[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004285366A - Extra-thin ultrahigh tensile strength cold rolled steel sheet, and its production method - Google Patents

Extra-thin ultrahigh tensile strength cold rolled steel sheet, and its production method Download PDF

Info

Publication number
JP2004285366A
JP2004285366A JP2003075200A JP2003075200A JP2004285366A JP 2004285366 A JP2004285366 A JP 2004285366A JP 2003075200 A JP2003075200 A JP 2003075200A JP 2003075200 A JP2003075200 A JP 2003075200A JP 2004285366 A JP2004285366 A JP 2004285366A
Authority
JP
Japan
Prior art keywords
less
cold
sheet
ultra
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003075200A
Other languages
Japanese (ja)
Inventor
Akio Tosaka
章男 登坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003075200A priority Critical patent/JP2004285366A/en
Publication of JP2004285366A publication Critical patent/JP2004285366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extra-thin ultrahigh tensile strength cold rolled steel sheet which has excellent tensile strength, ductility and stretch-flanging properties. <P>SOLUTION: A steel slab containing 0.05 to 0.25% C, ≤0.05% Si, 1.5 to 3.5% Mn, ≤0.01% P, ≤0.003% S, ≤0.10% Al and 0.0050 to 0.0250% N, and in which the total content of Cr and Mo is controlled to ≤0.2%, and the content of Nb to ≤0.005%, and the balance Fe with inevitable impurities is heated to a slab heating temperature of ≥1,000°C, is thereafter subjected to hot rolling in which finish rolling outlet side temperature is controlled to ≥800°C, and coiling temperature is controlled to ≥550°C, is then subjected to cold rolling, is subsequently heated at a temperature in which recrystallization ratio reaches 80% to 900°C, and is cooled at a cooling rate of ≥30°C/s. The extra-thin ultrahigh tensile strength cold rolled steel sheet having a sheet thickness of ≤0.8 mm, a tensile strength of ≥900 MPa, and excellent ductility and stretch flanging properties is obtained. Further, a plating layer may be formed on the surface of the steel sheet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷延鋼板に係り、とくに、主として自動車、一般家電、家具等の用途、具体的には軽度の曲げ加工、フォーム成形やロールフォーミング等によりハット型断面形状もしくはパイプ状に成形される比較的厳しい絞り成形を施される用途に好適な、板厚:0.8mm 以下で、引張強さ:980MPa以上を有し、延性、伸びフランジ性(穴拡げ性ともいう)にも優れる極薄超高張力冷延鋼板に関する。
【0002】
【従来の技術】
近年、地球環境の保全という観点から、自動車の燃費改善が要求されている。このような要求に答えるために、自動車車体の軽量化が重要な課題となっている。自動車車体の軽量化のためには、部品素材を高強度化し素材板厚を減少することが効果的であるとの考えにしたがい、最近では高張力鋼板が自動車部品に積極的に使用されるようになってきた。
【0003】
自動車車体の更なる軽量化の観点からは、より高い引張強さを有する薄鋼板が要望され、用途によっては、例えば、引張強さ:980 MPa 以上という超高張力を有し、かつ板厚:0.8mm 以下の極薄超高張力鋼板が要望されている。
このような超高張力を有する鋼板としては、例えば、特許文献1に、引張強さ:980 MPa 以上の延性に優れた超高張力冷延鋼板が提案されている。
【0004】
【特許文献1】
特開2001−81533号公報
【0005】
【発明が解決しようとする課題】
しかし、特許文献1に記載された技術では、強化元素を多量に含有させ、また不純物の規定が十分でなく、安定して歩留りよく製造できる超高張力冷延鋼板の最低板厚は、せいぜい1〜1.2mm 程度までであり、板厚:0.8mm 以下、より好ましくは板厚0.75mm以下という極薄物の超高張力冷延鋼板の製造には問題を残していた。また、特許文献1に記載された技術では、熱延鋼板(冷延母板)の強度も同等以上に高くなってしまうため、冷間圧延が不能となったり、中間に焼鈍を行わなければならないなどの問題があった。
【0006】
冷延鋼板は、通常、所定の組成に調整されたスラブに熱間圧延と、冷間圧延とを施し冷延板としたのち、該冷延板に焼鈍処理を施して製造されている。しかし、板厚:0.8mm 以下まで板厚を減少した超高張力極薄鋼板を製造するに当たっては、鋼の変形抵抗が増加するため、熱間圧延や冷間圧延における圧延の安定性が低下し極端な場合には圧延が不可能になるとともに、鋼板の形状を制御することが困難となるという問題があった。
【0007】
また、昨今、鋼材のリサイクル性向上の観点からスクラップの有効活用が図られるようになり、いわゆるトランプエレメントとして、「Nb、Cu、Ni、Cr、Mo」などに代表される元素が、従来に比べ、多量混入するという現象が顕著となっている。最近では、Nb、Cu、Ni、Cr、Moの混入量が、合計では0.2 質量%を上回る場合が多くなっている。これらの元素は鋼の強化元素であり、これらの元素の多量混入により、鋼の強度が上昇することになる。
【0008】
このようにトランプエレメントが多量に混入すると、熱延鋼板が高強度化するため、その後の冷間圧延の圧下率が制限され、極薄冷延鋼板の製造が困難になるという問題があった。このような場合、極薄冷延鋼板を製造する方法として、熱延→酸洗→冷延→焼鈍→冷延→焼鈍といういわゆる2回冷延・2回焼鈍という方法があるが、工程が複雑となり、製造コストの上昇、製造に要する時間の増大等の工業的問題が残されていた。
【0009】
本発明は、上記した従来技術の問題点を有利に解決し、板厚:0.8mm 以下で、引張強さ:980MPa以上を有する極薄超高張力冷延鋼板およびその製造方法を提供することを目的とする。鋼板の薄肉化による部材の軽量化を十分に達成するには、780MPa級の鋼板では不十分であり、少なくとも980MPa級の鋼板を必要とし、また優れた延性、伸びフランジ性も要求される。また、現状の鋼板の板厚と強度の関係から、板厚は0.8mm 以下、より好ましくは0.75mm以下を対象とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するため、冷間圧延性に及ぼす各種要因について鋭意検討した。
熱延板は、通常、熱間圧延終了後、ほぼオーステナイト単相域から巻取温度まで冷却された後にコイル状に巻き取られ、その後、コイル自体の熱容量のために冷却速度は顕著に減少するが、最終的に室温まで冷却される加工熱処理を受ける。一方、製品となる冷延焼鈍板は、熱延板を冷間圧延し冷延板としたのち、該冷延板を室温から焼鈍温度まで急速に加熱し、しかるのちに製造の効率をあげるため急速に冷却される熱履歴を受ける。このような熱延板と冷延焼鈍板の加工および熱履歴の相違から、本発明者らは、熱延板が受ける加工熱処理においては高強度化が起こらないが、冷延・焼鈍後には顕著に高強度化する、鋼組成、熱処理条件等の組み合せとすれば、途中階段である熱延板の強度が低強度となり冷間圧延時の負荷が低減でき、その結果冷間圧延性が向上して、板厚:0.80mm以下の極薄超高張力冷延鋼板の製造が容易となることに想到した。
【0011】
すなわち、極薄超高張力冷延鋼板の製造においては、冷間圧延性を向上させるために、熱延板をできるだけ軟質に維持し、その後の、酸洗・冷間圧延工程および連続焼鈍工程で、所望の引張強さを確保すればよいことに思い至った。
このような考えのもとに、本発明者らは、さらに、種々の成分、製造法で鋼板を製造し、多くの材質評価実験を行った。その結果、Mnは、熱延板が受ける加工熱処理では強度増加への寄与は少なく、一方、冷延板が受ける熱処理では強度増加への寄与が顕著となることを見出し、Mnの多量含有が極薄超高張力鋼板の製造では有利であることを知見した。
【0012】
また、Cr、Moは熱延板の受ける加工熱処理条件、冷延板の受ける熱処理条件のいずれでも、強度への寄与が大きく、極薄超高張力鋼板の製造ではCr、Mo含有量を厳しく低減する必要があることを知見した。
このような知見に基づき、本発明者らの更なる検討により、Mnを1.5 質量%以上と多量に含有させるとともに、不純物として混入するCr、Moを合計量で0.2 質量%以下に制限した鋼組成とすることにより、マルテンサイトの混入が抑制され、熱延板の組織がフェライト+パ−ライトまたはフェライト+ベイナイト組織となり、熱延板の引張強さを800MPa以下の低強度に保持でき、しかもその後の冷延−連続焼鈍工程でマルテンサイトの生成量を増加させて鋼板強度を目標の強度まで増加させることができ、延性、伸びフランジ性も十分満足できることを見出した。さらに、熱延板の強度をさらに低強度に保持するためには、熱間圧延時の変形抵抗を増加させるNbの混入量を0.005 %以下に制限することも重要であることを見出した。
【0013】
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明は、質量%で、C:0.05〜0.25%、Si:0.05%以下、Mn:1.5 〜3.5 %、P:0.01%以下、S:0.003 %以下、Al:0.10%以下、N:0.0050〜0.0250%を含み、不純物としてのCrおよびMoを合計で0.2 %以下、および不純物としてのNbを0.005 %以下に調整し、残部Feおよび不可避的不純物からなる組成を有し、引張強さが980MPa以上であり、延性、伸びフランジ性に優れることを特徴とする、板厚が0.8 mm以下の極薄超高張力冷延鋼板であり、また、本発明では、前記組成に加えてさらに、質量%で、Ca:0.001 〜0.020 %および/またはREM :0.005 〜0.020 %を含有することが好ましい。
【0014】
また、本発明は、上記した各極薄超高張力冷延鋼板の表層に、めっき層を形成してなる、板厚が0.8mm 以下で引張強さが980MPa以上を有する極薄超高張力めっき鋼板であり、また、本発明では、前記めっき層が、溶融亜鉛めっき層であることが好ましい。
