塩素酸ナトリウムなどの塩素系酸化剤の添加に伴い、予め染色排水の脱色終点の酸化還元電位を測定しておけば、塩素系酸化剤の添加量を過不足なく添加できることが判明した。   In contrast, when sodium hypochlorite was added to dyeing wastewater and the redox potential before and after decoloring was measured, the redox potential in the vicinity of the decoloring end point was the same for any dyeing wastewater with different degrees of coloring. Value. In other words, with the addition of chlorinated oxidants such as sodium hypochlorite, it was found that the amount of added chlorinated oxidant can be added without excess or deficiency by measuring the oxidation-reduction potential at the decolorization end point of dyeing wastewater in advance. did.

本発明は、このような知見に基づき、従来の課題を解決するためになされたものであり、染色排水の脱色処理を確実に制御することができ、設備費、維持管理費を安価に抑えることができる染色排水の脱色制御方法及び装置並びに排水処理システムを提供することを目的とする。   The present invention was made in order to solve the conventional problems based on such knowledge, and can control the decoloring treatment of dyeing wastewater reliably, and can suppress equipment costs and maintenance costs at low cost. It is an object of the present invention to provide a method and apparatus for controlling the decolorization of dyed wastewater, and a wastewater treatment system.

上述した課題を解決し、目的を達成するために、本発明の請求項1に記載の染色排水の脱色制御方法にあっては、染色排水の脱色処理を制御する方法であって、前記染色排水に塩素系酸化剤を添加しながら前記染色排水の酸化還元電位を測定し、脱色終点の直前に対応する酸化還元電位で前記塩素系酸化剤の添加を停止する制御を行うことを特徴とする。   In order to solve the above-described problems and achieve the object, the dyeing wastewater decoloring control method according to claim 1 of the present invention is a method for controlling the decoloring treatment of the dyeing wastewater, wherein the dyeing drainage The oxidation-reduction potential of the dyeing waste water is measured while adding a chlorine-based oxidant to the oxidant, and control is performed to stop the addition of the chlorine-based oxidant at a corresponding oxidation-reduction potential immediately before the decoloration end point.

また、本発明の請求項2に記載の染色排水の脱色制御方法にあっては、染色排水の脱色処理を制御する方法であって、前記染色排水に塩素系酸化剤を添加しながら前記染色排水の酸化還元電位を測定し、脱色終点に対応する酸化還元電位を求め、求めた酸化還元電位を制御値として設定し、この制御値を目標に、前記塩素系酸化剤の添加及び添加の停止を制御することを特徴とする。   Moreover, in the decoloring control method of the dyeing waste_water | drain of Claim 2 of this invention, it is a method of controlling the decoloring process of dyeing waste_water | drain, Comprising: While adding a chlorine-type oxidizing agent to the said dyeing waste_water | drain, the said dyeing drainage The redox potential corresponding to the decoloration end point is measured, the obtained redox potential is set as a control value, and the addition of the chlorine-based oxidant and the stop of the addition are performed with this control value as a target. It is characterized by controlling.

また、本発明の請求項3に記載の染色排水の脱色制御方法にあっては、前記染色排水を前記塩素系酸化剤で脱色した後、さらに還元剤で残留塩素を還元することを特徴とする。   Moreover, in the decoloring control method of the dyeing waste_water | drain of Claim 3 of this invention, after decoloring the said dyeing waste_water | drain with the said chlorine type oxidizing agent, residual chlorine is further reduced with a reducing agent, It is characterized by the above-mentioned. .

また、本発明の請求項4に記載の染色排水の脱色制御装置にあっては、染色排水の脱色処理を制御する装置であって、前記染色排水を収容する脱色槽と、前記脱色槽に塩素系酸化剤を添加する塩素系酸化剤添加部と、前記脱色槽中における前記染色排水の酸化還元電位を測定する酸化還元電位計と、脱色終点の直前に対応する酸化還元電位で前記塩素系酸化剤の添加を停止する制御を行う制御部とを備えたことを特徴とする。   Moreover, in the decoloring control apparatus of the dyeing waste_water | drain of Claim 4 of this invention, it is an apparatus which controls the decoloring process of dyeing drainage, Comprising: Chlorine is contained in the decoloring tank which accommodates the said dyeing drainage, and the said decoloring tank A chlorinated oxidant addition unit for adding a oxidant, a redox potentiometer for measuring a redox potential of the dyeing waste water in the decolorization tank, and the chlorinated oxidation at a corresponding redox potential immediately before the decolorization end point And a control unit that performs control to stop the addition of the agent.

また、本発明の請求項5に記載の染色排水の脱色制御装置にあっては、染色排水の脱色処理を制御する装置であって、前記染色排水を収容する脱色槽と、前記脱色槽に塩素系酸化剤を添加する塩素系酸化剤添加部と、前記脱色槽中における前記染色排水の酸化還元電位を測定する酸化還元電位計と、脱色終点に対応する酸化還元電位を制御値として設定し、この制御値を目標に前記塩素系酸化剤の添加及び添加の停止を制御する制御部とを備えたことを特徴とする。   The dyeing drainage decoloring control apparatus according to claim 5 of the present invention is an apparatus for controlling the dyeing drainage decoloring treatment, and includes a decoloring tank for storing the dyeing drainage, and a chlorine in the decoloring tank. A chlorine-based oxidant addition unit for adding a system oxidant, an oxidation-reduction potentiometer for measuring the oxidation-reduction potential of the dyeing wastewater in the decolorization tank, and a redox potential corresponding to the decoloration end point are set as control values, And a control unit for controlling the addition and stop of the addition of the chlorinated oxidant with the control value as a target.

また、本発明の請求項6に記載の排水処理システムにあっては、水量及び水質を均一にするために排水を貯留する調整槽と、前記調整槽からの排水を中和する中和槽と、前記中和槽からの排水中に含まれる有機物を分解する曝気槽と、前記曝気槽からの排水が導入され、凝集沈殿物を除去する凝集沈殿槽と、前記凝集沈殿槽からの排水を脱色制御する脱色制御装置と、前記脱色制御装置からの排水を還元処理する還元槽と、前記還元槽からの排水を所定の設定条件と比較、監視する監視槽とを備え、前記脱色制御装置は、前記排水を収容する脱色槽と、前記脱色槽に塩素系酸化剤を添加する塩素系酸化剤添加部と、前記脱色槽中における前記排水の酸化還元電位を測定する酸化還元電位計と、脱色終点に対応する酸化還元電位を制御値として設定し、この制御値を目標に前記塩素系酸化剤の添加及び添加の停止を制御する制御部とを備えたことを特徴とする。   Moreover, in the waste water treatment system according to claim 6 of the present invention, an adjustment tank that stores the waste water in order to make the water amount and water quality uniform, and a neutralization tank that neutralizes the waste water from the adjustment tank, The aeration tank for decomposing organic substances contained in the waste water from the neutralization tank, the waste water from the aeration tank is introduced, the aggregation precipitation tank for removing the aggregate sediment, and the waste water from the aggregation precipitation tank is decolorized A decolorization control device for controlling, a reduction tank for reducing the waste water from the decolorization control device, and a monitoring tank for comparing and monitoring the waste water from the reduction tank with predetermined setting conditions, A decoloring tank that contains the waste water, a chlorine-based oxidant addition unit that adds a chlorine-based oxidizing agent to the decoloring tank, a redox potential meter that measures the redox potential of the waste water in the decoloring tank, and a decolorization end point As a control value, the redox potential corresponding to Constant, and is characterized in that a control unit for controlling the addition and stopping the addition of the chlorine-based oxidizing agent the control value to the target.

本発明にかかる染色排水の脱色制御方法及び脱色制御装置によれば、染色排水に塩素系酸化剤を添加しながら染色排水の酸化還元電位を測定し、脱色終点の直前に対応する酸化還元電位で前記塩素系酸化剤の添加を停止する制御を行う、或いは、求めた酸化還元電位を制御値として設定し、この制御値を目標に、前記塩素系酸化剤の添加及び添加の停止を制御するので、脱色終点で確実に塩素系酸化剤の添加を終了でき、過剰に塩素系酸化剤を添加するのを回避できるため、残留塩素を還元する還元剤の添加量も抑制できるという効果を奏する。   According to the decolorization control method and the decolorization control apparatus for dyeing wastewater according to the present invention, the oxidation-reduction potential of the dyeing wastewater is measured while adding a chlorine-based oxidizing agent to the dyeing wastewater, and the redox potential corresponding to immediately before the decoloration end point is obtained. Since the control to stop the addition of the chlorinated oxidant is performed, or the obtained redox potential is set as a control value, and the addition of the chlorinated oxidant and the stop of the addition are controlled with this control value as a target. Since the addition of the chlorine-based oxidant can be reliably terminated at the decolorization end point and the addition of the chlorine-based oxidant can be avoided, the effect of reducing the amount of the reducing agent added to reduce residual chlorine can be achieved.

