【0001】
【発明の属する技術分野】
本発明は太陽電池素子の製造方法に関し、特に一主面側に異なる濃度の不純物拡散領域を形成する太陽電池素子の製造方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来の太陽電池素子を図2に示す。図2において、1は半導体基板、2は拡散領域、6は反射防止膜、7はBSF層、8は表面電極、9は裏面電極を示す。
【0003】
例えばP型半導体基板1の表面近傍の略全面に一定の深さまでN型不純物を拡散させてN型を呈する拡散領域2と窒化シリコン膜などから成る反射防止膜6を設け、他の主面側には例えばアルミニウムを高濃度に拡散させたBSF層7を設ける。また、一主面側には表面電極8を設けるとともに、他の主面側に裏面電極9を設けている。
【0004】
図2に示すような太陽電池は、一導電型の半導体基板1の一主面側に逆導電型不純物を均一に拡散することにより拡散領域2が形成されている。太陽光の照射により半導体基板1内部で発生した電子−正孔対はP型半導体基板1とN型拡散領域2の界面である接合の電界により、N型領域とP型領域に分離される。これを両主面側の電極8、9から取り出すことで電力を得ることができる。しかし、光照射により半導体基板1の内部で発生した電子と正孔は不純物拡散領域2の表面で一部が再結合してしまう。したがって、太陽電池の変換効率を向上させるためにはこの表面再結合を低減することが重要である。
【0005】
表面再結合を低減するためには表面の不純物濃度が低い方がよい。しかし、表面電極8と拡散領域2の接触部分で不純物濃度が低い場合、接触抵抗が増大して太陽電池の変換効率が低下してしまう。また、表面電極8の接合の突抜けによるリーク電流の増大を防ぐためにも表面電極8の下部の拡散領域2は深い、即ち高濃度の方が好ましい。これらの相反する条件を満足する方法として、表面電極8の下部に当たる部分に高濃度拡散領域を形成し、それ以外の受光領域を低濃度とする選択的不純物拡散法が考案されている(例えば、非特許文献1参照)。
【0006】
図3はこのような選択的不純物拡散による太陽電池素子の製造方法の一実施例を説明するための図である。図3において、1は半導体基板、2は第一の不純物拡散領域、3は不純物元素を含む酸化膜、5は第二の不純物拡散領域、6は反射防止膜、7はBSF層、8は表面電極、9は裏面電極、10はレジストを示す。
【0007】
例えばP型の半導体基板1を用意する(a)。次に、半導体基板1をPOCl3などの拡散源を用いて酸素を流しながら加熱することにより、半導体基板1の表面にリンの不純物元素を含む酸化膜3が形成されるとともに、その酸化膜3からリンが拡散されて半導体基板1の表面に第一の不純物拡散領域2が形成される(b)。表面電極の形成予定位置領域に耐薬品性のあるレジスト10を塗布し(c)、エッチングしてレジスト10を塗布した以外の部分の第一の不純物拡散領域2を除去する(d)。レジスト10および酸化膜3を除去してから(e)、表面に第二の不純物拡散領域5を形成する(f)。表面には反射防止膜6を形成するとともに、裏面には例えばアルミニウムなどを拡散させてBSF層7を形成する(g)。その後、表面電極8および裏面電極9を形成し(h)選択的不純物拡散による太陽電池素子が完成する。
【0008】
このような方法によれば、選択的に均一な拡散領域を形成することができる。しかしこの方法によると、工程が煩雑になり生産コストの高騰を招く。また、第一の不純物拡散領域2を形成した後に半導体基板1の表面をエッチングすることにより、電極の形成予定位置領域領域以外の第一の不純物拡散領域2を除去するため、反射率低減のために半導体基板1の表面に微細な凹凸を形成することは困難になる。つまり図3(a)の状態で半導体基板1の表面に微細な凹凸を形成し、その後、(b)に示すように第一の不純物拡散領域2を形成しても、電極の形成予定位置領域領域以外の受光面にあたる部分をエッチングするため、微細な凹凸はなくなってしまう。
【0009】
