【0001】
【発明の属する技術分野】
本発明は、単結晶シリコン基板および多結晶シリコン基板を用いて太陽電池セルを製造する方法に関する。
【0002】
【従来の技術】
単結晶シリコン基板あるいは多結晶シリコン基板にpn接合を形成することで太陽電池としたものが広く知られており、また用いられている。このような太陽電池はシリコンpn接合型太陽電池と呼ばれており、その動作原理は例えば浜川佳弘・桑野幸徳共編,「太陽エネルギー工学」(培風館)p21に記載されている。太陽電池は光を電気エネルギーに変換する光電変換デバイスであり、その能力を示す光電変換効率を高めることが望まれている。次に、太陽電池の代表的な製作方法を以下に説明する。p型シリコン基板をPOCl3 雰囲気内で加熱するか、リンを含む塗布剤を塗布した状態で加熱することで、シリコン基板表面に高濃度のドーパント層を導入してn+ 層を形成する。その上に電流取り出し用の金属電極を印刷する。裏面は全面にアルミニウムを印刷して焼成することでアルミニウムとシリコンとを合金化するとともにp+ 層とし、さらに電流取り出し用の銀電極を印刷する。この工程は単結晶シリコン基板と多結晶シリコン基板とでほぼ同じであり、その違いは多結晶シリコンでは基板内部の欠陥の不活性化処理が必要なことなどである。
【0003】
特に光電変換効率を高めることを目的とした太陽電池セルが単結晶シリコン基板を用いて作成されている。例えば、前記「太陽エネルギー工学」p87に記載されているPERC(passivated emitter and rear cell)構造やPERL(passivated emitter rear locally diffused)構造がある。これらはいずれも金属電極とシリコンとのコンタクト部のシリコン部におけるドーパント濃度を高めており、それ以外の場所のドーパント濃度はそれほど高めていない。これは、金属電極とシリコンとのコンタクト部はコンタクト抵抗の低減および動作電圧を高める目的でドーパントの高濃度領域が必要な一方、金属電極部以外ではドーパント濃度を小さくしてキャリアのライフタイムを長くするためである。前述のように表面全面をドーパント濃度を高めた方が工程は簡素となるが、その濃度は基板のシリコンの0.1% 程度に達するほどの高濃度が必要で、そのような層は極めてキャリヤのライフタイムが短く発電に寄与しない。また短波長の光は吸収係数が大きいためにこの高濃度層で吸収されやすいが、キャリヤのライフタイムが短いため発電に寄与せずロスとなる。したがって、太陽電池の光電変換効率を高めるには、金属電極部とのコンタクト部のみのドーパント濃度を高濃度とし、それ以外の表面に関しては濃度を下げることが望ましい。
【0004】
従来、前述のような金属電極部とのコンタクト部のみのドーパント濃度を高濃度とし、それ以外の表面のドーパント濃度を下げるというドーパント濃度のパターンを形成するためには、レジストパターン形成と拡散,エッチングを繰り返さなければならず、工程が煩雑であった。このことは製品コストの上昇を招く。そのため、拡散層濃度をパターニングした太陽電池は高い光電変換効率を有するにもかかわらず、実用化されていなかった。ドーパントを含むペーストを用いスクリーン印刷してパターニングする方法が、例えば特開平8−335711号に記載されている。スクリーン印刷法は簡便で実績ある方法であるが、異なるペーストを同時に印刷することはできず、ドーパント濃度分布のパターンを形成するためには何度も印刷・焼成の工程が必要になるという問題があった。
【0005】
【特許文献1】
特開平8−335711号公報
【0006】
【発明が解決しようとする課題】
ドーパント濃度を場所により変えるためには、従来はレジストパターン形成など煩雑な工程が必要であった。しかしこれは太陽電池の製造コストの増大につながるため、実際の製品の製造にはほとんど使用されていない。本発明は簡素な工程でドーパント濃度を場所によって変える方法を提供するものであり、安価に光電変換効率が高い太陽電池を製造する方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、単結晶シリコン基板あるいは多結晶シリコン基板を基板として用い、塗布拡散法によりpn接合を形成した太陽電池において、前記塗布剤は複数のドーパント種類あるいは複数のドーパント含有濃度のものを使用し、前記塗布剤をインクとしたインクジェット法により前記塗布剤を基板に塗り分けて塗布したものである。前記塗布拡散剤は、ドーパントとなる元素の種類が異なるものを用いても良い。さらに、複数の塗布拡散剤を塗り分けることで、製造プロセスはより簡素化される。また、塗布拡散剤により拡散を実施した後で、塗布拡散剤を剥離せずその上部に金属電極を形成し、焼成することでシリコンと金属電極との電気的接触を確保しても良い。
【0008】
【発明の実施の形態】