また、本発明にかかる排水処理システムによれば、排水の中和処理、曝気処理、凝集沈殿物除去に加えて脱色処理及び還元処理を行うので、排水中の有機物及び浮遊物除去と共に、脱色終点に対応する酸化還元電位を制御値として設定して塩素系酸化剤の添加を制御するため、確実に塩素系酸化剤の添加を終了でき、過剰に塩素系酸化剤を添加するのを回避できると共に、残留塩素を還元する還元剤の添加量も抑制できるという効果を奏する。   Further, according to the wastewater treatment system according to the present invention, since the decolorization treatment and reduction treatment are performed in addition to the neutralization treatment of the wastewater, the aeration treatment, and the removal of the aggregated sediment, the decolorization end point is removed together with the removal of the organic matter and the suspended solids in the wastewater. The addition of the chlorinated oxidant is controlled by setting the redox potential corresponding to the control value as a control value, so that the addition of the chlorinated oxidant can be surely terminated, and the excessive addition of the chlorinated oxidant can be avoided. In addition, the amount of addition of a reducing agent that reduces residual chlorine can be suppressed.

以下に、本発明にかかる染色排水の脱色制御方法及び脱色制御装置並びに排水処理システムの実施の形態を図面に基づいて詳細に説明する。なお、実施の形態によって、本発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Embodiments of a decoloring drainage decoloring control method, a decoloring control apparatus, and a wastewater treatment system according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

本発明による染色排水の脱色制御方法及び脱色制御装置並びに排水処理システムにおいて、脱色制御は、バッチ処理及び連続処理のいずれにも適用することができる。バッチ処理においては、1つの水槽で後述する脱色、還元、監視を行うことができ、脱色対象となる染色排水に塩素系酸化剤を添加しながら染色排水の酸化還元電位を測定する。次に、脱色終点に対応する酸化還元電位を求める操作を行う。バッチ処理では、得られた脱色終点の直前に対応する酸化還元電位によって、塩素系酸化剤の添加を停止する制御を行うことができる。脱色処理する染色排水の水量が比較的少ない場合、例えば10〜20m3/日程度ではバッチ処理が有利に採用される。 In the dyeing wastewater decoloring control method, the decoloring control device, and the wastewater treatment system according to the present invention, the decoloring control can be applied to both batch processing and continuous processing. In batch processing, the later-described decolorization, reduction, and monitoring can be performed in one water tank, and the oxidation-reduction potential of the dye wastewater is measured while adding a chlorine-based oxidizing agent to the dye wastewater to be decolorized. Next, an operation for obtaining a redox potential corresponding to the decolorization end point is performed. In the batch processing, it is possible to control to stop the addition of the chlorine-based oxidant by the oxidation-reduction potential corresponding immediately before the obtained decolorization end point. When the amount of dye wastewater to be decolorized is relatively small, for example, about 10 to 20 m 3 / day, batch processing is advantageously employed.

これに対して、脱色処理する染色排水の水量が多い場合、例えば1000m3/日では、バッチ処理では水槽容量が大きくなり(例えば染色排水の水量が1000m3/日では1000m3の水槽が必要となる)、現実的ではなくなるため、連続処理が採用される。また、連続処理では、脱色終点に対応する酸化還元電位を求め、求めた酸化還元電位を制御値として設定し、この制御値を目標に前記塩素系酸化剤の添加及び添加の停止を制御する。この制御値は、比較的簡単に実施できるバッチ処理によって予め基礎データを取り、この基礎データから求めておくことができる。すなわち、バッチ処理により脱色終点に対応する酸化還元電位を求め、これを制御値として、連続処理による脱色制御を行うことができる。 On the other hand, when the amount of dye wastewater to be decolorized is large, for example, at 1000 m 3 / day, the tank capacity is large in batch processing (for example, 1000 m 3 water tank is required when the amount of dye wastewater is 1000 m 3 / day). Therefore, continuous processing is adopted because it is not realistic. In the continuous processing, an oxidation-reduction potential corresponding to the decoloration end point is obtained, the obtained oxidation-reduction potential is set as a control value, and addition of the chlorine-based oxidant and stop of the addition are controlled with this control value as a target. This control value can be obtained from basic data obtained in advance by batch processing that can be carried out relatively easily. That is, the redox potential corresponding to the decoloring end point is obtained by batch processing, and this can be used as a control value to perform decoloring control by continuous processing.

本発明にかかる染色排水の脱色制御方法及び脱色制御装置並びに排水処理システムにおいて、以下の実施の形態1〜3では連続処理による脱色制御について説明し、実施の形態4ではバッチ処理による脱色制御について説明する。   In the dyeing waste water decoloring control method, the decoloring control device, and the waste water treatment system according to the present invention, the following first to third embodiments describe decoloring control by continuous processing, and the fourth embodiment describes decoloring control by batch processing. To do.

(実施の形態1)
以下に、本発明による染色排水の脱色制御方法及び脱色制御装置の実施の形態1を図面に基づいて詳細に説明する。
(Embodiment 1)
Hereinafter, Embodiment 1 of a decoloring drainage control method and a decolorization control apparatus according to the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態1による脱色制御装置を示す概略構成図である。図1において、脱色制御装置1Aは、後述するように所定の処理が施された染色排水に塩素系酸化剤を添加して脱色を行う脱色槽として、第1脱色槽2及び第2脱色槽3を備えている。また、これらの第1脱色槽2及び第2脱色槽3に対して、塩素系酸化剤を供給する塩素系酸化剤貯槽4及び5が設けられており、それぞれ電磁弁6及び7により塩素系酸化剤の供給量が制御されている。なお、塩素系酸化剤は、電磁弁6及び7の下流側に設けられたポンプの電源をそれぞれオン又はオフすることによって供給しても良い。   FIG. 1 is a schematic configuration diagram showing a decolorization control apparatus according to Embodiment 1 of the present invention. In FIG. 1, a decoloring control device 1 </ b> A includes a first decoloring tank 2 and a second decoloring tank 3 as decoloring tanks that perform decolorization by adding a chlorine-based oxidizing agent to a dyed wastewater that has been subjected to a predetermined treatment as will be described later. It has. In addition, chlorine-based oxidant storage tanks 4 and 5 for supplying a chlorine-based oxidant are provided for the first decolorization tank 2 and the second decolorization tank 3, and chlorine-based oxidation is performed by electromagnetic valves 6 and 7, respectively. The supply amount of the agent is controlled. Note that the chlorine-based oxidant may be supplied by turning on or off the power of the pumps provided on the downstream side of the solenoid valves 6 and 7, respectively.

さらに、第1脱色槽2及び第2脱色槽3には、酸化還元電位(ORP)を測定する酸化還元電位計8及び9がそれぞれ設けられている。なお、図1等において、Pはポンプを表し、Mは攪拌用のモータをそれぞれ示す。   Further, the first decolorization tank 2 and the second decolorization tank 3 are respectively provided with oxidation-reduction potentiometers 8 and 9 for measuring the oxidation-reduction potential (ORP). In FIG. 1 and the like, P represents a pump, and M represents a stirring motor.

次に、第2脱色槽3に隣接して、還元剤を添加して染色排水の還元を行う還元槽10を備えている。この還元槽10に対して、還元剤を供給する還元剤貯槽11が設けられており、電磁弁12により還元剤の供給量が制御されている。還元槽10には、残留塩素濃度計13を設け、残留塩素濃度計13の設定値に対して還元剤の添加量を制御しても良い。さらに、還元槽10に隣接して、処理水を監視する監視槽14を備えている。監視槽14には、処理水のpH及び残留塩素濃度をそれぞれ監視するpH計15及び残留塩素濃度計16が設けられている。以上の第1脱色槽2、第2脱色槽3、還元槽10及び監視槽14は、開閉自在な流通口17、18及び19によって連通している。   Next, a reducing tank 10 is provided adjacent to the second decoloring tank 3 to reduce the dyeing waste water by adding a reducing agent. A reducing agent storage tank 11 for supplying a reducing agent is provided for the reducing tank 10, and the supply amount of the reducing agent is controlled by an electromagnetic valve 12. The reduction tank 10 may be provided with a residual chlorine concentration meter 13, and the amount of reducing agent added may be controlled with respect to the set value of the residual chlorine concentration meter 13. Further, a monitoring tank 14 for monitoring the treated water is provided adjacent to the reduction tank 10. The monitoring tank 14 is provided with a pH meter 15 and a residual chlorine concentration meter 16 for monitoring the pH of the treated water and the residual chlorine concentration, respectively. The first decolorization tank 2, the second decolorization tank 3, the reduction tank 10 and the monitoring tank 14 are communicated with each other through freely openable and closable flow ports 17, 18 and 19.

ここで、酸化還元電位計8及び9からの測定信号は制御部20に入力され、制御部20は、測定信号に応じて電磁弁6、7及び12を開閉する制御を行う。或いは、これらの電磁弁6、7及び12の下流側に設けられたポンプの電源をそれぞれオン又はオフすることによって、塩素系酸化剤又は還元剤の添加量を制御しても良い。なお、制御部20は、後述するように、pH計15及び残留塩素濃度計16からの測定信号に基づいて、処理水の放流及び原水調整槽への戻りの制御も行う。さらに、各ポンプの電源をオン又はオフする制御も行うことができる。   Here, measurement signals from the oxidation-reduction potentiometers 8 and 9 are input to the control unit 20, and the control unit 20 performs control to open and close the electromagnetic valves 6, 7 and 12 according to the measurement signals. Or you may control the addition amount of a chlorine-type oxidizing agent or a reducing agent by turning ON / OFF the power supply of the pump provided in the downstream of these solenoid valves 6, 7, and 12, respectively. As will be described later, the control unit 20 also controls the discharge of the treated water and the return to the raw water adjustment tank based on the measurement signals from the pH meter 15 and the residual chlorine concentration meter 16. Further, it is possible to perform control for turning on or off the power of each pump.

