[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004286632A - Circuit for monitoring vswr - Google Patents

Circuit for monitoring vswr Download PDF

Info

Publication number
JP2004286632A
JP2004286632A JP2003080015A JP2003080015A JP2004286632A JP 2004286632 A JP2004286632 A JP 2004286632A JP 2003080015 A JP2003080015 A JP 2003080015A JP 2003080015 A JP2003080015 A JP 2003080015A JP 2004286632 A JP2004286632 A JP 2004286632A
Authority
JP
Japan
Prior art keywords
signal
transmission signal
output
wave
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003080015A
Other languages
Japanese (ja)
Inventor
Kazuyuki Totani
一幸 戸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003080015A priority Critical patent/JP2004286632A/en
Publication of JP2004286632A publication Critical patent/JP2004286632A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure VSWR by considering leak power from ISO port. <P>SOLUTION: A VSWR monitoring circuit is provided with the means of: (1) adjusting a vector regulator 105 at a detection voltage of the output coupled with reversed phase of the amplified branch signal by way of the vector adjuster 105, the branch signal before amplifying which is branched signal before amplifying the transmission signal progressive wave 121, with the amplified branch signal having branched the signal after amplifying, and the branched signal before amplifying; (2) adjusting the transmission signal advancing wave branched from a part of the output of the vector regulator 105 with a second vector regulator 108; and (3) removing the advancing wave component by making the output of the second vector regulator 108 couple to a reflection branch signal which separated the reflection wave 122 that includs leakage signal of the transmission signal advancing wave 121, with reversed phase. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は無線通信送受信装置、特に高周波送信装置における高周波送信信号の反射波を検出するVSWRモニタ回路に関するものである。
【0002】
【従来の技術】
VSWRモニタ回路としては高周波送信回路に組み込まれたサーキュレータ、分配器、方向性結合器などを用いて送信信号反射波を分岐信号として取出し、検波器などを用いて検波電圧を検出し、送信信号進行波の電圧とその反射波の電圧の大きさを測定し、定在波比(VSWR)を求めるのが一般的である。また、進行波の電力(電圧、電流)は一義的に決まっているため、反射波の検出方法についてその高精度化に対して研究されている。たとえば特開平11−27218号公報図1には無線送受信装置の空中線系の障害により発生する反射波の測定方法が開示されており、その測定回路の構成図が記載されている。図において1は送信終段増幅器、2はサーキュレータ、3は空中線、4は分配器、5はストリップライン、6、7は検波器、8は制御回路、13は空中線コネクタ端子である。
【0003】
次に動作について説明する。送信終段増幅器1の出力はサーキュレータ2の出力1により空中線コネクタ端子13を経て空中線3に出力される。反射波はサーキュレータ2の出力2から分配器4を介して検波器6、7に入力され、ストリップライン5を用いてそれぞれの測定位置での検波電圧を測定し、それらのばらつきに対して制御回路8で平均化処理し、最終的に定在波の異常を検出している。また、特開平11−27218号公報図3には反射波を検出するサーキュレータ2に加えて出力をモニタする方向性結合器12があり、これらの出力を検波してVSWRを求めている。
【0004】
【特許文献1】
特開平11−27218号公報
【0005】
【発明が解決しようとする課題】
