【0001】
【発明の属する技術分野】本発明は、配線基板の周囲に素子類の実装スペース,放熱スペース等を確保するために配線基板等に起立して取付けられる柱形のスペーサに係る技術分野に属する。
【0002】
【従来の技術】最近、各種機器の多機能化,高性能化に伴って、実装される素子類を含めた配線基板の高密度化が進んでいる。このため、配線基板等におけるスペーサの取付けでは、取付スペースの確保が困難になり取付位置の制約も大きくなってきている。この現状から、スペーサの形状として、ブロック形よりも小形である柱形が選択されるようになってきている。柱形のスペーサについては、配線基板等の点状の取付位置に起立して取付けられることになるため、取付強度を強化することが求められている。
【0003】
従来、柱形のスペーサとしては、例えば、以下に記載のものが知られている。
【特許文献1】実開平2−34819号公報。
特許文献1には、6角の柱形の本体部1の端部に雄ネジのネジ部2が設けられたスペーサが記載されている(図6参照)。
【0004】
特許文献1に係るスペーサは、図6に示すように、配線基板等Pに穴加工した下穴Hにネジ溝Sを刻設してネジ部2を螺合させることで取付けられる。なお、本体部1に工具等を嵌合して回動させ、ネジ部2(本体部1)を配線基板等Pに締付けることによってかなりの取付強度を得ることができる。
【0005】
【発明が解決しようとする課題】特許文献1に係るスペーサでは、下穴Hにネジ溝Sを刻設(タップ加工)しなければならないため、取付コストが高くなるという問題点がある。また、前述の配線基板Pの高密度化からネジ溝Sを刻設するタップを回動させる工具,駆動機構の動作スペースを確保できない場合や、合成樹脂材である配線基板等Pの材質からタップ加工で下穴Hの周面が塑性変形してネジ部2を強固に締付けることができなくなる場合があり、取付けが困難になることがあるという問題点がある。
【0006】
本発明は、このような問題点を考慮してなされたもので、安価な取付コストで配線基板等に確実に取付けることのできるスペーサを提供することを課題とする。
【0007】
【課題を解決するための手段】前述の課題を解決するため、本発明に係るスペーサは、次のような手段を採用する。
【0008】
即ち、請求項1では、柱形の本体部の端部に雄ネジのネジ部が設けられたスペーサにおいて、ネジ部を合成樹脂材に対してネジ切りのできるタッピンネジとし、ネジ部と本体部との間にネジ部のネジ山の最大径とほぼ同一の径の円柱形の首部を設けたことを特徴とする。
【0009】
この手段では、タッピンネジであるネジ部を配線基板等の下穴にネジ切りしながら螺合させて取付けることができ、下穴のタップ加工が不要になるとともに、首部をネジ部のネジ切りにより塑性変形した配線基板等の下穴の周面に圧入させることで強固な取付強度が得られる。
【0010】
また、請求項2では、請求項1のスペーサにおいて、ネジ部は先端側へ向けて径が小さくなるテーパネジであることを特徴とする。
【0011】
この手段では、配線基板等の下穴に対してネジ部がテーパ形にネジ切りする。
【0012】
また、請求項3では、請求項1または2のスペーサにおいて、首部の軸長はネジ部の1ピッチ程度の長さであることを特徴とする。
【0013】
この手段では、首部の軸長がネジ部の1ピッチ程度にかなり短く設定される。
【0014】
また、請求項4では、請求項1〜4のいずれかのスペーサにおいて、本体部はネジ部の反対側の端部から首部に対応した丸穴とネジ部に対応したネジ穴とが堀込まれていることを特徴とする。
【0015】
この手段では、ネジ部,首部とネジ穴,丸穴とを螺合,嵌合させることで複数本の連結が可能になる。
【0016】
【発明の実施の形態】以下、本発明に係るスペーサの実施の形態を図1〜図5に基づいて説明する。
【0017】
図1〜図4は、本発明に係るスペーサの実施の形態(1)を示すものである。
【0018】
この実施の形態は、本体部1,ネジ部2,首部3の各部で構成されている。
【0019】
本体部1は、金属材で6角の柱形に形成されている。この本体部1の軸長,径については、確保しようとする素子類の実装スペース,放熱スペースの大きさや支持荷重等を考慮して設定される。一方の端面11には、圧接することになる配線基板等Pを無用に損傷することのないように、湾曲した面取加工がなされている。他方の端面12には、雌ネジが刻設されたネジ穴13が堀込まれている。
【0020】
ネジ部2は、本体部1の一方の端面11に突出して一体的に設けられたタッピンネジからなる。このネジ部2については、配線基板等Pの形成素材である合成樹脂材に対してネジ切りのできる雄ネジのネジ溝構造を有するものが選択される。具体的には、JIS規格の2種のように、3角形のネジ山21,ネジ谷22の径が基端側から先端側へ向けて径が小さくなるテーパネジが挙げられる。
【0021】
首部3は、円柱形(テーパネジの延長として錐柱形でも差支えない)に形成されて本体部1,ネジ部2の間に一体的に設けられている。この首部3の径bは、ネジ部2のネジ山21の最大径aとほぼ同一になっている。また、首部3の軸長は、ネジ部2の1ピッチ程度の長さで充分であり、特別な加工が必要になる程の長さは不要である。
【0022】
この実施の形態によると、図2に示すように、配線基板等Pに穴加工した下穴Hにネジ部2を挿入して全体を回動させることによって、ネジ部2を下穴Hにネジ切りをしながら螺合させることができ、下穴Hにネジ溝Sを刻設するタップ加工をすることなく配線基板等Pに取付けることができる。そして、本体部1に工具等を嵌合して回動させ、ネジ部2(本体部1)を配線基板等Pに締付けることによって、本体部1の一方の端面11を配線基板等Pに圧接させてかなりの取付強度を得ることができる。このとき、ネジ部2がテーパネジで下穴Hへのネジ切りの抵抗が比較的小さいため、締付けにあまり大きな力は必要ない。
【0023】
従って、タップ加工のコストが削減されて、配線基板等Pへの取付コストが安価になる。また、配線基板Pの高密度化からネジ溝Sを刻設するタップを回動させる工具,駆動機構の動作スペースを確保できない場合でも、配線基板等Pへの取付けが可能になる。
【0024】
さらに、図3に示すように、合成樹脂材である配線基板等Pの材質からネジ部2のネジ切りで下穴Hの周面が塑性変形しても、塑性変形部分H’に首部3が圧入して塑性変形部分H’を下方(ネジ部2側)へ加圧して押下げ、ネジ部2の下穴Hへの螺合締付けを強固にする。また、下穴Hに侵入した首部3は、塑性変形部分H’の除去された下穴Hの弾性変形の復元力を直接的に受けることになる。
【0025】
従って、配線基板等Pへの取付強度が相当に高くなる。
【0026】
なお、図4には、配線基板等Pに取付けられた本体部1の他方の端面12に他の配線基板等P’を載せ、本体部1のネジ穴13にネジBを螺合させて他の配線基板等P’を固定する使用例が示されている。ちなみに、配線基板等Pと他方の端面12との間に、素子類の実装スペース,放熱スペース等が確保される。
【0027】
図5は、本発明に係るスペーサの実施の形態(2)を示すものである。
【0028】
この実施の形態では、前述の実施の形態(1)の本体部1のネジ穴13に代えて、本体部1の他方の端面12から首部3に対応した丸穴15とネジ部2に対応したネジ穴14とが堀込まれている。
【0029】
この実施の形態によると、ネジ部2,首部3とネジ穴14,丸穴15とを螺合,嵌合させることで複数本を連結し、本体部1の軸長を実質的に調整することがが可能になる。
【0030】
以上、図示した実施の形態の外に、ネジ穴13,15,丸穴14に代えて、本体部1の他方の端面12に他の配線基板等P’や素子類を係止させる係止構造を設けることも可能である。
【0031】
さらに、本体部1を他の角柱形や円柱形とすることも可能である。
【0032】
さらに、ネジ部2を軸方向へ溝を設けた溝付きタッピンネジとすることも可能である。
【0033】
【発明の効果】以上のように、本発明に係るスペーサは、タッピンネジであるネジ部を配線基板等の下穴にネジ切りしながら螺合させて取付けることができ、下穴のタップ加工が不要になるとともに、首部をネジ部のネジ切りにより塑性変形した配線基板等の下穴の周面に圧入させることで強固な取付強度を得られるため、安価な取付コストで配線基板等に確実に取付けることができる効果がある。
【図面の簡単な説明】
【図1】本発明に係るスペーサの実施の形態(1)を示す一部切断の正面図である。
【図2】図1の取付工作例を示す図であり、(A)〜(D)の順に工程が表されている。
【図3】図2の要部の拡大図であり、(A)は図2(C)に対応し、(B)は図2(D)に対応している。
【図4】図1の使用例を示す図である。
【図5】本発明に係るスペーサの実施の形態(1)を示す使用状態の一部切断の正面図である。
【図6】従来の技術を説明するための斜視図である。
【符号の説明】
1 本体部
14 ネジ穴
15 丸穴
2 ネジ部
21 ネジ山
3 首部
H 下穴
P 配線基板等
a 最大径(ネジ山の)
b 径(首部の)[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technical field of a columnar spacer which is mounted upright on a wiring board or the like in order to secure a space for mounting elements, a heat radiation space, etc. around the wiring board.
[0002]
2. Description of the Related Art In recent years, as various devices have become multifunctional and have higher performance, the density of wiring boards including mounted elements has been increasing. For this reason, it is difficult to secure a mounting space in mounting a spacer on a wiring board or the like, and mounting position restrictions are increasing. From this situation, as the shape of the spacer, a column shape which is smaller than the block shape has been selected. Since the columnar spacer is to be mounted upright at a point-like mounting position on a wiring board or the like, it is required to enhance the mounting strength.
[0003]
Conventionally, as a columnar spacer, for example, the following spacers are known.
[Patent Document 1] Japanese Utility Model Laid-Open No. 2-34819.
Patent Literature 1 describes a spacer in which a male screw portion 2 is provided at an end of a hexagonal column-shaped main body portion 1 (see FIG. 6).
[0004]
As shown in FIG. 6, the spacer according to Patent Literature 1 is attached by engraving a screw groove S in a prepared hole H formed in a wiring board P or the like and screwing the screw portion 2 together. Note that a considerable amount of mounting strength can be obtained by fitting and rotating a tool or the like to the main body 1 and tightening the screw 2 (the main body 1) to the wiring board P or the like.
[0005]
The spacer according to Patent Document 1 has a problem that the mounting cost is increased because the thread groove S must be cut (tapped) in the prepared hole H. Further, when the density of the wiring board P is increased, the operation space of the tool for rotating the tap for engraving the screw groove S and the driving mechanism cannot be secured, or the tapping is performed from the material of the wiring board P such as a synthetic resin material. In some cases, the peripheral surface of the pilot hole H is plastically deformed during processing, so that the screw portion 2 cannot be firmly tightened, and there is a problem that mounting may be difficult.
[0006]
The present invention has been made in view of such a problem, and has as its object to provide a spacer that can be securely mounted on a wiring board or the like at low mounting cost.
[0007]
In order to solve the above-mentioned problems, the spacer according to the present invention employs the following means.
[0008]
That is, according to the first aspect of the present invention, in a spacer in which a male screw portion is provided at an end of a columnar main body portion, the screw portion is a self-tapping screw that can be threaded with respect to a synthetic resin material. A cylindrical neck portion having a diameter substantially the same as the maximum diameter of the screw thread of the screw portion is provided.
[0009]
With this means, the screw portion, which is a tapping screw, can be screwed into the lower hole of the wiring board or the like while being screwed together, and the tapping of the lower hole is not required, and the neck portion is plastically formed by cutting the screw portion. By press-fitting into the peripheral surface of the prepared hole of the deformed wiring board or the like, a strong mounting strength can be obtained.
[0010]
According to a second aspect of the present invention, in the spacer of the first aspect, the screw portion is a tapered screw whose diameter decreases toward the distal end.
[0011]
In this means, a threaded portion is threaded into a tapered shape with respect to a prepared hole of a wiring board or the like.
[0012]
According to a third aspect of the present invention, in the spacer of the first or second aspect, the axial length of the neck portion is about one pitch of the thread portion.
[0013]
In this means, the axial length of the neck portion is set to be very short, such as about one pitch of the screw portion.
[0014]
According to a fourth aspect, in the spacer according to any one of the first to fourth aspects, a round hole corresponding to the neck and a screw hole corresponding to the screw portion are dug from the end opposite to the screw portion. It is characterized by having.
[0015]
In this means, a plurality of connections can be made by screwing and fitting a screw portion and a neck portion with a screw hole and a round hole.
[0016]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a spacer according to the present invention will be described below with reference to FIGS.
[0017]
1 to 4 show an embodiment (1) of a spacer according to the present invention.
[0018]
This embodiment is composed of a main body 1, a screw part 2, and a neck part 3.
[0019]
The main body 1 is formed of a metal material in a hexagonal column shape. The shaft length and diameter of the main body 1 are set in consideration of the mounting space of the elements to be secured, the size of the heat radiation space, the supporting load, and the like. The one end face 11 is subjected to a curved chamfering process so as not to uselessly damage the wiring board P or the like to be pressed. In the other end surface 12, a screw hole 13 in which a female screw is engraved is dug.
[0020]
The screw portion 2 is formed by a self-tapping screw that is provided integrally with the one end surface 11 of the main body portion 1. As the screw portion 2, a screw portion having a male screw thread groove structure that can be threaded with respect to a synthetic resin material that is a material for forming the wiring board P or the like is selected. Specifically, there are tapered screws in which the diameters of the triangular screw threads 21 and the screw valleys 22 decrease from the base end toward the tip end, as in the two types of JIS standards.