第1脱色槽2及び第2脱色槽3で使用される塩素系酸化剤としては、次亜塩素酸ナトリウム、さらし粉、次亜塩素酸カルシウム等を好適に使用することができ、これらを水溶液で使用するのが好ましい。また、還元槽10で使用される還元剤としては、チオ硫酸ナトリウム、重亜硫酸ナトリウム等を好適に使用することができる。なお、以下の説明では、塩素系酸化剤として次亜塩素酸ナトリウムを、還元剤としてチオ硫酸ナトリウムをそれぞれ使用した場合について説明する。   As the chlorine-based oxidizing agent used in the first decolorization tank 2 and the second decolorization tank 3, sodium hypochlorite, bleached powder, calcium hypochlorite, etc. can be suitably used, and these are used in an aqueous solution. It is preferable to do this. Moreover, as a reducing agent used with the reduction tank 10, sodium thiosulfate, sodium bisulfite, etc. can be used conveniently. In the following description, a case where sodium hypochlorite is used as the chlorine-based oxidant and sodium thiosulfate is used as the reducing agent will be described.

以上のように構成された脱色制御装置1Aで染色排水の脱色処理を行うには、後述する調整槽、中和槽、流動床曝気槽、凝集反応槽及び凝集沈殿槽を経た染色排水を、第1脱色槽2に導入する。第1脱色槽2では、流動床曝気槽及び凝集沈殿槽で除去できなかった着色成分を含んだ排水に、塩素系酸化剤として例えば次亜塩素酸ナトリウムを添加して脱色する。   In order to perform the decolorization treatment of the dye wastewater with the decolorization control apparatus 1A configured as described above, the dye wastewater that has passed through the adjustment tank, the neutralization tank, the fluidized bed aeration tank, the coagulation reaction tank, and the coagulation sedimentation tank, which will be described later, 1 Introduce into decoloring tank 2. In the first decolorization tank 2, for example, sodium hypochlorite is added as a chlorine-based oxidant to decolorize wastewater containing colored components that could not be removed in the fluidized bed aeration tank and the coagulation sedimentation tank.

この時、例えば、後述する実施の形態4におけるバッチ処理によって、次亜塩素酸ナトリウムの添加量と、着色成分を含んだ排水の酸化還元電位との関係を予め求めておく。本発明者は、次亜塩素酸ナトリウムの添加量を増加すると、脱色終点の近傍で急激に酸化還元電位が増大する現象を見出した。すなわち、本来、次亜塩素酸ナトリウムの添加に伴い、酸化還元電位はほぼ直線的に増大するが、次亜塩素酸ナトリウムが着色成分の脱色に消費される間は酸化還元電位が緩やかに増大し、脱色が終了すると次亜塩素酸ナトリウムが着色成分の脱色に消費されなくなるため、脱色終点から酸化還元電位が急激に増大すると考えられる。   At this time, for example, the relationship between the amount of sodium hypochlorite added and the oxidation-reduction potential of the wastewater containing the coloring component is obtained in advance by batch processing in Embodiment 4 described later. The present inventor has found a phenomenon in which the oxidation-reduction potential increases rapidly in the vicinity of the decolorization end point when the amount of sodium hypochlorite added is increased. In other words, with the addition of sodium hypochlorite, the oxidation-reduction potential increases almost linearly, but the oxidation-reduction potential increases slowly while sodium hypochlorite is consumed for decolorization of the coloring component. When decolorization is completed, sodium hypochlorite is no longer consumed for decolorization of the colored components, so the redox potential is thought to increase rapidly from the decolorization end point.

脱色の終点付近では、次亜塩素酸ナトリウムの添加により酸化還元電位が急激に増加する現象が起こることから、終点の酸化還元電位を制御値として設定することにより、少量の次亜塩素酸ナトリウムの添加で酸化還元電位が上昇し、次亜塩素酸ナトリウムの過剰添加が起こり難く、制御が容易になる。   In the vicinity of the end point of decolorization, a phenomenon occurs in which the redox potential suddenly increases due to the addition of sodium hypochlorite.By setting the end point redox potential as a control value, a small amount of sodium hypochlorite Addition raises the oxidation-reduction potential, and excessive addition of sodium hypochlorite hardly occurs and control becomes easy.

ところが、処理水には多種類の物質が混在し脱色の反応系は複雑であるため、脱色終点は酸化還元電位が急激に増大する電位よりも高い電位にずれると考えられる。言い換えると、酸化還元電位が急激に上昇した際に、急激に上昇し始めた酸化還元電位から所定の高い電位が脱色終点となる。具体的には、約550mVで酸化還元電位が急激に増大する場合、この値よりも約100mV〜200mV高い電位、或いは100mV〜300mV高い電位で脱色が終了することを確認した。なお、最終的な脱色の終点は、目視によって決定する。   However, since various kinds of substances are mixed in the treated water and the decolorization reaction system is complicated, it is considered that the decolorization end point shifts to a potential higher than the potential at which the oxidation-reduction potential increases rapidly. In other words, when the oxidation-reduction potential increases rapidly, a predetermined high potential from the oxidation-reduction potential that starts to increase rapidly becomes the decolorization end point. Specifically, when the oxidation-reduction potential suddenly increased at about 550 mV, it was confirmed that decolorization was completed at a potential higher by about 100 mV to 200 mV than this value or a potential higher by 100 mV to 300 mV. The final decoloration end point is determined by visual observation.

このような脱色終点に対応する酸化還元電位を、後述する実施の形態4におけるバッチ処理によって求める。すなわち、染色排水に塩素系酸化剤を添加しながら染色排水の酸化還元電位を測定し、脱色終点に対応する酸化還元電位を求める。求めた酸化還元電位を制御値として設定し、この制御値を目標に塩素系酸化剤の添加及び添加の停止を制御することができる。   The oxidation-reduction potential corresponding to such a decolorization end point is obtained by batch processing in a fourth embodiment described later. That is, the oxidation-reduction potential of the dyeing wastewater is measured while adding a chlorine-based oxidizing agent to the dyeing wastewater, and the oxidation-reduction potential corresponding to the decoloration end point is obtained. The obtained oxidation-reduction potential can be set as a control value, and the addition and stop of addition of the chlorine-based oxidant can be controlled with this control value as a target.

図1の第1脱色槽2において、脱色終点に対応する制御値を制御部20に入力しておく。次に、第1脱色槽2内の酸化還元電位を酸化還元電位計8で測定し、制御部20に入力する。酸化還元電位が急激に増大し始めた場合には、制御部20が電磁弁6又はポンプをオン又はオフすることにより、次亜塩素酸ナトリウムの添加量を制御する。   In the first decoloring tank 2 of FIG. 1, a control value corresponding to the decoloring end point is input to the control unit 20. Next, the oxidation-reduction potential in the first decolorization tank 2 is measured by the oxidation-reduction potentiometer 8 and input to the control unit 20. When the oxidation-reduction potential starts to increase rapidly, the control unit 20 controls the amount of sodium hypochlorite added by turning on or off the solenoid valve 6 or the pump.

例えば、2段の脱色槽を設置し、初段を荒脱色、次段を仕上げの脱色を行うことができる。最終目的の制御値が750mVである場合、初段では、電磁弁6又はポンプの操作により塩素系酸化剤貯槽4から第1脱色槽2に次亜塩素酸ナトリウムを添加し、酸化還元電位が荒脱色の目標値である700mVにおいて、次亜塩素酸ナトリウムの添加を止める制御を制御部20が行う。これにより、排水の着色の大半を消失させることができる。もし、排水の着色が完全に脱色していない場合には、さらに第2脱色槽3でいわば仕上げの脱色を行っても良い。   For example, a two-stage decoloring tank can be installed, and the first stage can be subjected to rough decolorization, and the next stage can be subjected to finish decolorization. When the final target control value is 750 mV, in the first stage, sodium hypochlorite is added from the chlorine-based oxidant storage tank 4 to the first decolorization tank 2 by operating the solenoid valve 6 or the pump, and the oxidation-reduction potential is roughly decolorized. The control unit 20 performs control to stop the addition of sodium hypochlorite at the target value of 700 mV. Thereby, most of the coloring of waste water can be eliminated. If the coloration of the waste water is not completely decolorized, the second decoloring tank 3 may be further subjected to finishing decolorization.

次に、第1脱色槽2で処理した排水を、流通口17を経由して第2脱色槽3内に導く。第2脱色槽3では、酸化還元電位計9により染色排水の酸化還元電位を測定し、制御部20に入力する。例えば、制御値が750mVである場合、電磁弁7又はポンプの操作により塩素系酸化剤貯槽5から第2脱色槽3に次亜塩素酸ナトリウムを添加し、酸化還元電位が750mVにおいて、次亜塩素酸ナトリウムの添加を止める制御を制御部20が行う。こうして、排水の脱色を正確に終了することができる。   Next, the waste water treated in the first decolorization tank 2 is guided into the second decolorization tank 3 through the circulation port 17. In the second decolorization tank 3, the oxidation-reduction potential of the dyed waste water is measured by the oxidation-reduction potentiometer 9 and input to the control unit 20. For example, when the control value is 750 mV, sodium hypochlorite is added from the chlorinated oxidant storage tank 5 to the second decolorization tank 3 by operating the solenoid valve 7 or the pump, and when the redox potential is 750 mV, hypochlorite Control part 20 performs control which stops addition of sodium acid. In this way, the decolorization of the waste water can be accurately finished.