図1に、本発明を実施した、裏面電極型太陽電池の製造方法の第1の実施例を示す。まず(a)に示すようにp型の導電性を有する単結晶シリコン基板11を用意し、(b)に示すようにインクジェット法により、拡散防止用塗布剤26,高濃度n+ 用塗布剤25および低濃度n+ 用塗布剤24を一度に塗布することができる。ヘッドアッセンブリ20には塗布剤の種類に対応してヘッド22,ヘッド23,ヘッド24が取り付けられており、ヘッドアッセンブリ20が移動しながら各ヘッドが適切に設定されたタイミングで塗布剤を噴射することで所望の塗布パターンを描くことができる。拡散防止用塗布剤26,高濃度n+ 用塗布剤25および低濃度n+ 用塗布剤24は、いずれもケイ素の有機化合物を有機溶媒と混合したもので、拡散防止用塗布剤26はドーパントとしての不純物を含んでおらず、高濃度n+ 用塗布剤25は五酸化二リンを5重量パーセント、低濃度n+ 用塗布剤24は五酸化二リンを0.5重量パーセントを含んだものである。ここで、負電極51を形成すべき位置に高濃度n+ 用塗布剤25を、正電極52を形成すべき位置に拡散防止用塗布剤26を、そして負電極51も正電極52も形成しない位置には低濃度n+ 用塗布剤24を(c)に示したように塗り分け、拡散防止皮膜33,高濃度n+ 用塗布皮膜32および低濃度n+ 用塗布皮膜31を形成した。基板11を200℃で乾燥した後、1000℃で30分、窒素と酸素との混合ガス中で熱処理を行い、ドーパントであるリンを拡散した。なお、拡散防止皮膜33は雰囲気中にしみ出したドーパントを含むガスがシリコン基板11内に侵入することを抑制する役目を果たす。その結果、(d)に示すように、基板11には高濃度n+ 領域42および低濃度n+ 領域41が形成される。次に(e)に示すように拡散防止皮膜33,高濃度n+ 用塗布皮膜32および低濃度n+ 塗布皮膜31をフッ酸により除去し、最後に(f)に示すように銀から成る負電極51および正電極52をスクリーン印刷により形成して太陽電池セルとした。なお、正電極52の下側のアルミニウム電極53は、p+ 層54を形成するためのものである。本実施例の太陽電池は基板111のどの面から光が入射しても発電をすることが可能である。
【0009】
図2に、本発明を実施した太陽電池の製造方法の第2の実施例を示す。まず(a)に示すようにp型の導電性を有する単結晶シリコン基板111を用意し、(b)に示すようにインクジェット法により、高濃度用n+ 塗布剤125および低濃度n+ 用塗布剤124とを塗布する。高濃度n+ 用塗布剤125は第1の実施例における高濃度n+ 用塗布剤25と同じものを、低濃度n+ 用塗布剤124は第1の実施例における低濃度n+ 用塗布剤24と同じものを用いた。本実施例でも高濃度n+ 用塗布剤125および低濃度n+ 用塗布剤124とを塗り分け、高濃度n+ 用塗布皮膜132および低濃度n+ 用塗布皮膜131を形成した。基板111を200℃で乾燥した後、1000℃で30分、窒素と酸素との混合ガス中で熱処理を行い、ドーパントであるリンを拡散した。その結果、(d)に示すように基板111には高濃度n+ 領域142および低濃度n+ 領域141が形成される。次に(e)に示すように高濃度n+ 用塗布皮膜132および低濃度n+ 塗布皮膜131をフッ酸により除去し、(f)に示すように銀から成る負電極151および正電極152をスクリーン印刷により形成して太陽電池セルとした。なお、正電極152と隣接しているアルミニウム電極153は、p+ 層154を形成するためのものである。なお、本実施例の太陽電池における受光面は負電極151側のみである。
【0010】
図3に、本発明を実施した太陽電池の製造方法の第3の実施例を示す。まず(a)に示すようにp型の導電性を有する単結晶シリコン基板211を用意し、拡散防止用塗布剤226,高濃度p+ 領域形成用塗布剤227および高濃度n+ 領域形成用塗布剤224を塗布する。(b)に示すようにインクジェット法により、拡散防止用塗布剤226は第1の実施例における拡散防止用塗布剤26と同じものを、高濃度n+ 領域形成用塗布剤224は第1の実施例における高濃度n+ 用塗布剤25と同じものを、そして高濃度p+ 領域形成用塗布剤227はケイ素化合物と有機溶媒とを混合した溶液に酸化ホウ素を1重量パーセント溶かしたものを用いた。本実施例でも第1の実施例と同様に、拡散防止用塗布剤226、高濃度p+ 領域形成用塗布剤227および高濃度n+ 領域形成用塗布剤224を塗り分け、拡散防止皮膜233,高濃度p+ 領域形成用塗布皮膜234および高濃度n+ 領域形成用塗布皮膜232を形成した。基板211を200℃で乾燥した後、1000℃で30分、窒素と酸素との混合ガス中で熱処理を行い、ドーパントであるリンおよびホウ素を拡散した。その結果、(d)に示すように基板211には高濃度p+領域244および高濃度n+領域242が形成される。次に(e)に示すように拡散防止皮膜233,高濃度p+ 領域形成用塗布皮膜234および高濃度n+ 領域形成用塗布皮膜232をフッ酸により除去し、(f)に示すように銀から成る負電極251および正電極252をスクリーン印刷により形成して太陽電池セルとした。本実施例では基板211にp型の導電性を有するものを用いたが、n型の導電性を有するものを用いても良い。その場合、高濃度n+ 領域と高濃度p+ 領域との位置関係を入れ替えれば良い。
【0011】
図4に、本発明を実施した、裏面電極型太陽電池の製造方法の第4の実施例を示す。本実施例は(a)から(d)までは第1の実施例と同じであるが、(e)が異なる。すなわち拡散防止皮膜333,高濃度n+ 用塗布皮膜332および低濃度n+ 塗布皮膜331を除去せずに、その上に直接銀から成る負電極351を印刷した。これは、拡散防止皮膜333,高濃度n+ 用塗布皮膜332および低濃度n+ 塗布皮膜331はすべて塗布直後は厚さが約200nmであるのに対し、拡散時には高温のため有機物が分解脱離して厚さが減少し、その厚さが50nm程度と薄くなる。一方負電極351の原料には還元剤を混合しておき、焼成することで負電極351は高濃度p+ 領域形成用塗布皮膜332が薄いために領域355を突き抜けて、高濃度n+ 領域342と電気的に接続される。アルミニウム電極353も同様に領域356を突きぬけて高濃度p+ 領域354と電気的に接続される。本実施例のように、塗布皮膜の上に直接銀電極を形成する方法は、第2の実施例および第3の実施例においても適用することができる。