また、本発明は、質量%で、C:0.05〜0.25%、Si:0.05%以下、Mn:1.5 〜3.5 %、P:0.01%以下、S:0.003 %以下、Al:0.10%以下、N:0.0050〜0.0250%を含み、さらに不純物としてのCrおよびMoを合計で0.2 %以下、不純物としてのNbを0.005 %以下に調整し、残部Feおよび不可避的不純物からなる組成の鋼スラブを、1000℃以上のスラブ加熱温度に加熱したのち、仕上圧延出側温度を800 ℃以上とし、巻取温度を550 ℃以上とする熱間圧延を施し熱延板とする熱間圧延工程と、該熱延板に冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板に、再結晶率が80%となる温度以上、900 ℃以下の焼鈍温度に加熱し、該焼鈍温度から600 ℃までの温度域を30℃/s 以上の冷却速度で冷却し冷延焼鈍板とする連続焼鈍処理工程と、を順次施すことを特徴とする、板厚が0.8mm 以下で、引張強さが980MPa以上を有し、延性、伸びフランジ性に優れる極薄超高張力冷延鋼板の製造方法であり、また、本発明では、前記組成に加えてさらに、質量%で、Ca:0.001 〜0.020 %およびまたはREM :0.005 〜0.020 %を含有することが好ましい。
【0015】
また、本発明は、質量%で、C:0.05〜0.25%、Si:0.05%以下、Mn:1.5 〜3.5 %、P:0.01%以下、S:0.003 %以下、Al:0.10%以下、N:0.0050〜0.0250%を含み、さらに不純物としてのCrおよびMoを合計で0.2 %以下、不純物としてのNbを0.005 %以下に調整し、残部Feおよび不可避的不純物からなる組成の鋼スラブを、1000℃以上のスラブ加熱温度に加熱したのち、仕上圧延出側温度を800 ℃以上とし、巻取温度を550 ℃以上とする熱間圧延を施し熱延板とする熱間圧延工程と、該熱延板に冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板に、再結晶率が80%となる温度以上、900 ℃以下の焼鈍温度に加熱し、該焼鈍温度から600 ℃までの温度域を30℃/s 以上の冷却速度で冷却し冷延焼鈍板とする連続焼鈍処理工程とを施し、ついで該冷延焼鈍板に、表面にめっき層を形成するめっき処理工程を施すことを特徴とする、板厚が0.8mm 以下で、引張強さが980MPa以上を有し、延性、伸びフランジ性に優れる極薄超高張力めっき鋼板の製造方法であり、また、本発明では、前記組成に加えてさらに、質量%で、Ca:0.001 〜0.020 %および/またはREM :0.005 〜0.020 %を含有することが好ましい。また、本発明では、前記めっき層が、溶融亜鉛めっき層であることが好ましい。
【0016】
【発明の実施の形態】
本発明の極薄超高張力冷延鋼板は、板厚が0.8mm 以下で、引張強さが980MPa以上を有し、さらに延性、伸びフランジ性にも優れた冷延鋼板である。なお、本発明でいう「延性に優れる」とは、伸びが10%以上であり、また「伸びフランジ性に優れる」とは、穴拡げ試験により評価される穴拡げ率が70%以上であることをいうものとする。
【0017】
まず、本発明の極薄超高張力冷延鋼板の組成限定理由について、説明する。なお、以下、組成における質量%は、単に%と記す。
C:0.05〜0.25%
Cは、鋼板強度を増加させる元素であり、所望の強度を確保するために本発明では0.05%以上の含有を必要とするが、0.25%を超えて含有するとスポット溶接性、アーク溶接性などが顕著に低下する。このため、Cは0.05〜0.25%の範囲に限定した。なお、成形性の向上という観点からは0.20%以下とすることが好ましい。また、特に良好な延性が要求される用途に対しては、0.18%以下とすることがより好ましい。なお、C含有量を0.05%以上とすることにより、高強度化のために必要な、硬質な第二相を必要十分な量だけ分散させることができる。
【0018】
Si:0.05%以下
Siは、熱間圧延および冷間圧延における変形抵抗を増加させる元素であり、熱延板の強度を低下させ、冷間圧延性を向上させる必要のある本発明ではできるだけ低減することが望ましい。Si含有量が0.05%を超えると、熱延板の強度が同一であっても、冷間圧延時の負荷が顕著に増大する傾向を示す。このため、Siは0.05%以下に限定した。なお、さらなる極薄物の製造に際しては、Siは0.02%以下とすることが好ましい。
【0019】
Mn:1.5 〜3.5 %
Mnは、Sによる熱間割れを防止し、熱延板の強度増加を抑制しつつ、冷延鋼板の強度を増加させ、さらに結晶粒を微細化する有用な元素であり、本発明では1.5 %程度以上の含有を必要とする。Mnを1.5 %以上含有させることにより、巻取温度での保熱または巻取り温度から徐冷程度の熱履歴でも比較的短時間に、ベイナイト変態、パ−ライト変態を生じやすく、熱延板の組織にマルテンサイトの混入を抑制できるため、熱延板の強度を比較的低強度に維持でき、熱延板の冷間圧延性が向上する。
【0020】
一方、3.5 %を超えるMnの含有は、詳細な機構は不明であるが、鋼板の熱間変形抵抗を増加させる傾向があり、またさらに溶接性や溶接部の成形性が劣化する傾向となり、また、フェライトの生成が顕著に抑制され、延性が顕著に低下する。このようなことから、Mnは1.5 〜3.5 %の範囲に限定した。なお、Mn含有量を2.0 %以上とすることにより、熱延条件の変動による鋼板の機械的性質の変化が顕著に抑制されるという効果が期待されるため、Mnは2.0 %以上含有することが望ましい。
【0021】
P:0.01%以下
Pは、鋼の強度を増加させ、鋼板の延性を低下させ、鋼板の伸びフランジ加工性を劣化させる元素であり、また、Pは鋼中で偏析する傾向が強く、偏析に起因して溶接部の脆化をもたらす。このため、Pはできるだけ低減することが好ましく、本発明ではその上限を0.01%とした。なお、特に延性、伸びフランジ加工性が重視される用途では、0.005 %以下とすることが好ましい。
【0022】
S:0.003 %以下
Sは、鋼中では介在物として存在し、鋼板の延性を低下させ、さらには耐食性の劣化をもたらすため、できるだけ低減することが好ましく、本発明では0.003 %以下に限定した。なお、特に、優れた伸びフランジ加工性が要求される用途には、0.002 %以下とすることが望ましい。
【0023】
Al:0.10%以下
Alは、脱酸剤として作用し、鋼の清浄度を向上させ、また、組織を微細化する作用を有する有用な元素である。このような効果を得るためには0.005 %以上含有することが望ましい。一方、0.10%を超えて含有すると、表面性状の悪化、固溶Nの顕著な低下に繋がる。このため、Alは、0.10%以下に限定した。なお、材質安定性の観点から、0.005 〜0.06%とすることが望ましい。
【0024】
N:0.0050〜0.0250%
Nは、固溶強化、歪時効硬化により鋼板の強度(降伏強さおよび引張強さ)を上昇させる作用を有する元素であり、このような効果は0.0050%以上の含有で安定して認められるようになる。また、Nは鋼の変態点を降下させる作用もあり、薄物で変態点を大きく割り込んだ圧延を行いたくない場合には、Nの含有は有効となる。一方、0.0250%を超えて含有すると、連続鋳造時のスラブ割れなどの発生率が顕著に高くなるとともに、鋼板の内部欠陥発生率が高くなる。このため、Nは0.0050〜0.0250%の範囲に限定した。なお、本発明範囲程度のN含有であれば、アーク溶接、抵抗溶接、高周波溶接、電子ビーム溶接などの溶接性等への悪影響は全くない。なお、製造工程全体を考慮した材質の安定性・歩留り向上という観点から、0.0070〜0.0170%の範囲とすることが好ましい。
【0025】
上記した基本成分の限定に加えて、本発明では、不純物として混入する元素のうち、CrおよびMo、およびNbを、次に示す所定値以下に限定する。
不純物としてのCrおよびMoを合計で0.2 %以下
Cr、Moは、冷延板の焼鈍に際し、軟質なフェライト、低強度のパーライトの生成を抑制して、冷延焼鈍板(製品)の強度を増加させることができるが、一方では、熱間圧延の変形抵抗を高めるとともに、熱間圧延後の冷却に際し、ベイナイト変態、パ−ライト変態を抑制し、巻取温度からの徐冷でもマルテンサイト変態を生じ易くし、熱延板の強度を顕著に増加させる。このため、本発明では、不純物としてのCr、Moをできるだけ低減する必要があり、本発明ではCrおよびMoを合計で0.2 %以下に限定した。より好ましくは0.17%以下である。なお、鋼板板厚が薄い場合には、合計で0.1 %以下とすること好ましい。
【0026】
なお、不純物としてのCrおよびMoを低減するためには、鉄源として使用する溶銑、合金鉄中に不純物としてMo、Cr等が混入しているため、これらの含有量が少ない鉄源(溶銑、合金鉄)を使用するとともに、設備・工程上、これらの元素の混入を防止することが肝要となる。
不純物としてのNbを0.005 %以下
Nbは、熱間圧延時の変形抵抗を顕著に増加させる元素であり、熱延板の強度を低強度とする必要のある本発明ではできるだけ低減する必要がある。Nbは熱延板の強度を上昇させるだけで、連続焼鈍を施されて製造される冷延鋼板の強度を増加させる効果は小さく、この観点からも低減することが望ましい。また、Nbは再結晶温度を上昇させるため、連続焼鈍に際し、より高い温度での焼鈍が必要となる。高温度での焼鈍は、本発明におけるような極薄物では、鋼板の破断などの操業上の問題点を発生する危険性が顕著に増大し、好ましくない。Nbを0.005 %以下に低減すれば、ほぼ問題のないレベルとなる。このようなことから、Nbを0.005 %以下に限定した。なお、より好ましくは0.002 %以下である。
【0027】
Ca:0.001 〜0.020 %および/またはREM :0.005 〜0.020 %
Ca、REM は、いずれも介在物の形態制御を介し、表面欠陥の発生などを伴うことなく伸びフランジ性を改善する作用を有しており、必要に応じ選択して単独または複合して含有できる。なお、これらを複合含有してもその効果が相殺されることはない。このような効果は、Ca:0.001 %以上、REM :0.005 %以上の含有で認められるが、Ca:0.020 %、REM :0.020 %を超えて含有すると、介在物量が増加して清浄度が低下する。このため、Caは0.001 〜0.020 %、REM は0.005 〜0.020 %に限定することが好ましい。
【0028】
上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、例えば、Ti:0.010 %以下が許容できる。
次に本発明鋼板の製造方法について説明する。
上記した組成の溶鋼を、転炉等公知の溶製方法で溶製したのち、公知の鋳造方法で鋼スラブとすることが好ましい。鋳造方法は、公知の方法がいずれも適用できるが、成分のマクロな偏析を防止するため、連続鋳造法を用いることが望ましい。また、造塊法、薄スラブ鋳造法を用いてもなんら問題はない。
【0029】
鋼スラブは、ついで、所定の温度以上に加熱されたのち、熱間圧延を施され熱延板とする熱間圧延工程を施される。
鋼スラブは、一旦室温まで冷却し、その後再度、所定の温度以上に加熱して熱間圧延される。あるいは鋼スラブの温度が高い場合には、鋼スラブを室温に冷却することなく、温片のままで加熱炉に挿入し所定の温度以上まで加熱した後、あるいは加熱炉に挿入しわずかの保熱を行い所定の温度以上とした後に、直ちに熱間圧延する直送圧延・直接圧延などの省エネルギープロセスを適用することもできる。特に、固溶状態のNを有効確保するには直送圧延は有用な技術の一つである。
【0030】
スラブ加熱温度(SRT ):1000℃以上
鋼スラブは、1000℃以上の所定のスラブ加熱温度に加熱され熱間圧延される。スラブ加熱温度が1000℃未満では、初期状態として均一な組織を得ることができない。スラブ加熱温度を1000℃以上とすることで、熱間圧延開始の組織としては十分に均一な組織となる。なお、スラブ加熱温度の上限は特に限定する必要はないが、酸化重量の増加にともなう歩留低下の観点から、1280℃以下とすることが好ましい。
【0031】
熱間圧延では、上記したスラブ加熱温度以上に加熱された鋼スラブに、好ましくは粗圧延と、仕上圧延を施し、熱延板とすることが好ましい。
粗圧延は、所定厚さのシ−トバ−が得られればよく、その条件はとくに限定されない。
仕上圧延は、仕上圧延出側温度FTを800 ℃以上とする圧延とする。
【0032】
仕上圧延出側温度(FT):800 ℃以上
仕上圧延出側温度が800 ℃未満では、熱延板組織が不均一になる。この熱延板組織の不均一性は、冷間圧延、焼鈍後においても消えずに残留するため、プレス成形時に種々の不具合を発生する危険性が増大する。仕上圧延出側温度が800 ℃未満の場合に、加工組織の残留を回避すべく高い巻取温度を採用すると、粗大粒が発生し、それに伴いプレス成形時に種々の不具合を発生する危険性が増大する。また高い巻取温度を採用すると、固溶Nの顕著な低下も生じ、所望の強度を確保することができなくなる。このため、仕上圧延出側温度を800 ℃以上とすることが好ましい。仕上圧延出側温度を800 ℃以上とすることにより、均一微細な熱延組織を得ることができる。なお、機械的特性向上の観点から、820 ℃以上とすることがより好ましい。仕上圧延出側温度の上限はとくに限定されないが、スケール疵の発生防止を考慮しておおむね1000℃程度までとすることが好ましい。
【0033】