このように、脱色のために過剰な次亜塩素酸ナトリウムを添加する必要が無く、残留塩素を還元するためのチオ硫酸ナトリウムの使用量も減少させることができるので、使用する薬剤のコストを低減することができる。また、最終的に処理水を河川に放流する場合にも、環境保全上望ましい。なお、第1脱色槽2でほとんど排水が脱色され、着色が認められない場合には、次亜塩素酸ナトリウムの注入を止めても良い。第2脱色槽3を第1脱色槽2と併用することにより、処理水の着色状況に応じた脱色処理が可能となる。   In this way, there is no need to add excess sodium hypochlorite for decolorization, and the amount of sodium thiosulfate used to reduce residual chlorine can be reduced, reducing the cost of the chemicals used. can do. In addition, it is desirable from the viewpoint of environmental conservation when the treated water is finally discharged into the river. In addition, when the waste water is almost decolorized in the first decolorization tank 2 and coloring is not recognized, the injection of sodium hypochlorite may be stopped. By using the 2nd decoloring tank 3 together with the 1st decoloring tank 2, the decoloring process according to the coloring condition of treated water is attained.

次に、第2脱色槽3で処理した排水を、流通口18を経由して還元槽10内に導く。還元槽10では、過剰に注入された次亜塩素酸ナトリウムを還元除去するために、還元剤としてチオ硫酸ナトリウムを添加する。チオ硫酸ナトリウムは、制御部20で電磁弁12を開閉することにより、還元剤貯槽11から還元槽10に添加される。或いは、電磁弁12の下流側に設けられたポンプの電源をオン又はオフすることによって、チオ硫酸ナトリウムの添加量を制御しても良い。還元終点での残留塩素濃度が例えば、3〜5mg/lで安定している場合、これに応じたチオ硫酸ナトリウム量を定量注入する。   Next, the wastewater treated in the second decolorization tank 3 is introduced into the reduction tank 10 through the circulation port 18. In the reducing tank 10, sodium thiosulfate is added as a reducing agent in order to reduce and remove the excessively injected sodium hypochlorite. Sodium thiosulfate is added from the reducing agent storage tank 11 to the reduction tank 10 by opening and closing the electromagnetic valve 12 by the control unit 20. Or you may control the addition amount of sodium thiosulfate by turning on or off the power supply of the pump provided in the downstream of the solenoid valve 12. FIG. When the residual chlorine concentration at the reduction end point is stable at, for example, 3 to 5 mg / l, the amount of sodium thiosulfate corresponding to this is quantitatively injected.

さらに、残留塩素濃度計13を用いて、例えば、残留塩素濃度が0.5mg/l以上の場合にはチオ硫酸ナトリウムを注入し、残留塩素濃度が0.2mg/l以下の場合にチオ硫酸ナトリウムの添加を停止する制御を制御部20で行っても良い。   Furthermore, using the residual chlorine concentration meter 13, for example, when the residual chlorine concentration is 0.5 mg / l or more, sodium thiosulfate is injected, and when the residual chlorine concentration is 0.2 mg / l or less, sodium thiosulfate Control for stopping the addition of may be performed by the control unit 20.

続いて、還元槽10で処理した排水を、流通口19を経由して監視槽14内に導く。監視槽14では、処理水の水素イオン濃度及び残留塩素濃度をそれぞれpH計15及び残留塩素濃度計16により監視し、測定結果は制御部20に入力される。処理水の水素イオン濃度及び残留塩素濃度は、それぞれ予め設定された濃度が制御部20に記憶されており、pH計15及び残留塩素濃度計16による測定結果と照合される。   Subsequently, the wastewater treated in the reduction tank 10 is guided into the monitoring tank 14 via the circulation port 19. In the monitoring tank 14, the hydrogen ion concentration and residual chlorine concentration of the treated water are monitored by the pH meter 15 and the residual chlorine concentration meter 16, respectively, and the measurement result is input to the control unit 20. As the hydrogen ion concentration and the residual chlorine concentration of the treated water, preset concentrations are stored in the control unit 20 and collated with the measurement results obtained by the pH meter 15 and the residual chlorine concentration meter 16, respectively.

処理水の水素イオン濃度及び残留塩素濃度が予め設定された濃度範囲内の場合には、処理水を河川等に放流する。一方、処理水の水素イオン濃度及び残留塩素濃度が予め設定された濃度範囲を逸脱する場合には、後述するように、処理水を放流する放流弁を閉じ、処理水を原水調整槽へ戻す戻り弁を開く制御を制御部20が行う。これにより、所定の基準値を超えた排水が河川にそのまま放流されるのを防止することができる。   When the hydrogen ion concentration and the residual chlorine concentration in the treated water are within the preset concentration range, the treated water is discharged into a river or the like. On the other hand, when the hydrogen ion concentration and residual chlorine concentration of the treated water deviate from the preset concentration range, as will be described later, the discharge valve that discharges the treated water is closed and the treated water is returned to the raw water adjustment tank. Control part 20 performs control which opens a valve. Thereby, it can prevent that the waste_water | drain exceeding a predetermined reference value is discharged into a river as it is.

(実施の形態2)
図2は、本発明の実施の形態2による脱色制御装置を示す概略構成図である。図2において、脱色制御装置1Bは、実施の形態1における図1の脱色制御装置1Aと同様な構成であるが、染色排水に塩素系酸化剤を添加して脱色を行う脱色槽として、第1脱色槽2のみを備えている点が異なる。従って、実施の形態1と同様な構成についての説明は、省略する。
(Embodiment 2)
FIG. 2 is a schematic configuration diagram showing a decolorization control apparatus according to Embodiment 2 of the present invention. In FIG. 2, the decoloring control device 1B has the same configuration as the decoloring control device 1A of FIG. 1 in the first embodiment, but as a decoloring tank that performs decolorization by adding a chlorine-based oxidant to the dyeing waste water. The difference is that only the decoloring tank 2 is provided. Therefore, the description of the same configuration as that in Embodiment 1 is omitted.

脱色制御装置1Bで染色排水の脱色処理を行うには、後述する調整槽、中和槽、流動床曝気槽、凝集反応槽及び凝集沈殿槽を経た染色排水を、第1脱色槽2に導入する。第1脱色槽2では、流動床曝気槽及び凝集沈殿槽で除去できなかった着色成分を含んだ排水に、塩素系酸化剤として例えば次亜塩素酸ナトリウムを添加して脱色する。   In order to perform the decolorization processing of the dyeing wastewater by the decoloring control device 1B, the dyeing wastewater that has passed through the adjustment tank, the neutralization tank, the fluidized bed aeration tank, the coagulation reaction tank, and the coagulation sedimentation tank described later is introduced into the first decolorization tank 2. . In the first decolorization tank 2, for example, sodium hypochlorite is added as a chlorine-based oxidant to decolorize wastewater containing colored components that could not be removed in the fluidized bed aeration tank and the coagulation sedimentation tank.

図2の脱色制御装置1Bで染色排水の脱色処理を行うには、実施の形態1と同様に、後述する実施の形態4におけるバッチ処理によって、次亜塩素酸ナトリウムの添加量と、着色成分を含んだ排水の酸化還元電位との関係を予め求め、脱色終点を制御部20に入力しておく。次に、第1脱色槽2内の酸化還元電位を酸化還元電位計8で測定し、制御部20に設定された制御値まで電磁弁6又はポンプをオン又はオフすることにより、次亜塩素酸ナトリウムの添加量を制御する。   In order to perform the decoloring process of the dye waste water by the decoloring control apparatus 1B of FIG. 2, the amount of sodium hypochlorite added and the coloring component are changed by the batch process in the fourth embodiment to be described later, as in the first embodiment. A relationship with the oxidation-reduction potential of the contained wastewater is obtained in advance, and the decoloring end point is input to the control unit 20. Next, the oxidation-reduction potential in the first decolorization tank 2 is measured by the oxidation-reduction potentiometer 8, and the solenoid valve 6 or the pump is turned on or off to the control value set in the control unit 20, thereby hypochlorous acid. Control the amount of sodium added.

具体的には、脱色終点に対応する制御値が700mVである場合、700mV付近で次亜塩素酸ナトリウムの添加を制御する。すなわち、酸化還元電位が680mV未満のとき、電磁弁6又はポンプをオンにして塩素系酸化剤貯槽4から第1脱色槽2に次亜塩素酸ナトリウムを添加する。また、酸化還元電位が720mVを超えるとき、電磁弁6又はポンプをオフにして次亜塩素酸ナトリウムの添加を中止する。   Specifically, when the control value corresponding to the decoloring end point is 700 mV, the addition of sodium hypochlorite is controlled around 700 mV. That is, when the oxidation-reduction potential is less than 680 mV, the solenoid valve 6 or the pump is turned on and sodium hypochlorite is added from the chlorine-based oxidant storage tank 4 to the first decolorization tank 2. When the redox potential exceeds 720 mV, the solenoid valve 6 or the pump is turned off and the addition of sodium hypochlorite is stopped.