[0021]
The neck 3 is formed in a cylindrical shape (a cone may be used as an extension of the tapered screw), and is provided integrally between the main body 1 and the screw portion 2. The diameter b of the neck 3 is substantially the same as the maximum diameter a of the thread 21 of the screw portion 2. Further, the axial length of the neck portion 3 is sufficient to be approximately one pitch of the screw portion 2, and a length that does not require special processing is required.
[0022]
According to this embodiment, as shown in FIG. 2, the screw portion 2 is inserted into the prepared hole H formed in the wiring board or the like P and rotated as a whole, so that the screw portion 2 is screwed into the prepared hole H. It can be screwed together while cutting, and can be attached to a wiring board or the like P without performing tap processing for engraving the screw groove S in the prepared hole H. Then, a tool or the like is fitted to the main body 1 and rotated, and the screw portion 2 (the main body 1) is tightened to the wiring board or the like P, so that one end surface 11 of the main body 1 is pressed against the wiring board or the like P. Thus, considerable mounting strength can be obtained. At this time, since the screw portion 2 is a tapered screw and the resistance of cutting the pilot hole H is relatively small, a very large force is not required for tightening.
[0023]
Therefore, the cost of tapping is reduced, and the cost of mounting the wiring board or the like P is reduced. Further, even if the operation space of the tool for rotating the tap for engraving the screw groove S and the driving mechanism cannot be secured due to the high density of the wiring board P, it is possible to attach the wiring board P to the wiring board P or the like.
[0024]
Further, as shown in FIG. 3, even if the peripheral surface of the pilot hole H is plastically deformed by cutting the screw portion 2 from the material of the wiring board or the like P which is a synthetic resin material, the neck portion 3 is formed at the plastically deformed portion H ′. The plastically deformed portion H ′ is press-fitted and pressed down (toward the screw portion 2) by pressing it down, thereby tightening the screwing of the screw portion 2 into the prepared hole H. Further, the neck portion 3 that has entered the pilot hole H directly receives the restoring force of the elastic deformation of the pilot hole H from which the plastic deformation portion H ′ has been removed.
[0025]
Therefore, the strength of attachment to the wiring board or the like P is considerably increased.
[0026]
In FIG. 4, another wiring board or the like P ′ is placed on the other end surface 12 of the main body 1 attached to the wiring board or the like P, and the screw B is screwed into the screw hole 13 of the main body 1. The use example which fixes the wiring board etc. P 'of this is shown. Incidentally, a space for mounting elements, a space for heat radiation, and the like are secured between the wiring board P or the like and the other end surface 12.
[0027]
FIG. 5 shows an embodiment (2) of the spacer according to the present invention.
[0028]
In this embodiment, instead of the screw hole 13 of the main body 1 of the above-described embodiment (1), a round hole 15 corresponding to the neck 3 and a screw 2 are provided from the other end face 12 of the main body 1. The screw hole 14 is dug.
[0029]
According to this embodiment, the screw portion 2 and the neck portion 3 are screwed and fitted into the screw holes 14 and the round holes 15 to connect a plurality of them, and to substantially adjust the axial length of the main body 1. Becomes possible.
[0030]
As described above, in addition to the illustrated embodiment, instead of the screw holes 13, 15 and the round hole 14, a locking structure for locking other wiring boards P ′ and other elements to the other end surface 12 of the main body 1. It is also possible to provide.
[0031]
Further, the main body 1 may be formed in another prismatic or cylindrical shape.
[0032]
Further, the screw portion 2 may be a grooved tapping screw having a groove in the axial direction.
[0033]
As described above, the spacer according to the present invention can be screwed and screwed into a prepared hole of a wiring board or the like while tapping a screw portion, which is a tapping screw, so that tapping of the prepared hole is unnecessary. In addition, a strong mounting strength can be obtained by press-fitting the neck portion into the peripheral surface of the prepared hole of the wiring board or the like plastically deformed by threading of the screw portion, so that it can be securely mounted on the wiring board at a low mounting cost. There are effects that can be.
[Brief description of the drawings]
FIG. 1 is a partially cutaway front view showing an embodiment (1) of a spacer according to the present invention.
FIG. 2 is a view showing an example of the attachment work shown in FIG. 1, in which steps are shown in the order of (A) to (D).
FIG. 3 is an enlarged view of a main part of FIG. 2, wherein (A) corresponds to FIG. 2 (C) and (B) corresponds to FIG. 2 (D).
FIG. 4 is a diagram showing an example of use of FIG. 1;
FIG. 5 is a front view of a partly cut state in use showing the embodiment (1) of the spacer according to the present invention.
FIG. 6 is a perspective view for explaining a conventional technique.
[Explanation of symbols]
1 Body part 14 Screw hole 15 Round hole 2 Screw part 21 Screw thread 3 Neck H Prepared hole P Wiring board etc. a Maximum diameter (of screw thread)
b diameter (of neck)