仕上げ圧延終了後、熱延板は冷却され、コイル状に巻き取られる。熱延後の冷却速度は、とくに限定されないが、熱延板の強度を低下させるためには、熱延終了後水冷を行い、冷却中の平均冷却速度を10℃〜150 ℃/s として巻取温度まで冷却することが好ましい。この範囲内の冷却速度であれば、制御が比較的容易であり、冷却速度の不均一に起因する材質の不均一や形状の不均一の発生を回避することができる。
【0034】
巻取温度CT: 550℃以上
巻取温度が上昇することにより、熱延板強度は低下する傾向にある。本発明では、巻取温度を 550℃以上とすることが好ましい。鋼板組成を上記したような高Mn−低Cr、Mo−低Nb系とし、巻取温度を550 ℃以上に調整することにより、マルテンサイトの混入を防止でき、上部ベイナイトないしはベイニティックフェライト主体の組織を有する熱延板とすることができ、熱延板の引張強さを800MPa以下まで有効に低下させることができる。Cr、Moの含有量が0.2 %を上回る、あるいはNbの含有量が0.005 %を上回る組成の熱延板ではこのような熱延板の軟質化は達成できない。なお、巻取温度の上限は、とくに限定されないが、熱延板(コイル)幅方向の均一性の観点から概ね 750℃以下とすることがより好ましい。さらに軟質な熱延板が要求される場合には、580 〜720 ℃の温度範囲とすることがさらに好ましい。上記した熱間圧延工程により熱延板の引張強度を800MPa以下とすることができる。熱延板の引張強さを800MPa以下とするにより、通常の製品幅である920 〜1600mm程度の熱延板の冷間圧延性を顕著に改善できる。
【0035】
なお、上記した熱間圧延工程において、現在、一部で実用化されている連続圧延技術を適用することは、鋼板の形状・寸法精度の向上および鋼板の長手方向および幅方向の材質均一化のために極めて有効である。また、この連続圧延技術に加えて、材質均一化のために圧延温度をコイルの長手方向、幅方向に均一化するシートバーエッジヒーターを使用することは極めて有効である。また、圧延後の冷却においてエッジ部の過冷却を防止するために幅方向に冷却水のマスキングを行う技術も材質均一化の観点から有効である。
【0036】
コイル状に巻き取られた熱延板は、ついで好ましくは酸洗を施されたのち、冷間圧延を施され冷延板とする冷間圧延工程を施される。酸洗は、常法に準じて行うことが好ましいが、極めて薄いスケールの状態であれば酸洗することなく直接冷間圧延することも可能である。
冷間圧延は、所定寸法の冷延板を得ることができればよく、圧下率、圧延方法等の条件は特に限定されないが、組織の均一・微細化の観点から、冷間圧下率は30%以上とすることが好ましい。また、生産性の観点からは、冷間圧下率は高い方が好ましい。
【0037】
ついで冷延板は、再結晶率が80%となる温度以上、900 ℃以下の焼鈍温度に加熱し、該焼鈍温度から600 ℃までの温度域を30℃/s 以上の冷却速度で冷却し冷延焼鈍板とする連続焼鈍処理工程を施される。なお、連続焼鈍処理工程の前に、冷延板に酸洗処理を施すことが好ましい。
焼鈍温度:再結晶率が80%となる温度以上、900 ℃以下
焼鈍温度は、再結晶率が80%となる温度以上、900 ℃以下の温度とすることが好ましい。焼鈍温度は、かならずしも完全再結晶状態にする必要はなく、概ね80%以上の再結晶率が確保できる温度以上であれば良い。ここで、完全に再結晶が生ずるより低い温度でα→γ変態が生ずる場合、γ相は再結晶組織と考える。再結晶率が80%未満では十分な成形性を有する冷延焼鈍板とすることができない。一方、焼鈍温度が900 ℃を超えて高温となると、成形性は顕著に向上するが、鋼板強度が低下し、連続焼鈍処理中に板破断が生じる危険性が増大するとともに、さらに、表面の合金元素濃化が顕著となり、塗装性の低下、不めっきの発生が顕著となる。このため、焼鈍温度は概ね900 ℃以下とすることが好ましい。なお、再結晶率が80%となる温度は、冷延ままの鋼板を種々の温度で焼鈍して微細組織を観察し、その観察結果より、圧延組織ではない組織が観察される面積率を再結晶率としてもとめその値を用いるものとする。
【0038】
焼鈍温度から600 ℃までの温度域の冷却速度:30℃/s 以上
本発明では、最終製品(冷延焼鈍板)の強度を所望の強度とするために、いわゆる変態組織強化を利用している。そのために、連続焼鈍工程の冷却を比較的急冷とし、いわゆる拡散型変態組織の生成を抑制して、最終製品(冷延焼鈍板)の微視組織をマルテンサイトを主体とし一部ベイナイトを含むフェライトとマルテンサイトの混合組織や、マルテンサイトあるいはベイナイトの単相、あるいはベイナイトとマルテンサイトの混合組織とし、これにより前記したような成分組成であっても、引張強度が980MPa以上を達成する。このような微視組織とするには、焼鈍温度から、少なくとも 600℃までの温度域を30℃/s 以上、さらに望ましくは50℃/s以上の冷却速度で冷却することが好ましい。しかし、 300℃/s を上回るような急速冷却を行うと、極薄鋼板であるため冷却速度の不均一により形状不良、機械的特性の幅方向の不均一などの発生が顕著となるため、 300℃/s を上限とすることが好ましい。なお、600 ℃以下の温度域での冷却は特に限定する必要はなく、例えば600 ℃までの温度域に引き続き急速冷却を行ってもよく、空冷してもよい。
【0039】
このようにして得られた冷延焼鈍板に、さらに鋼板の表面にめっき層を形成するめっき処理工程を施してもよい。めっき処理工程は、溶融亜鉛めっき処理とする場合には、連続処理工程の冷却途中から連続して行うことが好ましい。あるいは連続処理せずに、室温まで冷却したのち、別に独立してめっき処理してもよい。
【0040】
形成されるめっき層の種類は、とくに限定されないが、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、アルミめっき層、および各種組成の亜鉛アルミ合金めっき層とすることが好ましい。また、めっき層の形成方法は、特に限定する必要はなく、常法に準じて溶融金属浴への浸漬を行う等により行うことができる。なお、めっき処理を行う前に、処理ラインの入側にて酸洗を行うことが好ましい。酸洗を行うことにより、最終製品のめっき密着性を向上させることができる。
【0041】
なお、連続焼鈍処理工程後、あるいはめっき処理工程後に、形状矯正、粗度調整、および歪時効硬化特性の安定向上を目的として、調質圧延(スキンパス圧延)、および/またはレベラ加工を施してもよい。調質圧延の伸び率あるいはレべラー加工の伸び率は単独あるいは合計して0.3 〜15%とすることが好ましい。調質(スキンパス)圧延またはレべラー加工の伸び率は、おおむね0.3 %以上であれば十分であるが、15%を超えると延性の低下をもたらす。なお、調質圧延(スキンパス圧延)においても、レべラー加工においてもその効果は大きな差異がないことを確認している。
【0042】
【実施例】
表1に示す成分を含み、残部が実質的にFeからなる溶鋼を転炉で溶製し、連続鋳造法で鋼スラブ(板厚:260mm )とした。これら鋼スラブに、表2に示す条件の熱間圧延を施し熱延板とする熱間圧延工程と、さらに該熱延板に酸洗を施したのち、表2に示す条件の冷間圧延を施し冷延板とする冷間圧延工程と、ついで該冷延板に連続焼鈍処理を施し冷延焼鈍板とする連続焼鈍工程とを順次施し製品(冷延鋼板)とした。なお、再結晶率80%となる温度は、冷延未焼鈍板を予め600 ℃以上で10℃間隔で焼鈍温度を設定して焼鈍したのち各焼鈍温度の焼鈍板の微細組織観察を行い、未再結晶組織(圧延組織)ではない組織が観察される面積率を求め、これを再結晶率とし、再結晶率が80%以上となる最低の温度を再結晶率が80%となる温度として求めた。また、冷間圧延に際しては、冷間圧延性を圧延荷重と割れの有無により測定し、荷重が大あるいは割れ発生の場合には冷間圧延困難として評価した。また、冷間圧延鋼板の厚さ、形状を測定し、板厚精度が長手方向で70μm を超えるバラツキをもつとき寸法精度不良とし、JIS G3135 に記載の平坦度すなわち、定盤上で測定した波高さが10mm以上のとき形状不良とした。
【0043】
また、一部の鋼板では、熱延鋼板を酸洗し、次いで冷間圧延後に、連続溶融亜鉛めっきラインを利用して冷延焼鈍板とした後、その表面に溶融亜鉛めっき層を形成し、製品(溶融亜鉛めっき鋼板)とした。
得られた製品から試験片を採取して、引張試験、穴拡げ試験を実施した。試験方法は下記のとおりとした。
(1)引張試験
各製品(冷延鋼板、溶融亜鉛めっき鋼板)からJIS 5号引張試験片を採取しJIS Z 2241の規定に準拠して引張試験を実施し、引張特性( 降伏応力YS、引張強さTS、伸びEl) を求めた。なお、引張試験片の長手方向を鋼板の圧延直角方向と一致させた。また、冷間圧延工程前の熱延板から同様にJIS 5号引張試験片を採取し、同様に引張試験を実施し、熱延板の引張強さTSを求めた。
(2)穴拡げ試験
各製品(冷延鋼板、溶融亜鉛めっき鋼板)から試験片を採取して、日本鉄鋼連盟規格JFS−T1001−1996の規定に準拠して穴拡げ試験を行った。試験片( 大きさ:100 ×100 mm)に、穴径d(=10mm)の初期穴をクリアランス12.5%で打ち抜き、ついで初期穴のバリをダイ側(すなわち円錐パンチの反対側)として円錐パンチ(頂角60°)を初期穴に挿入して亀裂が鋼板を貫通するまで穴拡げを行い、亀裂が鋼板を貫通した時点での穴径dを求めた。d、d値を使用し、次式
λ=100 ×(d−d)/d
(ここで、d:初期穴径(=10mm)、d:亀裂が鋼板を貫通した時点での穴径)
から、穴拡げ率λ(%)を算出し、伸びフランジ性を評価した。
【0044】
得られた結果を表3に示す。
【0045】
【表1】

Figure 2004285366
【0046】
【表2】
Figure 2004285366
【0047】
【表3】
Figure 2004285366
【0048】
【表4】
Figure 2004285366
【0049】
【表5】
Figure 2004285366
【0050】
本発明例はいずれも、寸法精度の低下や冷間圧延性の低下もなく、980MPa以上の引張強さと、優れた延性および優れた伸びフランジ性を有する極薄超高張力冷延鋼板あるいは極薄超高張力溶融亜鉛めっき鋼板となっている。一方、本発明の範囲を外れる比較例は、引張強さが980MPa未満であるか、延性、伸びフランジ性が低下するか、あるいは寸法精度の低下や冷間圧延性の低下がみられ、所望の極薄超高張力冷延鋼板あるいは極薄超高張力溶融亜鉛めっき鋼板となっていない。
【0051】
【発明の効果】
以上のように、本発明によれば、980MPa以上の高い引張強さを有する板厚:0.8mm 以下の極薄超高張力冷延鋼板、極薄超高張力めっき鋼板が容易にしかも安定して製造でき、産業上格段の効果を奏する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cold-rolled steel sheet, in particular, mainly used for automobiles, general home appliances, furniture, etc., specifically, is formed into a hat-shaped cross-sectional shape or a pipe shape by light bending, foam forming, roll forming, or the like. Ultrathin, suitable for applications subject to relatively severe drawing, with a thickness of 0.8 mm or less, a tensile strength of 980 MPa or more, and excellent ductility and stretch flangeability (also referred to as hole expanding properties) It relates to an ultra-high tensile cold-rolled steel sheet.
[0002]
[Prior art]
2. Description of the Related Art In recent years, from the viewpoint of preserving the global environment, there has been a demand for improved fuel efficiency of automobiles. In order to respond to such demands, weight reduction of an automobile body has become an important issue. In order to reduce the weight of automobile bodies, it is effective to increase the strength of component materials and reduce the thickness of the material. It has become.
[0003]
From the viewpoint of further reducing the weight of an automobile body, a thin steel sheet having a higher tensile strength is demanded. Depending on the application, for example, the steel sheet has an ultra-high tensile strength of 980 MPa or more, and has a thickness of: Ultra-thin ultra-high strength steel sheets of 0.8 mm or less are demanded.
As a steel sheet having such an ultra-high tension, for example, Patent Document 1 proposes an ultra-high-tensile cold-rolled steel sheet excellent in ductility having a tensile strength of 980 MPa or more.
[0004]
[Patent Document 1]
JP 2001-81533 A
[0005]
[Problems to be solved by the invention]
However, in the technique described in Patent Document 1, the minimum thickness of an ultra-high tensile cold-rolled steel sheet that contains a large amount of strengthening elements, does not sufficiently define impurities, and can be manufactured stably with good yield is at most 1 However, there is a problem in the production of an ultra-thin ultra-high tensile cold-rolled steel sheet having a thickness of 0.8 mm or less, more preferably 0.75 mm or less. Further, in the technique described in Patent Document 1, the strength of a hot-rolled steel sheet (cold-rolled base sheet) also becomes equal to or higher than that of the hot-rolled steel sheet, so that cold rolling becomes impossible or annealing must be performed in the middle. There was such a problem.
[0006]
A cold-rolled steel sheet is usually manufactured by subjecting a slab adjusted to a predetermined composition to hot rolling and cold rolling to obtain a cold-rolled sheet, and then subjecting the slab to an annealing treatment. However, in producing ultra-high tensile ultra-thin steel sheets with a thickness of 0.8 mm or less, the deformation resistance of the steel increases, and the rolling stability in hot rolling and cold rolling decreases. However, in extreme cases, there is a problem that rolling becomes impossible and it is difficult to control the shape of the steel sheet.
[0007]
Also, in recent years, scraps have been effectively utilized from the viewpoint of improving the recyclability of steel materials. As a so-called tramp element, elements represented by "Nb, Cu, Ni, Cr, Mo" and the like have been compared with conventional ones. The phenomenon that a large amount is mixed is remarkable. Recently, the amount of Nb, Cu, Ni, Cr, and Mo mixed in more than 0.2% by mass in total has increased in many cases. These elements are strengthening elements for steel, and the strength of the steel increases due to the incorporation of a large amount of these elements.
[0008]
When a large amount of the tramp elements is mixed in this way, the strength of the hot-rolled steel sheet increases, so that the reduction ratio of the subsequent cold rolling is limited, and there is a problem that the production of an ultra-thin cold-rolled steel sheet becomes difficult. In such a case, as a method of manufacturing an ultra-thin cold rolled steel sheet, there is a method of so-called twice cold rolling and twice annealing of hot rolling → pickling → cold rolling → annealing → cold rolling → annealing, but the process is complicated. Thus, there remain industrial problems such as an increase in production cost and an increase in time required for production.
[0009]
The present invention advantageously solves the above-mentioned problems of the prior art, and provides an ultra-thin ultra-high tensile cold-rolled steel sheet having a thickness of 0.8 mm or less and a tensile strength of 980 MPa or more, and a method for producing the same. With the goal. In order to sufficiently reduce the weight of the member by reducing the thickness of the steel sheet, a steel sheet of 780 MPa class is insufficient, and a steel sheet of at least 980 MPa class is required, and excellent ductility and stretch flangeability are also required. Further, from the relationship between the thickness and the strength of the current steel sheet, the sheet thickness is targeted at 0.8 mm or less, more preferably 0.75 mm or less.
[0010]
[Means for Solving the Problems]
The present inventors have diligently studied various factors affecting the cold rolling property in order to achieve the above-described object.
The hot-rolled sheet is usually coiled after being cooled from the austenitic single-phase region to the winding temperature after the end of hot rolling, and then the cooling rate is significantly reduced due to the heat capacity of the coil itself. Undergo a thermomechanical treatment that is finally cooled to room temperature. On the other hand, a cold-rolled annealed sheet to be a product is obtained by cold-rolling a hot-rolled sheet into a cold-rolled sheet, and then rapidly heating the cold-rolled sheet from room temperature to an annealing temperature, and then increasing the production efficiency. Receives a heat history that is rapidly cooled. Due to the difference between the working and the heat history of the hot-rolled sheet and the cold-rolled annealed sheet, the present inventors have found that the working heat treatment applied to the hot-rolled sheet does not increase the strength, but is remarkable after cold rolling and annealing. If a combination of steel composition, heat treatment conditions, etc., is used, the strength of the hot-rolled sheet, which is an intermediate step, becomes low and the load during cold rolling can be reduced, and as a result, the cold rollability improves. Thus, the present inventors have conceived that the production of an ultra-thin ultra-high tensile cold-rolled steel sheet having a thickness of 0.80 mm or less becomes easy.
[0011]
That is, in the production of ultra-thin ultra-high tensile cold-rolled steel sheet, in order to improve the cold rolling property, the hot-rolled sheet is maintained as soft as possible, and thereafter, in the pickling / cold rolling step and the continuous annealing step. It was found that the desired tensile strength should be ensured.
Based on such a concept, the present inventors further manufactured steel plates with various components and manufacturing methods, and performed many material evaluation experiments. As a result, it was found that Mn contributes little to the increase in strength in the heat treatment applied to the hot-rolled sheet, while the heat treatment applied to the cold-rolled sheet makes a significant contribution to the increase in strength. It has been found to be advantageous in the production of thin ultra-high strength steel sheets.
[0012]
In addition, Cr and Mo greatly contribute to the strength under both the heat treatment conditions applied to the hot-rolled sheet and the heat treatment conditions applied to the cold-rolled sheet, and the production of ultra-thin ultra-high-strength steel sheets reduces the content of Cr and Mo severely. I knew that I needed to do it.
Based on such findings, the present inventors further studied and included Mn as much as 1.5% by mass or more, and reduced the total amount of Cr and Mo mixed as impurities to 0.2% by mass or less. By limiting the steel composition, the incorporation of martensite is suppressed, the structure of the hot-rolled sheet becomes ferrite + pearlite or ferrite + bainite structure, and the tensile strength of the hot-rolled sheet is maintained at a low strength of 800 MPa or less. It has been found that the steel sheet strength can be increased to the target strength by increasing the amount of martensite in the subsequent cold rolling and continuous annealing step, and the ductility and stretch flangeability can be sufficiently satisfied. Furthermore, in order to keep the strength of the hot-rolled sheet even lower, it has been found that it is also important to limit the amount of Nb that increases the deformation resistance during hot rolling to 0.005% or less. .
[0013]
The present invention has been completed based on the above findings, with further investigations. That is, in the present invention, C: 0.05 to 0.25%, Si: 0.05% or less, Mn: 1.5 to 3.5%, P: 0.01% or less, S: It contains 0.003% or less, Al: 0.10% or less, and N: 0.0050 to 0.0250%. Cr and Mo as impurities are 0.2% or less in total, and Nb as an impurity is 0.1% or less. 005% or less, having a composition comprising the balance of Fe and unavoidable impurities, having a tensile strength of 980 MPa or more, and being excellent in ductility and stretch flangeability, a sheet thickness of 0.8 mm or less. , And in the present invention, in addition to the above composition, Ca: 0.001 to 0.020% and / or REM: 0.005 to 0. It is preferred to contain 020%.
[0014]
The present invention also provides an ultra-thin ultra-high tensile strength sheet having a thickness of 0.8 mm or less and a tensile strength of 980 MPa or more formed by forming a plating layer on the surface layer of each of the ultra-thin ultra-high tensile cold-rolled steel sheets described above. It is a plated steel sheet, and in the present invention, it is preferable that the plated layer is a galvanized layer.
In the present invention, C: 0.05 to 0.25%, Si: 0.05% or less, Mn: 1.5 to 3.5%, P: 0.01% or less, S: 0.003% or less, Al: 0.10% or less, N: 0.0050 to 0.0250%, Cr and Mo as impurities are 0.2% or less in total, and Nb as an impurity is 0.1% or less. After heating a steel slab having a composition consisting of the balance Fe and unavoidable impurities to a slab heating temperature of 1000 ° C. or more, the finish-rolling exit temperature is set to 800 ° C. or more, and a winding temperature is set to 550 ° C. A hot rolling step in which the above hot rolling is performed to form a hot rolled sheet, a cold rolling step in which the hot rolled sheet is subjected to cold rolling to form a cold rolled sheet, and the recrystallization rate of the cold rolled sheet is Heat to an annealing temperature of not less than 80% and not more than 900 ° C. A continuous annealing treatment step of cooling the temperature range up to 0 ° C. at a cooling rate of 30 ° C./s or more into a cold-rolled annealed sheet, wherein the sheet thickness is 0.8 mm or less and the tensile strength is This is a method for producing an ultra-thin ultra-high tensile cold-rolled steel sheet having a tensile strength of 980 MPa or more and excellent in ductility and stretch flangeability. In the present invention, in addition to the above composition, Ca: 0. It is preferable to contain 001 to 0.020% and / or REM: 0.005 to 0.020%.
[0015]
In the present invention, C: 0.05 to 0.25%, Si: 0.05% or less, Mn: 1.5 to 3.5%, P: 0.01% or less, S: 0.003% or less, Al: 0.10% or less, N: 0.0050 to 0.0250%, Cr and Mo as impurities are 0.2% or less in total, and Nb as an impurity is 0.1% or less. After heating a steel slab having a composition consisting of the balance Fe and unavoidable impurities to a slab heating temperature of 1000 ° C. or more, the finish-rolling exit temperature is set to 800 ° C. or more, and a winding temperature is set to 550 ° C. A hot rolling step in which the above hot rolling is performed to form a hot rolled sheet, a cold rolling step in which the hot rolled sheet is subjected to cold rolling to form a cold rolled sheet, and the recrystallization rate of the cold rolled sheet is Heat to an annealing temperature of not less than 80% and not more than 900 ° C. A continuous annealing process of cooling the temperature range up to 0 ° C. at a cooling rate of 30 ° C./s or more into a cold-rolled annealed plate, and then forming a plating layer on the surface of the cold-rolled annealed plate. A method for producing an ultra-thin ultra-high tensile steel sheet having a thickness of 0.8 mm or less, a tensile strength of 980 MPa or more, and excellent ductility and stretch flangeability. In the present invention, it is preferable that Ca: 0.001 to 0.020% and / or REM: 0.005 to 0.020% by mass% in addition to the above composition. In the present invention, the plating layer is preferably a hot-dip galvanized layer.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The ultra-thin ultra-high tensile cold-rolled steel sheet of the present invention is a cold-rolled steel sheet having a thickness of 0.8 mm or less, a tensile strength of 980 MPa or more, and excellent ductility and stretch flangeability. In the present invention, "excellent in ductility" means that the elongation is 10% or more, and "excellent in stretch flangeability" means that the hole expansion rate evaluated by a hole expansion test is 70% or more. Shall be referred to.
[0017]
First, the reason for limiting the composition of the ultra-thin ultra-high tensile cold-rolled steel sheet of the present invention will be described. Hereinafter, mass% in the composition is simply described as%.
C: 0.05 to 0.25%
C is an element that increases the strength of the steel sheet. In the present invention, the content of 0.05% or more is required to secure the desired strength. The weldability and the like are significantly reduced. For this reason, C was limited to the range of 0.05 to 0.25%. In addition, from the viewpoint of improvement in moldability, the content is preferably 0.20% or less. Further, for applications requiring particularly good ductility, the content is more preferably 0.18% or less. By setting the C content to 0.05% or more, a necessary and sufficient amount of the hard second phase required for increasing the strength can be dispersed.
[0018]
Si: 0.05% or less
Si is an element that increases the deformation resistance in hot rolling and cold rolling. In the present invention, in which it is necessary to reduce the strength of a hot-rolled sheet and to improve the cold-rolling property, it is desirable to reduce as much as possible. If the Si content exceeds 0.05%, the load during cold rolling tends to increase significantly, even if the strength of the hot-rolled sheet is the same. For this reason, Si was limited to 0.05% or less. In the production of a further ultrathin object, the content of Si is preferably set to 0.02% or less.
[0019]
Mn: 1.5 to 3.5%
Mn is a useful element that prevents hot cracking due to S, suppresses an increase in strength of a hot-rolled sheet, increases the strength of a cold-rolled steel sheet, and further refines crystal grains. About 5% or more is required. By containing Mn in an amount of 1.5% or more, bainite transformation and pearlite transformation easily occur in a relatively short time even with heat retention at the winding temperature or a heat history of slow cooling from the winding temperature. Since the incorporation of martensite into the structure of the sheet can be suppressed, the strength of the hot-rolled sheet can be maintained relatively low, and the cold-rollability of the hot-rolled sheet is improved.
[0020]
On the other hand, when the content of Mn exceeds 3.5%, the detailed mechanism is unknown, but the hot deformation resistance of the steel sheet tends to increase, and the weldability and the formability of the welded portion tend to deteriorate. In addition, the formation of ferrite is significantly suppressed, and the ductility is significantly reduced. For these reasons, Mn is limited to the range of 1.5 to 3.5%. By setting the Mn content to 2.0% or more, an effect of significantly suppressing a change in mechanical properties of a steel sheet due to a change in hot rolling conditions is expected, and thus Mn is 2.0% or more. It is desirable to contain.
[0021]
P: 0.01% or less
P is an element that increases the strength of the steel, reduces the ductility of the steel sheet, and deteriorates the stretch flangeability of the steel sheet, and P has a strong tendency to segregate in the steel, and the welded portion is caused by the segregation. Causes embrittlement. For this reason, it is preferable to reduce P as much as possible. In the present invention, the upper limit is set to 0.01%. In particular, in applications where emphasis is placed on ductility and stretch flangeability, the content is preferably 0.005% or less.
[0022]
S: 0.003% or less
S is present as an inclusion in the steel, which reduces the ductility of the steel sheet and further deteriorates the corrosion resistance. Therefore, it is preferable to reduce S as much as possible. In the present invention, S is limited to 0.003% or less. In particular, for applications requiring excellent stretch flange workability, the content is desirably 0.002% or less.
[0023]
Al: 0.10% or less
Al is a useful element that acts as a deoxidizing agent, improves the cleanliness of steel, and has a function to refine the structure. In order to obtain such an effect, it is desirable to contain 0.005% or more. On the other hand, when the content exceeds 0.10%, it leads to deterioration of surface properties and remarkable decrease of solid solution N. For this reason, Al was limited to 0.10% or less. In addition, from the viewpoint of material stability, the content is desirably 0.005 to 0.06%.
[0024]
N: 0.0050 to 0.0250%
N is an element having the effect of increasing the strength (yield strength and tensile strength) of a steel sheet by solid solution strengthening and strain age hardening, and such an effect is stably recognized at a content of 0.0050% or more. Will be able to In addition, N also has an effect of lowering the transformation point of the steel, and the N content is effective when it is not desired to perform rolling with a thin material that greatly reduces the transformation point. On the other hand, when the content exceeds 0.0250%, the rate of occurrence of slab cracks and the like during continuous casting is significantly increased, and the rate of occurrence of internal defects in the steel sheet is increased. For this reason, N was limited to the range of 0.0050 to 0.0250%. In addition, as long as N content is within the range of the present invention, there is no adverse effect on weldability such as arc welding, resistance welding, high frequency welding, and electron beam welding. In addition, it is preferable to set it in the range of 0.0070 to 0.0170% from the viewpoint of improving the stability and yield of the material in consideration of the entire manufacturing process.
[0025]
In addition to the limitation of the basic components described above, in the present invention, of the elements mixed as impurities, Cr, Mo, and Nb are limited to the following predetermined values or less.
Cr and Mo as impurities are 0.2% or less in total
Cr and Mo can suppress the formation of soft ferrite and low-strength pearlite during annealing of the cold-rolled sheet, and can increase the strength of the cold-rolled annealed sheet (product). In addition to increasing the deformation resistance of the hot rolled sheet, the bainite and pearlite transformations are suppressed during cooling after hot rolling, and the martensitic transformation is easily caused even at a slow cooling from the winding temperature, and the strength of the hot-rolled sheet is markedly increased. increase. For this reason, in the present invention, it is necessary to reduce Cr and Mo as impurities as much as possible, and in the present invention, Cr and Mo are limited to 0.2% or less in total. More preferably, it is 0.17% or less. When the thickness of the steel sheet is small, the total content is preferably 0.1% or less.
[0026]
In addition, in order to reduce Cr and Mo as impurities, since Mo, Cr, etc. are mixed as impurities into the hot metal used as an iron source and the ferromagnetic iron, an iron source (hot metal, It is important to use ferroalloys and to prevent the mixing of these elements in equipment and processes.
0.005% or less of Nb as an impurity
Nb is an element that significantly increases the deformation resistance during hot rolling. In the present invention, in which the strength of a hot-rolled sheet needs to be low, it must be reduced as much as possible. Nb only increases the strength of the hot-rolled sheet, but has a small effect of increasing the strength of the cold-rolled steel sheet manufactured by continuous annealing, and it is desirable to reduce it from this viewpoint. Further, Nb raises the recrystallization temperature, so that continuous annealing requires annealing at a higher temperature. Annealing at a high temperature is not preferable for an extremely thin material as in the present invention, since the risk of causing operational problems such as breakage of a steel sheet is significantly increased. If Nb is reduced to 0.005% or less, the level becomes almost no problem. For these reasons, Nb is limited to 0.005% or less. Note that the content is more preferably 0.002% or less.
[0027]
Ca: 0.001 to 0.020% and / or REM: 0.005 to 0.020%
Both Ca and REM have an effect of improving stretch flangeability without controlling the morphology of inclusions and without causing surface defects, etc., and can be selected as necessary and contained alone or in combination. . In addition, even if these are contained in combination, the effects are not offset. Such effects are observed when the content of Ca is 0.001% or more and the content of REM is 0.005% or more. However, when the content of Ca exceeds 0.020% and the content of REM exceeds 0.020%, the amount of inclusions is reduced. The cleanliness decreases with an increase. For this reason, Ca is preferably limited to 0.001 to 0.020%, and REM is preferably limited to 0.005 to 0.020%.
[0028]
The balance other than the components described above is Fe and inevitable impurities. As the inevitable impurities, for example, Ti: 0.010% or less can be allowed.
Next, a method for producing the steel sheet of the present invention will be described.
After smelting the molten steel having the above composition by a known smelting method such as a converter, it is preferable to form a steel slab by a known casting method. As the casting method, any known method can be applied, but it is preferable to use a continuous casting method in order to prevent macro segregation of components. There is no problem even if the ingot making method or the thin slab casting method is used.
[0029]
After the steel slab is heated to a predetermined temperature or higher, the steel slab is subjected to a hot rolling process in which the steel slab is subjected to hot rolling to form a hot rolled sheet.
The steel slab is once cooled to room temperature and then heated again to a predetermined temperature or higher and hot rolled. Alternatively, if the temperature of the steel slab is high, do not cool the steel slab to room temperature, insert it into a heating furnace as it is, and heat it to a specified temperature or higher, or insert it in a heating furnace and keep a small amount of heat. After the temperature is increased to a predetermined temperature or more, an energy saving process such as direct rolling or direct rolling in which hot rolling is performed immediately can be applied. In particular, direct rolling is one of useful techniques for effectively securing solid solution N.
[0030]
Slab heating temperature (SRT): 1000 ° C or more
The steel slab is heated to a predetermined slab heating temperature of 1000 ° C. or higher and hot-rolled. If the slab heating temperature is lower than 1000 ° C., a uniform structure cannot be obtained as an initial state. By setting the slab heating temperature to 1000 ° C. or higher, the structure at the start of hot rolling is sufficiently uniform. The upper limit of the slab heating temperature does not need to be particularly limited, but is preferably 1280 ° C. or lower from the viewpoint of a decrease in yield due to an increase in oxidized weight.
[0031]
In the hot rolling, it is preferable that a steel slab heated to a temperature equal to or higher than the slab heating temperature is preferably subjected to rough rolling and finish rolling to obtain a hot rolled sheet.
Rough rolling is only required to obtain a sheet having a predetermined thickness, and the conditions are not particularly limited.
The finish rolling is a rolling in which the finish rolling exit temperature FT is 800 ° C. or higher.
[0032]
Finishing roll exit temperature (FT): 800 ° C or more
If the finish-rolling exit temperature is less than 800 ° C., the structure of the hot-rolled sheet becomes uneven. Since the non-uniformity of the structure of the hot-rolled sheet remains without disappearing even after cold rolling and annealing, there is an increased risk of causing various problems during press forming. When the finish-rolling exit temperature is lower than 800 ° C., if a high winding temperature is employed to avoid the retention of the processed structure, coarse grains are generated, which increases the risk of causing various problems during press forming. I do. If a high winding temperature is employed, the amount of solid solution N is remarkably reduced, and the desired strength cannot be secured. For this reason, it is preferable that the finish-rolling exit side temperature be 800 ° C. or higher. By setting the finish-rolling exit temperature to 800 ° C. or higher, a uniform and fine hot-rolled structure can be obtained. It is more preferable that the temperature be 820 ° C. or higher from the viewpoint of improving the mechanical properties. The upper limit of the finish-rolling discharge side temperature is not particularly limited, but is preferably about 1000 ° C. in consideration of prevention of scale flaws.
[0033]
After finishing rolling, the hot rolled sheet is cooled and wound into a coil. The cooling rate after hot rolling is not particularly limited, but in order to reduce the strength of the hot rolled sheet, water cooling is performed after the completion of hot rolling, and the average cooling rate during cooling is set at 10 ° C to 150 ° C / s and winding is performed. Cooling to temperature is preferred. If the cooling rate is within this range, the control is relatively easy, and it is possible to avoid the occurrence of non-uniformity of the material and shape due to the non-uniformity of the cooling rate.
[0034]
Winding temperature CT: 550 ° C or more
As the winding temperature increases, the strength of the hot-rolled sheet tends to decrease. In the present invention, the winding temperature is preferably set to 550 ° C. or higher. By adjusting the steel sheet composition to a high Mn-low Cr, Mo-low Nb system as described above, and adjusting the winding temperature to 550 ° C. or higher, the incorporation of martensite can be prevented, and the upper bainite or bainitic ferrite-based A hot rolled sheet having a structure can be obtained, and the tensile strength of the hot rolled sheet can be effectively reduced to 800 MPa or less. Such a hot-rolled sheet cannot be softened in a hot-rolled sheet having a Cr or Mo content of more than 0.2% or a Nb content of more than 0.005%. Although the upper limit of the winding temperature is not particularly limited, it is more preferably approximately 750 ° C. or less from the viewpoint of uniformity in the width direction of the hot rolled sheet (coil). When a softer hot rolled sheet is required, the temperature is more preferably set in a range of 580 to 720 ° C. By the above-described hot rolling step, the tensile strength of the hot-rolled sheet can be made 800 MPa or less. By setting the tensile strength of the hot-rolled sheet to 800 MPa or less, the cold rollability of a hot-rolled sheet having a normal product width of about 920 to 1600 mm can be significantly improved.
[0035]
In the above-mentioned hot rolling process, applying the continuous rolling technology that is currently partially used is intended to improve the shape and dimensional accuracy of the steel sheet and to make the material uniform in the longitudinal and width directions of the steel sheet. It is extremely effective for. In addition to this continuous rolling technique, it is extremely effective to use a sheet bar edge heater that makes the rolling temperature uniform in the longitudinal direction and the width direction of the coil in order to make the material uniform. Further, a technique of masking the cooling water in the width direction in order to prevent overcooling of the edge portion in cooling after rolling is also effective from the viewpoint of material uniformity.
[0036]
The hot-rolled sheet wound in a coil shape is then preferably subjected to pickling, and then subjected to a cold-rolling process in which the sheet is cold-rolled to form a cold-rolled sheet. The pickling is preferably performed according to a conventional method, but if it is in a very thin scale state, direct cold rolling can be performed without pickling.
The cold rolling is not particularly limited as long as a cold-rolled sheet of a predetermined size can be obtained, and the conditions such as the rolling reduction and the rolling method are not particularly limited. From the viewpoint of uniform and fine structure, the cold rolling reduction is 30% or more. It is preferable that Further, from the viewpoint of productivity, it is preferable that the cold rolling reduction is higher.
[0037]
Next, the cold-rolled sheet is heated to an annealing temperature of not less than 900 ° C. and a temperature at which the recrystallization ratio becomes 80%, and a temperature range from the annealing temperature to 600 ° C. is cooled at a cooling rate of 30 ° C./s or more. A continuous annealing process is performed to form a spread annealing plate. In addition, it is preferable to perform the pickling process on the cold rolled sheet before the continuous annealing process.
Annealing temperature: not less than the temperature at which the recrystallization ratio becomes 80% and not more than 900 ° C
The annealing temperature is preferably not lower than the temperature at which the recrystallization ratio is 80% and not higher than 900 ° C. The annealing temperature does not necessarily need to be in a completely recrystallized state, and may be any temperature as long as a temperature at which a recrystallization rate of about 80% or more can be ensured. Here, when the α → γ transformation occurs at a lower temperature than that at which complete recrystallization occurs, the γ phase is considered as a recrystallized structure. If the recrystallization ratio is less than 80%, a cold-rolled annealed sheet having sufficient formability cannot be obtained. On the other hand, when the annealing temperature is higher than 900 ° C., the formability is remarkably improved, but the strength of the steel sheet is reduced, and the risk of sheet breakage during continuous annealing is increased. Elemental concentration becomes remarkable, and paintability decreases and generation of non-plating becomes remarkable. Therefore, it is preferable that the annealing temperature be approximately 900 ° C. or less. The temperature at which the recrystallization ratio becomes 80% is determined by annealing the cold-rolled steel sheet at various temperatures and observing the microstructure. The value is used as the crystal ratio.
[0038]
Cooling rate in the temperature range from annealing temperature to 600 ° C: 30 ° C / s or more
In the present invention, so-called transformation structure strengthening is used to make the strength of a final product (a cold-rolled annealed sheet) a desired strength. Therefore, the cooling in the continuous annealing process is made relatively rapid, and the formation of a so-called diffusion-type transformed structure is suppressed, and the microstructure of the final product (cold rolled annealed plate) is made of ferrite containing mainly martensite and partially containing bainite. And a mixed structure of martensite or bainite, or a mixed structure of bainite and martensite, thereby achieving a tensile strength of 980 MPa or more even with the above-described component composition. In order to obtain such a microstructure, it is preferable to cool the temperature range from the annealing temperature to at least 600 ° C. at a cooling rate of 30 ° C./s or more, more preferably 50 ° C./s or more. However, when rapid cooling is performed at a rate exceeding 300 ° C./s, since the cooling rate is non-uniform due to the extremely thin steel sheet, the occurrence of poor shape and non-uniform mechanical properties in the width direction becomes remarkable. It is preferred that the upper limit be ° C / s. The cooling in the temperature range of 600 ° C. or less is not particularly limited. For example, rapid cooling may be performed in the temperature range up to 600 ° C., or air cooling may be performed.
[0039]
The thus obtained cold-rolled annealed sheet may be further subjected to a plating step of forming a plating layer on the surface of the steel sheet. When the galvanizing process is a hot-dip galvanizing process, it is preferable that the galvanizing process be performed continuously during the cooling in the continuous process. Alternatively, the plating treatment may be performed separately and independently after cooling to room temperature without performing the continuous treatment.
[0040]
The type of the formed plating layer is not particularly limited, but is preferably a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, an aluminum plated layer, and a zinc-aluminum alloy plated layer of various compositions. The method for forming the plating layer is not particularly limited, and the plating layer can be formed by immersion in a molten metal bath according to a conventional method. It is preferable to perform pickling on the entrance side of the processing line before performing the plating process. By performing pickling, the plating adhesion of the final product can be improved.
[0041]
In addition, after the continuous annealing process or the plating process, temper rolling (skin pass rolling) and / or leveler processing may be performed for the purpose of shape correction, roughness adjustment, and stable improvement of strain aging hardening characteristics. Good. It is preferable that the elongation rate of the temper rolling or the elongation rate of the leveler processing is 0.3 to 15% alone or in total. The elongation percentage of the passivation (skin pass) rolling or leveling is sufficient if it is approximately 0.3% or more, but if it exceeds 15%, the ductility is reduced. In addition, it has been confirmed that there is no significant difference in the effect between the temper rolling (skin pass rolling) and the leveler processing.
[0042]
【Example】
Molten steel containing the components shown in Table 1 and the balance substantially consisting of Fe was smelted in a converter and made into a steel slab (sheet thickness: 260 mm) by a continuous casting method. These steel slabs are subjected to hot rolling under the conditions shown in Table 2 to form a hot-rolled sheet, and further subjected to pickling, and then cold-rolled under the conditions shown in Table 2. The product (cold rolled steel sheet) was successively subjected to a cold rolling step of giving a cold rolled sheet and a continuous annealing step of subjecting the cold rolled sheet to a continuous annealing treatment to form a cold rolled annealed sheet. The temperature at which the recrystallization rate is 80% is set at an annealing temperature of 600 ° C. or higher at an interval of 10 ° C. before annealing the cold-rolled unannealed sheet, and then observing the microstructure of the annealed sheet at each annealing temperature. The area ratio at which a structure other than the recrystallized structure (rolled structure) is observed is determined, and this is defined as the recrystallized ratio. Was. In the cold rolling, the cold rolling property was measured based on the rolling load and the presence or absence of cracks. When the load was large or cracks occurred, it was evaluated that cold rolling was difficult. Further, the thickness and shape of the cold-rolled steel sheet were measured, and when the thickness accuracy had a variation exceeding 70 μm in the longitudinal direction, it was determined that the dimensional accuracy was poor, and the flatness described in JIS G3135, ie, the wave height measured on the surface plate, was measured. When it was 10 mm or more, the shape was determined to be defective.
[0043]
Also, in some steel sheets, hot-rolled steel sheet is pickled, then cold-rolled, and then formed into a cold-rolled annealed sheet using a continuous hot-dip galvanizing line, and then a hot-dip galvanized layer is formed on the surface thereof. Product (galvanized steel sheet).
A test piece was collected from the obtained product and subjected to a tensile test and a hole expanding test. The test method was as follows.
(1) Tensile test
A JIS No. 5 tensile test piece is sampled from each product (cold rolled steel sheet, hot-dip galvanized steel sheet) and subjected to a tensile test in accordance with the provisions of JIS Z 2241 to obtain tensile properties (yield stress YS, tensile strength TS, elongation). El) was determined. The longitudinal direction of the tensile test piece was made to coincide with the direction perpendicular to the rolling of the steel sheet. In addition, a JIS No. 5 tensile test piece was similarly sampled from the hot-rolled sheet before the cold rolling step, and a tensile test was similarly performed to determine the tensile strength TS of the hot-rolled sheet.
(2) Hole expansion test
A test piece was collected from each product (cold-rolled steel sheet, hot-dip galvanized steel sheet) and subjected to a hole expansion test in accordance with the rules of the Japan Iron and Steel Federation Standard JFS-T1001-1996. A test piece (size: 100 x 100 mm) with a hole diameter d0(= 10mm) initial hole was punched with a clearance of 12.5%, and then the burr of the initial hole was used as the die side (ie, the side opposite to the conical punch), and a conical punch (vertical angle 60 °) was inserted into the initial hole to crack. The hole was expanded until it penetrated the steel plate, and the hole diameter d when the crack penetrated the steel plate was determined. d0, D value, and the following equation
λ = 100 × (dd0) / D0
(Where d0: Initial hole diameter (= 10 mm), d: hole diameter at the time when the crack penetrated the steel plate)
, The hole expansion ratio λ (%) was calculated, and the stretch flangeability was evaluated.
[0044]
Table 3 shows the obtained results.
[0045]
[Table 1]
Figure 2004285366
[0046]
[Table 2]
Figure 2004285366
[0047]
[Table 3]
Figure 2004285366
[0048]
[Table 4]
Figure 2004285366
[0049]
[Table 5]
Figure 2004285366
[0050]
In each of the examples of the present invention, there is no decrease in dimensional accuracy or cold rolling property, and an ultra-thin ultra-high tensile cold-rolled steel sheet or an ultra-thin steel sheet having a tensile strength of 980 MPa or more, excellent ductility and excellent stretch flangeability. It is an ultra-high tensile galvanized steel sheet. On the other hand, the comparative examples out of the range of the present invention have a tensile strength of less than 980 MPa, a decrease in ductility and stretch flangeability, or a decrease in dimensional accuracy and a decrease in cold rolling property. Not ultra-thin ultra-high tensile cold rolled steel sheet or ultra-thin ultra-high tensile hot-dip galvanized steel sheet.
[0051]
【The invention's effect】
As described above, according to the present invention, an ultra-thin ultra-high tensile cold-rolled steel sheet and an ultra-thin ultra-high tensile plated steel sheet having a high tensile strength of 980 MPa or more and a thickness of 0.8 mm or less can be easily and stably formed. It can be manufactured with great effect in industry.

Claims (9)

質量%で、
C:0.05〜0.25%、 Si:0.05%以下、
Mn:1.5 〜3.5 %、 P:0.01%以下、
S:0.003 %以下、 Al:0.10%以下、
N:0.0050〜0.0250%
を含み、不純物としてのCrおよびMoを合計で0.2 %以下、および不純物としてのNbを0.005 %以下に調整し、残部Feおよび不可避的不純物からなる組成を有し、引張強さが980MPa以上であり、延性、伸びフランジ性に優れることを特徴とする、板厚が0.8 mm以下の極薄超高張力冷延鋼板。
In mass%,
C: 0.05 to 0.25%, Si: 0.05% or less,
Mn: 1.5 to 3.5%, P: 0.01% or less,
S: 0.003% or less, Al: 0.10% or less,
N: 0.0050 to 0.0250%
And Cr and Mo as impurities are adjusted to a total of 0.2% or less, and Nb as an impurity is adjusted to 0.005% or less. The composition has a balance of Fe and unavoidable impurities, and has a tensile strength. An ultra-thin ultra-high tensile cold-rolled steel sheet having a thickness of 0.8 mm or less, which is 980 MPa or more and is excellent in ductility and stretch flangeability.
前記組成に加えてさらに、質量%で、Ca:0.001 〜0.020 %および/またはREM :0.005 〜0.020 %を含有することを特徴とする請求項1に記載の極薄超高張力冷延鋼板。The ultrathin film according to claim 1, further comprising, by mass%, 0.001 to 0.020% of Ca and / or 0.005 to 0.020% of REM in addition to the composition. Ultra high tensile cold rolled steel sheet. 請求項1または2に記載の極薄超高張力冷延鋼板の表層にめっき層を形成してなる、引張強さが980MPa以上で延性、伸びフランジ性に優れる板厚が0.8 mm以下の極薄超高張力めっき鋼板。The ultra-thin ultra-high tensile cold-rolled steel sheet according to claim 1 or 2, wherein a plating layer is formed on a surface layer of the ultra-high tensile strength cold-rolled steel sheet. Ultra-thin ultra-high tensile plated steel sheet. 前記めっき層が、溶融亜鉛めっき層であることを特徴とする請求項3に記載の極薄超高張力めっき鋼板。The ultra-thin ultra-high tensile strength coated steel sheet according to claim 3, wherein the plating layer is a hot-dip galvanized layer. 質量%で、
C:0.05〜0.25%、 Si:0.05%以下、
Mn:1.5 〜3.5 %、 P:0.01%以下、
S:0.003 %以下、 Al:0.10%以下、
N:0.0050〜0.0250%
を含み、さらに不純物としてのCrおよびMoを合計で0.2 %以下、不純物としてのNbを0.005 %以下に調整し、残部Feおよび不可避的不純物からなる組成の鋼スラブを、1000℃以上のスラブ加熱温度に加熱したのち、仕上圧延出側温度を800 ℃以上とし、巻取温度を550 ℃以上とする熱間圧延を施し熱延板とする熱間圧延工程と、該熱延板に冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板に、再結晶率が80%となる温度以上、900 ℃以下の焼鈍温度に加熱し、該焼鈍温度から600 ℃までの温度域を30℃/s 以上の冷却速度で冷却し冷延焼鈍板とする連続焼鈍処理工程と、を順次施すことを特徴とする、板厚が0.8mm 以下で引張強さが980MPa以上を有する極薄超高張力冷延鋼板の製造方法。
In mass%,
C: 0.05 to 0.25%, Si: 0.05% or less,
Mn: 1.5 to 3.5%, P: 0.01% or less,
S: 0.003% or less, Al: 0.10% or less,
N: 0.0050 to 0.0250%
In addition, Cr and Mo as impurities are adjusted to a total of 0.2% or less, Nb as an impurity is adjusted to 0.005% or less, and a steel slab having a composition of balance Fe and unavoidable impurities is heated to 1000 ° C. or more. Hot rolling at a finish-rolling outlet temperature of 800 ° C. or higher and a winding temperature of 550 ° C. or higher after hot-rolling to form a hot-rolled sheet; A cold rolling step of performing cold rolling to form a cold-rolled sheet, and heating the cold-rolled sheet to an annealing temperature of not less than a temperature at which a recrystallization ratio is 80% and not more than 900 ° C., and from the annealing temperature to 600 ° C. A continuous annealing treatment step of cooling a temperature range of 30 ° C./s or more at a cooling rate of 30 ° C./s or more to form a cold-rolled annealed sheet, characterized in that the sheet thickness is 0.8 mm or less and the tensile strength is 980 MPa or more. Of ultra-thin ultra-high tensile cold-rolled steel sheets with cracks .
前記組成に加えてさらに、質量%で、Ca:0.001 〜0.020 %および/またはREM :0.005 〜0.020 %を含有することを特徴とする請求項5に記載の極薄超高張力冷延鋼板の製造方法。The ultrathin film according to claim 5, further comprising, by mass%, 0.001 to 0.020% of Ca and / or 0.005 to 0.020% of REM in addition to the composition. Manufacturing method of ultra-high tensile cold rolled steel sheet. 質量%で、
C:0.05〜0.25%、 Si:0.05%以下、
Mn:1.5 〜3.5 %、 P:0.01%以下、
S:0.003 %以下、 Al:0.10%以下、
N:0.0050〜0.0250%
を含み、さらに不純物としてのCrおよびMoを合計で0.2 %以下、不純物としてのNbを0.005 %以下に調整し、残部Feおよび不可避的不純物からなる組成の鋼スラブを、1000℃以上のスラブ加熱温度に加熱したのち、仕上圧延出側温度を800 ℃以上とし、巻取温度を550 ℃以上とする熱間圧延を施し熱延板とする熱間圧延工程と、該熱延板に冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板に、再結晶率が80%となる温度以上、900 ℃以下の焼鈍温度に加熱し、該焼鈍温度から600 ℃までの温度域を30℃/s 以上の冷却速度で冷却し冷延焼鈍板とする連続焼鈍処理工程と、ついで該冷延焼鈍板に、表面にめっき層を形成するめっき処理工程を施すことを特徴とする、板厚が0.8mm 以下で引張強さが980MPa以上を有する極薄超高張力めっき鋼板の製造方法。
In mass%,
C: 0.05 to 0.25%, Si: 0.05% or less,
Mn: 1.5 to 3.5%, P: 0.01% or less,
S: 0.003% or less, Al: 0.10% or less,
N: 0.0050 to 0.0250%
In addition, Cr and Mo as impurities are adjusted to a total of 0.2% or less, Nb as an impurity is adjusted to 0.005% or less, and a steel slab having a composition of balance Fe and unavoidable impurities is heated to 1000 ° C. or more. Hot rolling at a finish-rolling outlet temperature of 800 ° C. or higher and a winding temperature of 550 ° C. or higher after hot-rolling to form a hot-rolled sheet; A cold rolling step of performing cold rolling to form a cold-rolled sheet, and heating the cold-rolled sheet to an annealing temperature of not less than a temperature at which a recrystallization ratio is 80% and not more than 900 ° C., and from the annealing temperature to 600 ° C. A continuous annealing step of cooling the temperature range of 30 ° C./s or more at a cooling rate of 30 ° C./s or more to form a cold-rolled annealed sheet, and then performing a plating step of forming a plating layer on the surface of the cold-rolled annealed sheet. When the plate thickness is 0.8mm or less, tensile strength There method for producing ultra-thin ultra high-strength plated steel sheet having the above 980 MPa.
前記組成に加えてさらに、質量%で、Ca:0.001 〜0.020 %および/またはREM :0.005 〜0.020 %を含有することを特徴とする請求項7に記載の極薄超高張力めっき鋼板の製造方法。The ultrathin film according to claim 7, further comprising, by mass%, 0.001 to 0.020% of Ca and / or 0.005 to 0.020% of REM in addition to the composition. Manufacturing method of ultra-high tensile plated steel sheet. 前記めっき層が、溶融亜鉛めっき層であることを特徴とする請求項7または8に記載の極薄超高張力めっき鋼板の製造方法。The method according to claim 7, wherein the plating layer is a hot-dip galvanized layer.
JP2003075200A 2003-03-19 2003-03-19 Extra-thin ultrahigh tensile strength cold rolled steel sheet, and its production method Pending JP2004285366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003075200A JP2004285366A (en) 2003-03-19 2003-03-19 Extra-thin ultrahigh tensile strength cold rolled steel sheet, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003075200A JP2004285366A (en) 2003-03-19 2003-03-19 Extra-thin ultrahigh tensile strength cold rolled steel sheet, and its production method

Publications (1)

Publication Number Publication Date
JP2004285366A true JP2004285366A (en) 2004-10-14

Family

ID=33290569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003075200A Pending JP2004285366A (en) 2003-03-19 2003-03-19 Extra-thin ultrahigh tensile strength cold rolled steel sheet, and its production method

Country Status (1)

Country Link
JP (1) JP2004285366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114309064A (en) * 2021-12-17 2022-04-12 江苏沙钢集团有限公司 Method for controlling reinforcement height of tinplate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114309064A (en) * 2021-12-17 2022-04-12 江苏沙钢集团有限公司 Method for controlling reinforcement height of tinplate

Similar Documents

Publication Publication Date Title
US20210292862A1 (en) High-strength cold rolled steel sheet with low material non-uniformity and excellent formability, hot dipped galvanized steel sheet, and manufacturing method therefor
JP6315044B2 (en) High strength steel plate and manufacturing method thereof
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP5983896B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
KR101913053B1 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
EP2444510A1 (en) High-strength hot-dip galvannealed steel shhet with excellent workability and fatigue characteristics and process for production thereof
JP2008274332A (en) Steel sheet for can, and its manufacturing method
JP2006104532A (en) High strength thin steel sheet having excellent elongation and hole expansibility and method for producing the same
WO2013160928A1 (en) High-strength steel sheet and method for manufacturing same
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
JP2004225132A (en) High strength cold rolled steel sheet and plated steel sheet having excellent deep drawability, steel tube having excellent workability, and production method therefor
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP3539546B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP2002241897A (en) Steel sheet having small variation in yield strength and fracture elongation, high formability and low yield ratio, and method for manufacturing the same
JP2024500521A (en) Hot-forming steel materials, hot-forming parts, and methods of manufacturing them
JP7168073B2 (en) High-strength steel plate and its manufacturing method
JP4300793B2 (en) Manufacturing method of hot-rolled steel sheet and hot-dip steel sheet with excellent material uniformity
JPWO2021079755A1 (en) High-strength steel plate and its manufacturing method
JP2004052071A (en) High tensile strength cold rolled steel sheet with composite structure having excellent stretch flanging property, strength-ductility balance and strain age hardenability, and method of producing the same
JP5678695B2 (en) High strength steel plate and manufacturing method thereof
JP2003268491A (en) High-strength steel sheet for working member, production method thereof, and production method for working member having working plane excellent in abrasion resistance
JPWO2019194251A1 (en) Steel plate and method for manufacturing steel plate
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP2005290485A (en) Strain aging treatment method for steel plate and method for manufacturing high-strength structural member