次亜塩素酸ナトリウムの供給を中止したことにより染色排水の酸化還元電位が低下したとき、酸化還元電位が680mV未満で再びポンプをオンにする、或いは電磁弁6を開いて次亜塩素酸ナトリウムを供給する。このように、第1脱色槽2内における染色排水の酸化還元電位は、制御値700mVを中心としてある範囲(680〜720mV)に収まる。さらに、次亜塩素酸ナトリウムの供給及び供給中止を繰り返すことによって、酸化還元電位を制御値700mVに収束させることができ、染色排水の脱色を完全に行うことができる。   When the redox potential of the dyeing wastewater drops due to the discontinuation of the supply of sodium hypochlorite, the pump is turned on again when the redox potential is less than 680 mV, or the solenoid valve 6 is opened and sodium hypochlorite is Supply. Thus, the oxidation-reduction potential of the dyed wastewater in the first decolorization tank 2 falls within a certain range (680 to 720 mV) with the control value 700 mV as the center. Furthermore, by repeating the supply and stop of supply of sodium hypochlorite, the redox potential can be converged to the control value of 700 mV, and the dyeing waste water can be completely decolorized.

もし、脱色が終了していない場合には、制御値を上げることも可能である。例えば、制御値を700mVから750mVに引き上げた場合、酸化還元電位が730mV未満ではポンプをオンにする、或いは電磁弁6を開いて次亜塩素酸ナトリウムを供給する。酸化還元電位が770mVを超えたときに、次亜塩素酸ナトリウムの供給を中止することができる。   If decolorization is not completed, the control value can be increased. For example, when the control value is raised from 700 mV to 750 mV, when the redox potential is less than 730 mV, the pump is turned on, or the solenoid valve 6 is opened to supply sodium hypochlorite. When the redox potential exceeds 770 mV, the supply of sodium hypochlorite can be stopped.

次に、第1脱色槽2で処理した排水を、流通口17を経由して還元槽10内に導き、さらに流通口19を経由して、還元槽10で処理した後に染色排水を監視槽14に導き、実施の形態1と同様な処理を行う。   Next, the wastewater treated in the first decolorization tank 2 is guided into the reduction tank 10 through the distribution port 17, and further treated in the reduction tank 10 through the distribution port 19, and then the dyeing wastewater is monitored in the monitoring tank 14. Then, the same processing as in the first embodiment is performed.

本発明者は、染色排水中の成分が類似している場合、実験上、染色が濃い、中間及び薄い排水でも同様な結果が得られることを確認した。なお、異なる染色排水を脱色する場合には、再度バッチ処理により脱色終点に対応する制御値を求め、この制御値を目標に、連続処理において脱色を行うことができる。   The present inventor has confirmed that when the components in the dyeing waste water are similar, the same result can be obtained even in the waste water that is heavily dyed, intermediate, and light. In addition, when decoloring different dyeing waste water, the control value corresponding to the decoloring end point is obtained again by batch processing, and decoloring can be performed in continuous processing with this control value as a target.

(実施の形態3)
図3は、本発明の実施の形態3による排水処理システムを示す概略構成図であり、排水処理システム100は、実施の形態1で説明した脱色制御装置1Aを備えている。図3において、染色工場等において、被染色物の染色や水洗の際に、染料、顔料等を含む多量の染色排水が生じる。染料としては、種々の化学染料が含まれ、化学染料には、反応染料例えばシバクロンブルー、硫化染料例えばアサシオソール、サルファーブルー7、酸性染料例えばカヤカランブラック等が含まれる。顔料としては、リュウダイW、ニューラクチミン、サンダイスーパー、ネオ、群青等が含まれる。なお、これらの染料や顔料に限らず、種々の染料や顔料等を単独又は混合して含まれていても良い。
(Embodiment 3)
FIG. 3 is a schematic configuration diagram showing a wastewater treatment system according to Embodiment 3 of the present invention, and the wastewater treatment system 100 includes the decolorization control device 1A described in Embodiment 1. In FIG. 3, a large amount of dye wastewater containing dyes, pigments, and the like is generated at the time of dyeing or washing with water in a dyeing factory or the like. Examples of the dye include various chemical dyes. Examples of the chemical dye include reactive dyes such as Cibacron Blue, sulfur dyes such as Asaciosol, Sulfur Blue 7, and acid dyes such as Kayakaran Black. Examples of the pigment include Ryudai W, Neulactimin, Sundai Super, Neo, Ultraviolet. The dyes and pigments are not limited to these dyes and pigments, and various dyes and pigments may be contained alone or in combination.

このような染料や顔料等を含む染色排水は、まず、水量や水質を可能な限り均一にして、次の排水処理施設にかかる負荷変動を小さくするために原水調整槽21に貯留される。次に、原水調整槽21を経た染色排水は、中和槽22に導入される。   Dyeing wastewater containing such dyes and pigments is first stored in the raw water adjustment tank 21 in order to make the amount and quality of water as uniform as possible and to reduce the load fluctuation applied to the next wastewater treatment facility. Next, the dyed waste water that has passed through the raw water adjustment tank 21 is introduced into the neutralization tank 22.

中和槽22では、酸溶液貯槽23及びアルカリ溶液貯槽24にそれぞれ貯められた例えば硫酸及び水酸化ナトリウムが、電磁弁25及び26を開閉することによって注入される。中和槽22内の水素イオン濃度は、pH計27で測定し、測定結果は制御部20に入力される。制御部20は、中和槽22内の染色排水が中性となるように、電磁弁25及び26をオン又はオフして、注入する硫酸及び水酸化ナトリウム量を制御する。或いは、電磁弁25及び26の下流側に設けられたポンプの電源をそれぞれオン又はオフすることによって、注入する硫酸及び水酸化ナトリウム量を制御しても良い。   In the neutralization tank 22, for example, sulfuric acid and sodium hydroxide respectively stored in the acid solution storage tank 23 and the alkaline solution storage tank 24 are injected by opening and closing the electromagnetic valves 25 and 26. The hydrogen ion concentration in the neutralization tank 22 is measured by the pH meter 27, and the measurement result is input to the control unit 20. The control unit 20 controls the amount of sulfuric acid and sodium hydroxide to be injected by turning on and off the electromagnetic valves 25 and 26 so that the dyeing waste water in the neutralization tank 22 becomes neutral. Alternatively, the amounts of sulfuric acid and sodium hydroxide to be injected may be controlled by turning on or off the power sources of the pumps provided on the downstream side of the electromagnetic valves 25 and 26, respectively.

中和槽22で中和された染色排水は、曝気槽として流動床曝気槽28に導入される。ここで、本発明における曝気槽とは、いわゆる生物処理槽であり、浮遊式の活性汚泥方式ではなく、充填剤を投入しその表面に付着した微生物により有機物を分解する方式である。このような曝気槽は、固定床又は流動床とも呼ばれるものである。これにより、後段で処理水を直接凝集沈殿することができる。流動床曝気槽28では、曝気ブロワー29からのエアレーションにより微生物が付着した担体を流動させ、生物学的に有機物を分解する。特に、染色排水では糊成分を効果的に分解除去することができる。   The dyed waste water neutralized in the neutralization tank 22 is introduced into the fluidized bed aeration tank 28 as an aeration tank. Here, the aeration tank in the present invention is a so-called biological treatment tank, which is not a floating activated sludge system, but a system in which an organic substance is decomposed by microorganisms attached to the surface by introducing a filler. Such an aeration tank is also called a fixed bed or a fluidized bed. As a result, the treated water can be directly coagulated and precipitated at the subsequent stage. In the fluidized bed aeration tank 28, the carrier to which the microorganisms are attached is fluidized by aeration from the aeration blower 29 to biologically decompose organic matter. In particular, the paste component can be effectively decomposed and removed in the dye waste water.

流動床曝気槽28で処理された染色排水は、凝集反応槽30a、30bに導入される。凝集反応槽30aでは、無機凝集剤が貯められた無機凝集剤貯槽31aから、電磁弁32aを制御部20で制御することにより、無機凝集剤を染色排水に注入する。或いは、電磁弁32の下流側に設けられたポンプの電源をオン又はオフすることによって無機凝集剤を染色排水に注入しても良い。次に、凝集反応槽30bにおいて、高分子凝集剤が貯められた高分子凝集剤貯槽31bから、電磁弁32bを制御部20で制御することにより、高分子凝集剤を染色排水に注入する。或いは、電磁弁32bの下流側に設けられたポンプの電源をオン又はオフすることによって高分子凝集剤を染色排水に注入しても良い。   The dyed wastewater treated in the fluidized bed aeration tank 28 is introduced into the aggregation reaction tanks 30a and 30b. In the agglomeration reaction tank 30a, the inorganic flocculant is injected into the dye waste water by controlling the electromagnetic valve 32a by the control unit 20 from the inorganic flocculant storage tank 31a in which the inorganic flocculant is stored. Alternatively, the inorganic flocculant may be injected into the dyeing waste water by turning on or off the power supply of the pump provided on the downstream side of the electromagnetic valve 32. Next, in the agglomeration reaction tank 30b, the polymer flocculant is injected from the polymer flocculant storage tank 31b in which the polymer flocculant is stored into the dyeing waste water by controlling the electromagnetic valve 32b by the control unit 20. Alternatively, the polymer flocculant may be injected into the dyeing waste water by turning on or off the power supply of the pump provided on the downstream side of the electromagnetic valve 32b.