【0012】
なお、これまで述べた塗布拡散剤および拡散防止用塗布剤は、同時に塗布すれば最も短時間で処理を行うことができ、生産性が最も高い。一方、塗布剤の種類毎に別々のインクジェット塗布装置を用いて塗布してもかまわない。
【0013】
図5は従来の方法で本発明の第1の実施例と同じ性能を有する太陽電池を作製した例を示している。(a)から処理を開始し、(b)が高濃度拡散,(c)レジストパターン形成,(d)高濃度拡散領域パターンエッチング,(e)レジスト剥離,(f)低濃度拡散,(g)レジストパターン形成,(h)低濃度拡散領域パターンエッチング,(i)レジスト剥離,(j)電極形成、で完成となる。従来の方法では、レジストのパターニングやエッチング、拡散を繰り返して行わなければならず、製造工程が煩雑である。
【0014】
【発明の効果】
第1の実施例により作製した太陽電池の光電変換効率は13.0% であった。一方、従来の方法で作製した図5に示した太陽電池の光電変換効率は13.1% であった。製造コストに関しては第1の実施例により作製した太陽電池は図5に示した太陽電池の60%であった。したがって、本発明により同等の光電変換効率で工程数を簡略化することができ、製造コストを低減することができた。第2の実施例により作製した太陽電池は、図6に示した表面側の全面にn+ 拡散層542を有する太陽電池の光電変換効率が14.7%であったのに対し、16.0%の光電変換効率が得られた。一方、拡散用の塗布剤を塗布する工程は第2の実施例も図6の太陽電池の作製においても同じであるから、製造コストは同じであった。したがって同じ製造コストで光電変換効率が高い太陽電池を得ることができた。第3の実施例により作製した太陽電池は、光電変換効率が12.5% であったが、電極形成の工程を大幅に簡略化できたので第一の実施例の場合に対して製造コストを90%とすることができた。第4の実施例により作製した太陽電池においては、光電変換効率が12.8% と第1の実施例よりわずかに低下した。一方工程は簡略化できたため、製造コストは第1の実施例の場合の92%とすることができた。
【0015】
従って本発明は、光電変換効率の向上や製造コストの低減の効果があった。
【図面の簡単な説明】
【図1】本発明の第1の実施例である太陽電池の製造工程を示した図。
【図2】本発明の第2の実施例である太陽電池の製造工程を示した図。
【図3】本発明の第3の実施例である太陽電池の製造工程を示した図。
【図4】本発明の第4の実施例である太陽電池の製造工程を示した図。
【図5】本発明の第1の実施例と同等の太陽電池を、従来の方法で作製する場合の製造工程を示した図。
【図6】表面のドーパント濃度を全面にわたって高濃度とした太陽電池の内部構造を示した図。
【符号の説明】
11,111,211,311,411…シリコン基板、20,120,220,320…ヘッドアッセンブリ、21,22,23,121,122,123,221,222,223,321,322,323…ヘッド、24,124,224,324…低濃度n+ 用塗布剤、25,125,225,325…高濃度n+用塗布剤、26,226,326…拡散防止用塗布剤、227…高濃度p+用塗布剤、31,131,231,331…低濃度n+ 用塗布皮膜、32,132,232,332…高濃度n+ 用塗布皮膜、33,233,333…拡散防止用塗布皮膜、41,141,341,441…低濃度n+ 拡散層、42,142,342,442,542…高濃度n+ 拡散層、44,144,244,344,444,544…高濃度p+ 拡散層、51,151,251,351,451,551…負電極、52,152,252,352,452,552…正電極、53,153,353,453,553…アルミニウム膜。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a solar cell using a single crystal silicon substrate and a polycrystalline silicon substrate.
[0002]
[Prior art]
A solar cell formed by forming a pn junction on a single crystal silicon substrate or a polycrystalline silicon substrate is widely known and used. Such a solar cell is called a silicon pn junction type solar cell, and its operating principle is described in, for example, Yoshihiro Hamakawa and Yukinori Kuwano, “Solar Energy Engineering” (Baifukan) p21. 2. Description of the Related Art A solar cell is a photoelectric conversion device that converts light into electric energy, and it is desired to increase the photoelectric conversion efficiency that indicates the ability thereof. Next, a typical method for manufacturing a solar cell will be described below. By heating the p-type silicon substrate in a POCl 3 atmosphere or by heating while applying a coating agent containing phosphorus, a high-concentration dopant layer is introduced on the silicon substrate surface to form an n + layer. A metal electrode for extracting current is printed thereon. By printing aluminum on the entire back surface and firing it, aluminum and silicon are alloyed to form ap + layer, and a silver electrode for current extraction is printed. This step is substantially the same for a single crystal silicon substrate and a polycrystalline silicon substrate, and the difference is that in the case of polycrystalline silicon, a process for inactivating defects inside the substrate is required.
[0003]
In particular, solar cells for the purpose of increasing photoelectric conversion efficiency have been manufactured using a single crystal silicon substrate. For example, there are a PERC (passivated emitter and rear cell) structure and a PERL (passivated emitter rear locally diffused) structure described in the aforementioned “Solar Energy Engineering” p87. In each of these cases, the dopant concentration in the silicon portion at the contact portion between the metal electrode and silicon is increased, and the dopant concentration in other portions is not so increased. This is because the contact area between the metal electrode and silicon requires a high-concentration region of the dopant to reduce the contact resistance and increase the operating voltage. To do that. As described above, increasing the dopant concentration over the entire surface simplifies the process, but the concentration needs to be as high as about 0.1% of the silicon of the substrate, and such a layer is extremely carrier-free. Has a short lifetime and does not contribute to power generation. In addition, short wavelength light is easily absorbed in the high concentration layer due to its large absorption coefficient, but the short lifetime of the carrier does not contribute to power generation and causes loss. Therefore, in order to increase the photoelectric conversion efficiency of the solar cell, it is desirable to increase the dopant concentration only in the contact portion with the metal electrode portion and to decrease the concentration on the other surface.
[0004]
Conventionally, in order to form a dopant concentration pattern in which the dopant concentration only in the contact portion with the metal electrode portion as described above is made high and the dopant concentration on the other surface is lowered, resist pattern formation, diffusion and etching are performed. Must be repeated, and the process is complicated. This leads to increased product costs. Therefore, a solar cell with a patterned diffusion layer concentration has not been put to practical use despite having high photoelectric conversion efficiency. A method of patterning by screen printing using a paste containing a dopant is described in, for example, JP-A-8-335711. Screen printing is a simple and proven method.However, different pastes cannot be printed at the same time, and the printing and firing steps are required many times to form a pattern of dopant concentration distribution. there were.
[0005]
[Patent Document 1]
JP-A-8-335711 [0006]
[Problems to be solved by the invention]
Conventionally, complicated steps such as resist pattern formation have been required to change the dopant concentration depending on the location. However, this leads to an increase in the manufacturing cost of the solar cell, so that it is hardly used for manufacturing an actual product. An object of the present invention is to provide a method for changing a dopant concentration depending on a place by a simple process, and an object of the present invention is to provide a method for manufacturing a solar cell having high photoelectric conversion efficiency at low cost.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a solar cell using a single-crystal silicon substrate or a polycrystalline silicon substrate as a substrate and forming a pn junction by a coating diffusion method, wherein the coating agent has a plurality of dopant types or a plurality of dopants. A coating material having a dopant-containing concentration is used, and the coating agent is separately applied to a substrate by an inkjet method using the coating agent as ink. As the application / diffusion agent, those having different types of elements serving as dopants may be used. Furthermore, by separately applying a plurality of application diffusing agents, the manufacturing process is further simplified. Further, after the diffusion is carried out by the application and diffusion agent, a metal electrode may be formed on the upper surface of the metal electrode without peeling off the application and diffusion agent, and baking may be performed to secure electrical contact between silicon and the metal electrode.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a first embodiment of a method for manufacturing a back electrode type solar cell according to the present invention. First, a single crystal silicon substrate 11 having p-type conductivity is prepared as shown in (a), and as shown in (b), a coating agent 26 for preventing diffusion and a coating agent 25 for high concentration n + are formed by an inkjet method. In addition, the low concentration n + coating agent 24 can be applied at a time. A head 22, a head 23, and a head 24 are attached to the head assembly 20 in accordance with the type of the coating material, and each head ejects the coating material at appropriately set timing while the head assembly 20 moves. Thus, a desired coating pattern can be drawn. The anti-diffusion coating agent 26, the high-concentration n + coating agent 25 and the low-concentration n + coating agent 24 are each a mixture of an organic compound of silicon and an organic solvent, and the anti-diffusion coating agent 26 is used as a dopant. The high concentration n + coating agent 25 contains 5% by weight of diphosphorus pentoxide, and the low concentration n + coating agent 24 contains 0.5% by weight of diphosphorus pentoxide. is there. Here, the coating material 25 for high concentration n + is formed at the position where the negative electrode 51 is to be formed, the diffusion preventing coating material 26 is formed at the position where the positive electrode 52 is to be formed, and neither the negative electrode 51 nor the positive electrode 52 is formed. At the positions, the low concentration n + coating agent 24 was separately applied as shown in FIG. 3C to form a diffusion prevention film 33, a high concentration n + coating film 32 and a low concentration n + coating film 31. After the substrate 11 was dried at 200 ° C., heat treatment was performed at 1000 ° C. for 30 minutes in a mixed gas of nitrogen and oxygen to diffuse phosphorus as a dopant. Note that the diffusion prevention film 33 has a function of suppressing the gas containing the dopant that has oozed into the atmosphere from entering the silicon substrate 11. As a result, a high concentration n + region 42 and a low concentration n + region 41 are formed on the substrate 11 as shown in FIG. Next, as shown in (e), the diffusion preventing film 33, the high-concentration n + coating film 32 and the low-concentration n + coating film 31 are removed with hydrofluoric acid, and finally, as shown in (f), a negative electrode made of silver is formed. The electrode 51 and the positive electrode 52 were formed by screen printing to obtain a solar cell. The aluminum electrode 53 below the positive electrode 52 is for forming the p + layer 54. The solar cell of this embodiment can generate power even when light enters from any surface of the substrate 111.
[0009]
FIG. 2 shows a second embodiment of the method for manufacturing a solar cell according to the present invention. First, a single-crystal silicon substrate 111 having p-type conductivity is prepared as shown in (a), and a high-concentration n + coating agent 125 and a low-concentration n + coating agent are applied by an inkjet method as shown in (b). The agent 124 is applied. High concentration n + coating agent 125 the same as the high-concentration n + coating agent 25 in the first embodiment, the low-concentration n + coating agent 124 is a low concentration n + coating agent in the first embodiment The same as 24 was used. Also in this example, the high-concentration n + coating agent 125 and the low-concentration n + coating agent 124 were separately applied to form a high-concentration n + coating film 132 and a low-concentration n + coating film 131. After the substrate 111 was dried at 200 ° C., heat treatment was performed at 1000 ° C. for 30 minutes in a mixed gas of nitrogen and oxygen to diffuse phosphorus as a dopant. As a result, a high concentration n + region 142 and a low concentration n + region 141 are formed on the substrate 111 as shown in FIG. Next, as shown in (e), the high-concentration n + coating film 132 and the low-concentration n + coating film 131 are removed with hydrofluoric acid, and as shown in (f), the negative electrode 151 and the positive electrode 152 made of silver are removed. A solar cell was formed by screen printing. Note that the aluminum electrode 153 adjacent to the positive electrode 152 is for forming the p + layer 154. Note that the light receiving surface of the solar cell of this embodiment is only on the negative electrode 151 side.
[0010]
FIG. 3 shows a third embodiment of the method of manufacturing a solar cell according to the present invention. First, as shown in (a), a single-crystal silicon substrate 211 having p-type conductivity is prepared, and a coating agent 226 for preventing diffusion and a coating agent 227 for forming a high-concentration p + region and a coating agent 227 for forming a high-concentration n + region are formed. The agent 224 is applied. As shown in (b), the diffusion preventing coating 226 is the same as the diffusion preventing coating 26 in the first embodiment, and the high concentration n + region forming coating 224 is the first embodiment. The same high-concentration n + coating agent 25 as in the example and the high-concentration p + region forming coating agent 227 used a 1% by weight solution of boron oxide in a mixed solution of a silicon compound and an organic solvent. . In this embodiment, similarly to the first embodiment, the diffusion preventing coating 226, the high concentration p + region forming coating agent 227 and the high concentration n + region forming coating agent 224 are separately applied, and the diffusion preventing film 233, A coating film 234 for forming a high concentration p + region and a coating film 232 for forming a high concentration n + region were formed. After drying the substrate 211 at 200 ° C., heat treatment was performed at 1000 ° C. for 30 minutes in a mixed gas of nitrogen and oxygen to diffuse phosphorus and boron as dopants. As a result, a high concentration p + region 244 and a high concentration n + region 242 are formed on the substrate 211 as shown in FIG. Next, as shown in (e), the diffusion preventing film 233, the high-concentration p + region forming coating film 234 and the high-concentration n + region forming coating film 232 are removed with hydrofluoric acid, and as shown in (f), silver is removed. The negative electrode 251 and the positive electrode 252 made of were formed by screen printing to obtain a solar cell. Although a substrate having p-type conductivity is used for the substrate 211 in this embodiment, a substrate having n-type conductivity may be used. In that case, the positional relationship between the high concentration n + region and the high concentration p + region may be interchanged.
[0011]
FIG. 4 shows a fourth embodiment of the method for manufacturing a back electrode type solar cell according to the present invention. This embodiment is the same as the first embodiment from (a) to (d), except for (e). That is, the negative electrode 351 made of silver was directly printed thereon without removing the diffusion preventing film 333, the high-concentration n + coating film 332 and the low-concentration n + coating film 331. This is because the diffusion prevention film 333, the high-concentration n + coating film 332 and the low-concentration n + coating film 331 all have a thickness of about 200 nm immediately after application, whereas organic substances decompose and desorb due to high temperature during diffusion. As a result, the thickness is reduced, and the thickness is reduced to about 50 nm. On the other hand, a reducing agent is mixed in the raw material of the negative electrode 351 and baked, so that the negative electrode 351 penetrates the region 355 because the high-concentration p + region forming coating film 332 is thin, and the high-concentration n + region 342 Is electrically connected to Similarly, aluminum electrode 353 penetrates region 356 and is electrically connected to high-concentration p + region 354. The method of forming a silver electrode directly on a coating film as in this embodiment can be applied to the second embodiment and the third embodiment.
[0012]
It should be noted that the application and diffusion agent described above and the application agent for preventing diffusion can be processed in the shortest time if applied simultaneously, and the productivity is the highest. On the other hand, the coating may be performed using a separate ink jet coating apparatus for each type of coating agent.
[0013]
FIG. 5 shows an example in which a solar cell having the same performance as the first embodiment of the present invention is manufactured by a conventional method. Processing is started from (a), (b) shows high concentration diffusion, (c) resist pattern formation, (d) high concentration diffusion region pattern etching, (e) resist peeling, (f) low concentration diffusion, (g) The resist pattern formation, (h) low concentration diffusion region pattern etching, (i) resist stripping, and (j) electrode formation are completed. In the conventional method, the patterning, etching, and diffusion of the resist must be repeatedly performed, and the manufacturing process is complicated.
[0014]
【The invention's effect】
The photovoltaic conversion efficiency of the solar cell manufactured according to the first example was 13.0%. On the other hand, the photoelectric conversion efficiency of the solar cell manufactured by the conventional method and shown in FIG. 5 was 13.1%. Regarding the manufacturing cost, the solar cell manufactured according to the first example was 60% of the solar cell shown in FIG. Therefore, according to the present invention, the number of steps can be simplified with the same photoelectric conversion efficiency, and the manufacturing cost can be reduced. In the solar cell manufactured according to the second embodiment, the photoelectric conversion efficiency of the solar cell having the n + diffusion layer 542 on the entire front surface side shown in FIG. % Photoelectric conversion efficiency was obtained. On the other hand, the process of applying the coating agent for diffusion is the same in both the second embodiment and the fabrication of the solar cell of FIG. 6, so that the production cost was the same. Therefore, a solar cell with high photoelectric conversion efficiency could be obtained at the same manufacturing cost. The photovoltaic conversion efficiency of the solar cell manufactured according to the third embodiment was 12.5%. However, since the process of forming the electrodes was greatly simplified, the manufacturing cost was lower than that of the first embodiment. 90% could be achieved. In the solar cell manufactured according to the fourth example, the photoelectric conversion efficiency was 12.8%, which was slightly lower than that of the first example. On the other hand, since the process could be simplified, the manufacturing cost could be reduced to 92% of that of the first embodiment.
[0015]
Therefore, the present invention has the effect of improving the photoelectric conversion efficiency and reducing the manufacturing cost.
[Brief description of the drawings]
FIG. 1 is a view showing a manufacturing process of a solar cell according to a first embodiment of the present invention.
FIG. 2 is a view showing a manufacturing process of a solar cell according to a second embodiment of the present invention.
FIG. 3 is a view showing a manufacturing process of a solar cell according to a third embodiment of the present invention.
FIG. 4 is a view showing a manufacturing process of a solar cell according to a fourth embodiment of the present invention.
FIG. 5 is a diagram showing a manufacturing process when a solar cell equivalent to the first embodiment of the present invention is manufactured by a conventional method.
FIG. 6 is a view showing the internal structure of a solar cell in which the surface has a high dopant concentration over the entire surface.
[Explanation of symbols]
11, 111, 211, 311, 411: silicon substrate, 20, 120, 220, 320 ... head assembly, 21, 22, 23, 121, 122, 123, 221, 222, 223, 321, 322, 323 ... head, 24, 124, 224, 324: coating agent for low concentration n + , 25, 125, 225, 325: coating agent for high concentration n + , 26, 226, 326: coating agent for diffusion prevention, 227: high concentration p + , 31, 131, 231, 331... Low-concentration n + coating film, 32, 132, 232, 332... High-concentration n + coating film, 33, 233, 333. 141,341,441... Low concentration n + diffusion layer, 42,142,342,442,542... High concentration n + diffusion layer, 44,144,244,344,444,544 ... High-concentration p + diffusion layer, 51,151,251,351,451,551 ... Negative electrode, 52,152,252,352,452,552 ... Positive electrode, 53,153,353,453,553 ... Aluminum film .