これを回避するために、電極の形成予定位置領域領域以外の受光面にあたる部分を微細な凹凸を形成しながらエッチングすることも考えられる。この方法によれば受光面に微細な凹凸を形成でき、太陽電池素子表面の反射率を下げることができる。しかし、より有効に反射率を低減するために微細な凹凸を形成しようとすると、エッチング量が足りず第一の不純物拡散領域2を除去することができないため、あらかじめ薬液などで第一の不純物拡散領域2を除去してから微細な凹凸を形成することになり、さらに工程の増加を招くことになる。
【0010】
図4は選択的不純物拡散による太陽電池素子の他の製造方法を示す図である。図4において、1は半導体基板、2は第一の不純物拡散領域、5は第二の不純物拡散領域、6は反射防止膜、7はBSF層、8は表面電極、9は裏面電極、10はレジスト、11は酸化膜を示す。
【0011】
たとえばP型の半導体基板1を準備する(a)。この半導体基板1を酸化雰囲気中で加熱することにより、表面に酸化膜11を形成する(b)。次に、表面電極8の形成予定位置領域以外をレジスト10で覆い(c)、薬液で処理することによって酸化膜11の表面電極8の形成予定位置領域に窓を開ける(d)。この窓を用いて逆導電型不純物を拡散することにより第二の不純物拡散領域5を選択的に形成する(e)。その後、表面側の酸化膜11のみを除去し(f)再度拡散することによって表面に第一の不純物拡散領域2を形成し、その後酸化膜11を除去する(g)。その後、表面側に反射防止膜6を形成するとともに、裏面側にアルミニウムなどを拡散させることによってBSF層7を形成する(h)。その後、表面電極8および裏面電極9を形成することによって太陽電池素子が完成する。
【0012】
この方法によれば、選択的に均一な拡散領域5を形成することができる。しかしこの方法によっても工程が複雑になり製造コストの高騰を招く。また、酸化膜11を形成するための高温プロセスが増えるため、半導体基板1に与えるダメージが増大して半導体基板1の割れが発生しやすくなったり、太陽電池素子の出力特性の低下を招くといった問題が発生する。
【0013】
本発明はこのような従来技術の問題点に鑑みてなされたものであり、簡易な工程で高効率の太陽電池素子を製造する方法を提供することを目的とする。
【0014】
【非特許文献1】
Jianhua Zhao,etc.”22.3% EFFICIENT SILICON SOLAR CELL MODULE” 25th Photovoltaic Specialists Conf.(1996) P.1203−1206
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る太陽電池素子の製造方法では、一導電型半導体基板の一主面側に逆導電型の不純物拡散領域と表面電極とを形成する太陽電池素子の製造方法において、前記半導体基板の一主面側または両主面側の略全面に一回目の熱処理を行って第一の不純物拡散領域を形成した後、前記半導体基板の前記表面電極の形成予定位置領域に不純物拡散剤を塗布して二回目の熱処理を行って第二の不純物拡散領域を形成することを特徴とする。
【0016】
このとき、前記半導体基板の一主面側または両主面側の略全面に不純物元素を含む酸化膜を形成して前記一回目の熱処理を行って第一の不純物拡散領域を形成したほうがよい。
【0017】
また、前記酸化膜上の前記電極の形成予定位置領域に前記不純物拡散剤を塗布して前記二回目の熱処理を行って前記第二の不純物拡散領域を形成したほうがよい。
【0018】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づき詳細に説明する。図1に本発明に係る太陽電池素子の製造方法を示す。図1において、1は半導体基板、2は第一の不純物拡散領域、3は不純物元素を含む酸化膜、4は不純物拡散剤、5は第二の不純物拡散領域、6は反射防止膜、7はBSF層、8は表面電極、9は裏面電極を示す。
【0019】
本発明に係る太陽電池素子の製造方法では、まず、例えばp型半導体基板1をPOCl3などの不純物ガスを含む酸性ガス中、温度約700〜900℃で1回目の熱処理を行うことにより半導体基板1表面にP2O5などの不純物元素を含む厚さ数十nmの酸化膜3を形成すると同時に、酸化膜3からの不純物拡散で約第一の不純物拡散領域2を形成する(a)(b)。この第1の不純物拡散層は太陽電池素子の受光部に当たるため、シート抵抗で約70〜200Ω/□の低濃度の不純物拡散層を形成することが望ましい。このような気相拡散法では、炉内の温度やガスの分布を制御することで比較的均一な拡散領域2を形成することが可能である。
【0020】
次に、不純物元素を含む酸化膜3上からスクリーン印刷法等により不純物拡散剤4を表面電極8のパターンに合わせて約10μmの厚みで塗布する(c)。このとき印刷の幅は、この後の表電極形成工程の位置合わせ誤差を考慮して表電極の幅よりも数10μm程度広くしておく。なお、不純物拡散剤4は、例えばりん酸やリン酸塩等の不純物元素と樹脂と溶剤を主成分とするペーストであり、印刷条件に合わせて10〜100Pas程度の粘度に調整されている。このとき、半導体基板1上の不純物元素を含む酸化膜3の表面にスクリーン表面の金属等のライフタイムキラーと呼ばれる特性低下の原因となり得る不純物元素が若干付着する。
【0021】
この後、半導体基板1を約700〜900℃で二回目の熱処理を行うことにより表面電極8のパターンに不純物を高濃度に含む酸化膜を形成するとともにこの酸化膜からの不純物拡散により第二の不純物拡散領域5を形成する(d)。この第二の不純物拡散領域は表面電極との接点に当たるため、シート抵抗で約10〜60Ω/□の高濃度の不純物拡散層を形成することが望ましい。このとき、半導体基板1の表面の不純物元素を含む酸化膜3は金属等の不純物固溶度が高く、不純物の拡散係数も小さいため、不純物のバリア層となり、印刷時に不純物元素を含む酸化膜3の表面に付着した金属等の不純物が半導体基板1内部に拡散することを抑制する。また、第一の不純物拡散領域2をスクリーン印刷前に形成するため、比較的均一な第一の不純物拡散領域2を形成することが可能となる。このため、太陽電池の特性低下を防ぎ、高効率な太陽電池素子を得ることができる。
【0022】
次に、薬液処理により不純物元素を含む酸化膜3とその上に余剰に残った不純物拡散剤4を除去した後(e)、半導体基板1の一主面側に窒化シリコン膜などから成る反射防止膜6を設けるとともに、他の主面側にアルミニウム等を拡散させることによってBSF層7を形成する(f)。その後、表面電極8と裏面電極9を設けることにより太陽電池素子が完成する。
【0023】
なお、半導体基板1は、単結晶または多結晶シリコンなどからなり、引き上げ法や鋳造法などによって形成される。また、反射防止膜6は例えば窒化シリコン膜などからなり、シランとアンモニアとの混合ガスを用いたプラズマCVD法などで形成される。さらに、裏面電極7と表面電極8は銀などからなり、銀粉末と有機ビヒクルにガラスフリットを添加してペースト状にしたものをスクリーン印刷法で印刷して600〜800℃で1〜30分程度焼成することによって焼き付けて形成される。この電極7、8の表面ははんだ(不図示)で被覆される。
【0024】
【実施例】
本発明に係る太陽電池素子の製造方法の実施例を説明する。まず、半導体基板1としてP型を呈する板状のシリコン基板1の一主面側に、反応性イオンエッチング法を用いて略全面に微細な凹凸を多数形成した(図不示)。微細な凹凸は入射光を閉じこめて反射率を低減させ、太陽電池素子の短絡電流を増大させる。次に、POCl3とO2を含むガス中で約700℃、30minの一回目の熱処理を行い表面に約30nmの不純物元素を含有する酸化膜3と第一の不純物拡散領域2を形成した。
【0025】
次に、スクリーン印刷法により、表面電極8の形成予定パターンに合わせて不純物拡散剤4を塗布した。このとき、スクリーンは約5000枚の印刷に使用後のものを用いた。これは長時間使用してスクリーン表面に金属等の特性低下の原因となり得る不純物元素が付着した状態を再現するためである。また、スクリーンはナイロン製、150メッシュを使用した。この後、窒素雰囲気中で800℃、10minの二回目の熱処理を行い、第二の不純物拡散領域5を形成した。
【0026】
次に、半導体基板1の一主面側にCVD装置で反射防止膜6を形成し、一主面側以外の第一の不純物拡散領域2を除去した。また、他の主面側にはアルミニウムペーストを塗布して焼成することによりBSF層7を形成した。その後、第二の不純物拡散領域5の上に銀などからなる電極材料を塗布するとともに、他の主面側も銀を主成分とする電極材料を塗布して焼き付けることにより、表面電極8および裏面電極9を形成して太陽電池素子を得た。
【0027】
以上のようにして作製した太陽電池素子と図4に示す従来の方法で電極8の下部に高濃度の拡散領域5を形成した太陽電池素子の電気特性(100枚平均)を表1に示す。
【0028】
【表1】
【0029】
表1から分かるように、本発明による方法を用いれば従来よりも簡易な方法で高特性の太陽電池素子を得ることができる。
【0030】
なお、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で多くの修正および変更を加えることができる。例えば低濃度拡散領域の形成はガラス成分を含む拡散剤を塗布して熱処理する方法でもよい。この方法であっても半導体基板表面の酸化膜と低濃度拡散領域は比較的均一に形成される。
【0031】
【発明の効果】
以上詳細に説明したように、本発明に係る太陽電池素子の製造方法によれば、半導体基板の一主面側または両主面側の略全面に一回目の熱処理を行って第一の不純物拡散領域を形成した後、上記半導体基板の上記表面電極の形成予定位置領域に不純物拡散剤を塗布して二回目の熱処理を行って第二の不純物拡散領域を形成することから、簡易な方法で選択的拡散領域を有する太陽電池素子を得ることができ、また第二の不純物拡散領域を形成する前に太陽電池素子の出力特性に与える影響の大きい第一の不純物拡散領域を比較的均一に形成することができ、出力特性が向上した太陽電池素子を得ることができる。
【0032】
また、半導体基板の一主面または両主面側の略全面に不純物元素を含む酸化膜を形成して一回目の熱処理を行って第一の不純物拡散領域を形成すると、太陽電池素子の出力特性に与える影響の大きい第一の不純物拡散領域をさらに均一に形成することができ、出力特性が向上した太陽電池素子を得ることができる。
【0033】
また、酸化膜上の前記電極の形成予定位置領域に前記不純物拡散剤を塗布して二回目の熱処理を行って第二の不純物拡散領域を形成すると、半導体基板の表面の不純物元素を含む酸化膜は金属等の不純物固溶度が高く、不純物の拡散係数も小さいため、不純物のバリア層となり、印刷時に不純物元素を含む酸化膜の表面に付着した金属等の不純物が半導体基板内部に拡散することを抑制できることから、不純物拡散剤を塗布する際に付着する金属などの不純物が半導体基板内に拡散することを防止することができ、特性低下を防止できる。
【図面の簡単な説明】
【図1】本発明に係る太陽電池素子の製造方法の一実施形態を示す図である。
【図2】従来の太陽電池素子の構造を説明するための図である。
【図3】従来の太陽電池素子の製造方法の一例を示す図である。
【図4】従来の太陽電池素子の製造方法の他の例を示す図である。
【符号の説明】
1・・・半導体基板、2・・・第一の不純物拡散領域、3・・・不純物元素を含む酸化膜、4・・・不純物拡散剤、5・・・第二の不純物拡散領域、6・・・反射防止膜、7・・・BSF層、8・・・表面電極、9・・・裏面電極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a solar cell element, and more particularly to a method for manufacturing a solar cell element in which impurity diffusion regions having different concentrations are formed on one principal surface side.
[0002]
2. Description of the Related Art
FIG. 2 shows a conventional solar cell element. In FIG. 2, 1 is a semiconductor substrate, 2 is a diffusion region, 6 is an antireflection film, 7 is a BSF layer, 8 is a front electrode, and 9 is a back electrode.
[0003]
For example, an N-type impurity is diffused to a certain depth over substantially the entire surface near the surface of the P-type semiconductor substrate 1 to provide an N-type diffusion region 2 and an anti-reflection film 6 made of a silicon nitride film or the like. For example, a BSF layer 7 in which aluminum is diffused at a high concentration is provided. In addition, a front surface electrode 8 is provided on one main surface side, and a back surface electrode 9 is provided on another main surface side.
[0004]
In the solar cell as shown in FIG. 2, a diffusion region 2 is formed by uniformly diffusing an impurity of the opposite conductivity type on one main surface side of the semiconductor substrate 1 of one conductivity type. Electron-hole pairs generated inside the semiconductor substrate 1 by the irradiation of sunlight are separated into an N-type region and a P-type region by a junction electric field at an interface between the P-type semiconductor substrate 1 and the N-type diffusion region 2. Electric power can be obtained by extracting this from the electrodes 8 and 9 on both main surfaces. However, electrons and holes generated inside the semiconductor substrate 1 by light irradiation are partially recombined on the surface of the impurity diffusion region 2. Therefore, it is important to reduce this surface recombination in order to improve the conversion efficiency of the solar cell.
[0005]
In order to reduce surface recombination, it is preferable that the impurity concentration on the surface is low. However, when the impurity concentration is low at the contact portion between the surface electrode 8 and the diffusion region 2, the contact resistance increases and the conversion efficiency of the solar cell decreases. The diffusion region 2 below the surface electrode 8 is preferably deep, that is, has a high concentration, in order to prevent an increase in leakage current due to penetration of the junction of the surface electrode 8. As a method for satisfying these contradictory conditions, a selective impurity diffusion method has been devised in which a high concentration diffusion region is formed in a portion corresponding to a lower portion of the surface electrode 8 and the other light receiving regions are low concentration (for example, Non-Patent Document 1).
[0006]
FIG. 3 is a view for explaining an embodiment of a method for manufacturing a solar cell element by such selective impurity diffusion. 3, reference numeral 1 denotes a semiconductor substrate, 2 denotes a first impurity diffusion region, 3 denotes an oxide film containing an impurity element, 5 denotes a second impurity diffusion region, 6 denotes an antireflection film, 7 denotes a BSF layer, and 8 denotes a surface. The electrode, 9 is a back electrode, and 10 is a resist.
[0007]
For example, a P-type semiconductor substrate 1 is prepared (a). Next, by heating the semiconductor substrate 1 while flowing oxygen using a diffusion source such as POCl 3 , an oxide film 3 containing a phosphorus impurity element is formed on the surface of the semiconductor substrate 1 and the oxide film 3 is formed. Is diffused from the substrate to form a first impurity diffusion region 2 on the surface of the semiconductor substrate 1 (b). A resist 10 having chemical resistance is applied to the region where the surface electrode is to be formed (c), and the first impurity diffusion region 2 other than the resist 10 is removed by etching (d). After removing the resist 10 and the oxide film 3 (e), a second impurity diffusion region 5 is formed on the surface (f). An anti-reflection film 6 is formed on the front surface, and a BSF layer 7 is formed on the back surface by diffusing aluminum or the like, for example (g). Thereafter, the front surface electrode 8 and the back surface electrode 9 are formed, and (h) a solar cell element is completed by selective impurity diffusion.
[0008]
According to such a method, a uniform diffusion region can be selectively formed. However, according to this method, the steps become complicated and the production cost rises. Further, by etching the surface of the semiconductor substrate 1 after the formation of the first impurity diffusion region 2, the first impurity diffusion region 2 other than the region where the electrode is to be formed is removed. Then, it becomes difficult to form fine irregularities on the surface of the semiconductor substrate 1. That is, even if fine irregularities are formed on the surface of the semiconductor substrate 1 in the state of FIG. 3A and then the first impurity diffusion region 2 is formed as shown in FIG. Since a portion corresponding to the light receiving surface other than the region is etched, fine irregularities disappear.
[0009]
In order to avoid this, it is conceivable to etch a portion corresponding to the light receiving surface other than the region where the electrode is to be formed while forming fine irregularities. According to this method, fine irregularities can be formed on the light receiving surface, and the reflectance of the solar cell element surface can be reduced. However, when trying to form fine irregularities to more effectively reduce the reflectance, the first impurity diffusion region 2 cannot be removed because the etching amount is insufficient, so that the first impurity diffusion After the region 2 is removed, fine irregularities are formed, which further increases the number of steps.
[0010]
FIG. 4 is a view showing another method of manufacturing a solar cell element by selective impurity diffusion. In FIG. 4, 1 is a semiconductor substrate, 2 is a first impurity diffusion region, 5 is a second impurity diffusion region, 6 is an antireflection film, 7 is a BSF layer, 8 is a front electrode, 9 is a back electrode, and 10 is a back electrode. Resist 11 indicates an oxide film.
[0011]
For example, a P-type semiconductor substrate 1 is prepared (a). By heating this semiconductor substrate 1 in an oxidizing atmosphere, an oxide film 11 is formed on the surface (b). Next, the area other than the area where the surface electrode 8 is to be formed is covered with the resist 10 (c), and a window is opened in the oxide film 11 at the area where the surface electrode 8 is to be formed by treating with a chemical solution (d). The second impurity diffusion region 5 is selectively formed by diffusing the impurity of the opposite conductivity type using the window (e). Thereafter, only the oxide film 11 on the front surface side is removed (f), and the first impurity diffusion region 2 is formed on the surface by diffusing again, and then the oxide film 11 is removed (g). Thereafter, an anti-reflection film 6 is formed on the front surface side, and BSF layer 7 is formed by diffusing aluminum or the like on the back surface side (h). Thereafter, the front surface electrode 8 and the back surface electrode 9 are formed to complete the solar cell element.
[0012]
According to this method, a uniform diffusion region 5 can be selectively formed. However, this method also complicates the process and raises the manufacturing cost. In addition, since the number of high-temperature processes for forming the oxide film 11 increases, the damage to the semiconductor substrate 1 increases, so that the semiconductor substrate 1 is easily cracked or the output characteristics of the solar cell element deteriorate. Occurs.
[0013]
The present invention has been made in view of such problems of the related art, and an object of the present invention is to provide a method for manufacturing a solar cell element with high efficiency by a simple process.
[0014]
[Non-patent document 1]
Jianhua Zhao, etc. "22.3% EFFICIENT SILICON SOLAR CELL MODULE" 25th Photovoltaic Specialists Conf. (1996) P.A. 1203-1206
[0015]
[Means for Solving the Problems]
In order to achieve the above object, in a method for manufacturing a solar cell element according to the present invention, there is provided a method for manufacturing a solar cell element in which an impurity diffusion region of a reverse conductivity type and a surface electrode are formed on one main surface side of a semiconductor substrate of one conductivity type. In the method, after a first heat treatment is performed on substantially the entire main surface side or both main surface sides of the semiconductor substrate to form a first impurity diffusion region, a region where the surface electrode of the semiconductor substrate is to be formed is formed. And a second heat treatment is performed to form a second impurity diffusion region.
[0016]
At this time, it is preferable to form an oxide film containing an impurity element on substantially the entire main surface side or both main surface sides of the semiconductor substrate and perform the first heat treatment to form a first impurity diffusion region.
[0017]
Further, it is preferable to form the second impurity diffusion region by applying the impurity diffusing agent to the region where the electrode is to be formed on the oxide film and performing the second heat treatment.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a method for manufacturing a solar cell element according to the present invention. In FIG. 1, 1 is a semiconductor substrate, 2 is a first impurity diffusion region, 3 is an oxide film containing an impurity element, 4 is an impurity diffuser, 5 is a second impurity diffusion region, 6 is an antireflection film, and 7 is The BSF layer, 8 indicates a front electrode, and 9 indicates a back electrode.
[0019]
In the method for manufacturing a solar cell element according to the present invention, first, for example, the p-type semiconductor substrate 1 is subjected to a first heat treatment at a temperature of about 700 to 900 ° C. in an acidic gas containing an impurity gas such as POCl 3. At the same time, an oxide film 3 having a thickness of several tens nm containing an impurity element such as P 2 O 5 is formed on one surface, and at the same time, an approximately first impurity diffusion region 2 is formed by impurity diffusion from the oxide film 3 (a) ( b). Since the first impurity diffusion layer corresponds to the light receiving portion of the solar cell element, it is desirable to form a low concentration impurity diffusion layer having a sheet resistance of about 70 to 200 Ω / □. In such a gas phase diffusion method, it is possible to form a relatively uniform diffusion region 2 by controlling the temperature and gas distribution in the furnace.
[0020]
Next, an impurity diffusing agent 4 is applied on the oxide film 3 containing the impurity element by a screen printing method or the like to a thickness of about 10 μm according to the pattern of the surface electrode 8 (c). At this time, the width of the printing is set to be several tens μm wider than the width of the front electrode in consideration of a positioning error in a subsequent step of forming the front electrode. The impurity diffusing agent 4 is a paste mainly composed of an impurity element such as phosphoric acid or phosphate, a resin and a solvent, and is adjusted to a viscosity of about 10 to 100 Pas according to printing conditions. At this time, an impurity element such as a metal on the screen surface which may cause a deterioration in characteristics called a lifetime killer slightly adheres to the surface of the oxide film 3 containing the impurity element on the semiconductor substrate 1.
[0021]
Thereafter, the semiconductor substrate 1 is subjected to a second heat treatment at about 700 to 900 ° C. to form an oxide film containing a high concentration of impurities in the pattern of the surface electrode 8 and to diffuse the impurities from the oxide film into a second film. An impurity diffusion region 5 is formed (d). Since the second impurity diffusion region is in contact with the surface electrode, it is desirable to form a high concentration impurity diffusion layer having a sheet resistance of about 10 to 60 Ω / □. At this time, the oxide film 3 containing the impurity element on the surface of the semiconductor substrate 1 has a high impurity solid solubility of a metal or the like and a small diffusion coefficient of the impurity, so that it becomes a barrier layer of the impurity, and the oxide film 3 containing the impurity element during printing. The diffusion of impurities such as metals attached to the surface of the semiconductor substrate 1 into the semiconductor substrate 1 is suppressed. In addition, since the first impurity diffusion region 2 is formed before screen printing, it is possible to form the first impurity diffusion region 2 that is relatively uniform. Therefore, it is possible to prevent the characteristics of the solar cell from deteriorating, and to obtain a highly efficient solar cell element.
[0022]
Next, after removing the oxide film 3 containing the impurity element and the excess impurity diffusing agent 4 remaining on the oxide film 3 containing the impurity element by a chemical solution treatment (e), an anti-reflection made of a silicon nitride film or the like is formed on one main surface side of the semiconductor substrate 1. The BSF layer 7 is formed by providing the film 6 and diffusing aluminum or the like to the other main surface side (f). Then, the solar cell element is completed by providing the front surface electrode 8 and the back surface electrode 9.
[0023]
The semiconductor substrate 1 is made of single crystal or polycrystalline silicon, and is formed by a pulling method, a casting method, or the like. The antireflection film 6 is made of, for example, a silicon nitride film or the like, and is formed by a plasma CVD method using a mixed gas of silane and ammonia. Further, the back electrode 7 and the front electrode 8 are made of silver or the like, and a paste made by adding a glass frit to a silver powder and an organic vehicle is printed by a screen printing method at 600 to 800 ° C. for about 1 to 30 minutes. It is formed by baking by firing. The surfaces of the electrodes 7 and 8 are covered with solder (not shown).
[0024]
【Example】
An example of a method for manufacturing a solar cell element according to the present invention will be described. First, on the one principal surface side of a plate-shaped silicon substrate 1 exhibiting a P-type as the semiconductor substrate 1, a large number of fine irregularities were formed on substantially the entire surface by a reactive ion etching method (not shown). Fine irregularities confine incident light, reduce reflectance, and increase short-circuit current of the solar cell element. Next, a first heat treatment was performed in a gas containing POCl 3 and O 2 at about 700 ° C. for 30 minutes to form an oxide film 3 containing an impurity element of about 30 nm and a first impurity diffusion region 2 on the surface.
[0025]
Next, the impurity diffusing agent 4 was applied by a screen printing method in accordance with the pattern for forming the surface electrode 8. At this time, the screen used after printing about 5,000 sheets was used. This is to reproduce a state in which an impurity element such as a metal, which may cause deterioration in characteristics, is attached to the screen surface after being used for a long time. The screen was made of nylon and 150 mesh. Thereafter, a second heat treatment was performed in a nitrogen atmosphere at 800 ° C. for 10 minutes to form a second impurity diffusion region 5.
[0026]
Next, an antireflection film 6 was formed on one main surface side of the semiconductor substrate 1 by a CVD apparatus, and the first impurity diffusion region 2 other than the one main surface side was removed. On the other main surface side, a BSF layer 7 was formed by applying an aluminum paste and baking it. Thereafter, an electrode material made of silver or the like is applied on the second impurity diffusion region 5, and an electrode material containing silver as a main component is applied and baked on the other main surface side as well, so that the surface electrode 8 and the back surface are formed. The electrode 9 was formed to obtain a solar cell element.
[0027]
Table 1 shows the electrical characteristics (average of 100 sheets) of the solar cell element manufactured as described above and the solar cell element in which the high concentration diffusion region 5 was formed below the electrode 8 by the conventional method shown in FIG.
[0028]
[Table 1]
[0029]
As can be seen from Table 1, by using the method according to the present invention, a solar cell element having high characteristics can be obtained by a simpler method than before.
[0030]
The present invention is not limited to the above embodiment, and many modifications and changes can be made within the scope of the present invention. For example, the low concentration diffusion region may be formed by applying a diffusing agent containing a glass component and performing a heat treatment. Even with this method, the oxide film and the low concentration diffusion region on the surface of the semiconductor substrate are formed relatively uniformly.
[0031]
【The invention's effect】
As described in detail above, according to the method for manufacturing a solar cell element according to the present invention, the first heat treatment is performed on substantially the entire main surface side or both main surface sides of the semiconductor substrate to perform the first impurity diffusion. After forming the region, an impurity diffusing agent is applied to the region where the surface electrode is to be formed of the semiconductor substrate, and a second heat treatment is performed to form a second impurity diffusion region. A solar cell element having a passive diffusion region can be obtained, and a first impurity diffusion region having a large effect on the output characteristics of the solar cell element is formed relatively uniformly before forming the second impurity diffusion region. Thus, a solar cell element having improved output characteristics can be obtained.
[0032]
Further, when an oxide film containing an impurity element is formed over one main surface or substantially the entire main surface of the semiconductor substrate and subjected to a first heat treatment to form a first impurity diffusion region, the output characteristics of the solar cell element can be improved. The first impurity diffusion region having a large effect on the semiconductor device can be formed more uniformly, and a solar cell element with improved output characteristics can be obtained.
[0033]
Further, when the impurity diffusion agent is applied to a region where the electrode is to be formed on the oxide film and a second heat treatment is performed to form a second impurity diffusion region, the oxide film containing the impurity element on the surface of the semiconductor substrate is formed. Has a high solid solubility of impurities such as metals and a low diffusion coefficient of impurities, so that it becomes a barrier layer of impurities, and impurities such as metals adhering to the surface of the oxide film containing the impurity elements during printing are diffused into the semiconductor substrate. Therefore, it is possible to prevent impurities such as metal adhering when applying the impurity diffusing agent from diffusing into the semiconductor substrate, and to prevent deterioration in characteristics.
[Brief description of the drawings]
FIG. 1 is a view showing one embodiment of a method for manufacturing a solar cell element according to the present invention.
FIG. 2 is a view for explaining the structure of a conventional solar cell element.
FIG. 3 is a diagram illustrating an example of a conventional method for manufacturing a solar cell element.
FIG. 4 is a diagram showing another example of a conventional method for manufacturing a solar cell element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... 1st impurity diffusion area, 3 ... Oxide film containing an impurity element, 4 ... Impurity diffuser, 5 ... 2nd impurity diffusion area, 6 ..Anti-reflection films, 7 BSF layers, 8 front electrodes, 9 back electrodes