これらの凝集反応槽30a、30bにおける処理により、中和槽22の入口側に配置されたスクリーン(図示しない)を通過した固形物、流動床曝気槽28で発生した余剰汚泥微生物、及び顔料等の浮遊物を凝集する。次に、凝集反応槽30a、30bで凝集された凝集物は、凝集沈殿槽33に導入され、沈殿物が除去される。染色排水から除去された沈殿物は、汚泥貯槽に搬送され、汚泥脱水機(図示しない)で水分を除去した後、ケーキ状に加工されて廃棄又は再利用される。   As a result of the treatment in these agglomeration reaction tanks 30a and 30b, solids that have passed through a screen (not shown) arranged on the inlet side of the neutralization tank 22, surplus sludge microorganisms generated in the fluidized bed aeration tank 28, pigments, etc. Aggregate suspended matter. Next, the aggregates aggregated in the aggregation reaction tanks 30a and 30b are introduced into the aggregation precipitation tank 33, and the precipitates are removed. The sediment removed from the dye wastewater is conveyed to a sludge storage tank, and after removing moisture with a sludge dewatering machine (not shown), it is processed into a cake and discarded or reused.

凝集沈殿槽33で沈殿物が除去された染色排水は、実施の形態1で説明した脱色制御装置1Aと同様にして、第1脱色槽2及び第2脱色槽3おける脱色処理及び還元槽10における還元処理を行う。なお、図3では、第1脱色槽2及び第2脱色槽3を使用して脱色処理を行っているが、実施の形態2で説明したように、第1脱色槽2のみで脱色処理を行っても良い。続いて、実施の形態1で説明したように、監視槽14において、処理水の水素イオン濃度及び残留塩素濃度をそれぞれpH計15及び残留塩素濃度計16により監視する。   The dyed waste water from which the sediment has been removed in the coagulation sedimentation tank 33 is the same as the decolorization control apparatus 1A described in the first embodiment, in the decolorization treatment and reduction tank 10 in the first decolorization tank 2 and the second decolorization tank 3. Perform reduction treatment. In FIG. 3, the decoloring process is performed using the first decoloring tank 2 and the second decoloring tank 3, but as described in the second embodiment, the decoloring process is performed only by the first decoloring tank 2. May be. Subsequently, as described in Embodiment 1, in the monitoring tank 14, the hydrogen ion concentration and the residual chlorine concentration of the treated water are monitored by the pH meter 15 and the residual chlorine concentration meter 16, respectively.

処理水の水素イオン濃度及び残留塩素濃度が、制御部20において予め設定された濃度範囲内の場合には、制御部20により放流弁34を開くことにより、処理水を河川等に放流する。一方、処理水の水素イオン濃度及び残留塩素濃度が予め設定された濃度範囲を逸脱する場合には、制御部20により処理水を放流する放流弁34を閉じ、処理水を原水調整槽21へ戻す戻り弁35を開く。このようにして、所定の基準値を超えた排水が河川にそのまま放流されるのを防止すると共に、所定の基準値を超えた排水の再処理を行うことができる。   When the hydrogen ion concentration and the residual chlorine concentration of the treated water are within the concentration range preset in the control unit 20, the control unit 20 opens the discharge valve 34 to discharge the treated water to a river or the like. On the other hand, when the hydrogen ion concentration and residual chlorine concentration of the treated water deviate from the preset concentration range, the control valve 20 closes the discharge valve 34 for discharging the treated water and returns the treated water to the raw water adjustment tank 21. The return valve 35 is opened. In this way, waste water exceeding a predetermined reference value can be prevented from being discharged into the river as it is, and waste water exceeding the predetermined reference value can be reprocessed.

(実施の形態4)
図4は、本発明の実施の形態4による脱色制御装置を示す概略構成図である。この実施の形態4では、バッチ処理による脱色処理の制御について説明する。図4において、脱色制御装置1Cは、染色排水の脱色、還元及び監視の各工程を兼ねて行うことができる反応槽40を備えている。また、この反応槽40に酸及びアルカリを注入することによって、染色排水を中性に調整するために、酸溶液貯槽23及びアルカリ溶液貯槽24が設けられても良い。これらの酸溶液貯槽23及びアルカリ溶液貯槽24に貯められた例えば硫酸及び水酸化ナトリウムは、電磁弁25及び26を開閉することによって注入される。或いは、電磁弁25及び26の下流側にそれぞれ設けられたポンプの電源をオン又はオフすることによって、硫酸及び水酸化ナトリウムの供給量を制御しても良い。
(Embodiment 4)
FIG. 4 is a schematic configuration diagram showing a decolorization control apparatus according to Embodiment 4 of the present invention. In the fourth embodiment, control of decoloring processing by batch processing will be described. In FIG. 4, the decolorization control device 1 </ b> C includes a reaction tank 40 that can perform both the decolorization, reduction, and monitoring processes of the dye wastewater. Further, an acid solution storage tank 23 and an alkali solution storage tank 24 may be provided in order to adjust the dyeing wastewater to neutrality by injecting acid and alkali into the reaction tank 40. For example, sulfuric acid and sodium hydroxide stored in the acid solution storage tank 23 and the alkaline solution storage tank 24 are injected by opening and closing the electromagnetic valves 25 and 26. Or you may control the supply_amount | feed_rate of a sulfuric acid and sodium hydroxide by turning on or off the power supply of the pump provided in the downstream of the solenoid valves 25 and 26, respectively.

反応槽40内の水素イオン濃度は、pH計15で測定し、測定結果は制御部20に入力される。制御部20は、入力されたpHの測定結果に基づいて、電磁弁25及び26又はポンプの電源のオン又はオフによって、染色排水の液性を中性になるように制御する。   The hydrogen ion concentration in the reaction tank 40 is measured by the pH meter 15, and the measurement result is input to the control unit 20. The control unit 20 controls the liquidity of the dye waste water to be neutral by turning on or off the electromagnetic valves 25 and 26 or the power of the pump based on the input pH measurement result.

次に、脱色処理を行うために、塩素系酸化剤貯槽4に貯えられた塩素系酸化剤例えば次亜塩素酸ナトリウムを、電磁弁6を開閉する、又はポンプの電源をオン又はオフすることによって反応槽40内に供給する。このとき、酸化還元電位計8によって染色排水の酸化還元電位を求め、次亜塩素酸ナトリウムの添加量と、酸化還元電位との関係を求める。すなわち、染色排水に塩素系酸化剤を添加しながら染色排水の酸化還元電位を測定し、脱色終点に対応する酸化還元電位を求める。   Next, in order to perform the decoloring process, the chlorine-based oxidant stored in the chlorine-based oxidant storage tank 4, for example, sodium hypochlorite, is opened or closed by opening or closing the electromagnetic valve 6 or turning the pump power on or off. The reaction vessel 40 is supplied. At this time, the oxidation-reduction potential of the dyed waste water is obtained by the oxidation-reduction potentiometer 8, and the relationship between the amount of sodium hypochlorite added and the oxidation-reduction potential is obtained. That is, the oxidation-reduction potential of the dyeing wastewater is measured while adding a chlorine-based oxidizing agent to the dyeing wastewater, and the oxidation-reduction potential corresponding to the decoloration end point is obtained.

上述のように、次亜塩素酸ナトリウムの添加量を増加すると、脱色終点の近傍で急激に酸化還元電位が増大する。例えば、急激に増大し始める酸化還元電位が500mVである場合、次亜塩素酸ナトリウムを徐々に添加しながら酸化還元電位を測定し、目視により脱色終点を確認する。このとき、脱色が終了したときの酸化還元電位を求めると、700mV程度となる。   As described above, when the amount of sodium hypochlorite added is increased, the redox potential increases rapidly in the vicinity of the decolorization end point. For example, when the oxidation-reduction potential that starts to increase rapidly is 500 mV, the oxidation-reduction potential is measured while gradually adding sodium hypochlorite, and the decoloring end point is confirmed visually. At this time, the oxidation-reduction potential when decolorization is completed is about 700 mV.

次に、過剰に注入された次亜塩素酸ナトリウムを還元除去するために、還元剤としてチオ硫酸ナトリウムを添加する。チオ硫酸ナトリウムは、制御部20で電磁弁12を開閉することにより、還元剤貯槽11からチオ硫酸ナトリウムを反応槽40に添加する。或いは、電磁弁12の下流側に設けられたポンプの電源をオン又はオフすることによって、チオ硫酸ナトリウムの添加量を制御しても良い。還元終点での残留塩素濃度が例えば、3〜5mg/lで安定している場合、これに応じたチオ硫酸ナトリウム量を定量注入する。   Next, sodium thiosulfate is added as a reducing agent in order to reduce and remove the excessively injected sodium hypochlorite. Sodium thiosulfate adds sodium thiosulfate from the reducing agent storage tank 11 to the reaction tank 40 by opening and closing the electromagnetic valve 12 by the control unit 20. Or you may control the addition amount of sodium thiosulfate by turning on or off the power supply of the pump provided in the downstream of the solenoid valve 12. FIG. When the residual chlorine concentration at the reduction end point is stable at, for example, 3 to 5 mg / l, the amount of sodium thiosulfate corresponding to this is quantitatively injected.

さらに、残留塩素濃度計13を用いて、例えば、残留塩素濃度が0.5mg/l以上の場合にはチオ硫酸ナトリウムを注入し、残留塩素濃度が0.2mg/l以下の場合にチオ硫酸ナトリウムの添加を停止する制御を制御部20で行っても良い。   Furthermore, using the residual chlorine concentration meter 13, for example, when the residual chlorine concentration is 0.5 mg / l or more, sodium thiosulfate is injected, and when the residual chlorine concentration is 0.2 mg / l or less, sodium thiosulfate Control for stopping the addition of may be performed by the control unit 20.