特開平11−27218に示すサーキュレータは通常、マイクロストリップ線路や導波管回路で形成され、Y型タイプの3開口(ポート)の場合、ポート内の伝送線路内部中心に磁化されたフェライトを組込、任意の1方向からの入射電力は出力ポートの1方向にのみ伝送される。他の出力ポートはISOポートと呼び、原理的には入射電力は伝送されない。しかし、このようなISOポートの電力損失量は高々20dB程度であり、フェライトなどの形状の最適化を図っても30dBまでの電力損失量までしか確保できない。四端子の方向性結合器も同様であり、特に送信装置基地局などで送受する1GHz以上の高周波回路ではこれらの電力の帯域は狭帯域になっており、多重通信方式(0.8〜2.0GHz)などの共通伝送回路の設計ではISOポートには無視できない電力の漏れが生じる。従ってISOポートからの漏れ電力の影響でVSWRの精度が低下すると言う問題があった。
【0006】
この発明は上記のような問題点を解決するためになされたもので、ISOポートからの漏れ電力も考慮してVSWRの精測を行うことを目的とする。
【0007】
【課題を解決するための手段】
この発明に係るVSWRモニタ回路は高周波送信信号進行波の増幅前の信号の一部を分波した増幅前分岐信号と、高周波送信信号進行波の増幅後の信号の一部を分波した増幅分岐信号と、前記増幅前分岐信号をベクトル調整器を介して前記増幅分岐信号と逆位相で結合させた出力の検波電圧を検出し前記ベクトル調整器を調整する第1の手段と、前記ベクトル調整器の出力の一部から分波した増幅前分岐信号を位相と振幅を調整する第2の手段に入力し、前記第2の手段の出力と高周波送信信号進行波の増幅後の漏れ信号を含む高周波送信信号の出力端からの高周波送信信号反射波の一部を分波した反射分岐信号とを逆位相で結合させることにより反射分岐信号の出力を検出するものである。
【0008】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施形態1を図1について説明する。図において、101は高周波送信信号入力端子、102は高周波送信信号を分岐する第1の方向性結合器であり、未使用の開口(ポート)は終端器で終端処理されている。103は高周波送信信号増幅器、104は増幅された高周波送信信号を分岐する第2の方向性結合器、105は分岐された増幅前の高周波送信信号の振幅と位相を調整する第1ベクトル調整器、106は第1分配器、107は第1の結合器、108は第2ベクトル調整器、109は第2の結合器、110,111は検波器、112,113はアナログ・デジタル(A/D)変換器、114はベクトル調整制御器、115はデジタル・アナログ(D/A)変換器、116はVSWRモニタ、117は高周波信号出力端子(コネクタ端子)であり、空中線などに接続される。118は内部インターフェース端子であり、VSWRに関する情報を高周波送信装置に送出する。
【0009】
次に動作について説明する。高周波送信信号入力端子(入力端子)101に高周波送信信号を入力し、第1の方向性結合器102を介して高周波送信信号増幅器(増幅器)103で増幅した高周波送信信号の進行波(送信信号進行波)121を第2の方向性結合器104を介して高周波信号出力端子(出力端子とも呼ぶ)117に出力する。増幅された送信信号進行波121はその出力端である空中線(図示せず)から電波として放出されるが、一方では空中線やコネクタ端子117で発生した送信信号反射波122が送信信号進行波121とは逆方向に向かって進行し増幅器103との伝送線路間では定在波として観測される。
【0010】
第2の方向性結合器104の一方の分岐ポート(3)には送信信号進行波121の分岐信号が出力され、他方のポート(4)には送信信号反射波122の分岐信号が主に出力される。この時、第2の方向性結合器104の他方のポート(4)には強力な送信信号進行波121の一部が漏れ電力として出力される。その電力量は通常は微弱な送信信号反射波122の分岐信号と同レベルにまでに達することもあり、送信信号反射波122の分岐信号とは同方向の位相の異なる電力が重畳する。
【0011】
第2の方向性結合器104の一方の分岐ポート(3)には送信信号進行波121の分岐信号が出力されるが、送信信号反射波122の分岐信号の一部も漏れ電力として出力される。その電力量は送信信号反射波122のISO(抑圧)ポートからの出力となるからほとんど無視できる電力量であるが送信信号進行波の分岐信号とは同方向の位相の異なる僅かな電力として重畳する。この僅かな電力量に関しても後述する。
【0012】
第2の方向性結合器104の出力であるこれらの分岐信号は、第1の方向性結合器102で分岐された増幅前の送信信号進行波を第1ベクトル調整器105を介して第1分配器106でさらに分岐された送信信号進行波と第1の結合器107で結合される。この時、第1の結合器107では送信信号進行波同士を打ち消しあうようにする。すなわちベクトル調整器105の振幅と位相を変化させて第2の方向性結合器104からの出力である分岐信号と、第1ベクトル調整器105からの出力である第1の方向性結合器102からの分岐信号とを逆位相となるように第1ベクトル調整器105の位相器の位相量を調整する。この場合、増幅後の送信信号進行波121の分岐信号との遅延量が第1ベクトル調整器105の位相器の調整範囲になるようにあらかじめ第1の方向性結合器102からの分岐信号の伝送線路に必要な場合には遅延器や遅延線(図示せず)を設けておく。
【0013】
また、第1ベクトル調整器105の減衰器の振幅量を調整する。この場合、増幅前の送信信号進行波に対する第1の方向性結合器102の分岐結合度は第1ベクトル調整器105の減衰器の調整範囲になるように設定しておく。
【0014】
次に第1の結合器107の出力は検波器110で直流検波され、A/D変換器112でデジタル化しベクトル制御器114に情報を送出する。ベクトル制御器114では入力された検波電圧に対して第1ベクトル調整器105を調整する。ベクトル制御器114の役目は第1の結合器107の出力が最小になる、すなわちその検波電圧が最小になるように自動制御することである。
【0015】
まず、A/D変換器112からの情報に基づきベクトル調整器105の位相器および減衰器それぞれに対して制御電圧を与える。ベクトル調整器105はそれら制御電圧に基づき、線路内の送信信号進行波に対する位相量および振幅量を変更する。その結果は第1の結合器107の出力の検波電圧に反映される。ベクトル制御器114では最初は初期の制御電圧を設定し、その後制御電圧の掃引を行い、段階的に変化させ検波電圧の最小点を取得するように動作する。
【0016】
図2はこの一連の動作について第1ベクトル調整器105の操作による検波器110におけるベクトル制御器114の制御電圧と検波電圧について示したものである。制御電圧は当初、無作為に掃引されるが順次検波電圧の最小点に近づくべく作動し収束する。なおベクトル制御器114の制御電圧はCPUで処理するためデジタル信号であるが第1ベクトル調整器105はアナログ信号で動作するためD/A変換器115を介して制御電圧を送出する。
【0017】
以上のようにしてベクトル制御器114は第1の結合器107の出力の最小点、すなわち検波電圧の最小点を探索する。ここで検波電圧の最小点は第1の方向性結合器102からの分岐信号である送信信号進行波と第2の方向性結合器104からの分岐信号である送信信号進行波とが打ち消し合う点なので最終的には僅かな電圧である第2の方向性結合器104のポート3から出力された送信信号反射波の分岐信号だけが残る。この分岐信号は超微弱電圧であるため、反射波のモニタ信号としては不充分であるがベクトル調整器105を調整するための基準制御電圧に利用できるのでベクトル調整器105の自動制御を高精度で行える効果がある。
【0018】
次に第2の方向性結合器104の分岐ポート4からの出力である分岐信号は送信信号反射波122と送信信号進行波121の漏れ電力とが重畳された信号であることは前述した。これらの信号は、第1の方向性結合器102で分岐された増幅前の送信信号進行波を第1ベクトル調整器105を介して第1分配器106で分岐された(第1の結合器107に入力されない)送信信号進行波と、第2の結合器109で結合される。この時、第2の結合器109では送信信号進行波同士を打ち消しあうようにする。
【0019】
本実施例では分岐された増幅前の送信信号進行波であって第1ベクトル調整器105の出力後の伝送線路の第1分配器106と第2の結合器109との間に位相量と減衰量を調整するための第2ベクトル調整器108を設置した。すなわちベクトル調整器108の位相と振幅を変化させて第2の方向性結合器104のポート4からの分岐信号と第1ベクトル調整器105の出力である第1の方向性結合器102からの分岐信号とを逆位相となるように第2ベクトル調整器108の位相器の位相量を調整する。
【0020】
重要なことは第1の方向性結合器102で分岐された増幅前の送信信号進行波であってベクトル調整器105を介して第1分配器106からの出力は第2の方向性結合器104のポート3の出力である送信信号進行波を参照して、あらかじめベクトル調整器105で調整された送信信号進行波であることである。
【0021】
この信号は、第2の方向性結合器104のポート4から出力されている増幅後の送信信号進行波とは基本的に逆位相となっている。なぜならばこの信号は前述のようにベクトル調整器105で第2の方向性結合器104のポート3からの出力を参照しているためである。第2の方向性結合器のポート3の送信信号進行波出力とポート4の送信信号進行波の漏れ出力とは分岐位置は同一と見なせるのでポート4の出力である送信信号進行波の漏れ電力信号は伝送線路間の少しの遅延量が異なるだけで基本的に第2の結合器109では逆位相で打ち消される。
【0022】
従って第2ベクトル調整器108では第2ベクトル調整器108の位相量の若干の調整はあるが主体は減衰器の振幅量だけを調整すれば足りる。図3に第2ベクトル調整器の減衰器に対する操作による送信信号進行波121同士と送信信号反射波122による検波器111で観測した時の検波電圧と制御電圧の関係について説明する。第2ベクトル調整器108に制御電圧としてアナログ電圧(0〜8V程度)を段階的に印加することにより、第2の結合器109の出力では送信信号進行波同士は相殺されるため、検波電圧の最小点が現れる。図3では検波電圧の最小点が所望の分岐された送信信号反射波122の検波電圧となる。
【0023】
また、分岐された送信信号反射波122は第2ベクトル調整器108の減衰器を経由しないため本来不動電圧であるから送信信号進行波(進行波)による干渉があって最小点からずれていても特定は容易である。すなわち図3aで示すように反射波電力が大きい場合にはベクトル制御電圧(制御電圧)の変化における検波電圧の最小幅が広がり、図3bで示すように反射波電力が小さい場合には進行波の影響(干渉寄与)により幅は狭くなる。なおこの場合の第2ベクトル調整器108に与える制御電圧は自動、手動どちらでも良くパルス電圧であっても直流電圧であっても特に支障はない。
【0024】
第2ベクトル調整器108の位相量の調整に関しては例えば第2の方向性結合器104の分岐ポート(4)と第2の結合器109間に遅延線または遅延器を挿入し、位相量の無調整化や第2ベクトル調整器108の微調整にあてても良い。従って本実施例では第2ベクトル調整器108を使用したが第1ベクトル調整器105の調整のために使用したベクトル制御器114は不要であり、第2ベクトル調整器108の代わりに汎用の位相器や減衰器を個別に用いて調整しても良い。
【0025】
次に送信信号反射波122の分岐信号(反射波)は検波器111およびA/D変換器113でデジタル化し、VSWRモニタ116に反射波情報として送られる。VSWRモニタ116では検波器111における検波電圧の変動を精測したり、VSWR(定在波比)そのものを計算する場合には増幅後の送信信号進行波121を方向性結合器やサーキュレータなどを介して直接検波し、それらの結合度を加味して出力をモニタし、VSWRモニタ116の検波電圧と比較参照して求める。VSWRモニタ116では送信信号反射波の検波情報を内部インタフェース端子118から高周波送信装置の処理回路(図示せず)に送られ、空中線の劣化によるシステムの異常や反射波の影響による搭載部品(増幅器など)の経時変化、線路インピーダンスの環境変化などに対応させる。
【0026】
また、ベクトル調整器の調整可変範囲に制限がある場合には、あらかじめ個別に回路内に遅延線や遅延器を挿入しておいても良い。最終的には第2の結合器109の出力は送信信号反射波122の分岐信号のみが送出され、不要な送信信号進行波121の重畳によるVSWRの劣化が軽減される。また、検波位置により生じる定在波の測定ばらつきも送信信号進行波121をベクトル調整器で位相制御しているため、安定したVSWRをモニタすることができる。
【0027】
実施の形態2.
なお、本発明の実施の形態1では送信信号進行波121、送信信号反射波122およびそれらの重畳信号は第2の方向性結合器104で分岐されたが図4に示すように2個の方向性結合器119、120を使用しても同等の作用・効果がある。本実施例では方向性結合器119、120の未使用ポートは実施の形態1の第1の方向性結合器102同様に終端処理されている。
【0028】
【発明の効果】
以上から本実施例の場合、方向性結合器の性能限界を考慮して送信信号進行波の漏れ電力を含めた送信信号反射波であっても送信信号進行波の漏れ電力成分を除去して反射波のみを測定するため、高精度のVSWRモニタ回路を実現できる。
【0029】
またベクトル調整器を用いて自動調整するので位相量や減衰量の調整手間が省け、反射波の精測は微調整だけで済むため送信信号反射波のみを精度良く取り出すことができる。
【0030】
また、ベクトル調整器を用いて自動制御するので従来例のように検波位置などによる測定誤差が皆無となる。
【図面の簡単な説明】
【図1】この発明の実施の形態1によるVSWRモニタ回路のブロック図である。
【図2】この発明の実施の形態1によるベクトル調整器の検波電圧と制御電圧との関係を説明する図である。
【図3】この発明の実施の形態1による第2ベクトル調整器の制御電圧と所望の反射波検波電圧との関係を示す図である。
【図4】この発明の実施の形態2によるVSWRモニタ回路のブロック図である。
【符号の説明】
101 高周波送信信号入力端子、 102 第1の方向性結合器、 103高周波送信信号増幅器、 104 第2の方向性結合器、 105 第1ベクトル調整器、 106 第1分配器、 107 第1の結合器、 108 第2ベクトル調整器、 109 第2の結合器、 110、111 検波器、 112、113 アナログデジタル変換器、 114 ベクトル制御器、 115デジタル・アナログ変換器、 116 VSWRモニタ、 117 高周波信号出力端子、 118 内部インターフェース端子、 119,120 方向性結合器、 121 高周波送信信号の進行波(送信信号進行波)、 122 送信信号反射波。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a VSWR monitor circuit for detecting a reflected wave of a high-frequency transmission signal in a radio communication transmitting / receiving apparatus, particularly a high-frequency transmitting apparatus.
[0002]
[Prior art]
The VSWR monitor circuit extracts the reflected signal of the transmission signal as a branch signal using a circulator, a distributor, a directional coupler, and the like incorporated in the high-frequency transmission circuit, detects a detection voltage using a detector or the like, and detects a transmission signal progression. It is common to measure the voltage of the wave and the magnitude of the voltage of the reflected wave to determine the standing wave ratio (VSWR). Further, since the power (voltage, current) of the traveling wave is uniquely determined, a method for detecting the reflected wave is being studied for its higher accuracy. For example, FIG. 1 of Japanese Patent Application Laid-Open No. H11-27218 discloses a method of measuring a reflected wave generated by a failure in an antenna system of a wireless transmitting and receiving apparatus, and shows a configuration diagram of the measuring circuit. In the figure, 1 is a transmission end-stage amplifier, 2 is a circulator, 3 is an antenna, 4 is a distributor, 5 is a stripline, 6 and 7 are detectors, 8 is a control circuit, and 13 is an antenna connector terminal.
[0003]
Next, the operation will be described. The output of the transmission final stage amplifier 1 is output to the antenna 3 via the antenna connector terminal 13 by the output 1 of the circulator 2. The reflected wave is input from the output 2 of the circulator 2 to the detectors 6 and 7 via the distributor 4 and measures the detection voltages at the respective measurement positions using the strip line 5 and controls the variation in those voltages. In step 8, the averaging process is performed, and finally, an abnormality in the standing wave is detected. FIG. 3 shows a directional coupler 12 for monitoring an output in addition to a circulator 2 for detecting a reflected wave, and detecting these outputs to obtain a VSWR.
[0004]
[Patent Document 1]
JP-A-11-27218 [0005]
[Problems to be solved by the invention]
The circulator disclosed in JP-A-11-27218 is usually formed of a microstrip line or a waveguide circuit. In the case of a Y-type three-aperture (port), a ferrite magnetized in the center of the transmission line in the port is incorporated. , Incident power from any one direction is transmitted to only one direction of the output port. Other output ports are called ISO ports, and incident power is not transmitted in principle. However, the power loss of such an ISO port is at most about 20 dB, and even if the shape of ferrite or the like is optimized, only a power loss of up to 30 dB can be secured. The same applies to a four-terminal directional coupler. Particularly, in a high-frequency circuit of 1 GHz or more transmitted and received by a transmitting device base station or the like, the band of these powers is narrow, and the multiplex communication method (0.8 to 2. In the design of a common transmission circuit such as 0 GHz), power leakage occurs at the ISO port that cannot be ignored. Therefore, there is a problem that the accuracy of the VSWR is reduced due to the influence of the leakage power from the ISO port.
[0006]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to precisely measure a VSWR in consideration of leakage power from an ISO port.
[0007]
[Means for Solving the Problems]
A VSWR monitor circuit according to the present invention includes a pre-amplification branch signal obtained by demultiplexing a part of a signal before amplification of a high-frequency transmission signal traveling wave and an amplification branch obtained by demultiplexing a part of a signal after amplification of the high-frequency transmission signal traveling wave. First means for detecting a signal and an output detection voltage obtained by combining the pre-amplification branch signal in an opposite phase to the amplified branch signal via a vector adjuster and adjusting the vector adjuster; and the vector adjuster The output of the second means is input to a second means for adjusting the phase and the amplitude, and the high-frequency signal including the leakage signal after amplification of the high-frequency transmission signal traveling wave is amplified. The output of the reflected branch signal is detected by coupling the reflected branch signal obtained by demultiplexing a part of the reflected wave of the high-frequency transmission signal from the output end of the transmission signal with an opposite phase.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIG. In the figure, 101 is a high frequency transmission signal input terminal, 102 is a first directional coupler for branching a high frequency transmission signal, and unused apertures (ports) are terminated by terminators. 103 is a high-frequency transmission signal amplifier, 104 is a second directional coupler that branches the amplified high-frequency transmission signal, 105 is a first vector adjuster that adjusts the amplitude and phase of the branched high-frequency transmission signal before amplification, 106 is a first distributor, 107 is a first combiner, 108 is a second vector adjuster, 109 is a second combiner, 110 and 111 are detectors, and 112 and 113 are analog / digital (A / D). A converter 114 is a vector adjustment controller, 115 is a digital / analog (D / A) converter, 116 is a VSWR monitor, 117 is a high-frequency signal output terminal (connector terminal), and is connected to an antenna or the like. Reference numeral 118 denotes an internal interface terminal, which sends information about the VSWR to the high-frequency transmitting device.
[0009]
Next, the operation will be described. A high-frequency transmission signal is input to a high-frequency transmission signal input terminal (input terminal) 101, and a traveling wave of the high-frequency transmission signal (transmission signal progression) amplified by a high-frequency transmission signal amplifier (amplifier) 103 via a first directional coupler 102. Wave 121 is output to a high-frequency signal output terminal (also referred to as an output terminal) 117 via the second directional coupler 104. The amplified transmission signal traveling wave 121 is emitted as a radio wave from an antenna (not shown) which is an output end thereof, while the transmission signal reflected wave 122 generated at the antenna or the connector terminal 117 is combined with the transmission signal traveling wave 121. Travels in the opposite direction and is observed as a standing wave between the transmission line and the amplifier 103.
[0010]
A branch signal of the transmission signal traveling wave 121 is output to one branch port (3) of the second directional coupler 104, and a branch signal of the transmission signal reflected wave 122 is mainly output to the other port (4). Is done. At this time, a part of the strong transmission signal traveling wave 121 is output to the other port (4) of the second directional coupler 104 as leakage power. Usually, the power amount may reach the same level as that of the branch signal of the weakly reflected transmission signal 122, and the power having the same phase and the same phase as the branched signal of the reflected transmission signal 122 is superimposed.
[0011]
The branch signal of the transmission signal traveling wave 121 is output to one branch port (3) of the second directional coupler 104, but a part of the branch signal of the transmission signal reflected wave 122 is also output as leakage power. . The power amount is almost negligible because it is the output of the transmission signal reflected wave 122 from the ISO (suppression) port. However, the power amount is superimposed as a slight power having the same direction and a different phase from the branch signal of the transmission signal traveling wave. . This small amount of power will also be described later.
[0012]
These branched signals, which are the outputs of the second directional coupler 104, are transmitted through the first vector adjuster 105 via the first vector adjuster 105 to the transmission signal traveling wave before amplification amplified by the first directional coupler 102. The transmission signal traveling wave further branched by the unit 106 is combined by the first combiner 107. At this time, the first combiner 107 cancels the traveling waves of the transmission signal. That is, by changing the amplitude and phase of the vector adjuster 105, the branch signal output from the second directional coupler 104 and the first directional coupler 102 output from the first vector adjuster 105 are changed. The phase amount of the phase shifter of the first vector adjuster 105 is adjusted so that the phase of the first branch signal is opposite to that of the first branch signal. In this case, the transmission of the branched signal from the first directional coupler 102 is performed in advance so that the amount of delay between the amplified transmission signal traveling wave 121 and the branched signal is within the adjustment range of the phase shifter of the first vector adjuster 105. If necessary for the line, a delay unit or a delay line (not shown) is provided.
[0013]
Further, the amplitude of the attenuator of the first vector adjuster 105 is adjusted. In this case, the degree of branch coupling of the first directional coupler 102 with respect to the transmission signal traveling wave before amplification is set to be within the adjustment range of the attenuator of the first vector adjuster 105.
[0014]
Next, the output of the first coupler 107 is subjected to DC detection by the detector 110, digitized by the A / D converter 112, and transmitted to the vector controller 114. The vector controller 114 adjusts the first vector adjuster 105 with respect to the input detection voltage. The role of the vector controller 114 is to automatically control the output of the first combiner 107 to be minimized, that is, its detection voltage is minimized.
[0015]
First, a control voltage is applied to each of the phase shifter and the attenuator of the vector adjuster 105 based on information from the A / D converter 112. The vector adjuster 105 changes the amount of phase and the amount of amplitude of the transmission signal traveling wave in the line based on the control voltages. The result is reflected on the detection voltage of the output of the first coupler 107. The vector controller 114 operates to set an initial control voltage at first, then sweep the control voltage, change it in steps, and acquire the minimum point of the detection voltage.
[0016]
FIG. 2 shows a control voltage and a detection voltage of the vector controller 114 in the detector 110 by operating the first vector adjuster 105 for this series of operations. The control voltage is initially swept at random, but operates and converges sequentially to approach the minimum point of the detection voltage. Note that the control voltage of the vector controller 114 is a digital signal to be processed by the CPU, but the first vector adjuster 105 transmits the control voltage via the D / A converter 115 because it operates on an analog signal.
[0017]
As described above, the vector controller 114 searches for the minimum point of the output of the first coupler 107, that is, the minimum point of the detection voltage. Here, the minimum point of the detection voltage is a point at which the transmission signal traveling wave which is a branch signal from the first directional coupler 102 and the transmission signal traveling wave which is a branch signal from the second directional coupler 104 cancel each other. Therefore, only the branch signal of the reflected wave of the transmission signal output from the port 3 of the second directional coupler 104, which is a slight voltage, remains in the end. Since this branch signal is an extremely weak voltage, it is insufficient as a monitor signal for the reflected wave, but can be used as a reference control voltage for adjusting the vector adjuster 105, so that the automatic control of the vector adjuster 105 can be performed with high accuracy. There is an effect that can be done.
[0018]
Next, as described above, the branch signal output from the branch port 4 of the second directional coupler 104 is a signal in which the transmission signal reflected wave 122 and the leakage power of the transmission signal traveling wave 121 are superimposed. These signals are obtained by splitting a transmission signal traveling wave before amplification split by the first directional coupler 102 by the first distributor 106 via the first vector adjuster 105 (first coupler 107). ) Is combined with the transmission signal traveling wave by the second combiner 109. At this time, the second coupler 109 cancels the transmission signal traveling waves.
[0019]
In the present embodiment, the amount of phase and attenuation between the first splitter 106 and the second coupler 109 of the transmission line which is a branched transmission signal traveling wave before amplification and which is output from the first vector adjuster 105. A second vector adjuster 108 for adjusting the amount was installed. That is, by changing the phase and amplitude of the vector adjuster 108, the branch signal from the port 4 of the second directional coupler 104 and the branch from the first directional coupler 102 which is the output of the first vector adjuster 105 are changed. The phase amount of the phase shifter of the second vector adjuster 108 is adjusted so that the signal has the opposite phase.
[0020]
What is important is that the transmission signal traveling wave before amplification amplified by the first directional coupler 102 is output from the first distributor 106 via the vector adjuster 105 to the second directional coupler 104 Is a transmission signal traveling wave that has been adjusted in advance by the vector adjuster 105 with reference to the transmission signal traveling wave output from the port 3.
[0021]
This signal has basically a phase opposite to that of the amplified transmission signal traveling wave output from the port 4 of the second directional coupler 104. This is because this signal refers to the output from the port 3 of the second directional coupler 104 by the vector adjuster 105 as described above. The transmission signal traveling wave output at the port 3 of the second directional coupler and the leakage output of the transmission signal traveling wave at the port 4 can be regarded as having the same branch position, so that the leakage power signal of the transmission signal traveling wave which is the output of the port 4 Are basically canceled out in opposite phases in the second coupler 109 except for a slight delay amount between the transmission lines.
[0022]
Therefore, although the second vector adjuster 108 slightly adjusts the phase amount of the second vector adjuster 108, it is sufficient for the main body to adjust only the amplitude amount of the attenuator. FIG. 3 illustrates the relationship between the detection voltage and the control voltage when the transmission signal advancing waves 121 and the transmission signal reflected wave 122 are observed by the detector 111 by operating the attenuator of the second vector adjuster. By applying an analog voltage (approximately 0 to 8 V) as a control voltage to the second vector adjuster 108 in a stepwise manner, the output signals of the second coupler 109 cancel out the transmission signal traveling waves, so that the detection voltage A minimum point appears. In FIG. 3, the minimum point of the detection voltage is the detection voltage of the desired branched transmission signal reflected wave 122.
[0023]
Further, since the branched transmission signal reflected wave 122 does not pass through the attenuator of the second vector adjuster 108 and is inherently an immobile voltage, even if there is interference by the transmission signal traveling wave (traveling wave), even if it deviates from the minimum point. Identification is easy. That is, when the reflected wave power is large as shown in FIG. 3A, the minimum width of the detection voltage in the change of the vector control voltage (control voltage) is widened, and when the reflected wave power is small as shown in FIG. The width is reduced by the influence (interference contribution). In this case, the control voltage applied to the second vector adjuster 108 may be either automatic or manual, and may be a pulse voltage or a DC voltage without any particular problem.
[0024]
Regarding the adjustment of the phase amount of the second vector adjuster 108, for example, a delay line or a delay unit is inserted between the branch port (4) of the second directional coupler 104 and the second coupler 109, and the phase amount is adjusted. The adjustment may be applied to fine adjustment of the second vector adjuster 108. Therefore, in the present embodiment, the second vector adjuster 108 is used, but the vector controller 114 used for adjusting the first vector adjuster 105 is unnecessary, and a general-purpose phase shifter is used instead of the second vector adjuster 108. Alternatively, the adjustment may be performed using individual attenuators.
[0025]
Next, the branch signal (reflected wave) of the transmission signal reflected wave 122 is digitized by the detector 111 and the A / D converter 113 and sent to the VSWR monitor 116 as reflected wave information. The VSWR monitor 116 accurately measures the fluctuation of the detection voltage in the detector 111 or calculates the VSWR (standing wave ratio) itself by transmitting the amplified transmission signal traveling wave 121 through a directional coupler or a circulator. The output is monitored by taking into account the degree of coupling, and is compared with the detection voltage of the VSWR monitor 116 to determine the output. In the VSWR monitor 116, the detection information of the reflected wave of the transmission signal is sent from the internal interface terminal 118 to a processing circuit (not shown) of the high-frequency transmission device, and a system abnormality due to deterioration of the antenna or a mounted component (an amplifier or the like) caused by the reflected wave. ), And changes in the line impedance environment.
[0026]
If there is a limitation on the adjustable range of the vector adjuster, a delay line or a delay unit may be individually inserted in the circuit in advance. Eventually, as the output of the second coupler 109, only the branch signal of the transmission signal reflected wave 122 is transmitted, and the deterioration of the VSWR due to unnecessary superposition of the transmission signal traveling wave 121 is reduced. In addition, since the phase of the transmission signal traveling wave 121 is controlled by the vector adjuster for the measurement variation of the standing wave caused by the detection position, a stable VSWR can be monitored.
[0027]
Embodiment 2 FIG.
In the first embodiment of the present invention, the transmission signal traveling wave 121, the transmission signal reflection wave 122, and the superimposed signal thereof are branched by the second directional coupler 104, but as shown in FIG. The use of the sex couplers 119 and 120 has the same operation and effect. In this embodiment, unused ports of the directional couplers 119 and 120 are terminated as in the case of the first directional coupler 102 of the first embodiment.
[0028]
【The invention's effect】
As described above, in the case of the present embodiment, even in the case of a transmission signal reflected wave including the leakage power of the transmission signal traveling wave in consideration of the performance limit of the directional coupler, the leakage power component of the transmission signal traveling wave is removed and reflected. Since only waves are measured, a highly accurate VSWR monitor circuit can be realized.
[0029]
In addition, since the adjustment is automatically performed using the vector adjuster, the work of adjusting the amount of phase and the amount of attenuation can be omitted, and the fine measurement of the reflected wave can be performed only by fine adjustment, so that only the reflected wave of the transmission signal can be accurately extracted.
[0030]
Further, since automatic control is performed using a vector adjuster, there is no measurement error due to a detection position or the like as in the conventional example.
[Brief description of the drawings]
FIG. 1 is a block diagram of a VSWR monitor circuit according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a relationship between a detection voltage and a control voltage of the vector adjuster according to the first embodiment of the present invention.
FIG. 3 is a diagram showing a relationship between a control voltage of a second vector adjuster and a desired reflected wave detection voltage according to the first embodiment of the present invention.
FIG. 4 is a block diagram of a VSWR monitor circuit according to a second embodiment of the present invention.
[Explanation of symbols]
101 high-frequency transmission signal input terminal, 102 first directional coupler, 103 high-frequency transmission signal amplifier, 104 second directional coupler, 105 first vector adjuster, 106 first distributor, 107 first coupler , 108 second vector adjuster, 109 second combiner, 110, 111 detector, 112, 113 analog / digital converter, 114 vector controller, 115 digital / analog converter, 116 VSWR monitor, 117 high frequency signal output terminal 118 Internal interface terminal, 119, 120 Directional coupler, 121 Traveling wave of high frequency transmission signal (transmission signal traveling wave), 122 Transmission signal reflected wave.

Claims (3)

送信信号進行波の増幅前の信号の一部を分波した増幅前分岐信号と、送信信号進行波の増幅後の信号の一部を分波した増幅分岐信号と、前記増幅前分岐信号をベクトル調整器を介して前記増幅分岐信号と逆位相で結合させた出力の検波電圧を検出し前記ベクトル調整器を調整する第1の手段と、前記ベクトル調整器の出力の一部から分波した増幅前分岐信号を位相と振幅を調整する第2の手段に入力し、前記第2の手段の出力と送信信号進行波の増幅後の漏れ信号を含む送信信号反射波の一部を分波した反射分岐信号とを送信信号進行波同士逆位相で結合させることにより前記反射分岐信号の出力を検出することを特徴とするVSWRモニタ回路。A pre-amplification branch signal obtained by demultiplexing a part of the signal before amplification of the transmission signal traveling wave, an amplified branch signal obtained by demultiplexing a part of the signal after amplification of the transmission signal progression wave, and First means for detecting a detection voltage of an output coupled in phase with the amplified branch signal via an adjuster to adjust the vector adjuster, and amplifying the signal which is demultiplexed from a part of the output of the vector adjuster; The pre-branch signal is input to a second means for adjusting the phase and the amplitude, and the output of the second means and a reflection obtained by splitting a part of the transmission signal reflected wave including the leakage signal after the amplification of the transmission signal traveling wave is amplified. A VSWR monitor circuit for detecting the output of the reflected branch signal by combining the branch signal with the transmission signal traveling wave in opposite phases. 請求項1において位相を調整する第2の手段は遅延器又は遅延線であることを特徴とするVSWRモニタ回路。2. The VSWR monitor circuit according to claim 1, wherein the second means for adjusting the phase is a delay unit or a delay line. 請求項1において位相と振幅を調整する第2の手段はベクトル調整器であることを特徴とするVSWRモニタ回路。2. The VSWR monitor circuit according to claim 1, wherein the second means for adjusting the phase and the amplitude is a vector adjuster.
JP2003080015A 2003-03-24 2003-03-24 Circuit for monitoring vswr Pending JP2004286632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080015A JP2004286632A (en) 2003-03-24 2003-03-24 Circuit for monitoring vswr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080015A JP2004286632A (en) 2003-03-24 2003-03-24 Circuit for monitoring vswr

Publications (1)

Publication Number Publication Date
JP2004286632A true JP2004286632A (en) 2004-10-14

Family

ID=33293984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080015A Pending JP2004286632A (en) 2003-03-24 2003-03-24 Circuit for monitoring vswr

Country Status (1)

Country Link
JP (1) JP2004286632A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008043299A1 (en) * 2006-10-10 2008-04-17 Huawei Technologies Co., Ltd. A method and a device of measuring standing wave ratio
JP2010181229A (en) * 2009-02-04 2010-08-19 Japan Radio Co Ltd Field through compensation apparatus, field through compensating antenna, radar apparatus and field through compensation value measurement method
EP2325659A1 (en) 2009-11-24 2011-05-25 Fujitsu Limited Standing wave ratio measuring circuit and communication apparatus
WO2011111219A1 (en) * 2010-03-12 2011-09-15 富士通株式会社 Wireless communication apparatus and reflected wave acquiring method
CN102291192A (en) * 2011-09-13 2011-12-21 中兴通讯股份有限公司 Method and device for acquiring standing-wave ratio
JP2012191341A (en) * 2011-03-09 2012-10-04 Panasonic Corp Radio transmitter and reflection wave power measurement method
WO2012164905A1 (en) * 2011-05-30 2012-12-06 日本電気株式会社 Vswr measurement circuit, wireless communication device, vswr measurement method and recording medium in which vswr measurement program is stored
JP2014102195A (en) * 2012-11-21 2014-06-05 Nec Corp Radar device and radar device monitoring method
US9560541B2 (en) 2012-09-25 2017-01-31 Nec Corporation Wireless transmission device, VSWR determination device, and VSWR determination method
CN114460546A (en) * 2022-01-25 2022-05-10 湖北中南鹏力海洋探测系统工程有限公司 Feedback type high-power transceiver

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008043299A1 (en) * 2006-10-10 2008-04-17 Huawei Technologies Co., Ltd. A method and a device of measuring standing wave ratio
JP2010181229A (en) * 2009-02-04 2010-08-19 Japan Radio Co Ltd Field through compensation apparatus, field through compensating antenna, radar apparatus and field through compensation value measurement method
EP2325659A1 (en) 2009-11-24 2011-05-25 Fujitsu Limited Standing wave ratio measuring circuit and communication apparatus
JP2011114417A (en) * 2009-11-24 2011-06-09 Fujitsu Ltd Standing wave ratio measuring circuit and communication device
US8805289B2 (en) 2009-11-24 2014-08-12 Fujitsu Limited Standing wave ratio measuring circuit and communication apparatus
JPWO2011111219A1 (en) * 2010-03-12 2013-06-27 富士通株式会社 Wireless communication apparatus and reflected wave acquisition method
WO2011111219A1 (en) * 2010-03-12 2011-09-15 富士通株式会社 Wireless communication apparatus and reflected wave acquiring method
JP2012191341A (en) * 2011-03-09 2012-10-04 Panasonic Corp Radio transmitter and reflection wave power measurement method
WO2012164905A1 (en) * 2011-05-30 2012-12-06 日本電気株式会社 Vswr measurement circuit, wireless communication device, vswr measurement method and recording medium in which vswr measurement program is stored
US9054759B2 (en) 2011-05-30 2015-06-09 Nec Corporation VSWR measurement circuit, radio communication apparatus, VSWR measurement method, and recording medium having VSWR measurement program stored thereon
CN102291192A (en) * 2011-09-13 2011-12-21 中兴通讯股份有限公司 Method and device for acquiring standing-wave ratio
US9560541B2 (en) 2012-09-25 2017-01-31 Nec Corporation Wireless transmission device, VSWR determination device, and VSWR determination method
JP2014102195A (en) * 2012-11-21 2014-06-05 Nec Corp Radar device and radar device monitoring method
CN114460546A (en) * 2022-01-25 2022-05-10 湖北中南鹏力海洋探测系统工程有限公司 Feedback type high-power transceiver

Similar Documents

Publication Publication Date Title
KR100218152B1 (en) A means for measuring a voltage standing wave ratio of base standing and method thereof
JP3084065B2 (en) Method and structure for measuring the state of a receiving antenna
US7683828B2 (en) System and method for measuring phase and power variance
US20060044185A1 (en) Antenna array calibration
JP2004286632A (en) Circuit for monitoring vswr
CN112118055B (en) Standing wave detection device and communication equipment
CN101674141B (en) Method and device for detecting radio frequency feed line loss
JP2008164418A (en) Vector network analyzer, and measuring method and program using this
JP2004056315A (en) Path difference measuring method, program causing computer to execute the method, and wireless relay device
JP2002158546A (en) System and method for producing signal amplified using plural amplitudes across spectrum
EP0543835B1 (en) Method and device for supervising the condition of a receiving antenna
US10734697B1 (en) Coaxial adjustable wave probe
KR100809511B1 (en) PM signal monitoring system for mobile communication repeater and method of monitoring PM signal using the same
WO2009144648A2 (en) System and method for performing a ruggedness measurement test on a device under test
JP5776495B2 (en) Gain measuring circuit, gain measuring method and communication apparatus
US6969985B2 (en) Active coupler
KR20000067432A (en) Apparatus for detecting VSWR of BTS receive antenna using terminal
CN110221142A (en) A kind of method and device of the non-linear test positioning based on passive intermodulation radiation field
CN114217195B (en) Power device transmission parameter de-embedding device and load traction test system
CN109406885A (en) A radio frequency antenna standing wave self-detection method and system
JP4379034B2 (en) VSWR detection circuit and VSWR detection method
KR100583235B1 (en) Device for improving transmission / reception separation by removing transmission signal in time division duplex system
KR100312304B1 (en) Balance amplifier circuit using detector and thereof method
KR20010018467A (en) Antenna Power Controlling Apparatus and Method for Mobile Communication System
KR100418863B1 (en) Phase matching method using voltage difference between signals in monopulse receiver and phase matching apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204