次に、処理水の水素イオン濃度及び残留塩素濃度をそれぞれpH計15及び残留塩素濃度計13により監視する。これらの測定結果は制御部20に入力される。処理水の水素イオン濃度及び残留塩素濃度は、それぞれ予め設定された濃度が制御部20に記憶されており、pH計15及び残留塩素濃度計13による測定結果と照合される。   Next, the hydrogen ion concentration and the residual chlorine concentration of the treated water are monitored by the pH meter 15 and the residual chlorine concentration meter 13, respectively. These measurement results are input to the control unit 20. As the hydrogen ion concentration and the residual chlorine concentration of the treated water, preset concentrations are stored in the control unit 20 and collated with the measurement results by the pH meter 15 and the residual chlorine concentration meter 13.

処理水の水素イオン濃度及び残留塩素濃度が予め設定された濃度範囲内の場合には、制御部20が放流弁34を開く制御を行うことによって、処理水を河川等に放流する。一方、処理水の水素イオン濃度及び残留塩素濃度が予め設定された濃度範囲を逸脱する場合には、処理水に還元剤、酸又はアルカリを添加して所定の基準内となるように調整する。   When the hydrogen ion concentration and residual chlorine concentration of the treated water are within the preset concentration ranges, the control unit 20 controls the opening of the discharge valve 34 to discharge the treated water to a river or the like. On the other hand, when the hydrogen ion concentration and residual chlorine concentration of the treated water deviate from the preset concentration range, a reducing agent, acid, or alkali is added to the treated water so as to be within a predetermined standard.

以上のように、バッチ処理では、脱色処理する染色排水の量が比較的少ない場合の脱色処理に有利に適用できる。また、実施の形態1〜3で説明した連続処理における脱色終点に対応する酸化還元電位、すなわち制御値を求めるためにも適用できる。この場合、図4に示した脱色制御装置1Cを使用しても良いが、実験室規模で、例えばビーカーを反応槽として使用することも可能であり、より簡便に制御値を求めることができる。   As described above, the batch process can be advantageously applied to a decoloring process when the amount of dye waste water to be decolored is relatively small. The present invention can also be applied to obtain a redox potential corresponding to the decoloring end point in the continuous processing described in the first to third embodiments, that is, a control value. In this case, although the decoloring control apparatus 1C shown in FIG. 4 may be used, it is also possible to use a beaker as a reaction vessel on a laboratory scale, and the control value can be obtained more easily.

以下、実施例に基づいて、本発明をさらに具体的に説明する。染色排水として、主に反応染料であるシバクロンブルーを含み、濃度の異なる3種類の染色排水を用意した。これらの各染色排水を、図4に示す反応槽40に流入し、硫酸及び水酸化ナトリウムを加えることによって、染色排水を中性となるように調整した。次に、次亜塩素酸ナトリウムを添加しながら酸化還元電位計8により染色排水の酸化還元電位を測定した。   Hereinafter, based on an Example, this invention is demonstrated further more concretely. As dyeing wastewater, three kinds of dyeing wastewater containing mainly reactive dye Cibacron Blue and having different concentrations were prepared. Each of these dyeing wastewaters flowed into the reaction tank 40 shown in FIG. 4, and the dyeing wastewaters were adjusted to be neutral by adding sulfuric acid and sodium hydroxide. Next, the oxidation-reduction potential of the dyed waste water was measured with the oxidation-reduction potentiometer 8 while adding sodium hypochlorite.

得られた酸化還元電位の測定結果を図5に示す。図5において、曲線Aは着色が薄い染色排水についての測定結果であり、曲線Bは着色が普通程度の染色排水についての測定結果であり、曲線Cは着色が濃い染色排水についての測定結果である。各染色排水において、次亜塩素酸ナトリウムの添加に伴って、酸化還元電位が上昇し、約550mVで酸化還元電位が急激に上昇した。また、約750mV程度で脱色が終了することが確認できた。すなわち、曲線A〜Cにおいて、測定点D、E、Fがそれぞれ脱色終点を示している。   The measurement result of the obtained oxidation-reduction potential is shown in FIG. In FIG. 5, a curve A is a measurement result for a dyed wastewater having a light coloration, a curve B is a measurement result for a dyed wastewater having a normal coloration, and a curve C is a measurement result for a dyed wastewater having a high coloration. . In each dye wastewater, the oxidation-reduction potential increased with the addition of sodium hypochlorite, and the oxidation-reduction potential increased rapidly at about 550 mV. Further, it was confirmed that decolorization was completed at about 750 mV. That is, in the curves A to C, the measurement points D, E, and F indicate the decolorization end points.

以上のように、本発明にかかる染色排水の脱色制御方法及び脱色制御装置は、脱色終点で確実に塩素系酸化剤の添加を終了でき、或いは脱色終点に対応する酸化還元電位を制御値として塩素系酸化剤の添加を制御できるので、過剰に塩素系酸化剤を添加するのを回避できるため染色排水の脱色処理に有用であり、特に、排水中の有機物及び浮遊物除去を行うと共に、脱色終点で確実に塩素系酸化剤の添加を終了できる排水処理システムに適している。   As described above, the decolorization control method and the decolorization control apparatus for dyeing wastewater according to the present invention can reliably end the addition of the chlorine-based oxidant at the decolorization end point, or the chlorine reduction with the redox potential corresponding to the decoloration end point as the control value. Since the addition of oxidizer can be controlled, it is possible to avoid excessive addition of chlorinated oxidizer, so it is useful for decoloring treatment of dyeing wastewater. It is suitable for a wastewater treatment system that can end the addition of chlorine-based oxidant with certainty.

本発明の実施の形態1による脱色制御装置を示す概略構成図である。It is a schematic block diagram which shows the decoloring control apparatus by Embodiment 1 of this invention. 本発明の実施の形態2による脱色制御装置を示す概略構成図である。It is a schematic block diagram which shows the decoloring control apparatus by Embodiment 2 of this invention. 本発明の実施の形態3による排水処理システムを示す概略構成図である。It is a schematic block diagram which shows the waste water treatment system by Embodiment 3 of this invention. 本発明の実施の形態4による脱色制御装置を示す概略構成図である。It is a schematic block diagram which shows the decoloring control apparatus by Embodiment 4 of this invention. 本発明の実施例において測定した次亜塩素酸ナトリウムの添加量と染色排水の酸化還元電位との関係を示す線図である。It is a diagram which shows the relationship between the addition amount of sodium hypochlorite measured in the Example of this invention, and the oxidation-reduction potential of dyeing | draining waste_water | drain.

符号の説明Explanation of symbols

1A,1B 脱色制御装置
2 第1脱色槽
3 第2脱色槽
4,5 塩素系酸化剤貯槽
6,7,12,25,26,32 電磁弁
8,9 酸化還元電位計
10 還元槽
11 還元剤貯槽
13,16 残留塩素濃度計
14 監視槽
15,27 pH計
17,18,19 流通口
20 制御部
21 原水調整槽
22 中和槽
23 酸溶液貯槽
24 アルカリ溶液貯槽
28 流動床曝気槽
29 曝気ブロワー
30a、30b 凝集反応槽
31a 無機凝集剤貯槽
31b 高分子凝集剤貯槽
33 凝集沈殿槽
34 放流弁
35 戻り弁
40 反応槽
DESCRIPTION OF SYMBOLS 1A, 1B Decoloring control apparatus 2 1st decoloring tank 3 2nd decoloring tank 4,5 Chlorine oxidant storage tank 6,7,12,25,26,32 Solenoid valve 8,9 Oxidation-reduction potentiometer 10 Reduction tank 11 Reducing agent Reservoir 13,16 Residual chlorine concentration meter 14 Monitoring tank 15, 27 pH meter 17, 18, 19 Flow port 20 Control unit 21 Raw water adjustment tank 22 Neutralization tank 23 Acid solution storage tank 24 Alkaline solution storage tank 28 Fluidized bed aeration tank 29 Aeration blower 30a, 30b Coagulation reaction tank 31a Inorganic coagulant storage tank 31b Polymer coagulant storage tank 33 Coagulation sedimentation tank 34 Release valve 35 Return valve 40 Reaction tank

Claims (6)

染色排水の脱色処理を制御する方法であって、前記染色排水に塩素系酸化剤を添加しながら前記染色排水の酸化還元電位を測定し、脱色終点の直前に対応する酸化還元電位で前記塩素系酸化剤の添加を停止する制御を行うことを特徴とする染色排水の脱色制御方法。   A method for controlling decolorization treatment of dyeing wastewater, wherein the oxidation-reduction potential of the dyeing wastewater is measured while adding a chlorine-based oxidizing agent to the dyeing wastewater, and the chlorine-based treatment is performed at a corresponding redox potential immediately before the decoloration end point. A method for controlling the decolorization of dyeing wastewater, characterized in that control for stopping the addition of an oxidizing agent is performed. 染色排水の脱色処理を制御する方法であって、前記染色排水に塩素系酸化剤を添加しながら前記染色排水の酸化還元電位を測定し、脱色終点に対応する酸化還元電位を求め、求めた酸化還元電位を制御値として設定し、この制御値を目標に前記塩素系酸化剤の添加及び添加の停止を制御することを特徴とする染色排水の脱色制御方法。   A method for controlling the decolorization treatment of dyeing wastewater, measuring a redox potential of the dyeing wastewater while adding a chlorine-based oxidizing agent to the dyeing wastewater, obtaining a redox potential corresponding to the decoloration end point, and obtaining the obtained oxidation A method for controlling the decolorization of dyeing waste water, wherein a reduction potential is set as a control value, and the addition and stop of the addition of the chlorinated oxidant are controlled with the control value as a target. 前記染色排水を前記塩素系酸化剤で脱色した後、さらに還元剤で残留塩素を還元することを特徴とする請求項1又は請求項2に記載の染色排水の脱色制御方法。   3. The method for controlling the decolorization of dyed wastewater according to claim 1 or 2, further comprising reducing residual chlorine with a reducing agent after decolorizing the dyed wastewater with the chlorine-based oxidizing agent. 染色排水の脱色処理を制御する装置であって、前記染色排水を収容する脱色槽と、前記脱色槽に塩素系酸化剤を添加する塩素系酸化剤添加部と、前記脱色槽中における前記染色排水の酸化還元電位を測定する酸化還元電位計と、脱色終点の直前に対応する酸化還元電位で前記塩素系酸化剤の添加を停止する制御を行う制御部とを備えたことを特徴とする染色排水の脱色制御装置。   An apparatus for controlling the decoloring treatment of dyeing wastewater, a decoloring tank for storing the dyeing wastewater, a chlorine-based oxidizing agent adding unit for adding a chlorine-based oxidizing agent to the decoloring tank, and the dyeing wastewater in the decoloring tank Dyeing drainage characterized by comprising: a redox potentiometer that measures the redox potential of the liquid; and a control unit that controls to stop the addition of the chlorinated oxidant at a redox potential corresponding to immediately before the decolorization end point Decolorization control device. 染色排水の脱色処理を制御する装置であって、前記染色排水を収容する脱色槽と、前記脱色槽に塩素系酸化剤を添加する塩素系酸化剤添加部と、前記脱色槽中における前記染色排水の酸化還元電位を測定する酸化還元電位計と、脱色終点に対応する酸化還元電位を制御値として設定し、この制御値を目標に前記塩素系酸化剤の添加及び添加の停止を制御する制御部とを備えたことを特徴とする染色排水の脱色制御装置。   An apparatus for controlling the decoloring treatment of dyeing wastewater, a decoloring tank for storing the dyeing wastewater, a chlorine-based oxidizing agent adding unit for adding a chlorine-based oxidizing agent to the decoloring tank, and the dyeing wastewater in the decoloring tank An oxidation-reduction potentiometer for measuring the oxidation-reduction potential, and a control unit for setting the oxidation-reduction potential corresponding to the decolorization end point as a control value, and controlling the addition and stop of the addition of the chlorine-based oxidant with this control value as a target A decolorization control device for dyeing drainage. 水量及び水質を均一にするために排水を貯留する調整槽と、前記調整槽からの排水を中和する中和槽と、前記中和槽からの排水中に含まれる有機物を分解する曝気槽と、前記曝気槽からの排水が導入され、凝集沈殿物を除去する凝集沈殿槽と、前記凝集沈殿槽からの排水を脱色制御する脱色制御装置と、前記脱色制御装置からの排水を還元処理する還元槽と、前記還元槽からの排水を所定の設定条件と比較、監視する監視槽とを備え、
前記脱色制御装置は、前記排水を収容する脱色槽と、前記脱色槽に塩素系酸化剤を添加する塩素系酸化剤添加部と、前記脱色槽中における前記排水の酸化還元電位を測定する酸化還元電位計と、脱色終点に対応する酸化還元電位を制御値として設定し、この制御値を目標に前記塩素系酸化剤の添加及び添加の停止を制御する制御部とを備えたことを特徴とする排水処理システム。
An adjustment tank that stores drainage to make the amount of water and water quality uniform, a neutralization tank that neutralizes drainage from the adjustment tank, and an aeration tank that decomposes organic matter contained in the drainage from the neutralization tank The waste water from the aeration tank is introduced, the coagulation sedimentation tank for removing the aggregate sediment, the decolorization control device for controlling the decoloration of the waste water from the coagulation sedimentation tank, and the reduction for reducing the waste water from the decolorization control device A tank and a monitoring tank for comparing and monitoring the drainage from the reduction tank with a predetermined setting condition,
The decolorization control device includes a decolorization tank that houses the wastewater, a chlorine-based oxidant addition unit that adds a chlorine-based oxidant to the decolorization tank, and a redox that measures a redox potential of the wastewater in the decolorization tank. An electrometer and a control unit that sets an oxidation-reduction potential corresponding to the decoloration end point as a control value and controls the addition and stop of the addition of the chlorine-based oxidant with the control value as a target are provided. Wastewater treatment system.
JP2005213372A 2005-07-22 2005-07-22 Decolorization control method, decolorization control device and wastewater treatment system for dyeing wastewater Expired - Fee Related JP4650764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213372A JP4650764B2 (en) 2005-07-22 2005-07-22 Decolorization control method, decolorization control device and wastewater treatment system for dyeing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213372A JP4650764B2 (en) 2005-07-22 2005-07-22 Decolorization control method, decolorization control device and wastewater treatment system for dyeing wastewater

Publications (2)

Publication Number Publication Date
JP2007029797A JP2007029797A (en) 2007-02-08
JP4650764B2 true JP4650764B2 (en) 2011-03-16

Family

ID=37789697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213372A Expired - Fee Related JP4650764B2 (en) 2005-07-22 2005-07-22 Decolorization control method, decolorization control device and wastewater treatment system for dyeing wastewater

Country Status (1)

Country Link
JP (1) JP4650764B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737157B2 (en) * 2007-07-24 2011-07-27 Jfeエンジニアリング株式会社 Ballast water treatment apparatus and ballast water treatment method
KR100883444B1 (en) * 2008-07-24 2009-02-17 (주) 테크윈 Apparatus and method for ballast water management
JP2011136296A (en) * 2009-12-28 2011-07-14 Shimizu Corp Method and apparatus for decoloring colored discharge water
JP7560342B2 (en) 2020-12-15 2024-10-02 ドリコアクアサーブ株式会社 Water treatment equipment
CN113754119A (en) * 2021-09-13 2021-12-07 南京中电环保水务有限公司 Container type high-concentration hydrazine wastewater treatment device and treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299192A (en) * 1988-10-04 1990-04-11 Nagasaki Nitto Kk Decoloration of colored wastewater and apparatus for decoloration
JPH07299473A (en) * 1994-05-10 1995-11-14 Mitsubishi Heavy Ind Ltd Decoloring device for colored waste water
JPH08257571A (en) * 1995-03-22 1996-10-08 Nisshin Steel Co Ltd Waste water treatment method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299192A (en) * 1988-10-04 1990-04-11 Nagasaki Nitto Kk Decoloration of colored wastewater and apparatus for decoloration
JPH07299473A (en) * 1994-05-10 1995-11-14 Mitsubishi Heavy Ind Ltd Decoloring device for colored waste water
JPH08257571A (en) * 1995-03-22 1996-10-08 Nisshin Steel Co Ltd Waste water treatment method and apparatus

Also Published As

Publication number Publication date
JP2007029797A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
Bilińska et al. Coupling of electrocoagulation and ozone treatment for textile wastewater reuse
Arslan-Alaton et al. Electrocoagulation of a real reactive dyebath effluent using aluminum and stainless steel electrodes
Yang et al. Electrochemical coagulation for textile effluent decolorization
Blanco et al. Photo-Fenton and sequencing batch reactor coupled to photo-Fenton processes for textile wastewater reclamation: Feasibility of reuse in dyeing processes
Brower et al. Economical pretreatment for color removal from textile dye wastes
García-Montaño et al. Degradation of Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor
Nadeem et al. Polishing of biologically treated textile wastewater through AOPs and recycling for wet processing
CN109133508A (en) The high-efficient treatment method of textile printing and dyeing wastewater
CN103588318A (en) Processing method used for multiple recycling of fur dyeing effluent
JP4650764B2 (en) Decolorization control method, decolorization control device and wastewater treatment system for dyeing wastewater
JP2009022940A (en) Method of decoloring livestock wastewater and colored wastewater containing hardly decomposable ingredient
JP2011136296A (en) Method and apparatus for decoloring colored discharge water
Guendy Ozone treatment of textile wastewater relevant to toxic effect elimination in marine environment
KR101099889B1 (en) Apparatus for waste-water reuse using advanced oxidation process
Salim et al. Photochemical UVC/H 2 O 2 oxidation system as an effective method for the decolourisation of bio-treated textile wastewaters: towards onsite water reuse
JPH07124569A (en) Decoloration treatment of printing/dyeing waste water
JP3912994B2 (en) Wastewater treatment equipment
US20090173696A1 (en) Method and system of digesting excess sludge
Rodríguez et al. Decoloring of aqueous solutions of indigocarmine dye in an acid medium by H2O2/UV advanced oxidation
CN115304215A (en) Printing and dyeing wastewater treatment method
CN105692859B (en) Strong oxidizer and its application
JP7358202B2 (en) Wastewater treatment method and wastewater treatment system
Gowtham Feasibility Studies on Application of Photo-Fenton Oxidation for Methylene Blue (Research Note)
JP4465987B2 (en) Decolorization method and decolorization device for colored beverage drainage
JPH09174061A (en) Treatment of color substance-containing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101203

R150 Certificate of patent or registration of utility model

Ref document number: 4650764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141224

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees