[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004113833A - Method and apparatus for forming coating film - Google Patents

Method and apparatus for forming coating film Download PDF

Info

Publication number
JP2004113833A
JP2004113833A JP2002276292A JP2002276292A JP2004113833A JP 2004113833 A JP2004113833 A JP 2004113833A JP 2002276292 A JP2002276292 A JP 2002276292A JP 2002276292 A JP2002276292 A JP 2002276292A JP 2004113833 A JP2004113833 A JP 2004113833A
Authority
JP
Japan
Prior art keywords
coating
floating
forming
coating film
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002276292A
Other languages
Japanese (ja)
Inventor
Minoru Matsuo
松尾 稔
Shigeji Nakamura
中村 茂治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002276292A priority Critical patent/JP2004113833A/en
Publication of JP2004113833A publication Critical patent/JP2004113833A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a coating film having no blade mark and uniform in film thickness. <P>SOLUTION: A coating solution 51 is applied to the outer surface of an outer surface coating mold 11a comprising a rotary body and a plate-shaped magnet 21a is magnetically floated from the outer surface of the outer surface coating mold 11a at a film thickness forming height by the same pole magnetic repulsion force. Thereafter, the film thickness of the coating solution 51 applied to the surface of the outer surface coating mold 11a is uniformized by rotating the coating mold 11a. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ローラ及び無端状ベルト表面被膜の膜厚を均一に形成する方法及びその装置に関する。
【0002】
【従来の技術】
電子写真方式の画像形成装置においては各種のローラやベルトが使用されているが、それらの多くは弾性層が形成されている。その弾性層にはシリコーンゴムやフッ素ゴムが使用されており、これらのゴムの膜を形成するには、一般に希釈塗布液をスプレー塗布や溶液容器に浸漬(ディッピング)して引き上げることが行われる。しかしその後の溶剤乾燥が必要となるので、塗布液の溶剤をなるべく減らす塗布法が検討される。そのために溶液の粘度は高くなり、塗布後の膜厚をレベリングして均一にするのに様々な工夫が必要になる。
その一つの方法として特開平2001−62380に開示してあるような塗布液膜が乾燥しないうちにブレードを押し当てて表面を均一化する方法がある。
【0003】
【特許文献1】
特開2001−62380号公報
【0004】
【発明が解決しようとする課題】
しかしながら、この方法はブレードに余剰の塗布液が付着するのでその接離タイミングが悪いと塗膜に再付着して凹凸の外観不良を引き起こすことがあった。特にブレードが接離して離れる瞬間に後引きした塗布剤がその部位にのみ残ってしまういわゆるブレード痕といわれる凸状の外観異常が発生して、十数μm以上であると使用した定着部材では定着不良が生じ、中間転写部材ではトナーの転写不良を生じていた。
【0005】
そこで、本発明は、ブレード痕のない膜厚の均一な塗布膜を形成する方法、塗布膜形成装置、無端状ベルトの製造装置を提供することをその目的とする。
【0006】
【課題を解決するための手段】
本発明ではブレードの押し圧を一定として接離時の膜厚変動を起こすことなく微小ギャップを安定して維持して凹凸の外観不良を起こすとこなく、塗布膜の均一性を確保する。その原理的な構成は磁気浮上である。
即ち、鉛直方向に配置した同極の着磁体は反発力で遠ざかるが、重力により力がバランスしたところで留まる。この原理を利用して重力に見合った磁石のガウス量を着磁すれば所定のギャップのところで留めることが出来る。
【0007】
つまり、棒状或いは板状の単位長さ当たりの重量Wグラムの磁束密度Gテスラの平行同磁極では対向磁石磁束密度G’テスラの存在に対して重力の加速度gでWgの落下の力と先端のGG’/dの反発力そして長さlの幅で異極を持つ磁石の反対側の同極端部の引力GG’/(d+l)が働いてある位置で釣り合う。この磁石間釣り合いの距離は固定磁石及び浮上磁石の磁力および浮上磁石の重量を任意に選ぶことで所望の値を選ぶことが出来る。
【0008】
その距離は、固定側磁石と浮上側磁石との間に所定の厚みの塗布膜厚とするためには、塗布液中の固形分比率と膜厚の関係を事前に予め把握しておくことで可能である。また固定側磁石や浮上側磁石を回転体外面に設置する場合でも回転体と浮上側磁石との間の距離を設定することで可能であり、さらに回転体そのものの両端に固定側磁石を取りつけた場合でも同様である。
【0009】
距離の調整は静止した状態で回転体と浮上する第二の磁石の下端部に取り付けたブレード先端の間にスペーサーを挟んで固定した第一の磁石を微調整することでも可能であり、磁力を温度変化で制御することでも可能である。
【0010】
ところで、同極で反発浮上した浮上側磁石は反対側の異極が固定側磁石と引き合うためになんら支えがないと、反転ないし回転して引き合って落下する。この回転のモーメントは同じ磁束密度の異極に対して平行磁場ならば磁極間の距離が大きいほど大きくなるが、近傍の固定側磁石による磁界では固定側磁石と異極の浮上側磁石の端部が近いほど引力が強く働くので、浮上側磁石の異極は固定側磁石よりもなるべく遠い方が、すなわち棒磁石のNS間の距離はなるべく大きい方がよい(幅と高さのアスペクト比)。
【0011】
さらに第一の磁石による磁力線は鉛直方向に直線で浮上側磁石はこの磁力線上にあることが理想的であり、完全に磁力線が重力場の力線と一致して、浮上側磁石のNS極がこの力線に沿っていれば回転モーメントは生じない。しかしながら同極の磁石が存在すると固定側磁石による磁力線は浮上側磁石の磁気によりはじかれて磁力線は外部に沿ってしまい、浮上側磁石の形状精度や着磁の精度で僅かのずれが生じるし、生産性を考慮すると理論的な精度まで詰めることは現実的でない。
【0012】
そこで長い棒磁石の両側に磁石に沿った側板を挟持体として置けば磁石が回転可動であっても側板に邪魔されて反転や回転は出来なくなる。また、長尺方向に偏りがあると力の弱い方向にずれていく可能性もあるので、軸方向も位置ズレ防止があった方が望ましく、側板(挟持体)を四角に取り囲む形状とすることが適切である。その場合、4枚の平板を張り合わせて井形として形成することも可能であるが、接着剤の多寡で貫通孔の左右の寸法が違うと、磁石の感光体軸方向に対して平行とならず、回転体との距離が場所によって異なるために膜厚が軸方向にムラになることがある。それを防止する為には、浮上側磁石の回りを囲む貫通孔を有する側板を一体成形することが望ましく、こうした形状は射出成形で容易に製作可能である。
【0013】
ところで、この着磁体の均一ギャップで浮上させるには軸方向全体が着磁体である必要性はなく、浮上物体が軸方向中央から両側に対称形の質量分布と両端に同磁力の反発力を形成する着磁体があればよい。
また、この構成は回転体と別個である必要はなく、回転体と一体化されていると回転体の回転ムラによるフレは一体化した着磁体も同期して振れるのでそれにより浮上側磁石も反発力で上下して結果的にはギャップ距離が常に一定となり、回転体の回転に周動があっても膜厚が均一になる。
【0014】
以上は塗布型外面へ塗布膜を形成する際に平板状の着磁ブレードを配接する場合であるが、塗布型内面に塗布する場合は平板ブレードでは転倒防止の側版を備えると複雑になり、別の方法が必要となる。
【0015】
塗布型の内面に膜を形成する方法として、遠心成形法或いは遠心塗工法による無端状ベルトの製造法は回転する筒状の塗布型の中に塗布液を注入して高速回転の遠心力で塗布膜厚を均一化した後 溶剤を乾燥し必要に応じて硬化させ、その後塗布型から剥離脱型してベルトを取り出す方法である。
【0016】
この方法は無端状(シームレス)ベルトの製造方法としては
1.膜厚の調整が塗布液量で任意に調整できる
2.必要量のみ塗布液を塗布すれば良く材料効率がよい
3.型内部は閉空間となっており、溶剤除去の際には排気経路に溶剤トラップを設けることで外部に排出される溶剤を効率よく回収できる
等の優れた利点がある。
【0017】
ところで、この工法の難点は、塗布型の内面の真円度が悪かったり、回転が偏心したりすると塗布液は型の内面に添って回転軸から等距離で遠心力の等加速度面を形成するのでそのまま溶剤除去と硬化が進むと膜厚の分布が生じることである。従って、この膜厚分布を防止するために塗布液の上から液面を均一化するためにコートバーと呼ばれるジグを用いていた。しかしながらこのコートバーを用いる場合板状のブレードでは回転する塗布型の内部に組み込むためには(1)特願平13−264422で先に提案したような両端に従動回転するリングを備えた機構とするか、(2)塗布型を開放型としてボールミル型駆動及び従動ローラ対に乗せて両側から固定して塗布型内面に挿入する方式となる。
【0018】
前記(1)は両側のリングが型の内面に追従して回転するのでかなり精度良く膜厚を制御できるが、塗布膜形成前後のジグの取り扱いが難しい面がある。前記(2)は型の回転とは無関係になるために型の偏心から来る膜厚分布に対してはムラが生じ、型を開放型とするために折角の排出溶剤の回収効率が劣ってしまう大きな問題点がある。
【0019】
また、ブレードを円柱状の形状にして塗布型の中で塗布液の上に載せて従動回転させて液面を均一化する手段もあるが、塗布液が低粘度の場合は大きな凹凸を均一化すること以上には適用できず、高粘度の際も塗布液に引きずられて滑らかに回転せずに上部から落下することもしばしばであった。
【0020】
そこで、本発明は、コートバーを用いた上述のような問題点を解決して良好な膜厚の無端状ベルトを得る方法を提供するものである。
【0021】
請求項1の発明は、回転体からなる塗布型の内表面又は外表面に塗布液を供給し、塗布型の内表面又は外表面から同極磁気反発力により膜厚形成高さに浮遊着磁体を磁気浮上させた後、塗布型を回転させることにより塗布型表面に供給された塗布液の膜厚を均一化することを特徴とする塗布膜の形成方法である。
【0022】
請求項2の発明は、前記塗布液と接触する浮遊着磁体の少なくとも接触面が、前記塗布液に対して、離型性、非溶解性、かつ撥溶剤性であることを特徴とする請求項1に記載の塗布膜の形成方法である。
【0023】
請求項3の発明は、前記塗布液と接触する浮遊着磁体の少なくとも接触面がフッ素樹脂で被覆されていることを特徴とする請求項2に記載の塗布膜の形成方法である。
【0024】
請求項4の発明は、請求項1〜3の何れかに記載の塗布膜の形成方法において、前記塗布液の塗布面が前記塗布型の外表面であり、塗布型内部に固定側着磁体を配置し、該固定側着磁体に対して塗布型外部対向面が同極の浮遊着磁体を一定距離に浮遊して配置し、浮遊着磁体の下端部が塗布型の外表面に塗布された塗布液と接触して所定の厚さの塗布膜を形成することを特徴とする塗布膜の形成方法である。
【0025】
請求項5の発明は、請求項1〜3の何れかに記載の塗布膜の形成方法において、前記塗布液の塗布面が前記塗布型の外表面であり、塗布型の全域あるいは両端一部領域を着磁体とし、該着磁体に対して塗布型外部対向面と同極の浮遊着磁体を一定距離に浮遊して配置し、浮遊着磁体の下端部で塗布型の表面に塗布された塗布液と接触して所定の厚さの塗布膜を形成することを特徴とする塗布膜の形成方法である。
【0026】
請求項6の発明は、請求項4又は5において浮遊着磁体が平板で塗布型に対して鉛直上方に配設されていることを特徴とする塗布膜の形成方法である。
【0027】
請求項7の発明は、請求項1〜3に何れかに記載の塗布膜の形成方法において、塗布面が回転体の内面であり、塗布型の軸方向の全域あるいは両端一部領域を着磁体とし、該塗布型に対して塗布型内部対向面と同極の浮遊着磁体を一定距離に浮遊して配置し、浮遊着磁体の下端部が塗布型の内表面に塗布された塗布液と接触して所定の厚さの塗布膜を形成することを特徴とする塗布膜の形成方法である。
【0028】
請求項8の発明は、請求項7に記載の塗布膜の形成方法において、浮遊着磁体が円筒形状であり、浮遊着磁体の着磁部はラディアル方向の表面と裏面に異極分極していることを特徴とする塗布膜の形成方法である。
【0029】
請求項9の発明は、請求項8に記載の塗布膜の形成方法において、塗布液を塗布し膜厚均一化後、磁性体治具を塗布型の軸中心付近に軸に平行に挿入した後、浮遊着磁体に平行に近接して浮遊着磁体を磁性体治具に吸着し、その後逆過程で引き出すことを特徴とする塗布膜の形成方法である。
【0030】
請求項10の発明は、回転体からなる塗布型の内面又は外面に塗布液を供給する手段と、塗布型の内表面又は外表面から磁気反発力により膜厚形成高さに浮遊着磁体を磁気浮上させる手段と、塗布型を回転させる手段とを備え、塗布型を回転させることにより塗布型表面に供給された塗布液の膜厚を均一化することを特徴とする塗布膜の形成装置である。
【0031】
請求項11の発明は、前記塗布液と接触する浮遊着磁体の少なくとも接触面が、前記塗布液に対して、離型性、非溶解性、かつ撥溶剤性であることを特徴とする請求項10に記載の塗布膜の形成装置である。
【0032】
請求項12の発明は、前記塗布液と接触する浮遊着磁体の少なくとも接触面がフッ素樹脂で被覆されていることを特徴とする請求項11に記載の塗布膜の形成装置である。
【0033】
請求項13の発明は、請求項10〜12の何れかに記載の塗布膜の形成装置において、前記塗布液の塗布面が前記塗布型の外表面であり、塗布型内部に固定側着磁体が配置され、該固定側着磁体に対して塗布型外部対向面が同極の浮遊着磁体を一定距離に浮遊して配置し、浮遊着磁体の下端部が塗布型の外表面に塗布された塗布液と接触して所定の厚さの塗布膜を形成することを特徴とする塗布膜の形成装置である。
【0034】
請求項14の発明は、求項10〜12の何れかに記載の塗布膜の形成装置において、前記塗布液の塗布面が前記塗布型の外表面であり、塗布型の全域あるいは両端一部領域を着磁体とし、該着磁体に対して塗布型外部対向面と同極の浮遊着磁体を一定距離に浮遊して配置し、浮遊着磁体の下端部で塗布型の表面に塗布された塗布液と接触して所定の厚さの塗布膜を形成することを特徴とする塗布膜の形成装置である。
【0035】
請求項15の発明は、請求項13又は14にに記載の塗布膜の形成装置において、浮遊着磁体が平板で塗布型に対して鉛直上方に配設されていることを特徴とする塗布膜の形成装置である。
【0036】
請求項16の発明は、請求項15の塗布膜の形成装置において、前記浮遊着磁体は鉛直方向に幅広く、かつその幅方向に異極が着磁された部材であることを特徴とする塗布膜の形成装置である。
【0037】
請求項17の発明は、請求項16の浮遊着磁体の両側面に平行平板を備えていることを特徴とする塗布膜の形成装置である。
【0038】
請求項18の発明は、円筒状回転体塗布型の内面に塗布液を注入して膜を形成する塗布膜の形成装置において、前記回転体塗布型の軸方向の全域あるいは両端領域をラディアル方向に異極着磁体で形成し、回転体塗布型の内部で従動する中子回転体の表面側全域あるいは両端領域を回転体塗布型内面と同極のラディアル方向に異極着磁体を配設したことを特徴とする塗布膜の形成装置である。
【0039】
請求項19の発明は、請求項18に記載の塗布膜の形成装置において、浮遊着磁体が円筒形状であり、浮遊着磁体の着磁部はラディアル方向の表面と裏面に異極分極していることを特徴とする塗布膜の形成装置である。
【0040】
請求項20の発明は、請求項19に記載の塗布膜の形成装置において、前記浮遊着磁体の脱着用ジグ部材に、浮遊着磁体と対応する部位の全域もしくは両端部に異極及び同極の磁力を発生する電磁石を設けたことを特徴とする塗布膜の形成装置である。
【0041】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
本発明の構成は 極めて簡単な原理による簡易な方法で実現できる。
その原理的な構成は磁気浮上である。永久磁石のような同極の2個の磁性体は互いに近づけると反発力が働いて遠ざかるが、重力場で自由に可動な固定していない磁性体は重力により力がバランスしたところで留まる。この原理を利用して重力に見合った磁石のガウス量を着磁すれば所定のギャップのところで留めることが出来る。
【0042】
外型塗布内部での中子回転型に対して、外型塗布内面の極性に対して中子回転型の外部が同極の磁極を持つと互いに反発して接触することはなく、そのギャップ距離は型の重量と磁束密度による磁力の力のバランスで調整出来る。
【0043】
図1は本発明に係る第1実施形態の塗布膜の形成装置の概略構成を示す図であり、(A)は側面図、(B)は断面図である。
図1に示すように、外面塗布型11a両端側に表裏異極分極したリング状の着磁体12a(固定側着磁体)がはめ込まれている。その上部には上下異極着浮上板磁石である板磁石ブレード21aの両側から鉛直方向に平行な側板21bで、板磁石ブレード21aが上下動自在に平面方向に挟持されており、上下方向は重力の落下と磁力の反発力で所定のギャップに調整されて浮上している。外面塗布型11aを回転させることにより塗布された塗布液51は浮上している板磁石ブレード21aの腹で押しのけながら均一な膜厚となる。即ち、同極磁気の反発力で浮上させる現象を利用したブレードを用いることで、塗布支持体と塗布液膜厚を一定の滑らかで均一な膜に制御でき、ブレード痕のない膜厚の均一な塗布膜が形成できる。第二の着磁体平板である板磁石ブレード21aが鉛直方向に幅広くなっていることで絶えず横倒れや回転モーメントが発生する可能性があるので側板21bを設けることでこれらを防止することが出来る。
【0044】
第二の着磁体平板である板磁石ブレード21aが鉛直方向に幅広くかつ異極に分極することで液面と接触するブレード面を小さく(シャープに)することが出来るので液面の均一化、ブレード痕発生防止に有利である。さらにNS異極間が大きくなるので固定着磁体との異極間引力を小さくすることが出来るので横倒れ、回転モーメントの発生を小さくできる。
【0045】
図2は本発明に係る第2実施形態の塗布膜の形成装置の概略構成を示す図であり、(A)は側面図、(B)は断面図である。
図2は、本発明に係る第2実施形態による外面塗布型11aでの固定着磁体の配設の仕方を示し、開放型の塗布型では内部に固定した回転しない棒磁石12b(固定側着磁体)を配置できる。その際は外面塗布型11aは駆動ローラ31aと従動ローラ31bとの上に乗せられて回転する。棒磁石12bは上下異極着磁されている。塗布された塗布液51は浮上している板磁石ブレード21aの腹で押しのけながら均一な膜厚となる。即ち、同極磁気の反発力で浮上させる現象を利用したブレードを用いることで、塗布支持体と塗布液膜厚を一定の滑らかで均一な膜に制御でき、ブレード痕のない膜厚の均一な塗布膜が形成できる。
【0046】
第二の着磁体平板である板磁石ブレードが鉛直方向に幅広くかつ異極に分極することで液面と接触するブレード面を小さく(シャープに)することが出来るので液面の均一化、ブレード痕発生防止に有利である。さらにNS異極間が大きくなるので固定着磁体との異極間引力を小さくすることが出来るので横倒れ、回転モーメントの発生を小さくできる。
【0047】
第二の着磁体平板が鉛直方向に幅広くなっていることで絶えず横倒れや回転モーメントが発生する可能性があるので側板を設けることで防止することが出来る。
【0048】
図3は本発明に係る第3実施形態の塗布膜の形成装置の概略構成を示す図であり、(A)は側面図、(B)は断面図である。
図3は内面塗布型11bの事例である。内面塗布型11bの両端にリング状着磁体12aがはめ込まれて、円筒状(または円柱状)の同様の表裏異極に着磁しているローラ21cが配置されて、重力と反発力で所定のギャップ距離で浮上している。図示していないが、塗布液51はノズルから吐出されながら内面塗布型11bの内周面へ吐出されながら下部の浮上ローラ21cで均一化されていく。
塗布膜が塗布基体/支持体の内面である場合は、浮上ブレードを浮上させる固定着磁体は基体/支持体である。
【0049】
塗布膜51が塗布基体/支持体の内面に形成されている場合は、浮上ブレードが平板状であると横転防止の側板等のジグを塗布型内部に設けなければならず、狭い閉空間でのレイアウト調整が難しくなるが、浮上ローラ21cのように円筒状(円柱状)の形状であると回転しても異方性がなく、狭い閉空間でのレイアウトが容易になる。またその等方性はラディアル方向への着磁体で実現出来る。
【0050】
図4は浮上体ローラの取り出し装置の概略構成を工程順に示す図である。
図4は内面塗布型11bでの浮上体ローラ21cを取り出すときの模式図である。浮上したロール状着磁体21cは塗布液膜51とのギャップが微小なために少しでも斜めに変位すると塗布膜に接触して外観異常をもたらす。
【0051】
先ず、図4(A)は磁性体もしくは浮上着磁体と異極でひき付け合う磁極を持つ着磁体棒41aを、その引力が及ばない高さの位置で塗布型軸及び浮上体軸と平行に挿入する。
【0052】
次に、図4(B)に示すように、着磁体棒41aが所定の位置に来たらゆっくりと塗布型11bの低部へ降下させると、ある程度下降したところでローラ21cは引付けられてさらに浮上する。
【0053】
図4(C)に示すように、ローラ21cを吸着した挿入治具41aを回転軸と平行に引き出すことで塗布膜への影響を回避できる。
【0054】
内面塗布型11bの内部で1mm以下の近接距離で浮上した浮遊体である浮上体ローラ21cを塗布膜51に接触せずに取り出すことは極めて困難であるが、塗布膜51から離れた着磁浮遊体に対しては吸着しない程度の距離で磁性体あるいは異極着磁体を挿入後、着磁浮遊体に接近させることで塗布膜51から均等に遠ざけることが出来る。
【0055】
図5は浮上体ローラの挿入、取り出し装置の概略構成を工程順に示す図である。
図5は塗布後浮上体ローラ21cを挿入、セットと取り出しを行なう場合の模式図である。
先ず、図5(A)に示すように、ローラ21cをあらかじめ電磁石42で吸着した挿入治具41aを塗布型11b軸に平行に挿入する。
次に、図5(B)に示すように、挿入治具41aが所定の位置まで来たら停止させる。
次に図5(C)に示すように、 塗布型低部へ所定の距離に近づけて電磁石42をオフして磁力をなくす。
次に、図5(D)に示すように、挿入治具41aを中心軸方向へ引き上げると、ローラ21cはその場に漂うように浮上する。
【0056】
次に図5(E)に示すように、挿入治具41aを軸方向へ沿って型から引き出す。塗布膜圧均一化後、取り除く時は逆過程で行なえばよく、電磁石42をオフのまま挿入治具41aを塗布型11b軸に平行に挿入して塗布型低部のローラ21cへ近づける。そして電磁石をオンしてローラ21cを吸着したあと中心軸方向へ持ち上げて、さらに軸方向水平に型から引き出す。
【0057】
異極及び同極の磁力を発生することが出来る電磁石42を脱着挿入ジグである挿入治具41aに用いることで、浮遊体である浮上体ローラ21cの塗布型11bからの取り出しのみでなく、塗布液塗布後の挿入も可能となり、かつ芯の磁性体が浮上体ローラ21cと吸着する場合でも同極磁力の発生で反発力で脱離切り離しも出来るようになる。また浮遊体の挿入から引き出しが出来るので自動化も容易となる。
【0058】
以上において、▲1▼磁石は同極同士は反発力が働いて互いに遠ざかる
▲2▼ある重さを持つ磁石は、同極の磁石で反発するが、固定した磁石の上に置いた磁石は重力と磁石の反発力で、釣り合って空間の所定の位置に浮遊して留まる。
【0059】
外面塗布型の場合には、▲3▼ 浮上した平板磁石を用い、回転落下しないように磁石の両側に平行な側板を設け、軸方向両端部にも移動防止の邪魔板(磁石挟持体)を設ける
▲4▼側板と邪魔板は射出成形で一体成形をする
▲4▼ 外部磁石の下部、回転体に面する所に塗布液に不溶で離型性を持つ材質を持つ部材を用いることで塗布液の付着による外面変形を防ぐ
▲6▼ 固定磁石は回転体と一体化する
▲7▼ 剛体回転体の場合は両端部に段差を持たせ、内部と外部を異極性に着磁したリングをはめ込んで被せるのが容易である
▲8▼ ベルト回転体の場合は表裏異極性のゴム等の弾性磁石をベルトの両端に貼り付ける。
【0060】
また内面塗布型の場合
▲1▼円筒の回転体の中においた中子の回転体は重力で外の回転体の底部に留まる外型回転体(塗布型)及び中子回転体(コートバー)を着磁体とし、それぞれラディアル方向に異分極着磁する。その際外型内面の磁極と中子回転体の表面磁極は同極とする
▲2▼ 外型及び中子回転体の着磁領域は望ましくは軸方向全域であるが、それぞれ両端側でも良く、中子回転体の自重と塗布型との反発磁力によって所定の位置に浮く
▲3▼ 中子回転体の装填は塗布液塗布前でも塗布後でもよい
▲4▼ 回転塗布された塗布液は中子回転体により一定液面に均一化される
▲5▼ 回転しながら乾燥していくと溶剤の除去により液面は低下し、中子回転体から離れていく
▲6▼ 加熱乾燥する場合は温度上昇による磁力の低下で一時中子回転体のギャップ距離が狭くなるが、乾燥終了後温度を降下させるとまた所定の距離となる
▲7▼ 塗布液が流動性をなくす程度の指触乾燥状態になったら、中子回転体を膜面と接触しないようにして取り出し(例えば異極磁石に付着させて塗布型中心軸付近まで持ち上げ、その後型軸方向水平に引き出す)、その後従来の遠心成形工法と同じように型毎加熱炉に移す。
【0061】
[実施例1]
図1に示す構成と同様の構成であり、φ60長さ360mmのアルミの回転塗布型の両端部外周それぞれ30mm幅に段差を設けてその両端部に外側がN極のリング状着磁体を嵌合した。この塗布型の鉛直上方に、両側0.1mmのスペースを持った側板としてその間に上下を異極に着磁した横幅1mm縦幅10mm長さ340mmで表面をPTFEで被覆した平板の着磁体をN極が下になるように設置し、該平板着磁体が塗布型外表面から0.4mm上方に浮上するようにした。
【0062】
この外型に予めφ60で膜厚100μmのポリイミド無端状のベルトを基体として装着し、その後上記側板および平板着磁体を塗布型上部にセットした。塗布型側面より2液混合型シリコーンゴム希釈液をスプレー塗布で平均液厚300μmに塗布した。塗布液厚みは最初斑な分布であったが、上部浮上ブレードと接触して均一化されていった。その後背後に取りつけた加熱ヒーターで100℃で加熱乾燥すると塗布液膜厚は減少し平板着磁体も僅かにギャップを縮めたが、270μm程度になったところで塗布液から離れていった。塗布膜は接触跡は全く認められず、指触乾燥程度になった時点で加熱を停止し、平板着磁体は取り外し、塗布膜は基体毎加熱炉へ移動して160℃の予備加熱と200℃の本加熱を行なって200μm弾性層積層の無端状のベルトを製造した。積層膜は接触跡(ブレード痕)は全く認められず良好であった。
【0063】
塗布膜が塗布基体/支持体の外面である場合は、浮上ブレードを浮上させる固定着磁体は基体/支持体そのものに設けるか、基体/支持体の内部に設けることが出来るが、基体/支持体に設けられた着磁体を用いると基体/支持体の回転のムラ/変動が生じても浮上ブレードは基体/支持体の回転のムラ/変動に対応して変動するので、膜厚は常に一定となり膜厚の均一化がさらに向上する。
【0064】
塗布膜が塗布基体/支持体の外面で浮上ブレードを浮上させる場合には磁気の反発力と自重の重力による平衡を保つには塗布基体/支持体の上部鉛直方向に配設されている方が磁束密度と重量のバランス算出上簡単であり、かつレイアウト設定上望ましい。
【0065】
[実施例2]
図2に示す構成と同様の構成であり、φ70長さ360mmのアルミの芯金の内部に、上側がN極の棒磁石を所定のギャップで挿入した配置でこの塗布型の鉛直上方に、両側0.1mmのスペースを持った側板としてその間に上下を異極に着磁した横幅1mm縦幅10mm長さ340mmで表面をPTFEで被覆した平板の着磁体をN極が下になるように設置し、該平板着磁体が芯金外表面から0.3mm上方に浮上するようにした。
【0066】
このアルミ芯金に上記側板および平板着磁体を塗布型上部にセットした後、塗布型側面より2液混合型シリコーンゴム希釈液をスプレー塗布で平均液厚300μmに塗布した。塗布液厚みは最初斑な分布であったが、上部浮上ブレードと接触して均一化されていった。その後背後に取りつけた加熱ヒーターで100℃で加熱乾燥すると塗布液膜厚は減少し平板着磁体も僅かにギャップを縮めたが、270μm程度になったところで塗布液から離れていった。塗布膜は接触跡は全く認められず、指触乾燥程度になった時点で加熱を停止し、平板着磁体は取り外し、塗布膜は基体毎加熱炉へ移動して160℃の予備加熱と200℃の本加熱を行なって200μm弾性層形成のローラを製造した。積層膜は接触跡(ブレード痕)は全く認められず良好であった。
【0067】
このように、塗布膜が塗布基体/支持体の外面である場合は、浮上ブレードを浮上させる固定着磁体は基体/支持体そのものに設けるか、基体/支持体の内部に設けることが出来る。基体/支持体が非磁性体の金属や樹脂等の場合はその部材を透過して磁力が働くので、ブレードを浮上させることが可能であり、塗布液の膜厚を均一にすることが出来る。また、可撓性のベルトを駆動/従動の複数のローラで駆動させながら表面に塗布膜を形成する際にもその平面部で内部着磁体を配設して塗布膜均一化を行うことが出来る。
【0068】
[実施例3]
図3に示す構成と同様の構成であり、内径180φの円筒形アルミの円筒型の内面の非塗布部両端を削りインロー部を形成し、その部分に内面をN極としてラディアル方向に着磁したリングをはめ込んだ外型として、その中に両端それぞれが外型の着磁部へ掛かるように、外面がN極のリング磁石をはめ込んだ外径10mmφの中子回転体を挿入して外型底部から200μm浮上するようにした。中子回転体の軸方向中央領域の外型塗布部に当たる部分には離型性のフッ素樹脂が被膜されている。
【0069】
浮遊体である中子回転体の表面がフッ素樹脂で被覆されていることにより、離型性で非溶解性で撥溶剤性が実現出来るために塗布型表面と誤って接触した場合でも塗布型を傷つけることがなく、金属等の比重の大きい浮遊体として慣性力を大きくして多少の衝撃に対して変動を少なくするすることが出来る。なお、ここで撥溶剤性とは、溶剤をはじく性質のことである。
【0070】
さらに、浮遊体表面がフッ素樹脂で被覆されていることにより、離型性で非溶解性で撥溶剤性が実現出来るために塗布型表面と誤って接触した場合でも塗布型を傷つけることがなく、金属等の比重の大きい浮遊体として慣性力を大きくして多少の衝撃に対して変動を少なくするすることが出来る。
【0071】
この塗布型を100rpmで回転させながら、塗布型の側面にポリイミド原液であるポリアミド酸の希釈液を ノズルを移動しながらスパイラルに塗布していった。塗布ノズルを取り外した後、塗布型の回転数を1000rpmに上げて外部ヒーターで100℃に加熱して指触乾燥程度に溶剤を除去した。その後常磁性体の鉄の棒を塗布型軸中心付近に挿入してから塗布型底部へ平行に降下させて中子回転体を磁力で吸着した後再び塗布型軸中心位置まで移動してから塗布型より引き出した。その後塗布型の回転を停止して、塗布型を加熱炉に移して塗布膜の硬化温度で加熱処理をして70μmの無端状ベルトを製造した。
【0072】
塗布液状態でかまぼこ型の凹凸面を形成していた塗布液内面は浮上して一定距離を保った中子回転体により均一化されて均一液膜となり、その後の溶剤の乾燥除去で液面低下(即ち液膜厚減少)して中子回転体から離れていったが、塗布膜全体で特に接離時のブレード痕は発生せずに均一で良好な膜厚の無端状のベルトが得られた。
【0073】
[実施例4]
実施例3の無端状ベルトの製造で、(常磁性体鉄棒の代わりに)表面にS極が現れている磁石をジグとして用い、中子回転体との吸着力(引力)が働かない塗布型中心軸付近の高さで挿入し(図4(A))、所定の位置に来たところで中子回転体の方に近づけて引き寄せ(図4(B))、再び中心軸付近の高さまで移動してから引き出した(図4(C))。実施例3と同様に塗布型や塗布膜に接触することなく取り出すことが出来、均一で良好な無端状ベルトが製造された。
【0074】
[実施例5]
実施例3の無端状ベルトの製造で、まず型の内部にスプレー塗布で塗布液膜を作製してから常磁性体鉄棒の代わりに中子回転体の両端に対応する部所に電磁石を取り付け、中子回転体を磁力で吸着して挿入し(図5(A))、所定の位置に来たときに(図5(B)(C))磁力を消去し中子回転体を切り離し浮上させて(図5(D)(E))、塗布均一化終了後、再度挿入して電磁石磁力を働かせて吸着して取り出した。実施例3と同様に塗布型や塗布膜に接触することなく取り出すことが出来、均一で良好な無端状ベルトが製造された。
【0075】
[比較例1]
実施例1と同様な外部塗布膜形成の塗布型において、磁気浮上ブレードの代わりに従来の塗布型への一定距離の固定ブレードを配設し塗布液塗布後接触削りながら所定の膜厚としてから固定ブレードを移動した。接離の瞬間の塗布液の盛り上がりが防止できずに周方向の一部に凸部が発生して、その後の加熱処理後も残存してしまい、いわゆるブレード痕が発生した。
【0076】
[比較例2]
実施例3の中子回転体を非着磁の軽い材質のプラスティックロールとし、その表面を離型性のフッ素樹脂で被覆したコートバーとして、塗布液を塗布後挿入して回転を続けた。加熱乾燥して膜がある程度硬化後回転を止めて膜表面性状を確認したところ、形成膜は周方向に大きく波打っていた。
【0077】
[比較例3]
実施例3の塗布型を水平方向に回転軸を持つ駆動/従動2個のローラの上に搭載して開口状態とし、比較例2の中子回転体コートバーを塗布型の外側で塗布型内面とのギャップ距離を調整した後、塗布液塗布して加熱乾燥して膜を形成した。形成膜は滑らかであったが、両端の膜厚の差が10%以上であった。調査すると塗布型が偏芯しており、コートバーが固定されているので回転する型とのギャップが両端で異なっているためであることが判った。
【0078】
[比較例4]
実施例3と同様に塗布形成し塗布、指触乾燥膜の状態で、浮上回転ブレードを手で細心の注意で塗布型中心へ持ち上げて塗布型から引き出そうとしたが、浮上回転体は引き出し半ばでバランスをなくし塗布型内面へ接触してしまった。その為に接触によって凹んだ痕跡はその後の加熱処理でもそのまま残存して外観異常となったしまった。このベルトを使用した中間転写ベルトでは画像は白抜けの異常画像が発生した。
なお、本発明は上記実施例に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。
【0079】
【発明の効果】
以上説明したように、請求項1、10の発明によれば、→同極磁気の反発力で浮上させる現象を利用した浮遊着磁体を用いることで、塗布支持体と塗布液膜厚を一定の滑らかで均一な膜に制御でき、ブレード痕のない膜厚の均一な塗布膜が形成できる。
【0080】
また請求項2、11の発明によれば、浮遊着磁体が塗布液と親和性があると塗布液と接触しているときに密着して回転の下流に対して後引きして膜厚が不均一となるので、離型性で非溶解性で撥溶剤性である必要がある。
【0081】
また、請求項3、12の発明によれば、浮遊体表面がフッ素樹脂で被覆されていることにより、離型性で非溶解性で撥溶剤性が実現出来るために塗布型表面と誤って接触した場合でも塗布型を傷つけることがなく、金属等の比重の大きい浮遊体として慣性力を大きくして多少の衝撃に対して変動を少なくすることが出来る。
【0082】
また、請求項4、13の発明によれば、塗布膜が塗布基体/支持体の外面である場合は、浮上ブレードを浮上させる固定着磁体は基体/支持体そのものに設けるか、基体/支持体の内部に設けることが出来る。基体/支持体が非磁性体の金属や樹脂等の場合はその部材を透過して磁力が働くので、ブレードを浮上させることが可能であり、塗布液の膜厚を均一にすることが出来る。また、可撓性のベルトを駆動/従動の複数のローラで駆動させながら表面に塗布膜を形成する際にもその平面部で内部着磁体を配設して塗布膜均一化を行うことが出来る。
【0083】
また、請求項5、14の発明によれば、塗布膜が塗布基体/支持体の内面である場合は、塗布液の拡散を防止でき環境にとてもやさしい。
【0084】
また、請求項6、15の発明によれば、塗布膜が塗布基体/支持体の外面で浮上ブレードを浮上させる場合には磁気の反発力と自重の重力による平衡を保つには塗布基体/支持体の上部鉛直方向に配設されている方が磁束密度と重量のバランス算出上簡単であり、かつレイアウト設定上望ましい。
【0085】
また、請求項7の発明によれば、塗布膜が塗布基体/支持体の内面である場合は、浮上ブレードを浮上させる固定着磁体は基体/支持体である。
【0086】
また、請求項8,19の発明によれば、塗布膜が塗布基体/支持体の内面に形成する場合は、浮遊磁石が平板状であると横転防止の側板等のジグを塗布型内部に設けなければならず、狭い閉空間でのレイアウト調整が難しくなるが、円筒状(円柱状)の形状であると回転しても異方性がなく、狭い閉空間でのレイアウトが容易になる。またその等方性はラディアル方向への着磁体で実現出来る。
【0087】
また、請求項9の発明によれば、塗布型内部で1mm以下の近接距離で浮上した浮遊体を塗布膜に接触せずに取り出すことは極めて困難であるが、塗布膜から離れた着磁浮遊体に対しては吸着しない程度の距離で磁性体あるいは異極着磁体を挿入後、着磁浮遊体に接近させることで塗布膜から均等に遠ざけることが出来る。
【0088】
また請求項16の発明によれば、第二の着磁体平板が鉛直方向に幅広くかつ異極に分極することで液面と接触するブレード面を小さく(シャープに)することが出来るので液面の均一化、ブレード痕発生防止に有利である。
【0089】
また請求項17の発明によれば、浮遊着磁体が鉛直方向に幅広くなっていることで絶えず横倒れや回転モーメントが発生する可能性があるので側板を設けることで防止することが出来る。
【0090】
また請求項18の発明によれば、塗布膜が塗布基体/支持体の内面に形成する場合は、浮上ブレードが平板状であると横転防止の側板等のジグを塗布型内部に設けなければならず、狭い閉空間でのレイアウト調整が難しくなるが、円筒状(円柱状)の形状であると回転しても異方性がなく、狭い閉空間でのレイアウトが容易になる。またその等方性はラディアル方向への着磁体で実現出来る。
【図面の簡単な説明】
【図1】本発明に係る第1実施形態の塗布膜の形成装置の概略構成を示す図である。
【図2】本発明に係る第2実施形態の塗布膜の形成装置の概略構成を示す図である。
【図3】本発明に係る第3実施形態の塗布膜の形成装置の概略構成を示す図である。
【図4】浮上体ローラの取り出し装置の概略構成を示す図である。
【図5】浮上体ローラの挿入、取り出し装置の概略構成を示す図である。
【符号の説明】
11a 外面塗布型
11b 内面塗布型
12a リング状着磁体
12b 棒磁石
21a 板磁石
21b 側板
21c 浮上体ローラ(ローラ状着磁体)
31a 駆動ローラ
31b 従動ローラ
41a 着磁体棒(挿入治具)
42 電磁石
51 塗布液
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for uniformly forming the film thickness of a roller and an endless belt surface coating.
[0002]
[Prior art]
Various rollers and belts are used in an electrophotographic image forming apparatus, and most of them have an elastic layer formed thereon. Silicone rubber or fluorine rubber is used for the elastic layer, and in order to form a film of these rubbers, a diluted coating solution is generally spray-coated or dipped in a solution container and pulled up. However, since subsequent solvent drying is required, a coating method for reducing the solvent in the coating liquid as much as possible is studied. Therefore, the viscosity of the solution increases, and various measures are required to level and uniform the film thickness after application.
As one of the methods, there is a method disclosed in Japanese Patent Application Laid-Open No. 2001-62380, in which the surface is made uniform by pressing a blade before the coating liquid film dries.
[0003]
[Patent Document 1]
JP 2001-62380 A
[0004]
[Problems to be solved by the invention]
However, in this method, since excessive coating liquid adheres to the blade, if the timing of contact and separation is poor, the blade may be re-adhered to the coating film to cause poor appearance of unevenness. In particular, when the blade comes into contact with and separates from the fixing member, the coating material pulled back is left only at that part, causing a so-called blade mark, which is a convex appearance abnormality. Failure occurred, and toner transfer failure occurred in the intermediate transfer member.
[0005]
Accordingly, an object of the present invention is to provide a method for forming a coating film having a uniform thickness without blade marks, a coating film forming apparatus, and an endless belt manufacturing apparatus.
[0006]
[Means for Solving the Problems]
In the present invention, the uniform pressure of the coating film is ensured by keeping the pressure of the blade constant and maintaining the minute gap stably without causing the film thickness variation at the time of contact and separation, without causing the appearance defect of the unevenness. The principle configuration is magnetic levitation.
That is, the magnetized body of the same polarity arranged in the vertical direction moves away by the repulsive force, but stops when the force is balanced by gravity. By using this principle and magnetizing a Gaussian amount of a magnet corresponding to gravity, it can be kept at a predetermined gap.
[0007]
In other words, at the parallel magnetic poles of the magnetic flux density G Tesla of a bar-shaped or plate-shaped magnetic flux density of W grams per unit length, the falling force of the Wg and the tip The balance is at a position where a repulsive force of GG ′ / d and an attractive force GG ′ / (d + 1) at the opposite end of the magnet having the opposite polarity and a width of length 1 are applied. A desired value can be selected for the distance between the magnets by arbitrarily selecting the magnetic force of the fixed magnet and the floating magnet and the weight of the floating magnet.
[0008]
In order to obtain a coating thickness of a predetermined thickness between the fixed magnet and the floating magnet, the distance is determined in advance by grasping in advance the relationship between the solid content ratio in the coating liquid and the film thickness. It is possible. Even when the fixed magnet or the floating magnet is installed on the outer surface of the rotating body, it is possible to set the distance between the rotating body and the floating magnet, and the fixed magnet is attached to both ends of the rotating body itself. The same applies to the case.
[0009]
Adjustment of the distance is also possible by finely adjusting the first magnet fixed with a spacer between the tip of the blade attached to the lower end of the rotating body and the second magnet that floats in a stationary state, and reducing the magnetic force. It is also possible to control by temperature change.
[0010]
By the way, the floating magnet repelled and levitated with the same polarity reverses or rotates and attracts and drops if there is no support because the opposite pole of the opposite magnet attracts the fixed magnet. The moment of this rotation becomes larger as the distance between the magnetic poles becomes larger if the magnetic field is parallel to the different poles of the same magnetic flux density. Is closer, the attractive force acts more strongly. Therefore, it is better that the different pole of the floating magnet is as far as possible from the fixed magnet, that is, the distance between NS of the bar magnets is as large as possible (aspect ratio of width and height).
[0011]
Further, ideally, the magnetic line of force of the first magnet is a straight line in the vertical direction, and the floating magnet is ideally located on the magnetic line of force. No rotational moment occurs along this line of force. However, if there is a magnet of the same polarity, the magnetic lines of force of the fixed side magnets are repelled by the magnetism of the floating magnets, and the magnetic lines of force run along the outside, causing a slight shift in the accuracy of the shape and magnetization of the floating magnets, Considering productivity, it is not practical to reduce to theoretical accuracy.
[0012]
Therefore, if the side plate along the magnet is placed as a holding body on both sides of the long bar magnet, even if the magnet is rotatable, it cannot be reversed or rotated because it is obstructed by the side plate. Also, if there is a deviation in the longitudinal direction, there is a possibility that it will shift in the direction of weak force, so it is desirable to prevent displacement in the axial direction as well, so that the side plate (sandwich) is surrounded by a square. Is appropriate. In that case, it is also possible to form a well shape by laminating four flat plates, but if the right and left dimensions of the through hole are different due to the amount of adhesive, it will not be parallel to the photoconductor axis direction of the magnet, Since the distance from the rotating body differs depending on the location, the film thickness may become uneven in the axial direction. In order to prevent this, it is desirable to integrally form a side plate having a through hole surrounding the floating magnet, and such a shape can be easily manufactured by injection molding.
[0013]
By the way, in order to levitate with a uniform gap of this magnetized body, it is not necessary that the whole body in the axial direction is a magnetized body. What is necessary is that there is a magnetized body to perform.
Also, this structure does not need to be separate from the rotating body, and if it is integrated with the rotating body, the deflection due to the rotation unevenness of the rotating body also swings synchronously with the integrated magnetized body, so that the floating magnet also repels As a result, the gap distance is always constant, and the film thickness becomes uniform even if the rotating body rotates.
[0014]
The above is the case where a plate-shaped magnetizing blade is connected when forming a coating film on the outer surface of the coating mold, but when coating on the inner surface of the coating mold, the flat plate blade becomes complicated when provided with a side plate for preventing overturning, Another method is needed.
[0015]
As a method of forming a film on the inner surface of a coating die, a method of manufacturing an endless belt by centrifugal molding or centrifugal coating is to inject a coating liquid into a rotating cylindrical coating die and apply it by high-speed rotating centrifugal force. After the film thickness is made uniform, the solvent is dried and cured if necessary, and then the belt is removed by peeling off the coating mold and removing the mold.
[0016]
This method is an endless (seamless) belt manufacturing method.
1. Adjustment of film thickness can be arbitrarily adjusted by the amount of coating liquid
2. Only the required amount of coating liquid is applied, and material efficiency is good
3. The inside of the mold is a closed space, and the solvent discharged to the outside can be efficiently collected by providing a solvent trap in the exhaust path when removing the solvent.
And so on.
[0017]
By the way, the drawback of this method is that the coating liquid forms a uniform acceleration surface of centrifugal force at an equal distance from the rotation axis along the inner surface of the mold when the roundness of the inner surface of the coating mold is poor or the rotation is eccentric. Therefore, if solvent removal and curing proceed as they are, a distribution of film thickness occurs. Therefore, in order to prevent this film thickness distribution, a jig called a coat bar is used in order to make the liquid level uniform from above the coating liquid. However, in the case of using this coat bar, in order to incorporate the plate-shaped blade into the inside of the rotating coating die, (1) a mechanism provided with a ring which is driven and rotated at both ends as previously proposed in Japanese Patent Application No. 13-264422. Or (2) a method in which the application die is set as an open type, placed on a ball mill type driving and driven roller pair, fixed from both sides, and inserted into the inner surface of the coating die.
[0018]
In the method (1), since the rings on both sides rotate following the inner surface of the mold, the film thickness can be controlled with high accuracy. However, there is a problem that the jig before and after forming the coating film is difficult to handle. In the above (2), since there is no relation to the rotation of the mold, unevenness occurs in the film thickness distribution resulting from the eccentricity of the mold, and the efficiency of collecting the solvent discharged at an angle becomes inferior because the mold is open. There is a big problem.
[0019]
There is also a means to make the blade into a columnar shape and place it on the coating liquid in the coating mold and rotate it to make the liquid level uniform.However, when the coating liquid has a low viscosity, the large unevenness is made uniform. It cannot be applied more than to perform, and even when the viscosity is high, it often drops from the top without being smoothly rotated by being dragged by the coating liquid.
[0020]
Accordingly, the present invention provides a method for solving the above-described problems using a coat bar and obtaining an endless belt having a good film thickness.
[0021]
According to the first aspect of the present invention, a coating liquid is supplied to an inner surface or an outer surface of a coating die formed of a rotating body, and a floating magnetized material is formed at a film forming height by the same polarity magnetic repulsion from the inner surface or the outer surface of the coating die. Is a method for forming a coating film, which comprises magnetically levitating and then rotating the coating die to equalize the thickness of the coating liquid supplied to the coating die surface.
[0022]
The invention according to claim 2 is characterized in that at least the contact surface of the floating magnetized body that comes into contact with the coating liquid is releasable, insoluble, and solvent-repellent with respect to the coating liquid. 2. The method for forming a coating film according to item 1.
[0023]
The invention according to claim 3 is the method for forming a coating film according to claim 2, wherein at least a contact surface of the floating magnetized body that comes into contact with the coating liquid is coated with a fluororesin.
[0024]
According to a fourth aspect of the present invention, in the method for forming a coating film according to any one of the first to third aspects, a coating surface of the coating liquid is an outer surface of the coating die, and a fixed-side magnetized body is provided inside the coating die. The coating type external facing surface is arranged to the fixed-side magnetized body, and the floating magnetized body having the same polarity is floated at a predetermined distance, and the lower end of the floating magnetized body is coated on the outer surface of the coating mold. A method for forming a coating film, comprising forming a coating film having a predetermined thickness in contact with a liquid.
[0025]
According to a fifth aspect of the present invention, in the method for forming a coating film according to any one of the first to third aspects, the coating surface of the coating liquid is an outer surface of the coating die, and the entire region or a part of both ends of the coating die. Is a magnetized body, and a floating magnetized body having the same polarity as the coating type external facing surface is floated at a certain distance with respect to the magnetized body, and the coating liquid applied to the coating type surface at the lower end of the floating magnetized body And forming a coating film having a predetermined thickness in contact with the coating film.
[0026]
The invention according to claim 6 is the method for forming a coating film according to claim 4 or 5, wherein the floating magnetized body is a flat plate and is disposed vertically above the coating mold.
[0027]
According to a seventh aspect of the present invention, in the method for forming a coating film according to any one of the first to third aspects, the coating surface is an inner surface of the rotating body, and the entire region or a part of both ends in the axial direction of the coating die is magnetized. A floating magnetized body having the same polarity as the inside facing surface of the coating type is floated at a certain distance with respect to the coating type, and the lower end of the floating magnetized body comes into contact with the coating liquid applied to the inner surface of the coating type. Forming a coating film having a predetermined thickness.
[0028]
According to an eighth aspect of the present invention, in the method for forming a coating film according to the seventh aspect, the floating magnetized body has a cylindrical shape, and the magnetized portion of the floating magnetized body is polarized differently on the front surface and the rear surface in the radial direction. This is a method for forming a coating film.
[0029]
According to a ninth aspect of the present invention, in the method for forming a coating film according to the eighth aspect, after the coating liquid is applied and the film thickness is made uniform, the magnetic jig is inserted near the axis center of the coating mold in parallel with the axis. A method of forming a coating film, wherein the magnetically attached jig adsorbs the floating magnetized body in parallel with and approaches the floating magnetized body, and then pulls out the magnetized jig in a reverse process.
[0030]
The invention according to claim 10 provides a means for supplying a coating liquid to the inner or outer surface of a coating die formed of a rotating body, and a method for magnetically repelling a floating magnetized material to a film-forming height from the inner or outer surface of the coating die by magnetic repulsion. An apparatus for forming a coating film, comprising: means for floating, and means for rotating a coating die, wherein the coating die is rotated to equalize the thickness of a coating liquid supplied to the coating die surface. .
[0031]
The invention according to claim 11 is characterized in that at least a contact surface of the floating magnetized body that comes into contact with the coating liquid is releasable, insoluble, and solvent-repellent with respect to the coating liquid. 11. An apparatus for forming a coating film according to item 10.
[0032]
A twelfth aspect of the present invention is the coating film forming apparatus according to the eleventh aspect, wherein at least a contact surface of the floating magnetized body that comes into contact with the coating liquid is coated with a fluororesin.
[0033]
According to a thirteenth aspect of the present invention, in the apparatus for forming a coating film according to any one of the tenth to twelfth aspects, a coating surface of the coating liquid is an outer surface of the coating die, and a fixed-side magnetized body is provided inside the coating die. The coating type external facing surface is disposed to the fixed-side magnetized body, and the floating magnetized body having the same polarity is floated at a fixed distance, and the lower end of the floating magnetized body is coated on the outer surface of the coating mold. An apparatus for forming a coating film characterized by forming a coating film having a predetermined thickness in contact with a liquid.
[0034]
According to a fourteenth aspect of the present invention, in the apparatus for forming a coating film according to any one of the tenth to twelfth aspects, the coating surface of the coating liquid is an outer surface of the coating die, and the entire region of the coating die or a partial region at both ends. Is a magnetized body, and a floating magnetized body having the same polarity as the coating type external facing surface is floated at a certain distance with respect to the magnetized body, and the coating liquid applied to the coating type surface at the lower end of the floating magnetized body And forming a coating film having a predetermined thickness in contact with the coating film.
[0035]
According to a fifteenth aspect of the present invention, in the apparatus for forming a coating film according to the thirteenth or fourteenth aspect, the floating magnetized body is a flat plate disposed vertically above the coating mold. It is a forming device.
[0036]
According to a sixteenth aspect of the present invention, in the coating film forming apparatus according to the fifteenth aspect, the floating magnetized body is a member that is wide in a vertical direction and has a different polarity magnetized in the width direction. It is a forming apparatus.
[0037]
According to a seventeenth aspect of the present invention, there is provided an apparatus for forming a coating film, wherein parallel floating plates are provided on both side surfaces of the floating magnetized body of the sixteenth aspect.
[0038]
An invention according to claim 18 is a coating film forming apparatus for forming a film by injecting a coating liquid into an inner surface of a cylindrical rotating body coating die, wherein the entire area or both end areas in the axial direction of the rotating body coating die are radially oriented. A different polarity magnetized body is formed in the radial direction of the same polarity as the inner surface of the rotating body coating mold on the entire surface side or both end areas of the core rotor that is formed of a different polarity magnetized body and is driven inside the rotating body coating mold. This is an apparatus for forming a coating film.
[0039]
According to a nineteenth aspect of the present invention, in the coating film forming apparatus according to the eighteenth aspect, the floating magnetized body has a cylindrical shape, and the magnetized portion of the floating magnetized body has different polarities on the front surface and the rear surface in the radial direction. An apparatus for forming a coating film, characterized in that:
[0040]
According to a twentieth aspect of the present invention, in the apparatus for forming a coating film according to the nineteenth aspect, the jig member for detaching the floating magnetized body has different polarities and homopolarities in the entire region or at both ends of the portion corresponding to the floating magnetized body. An apparatus for forming a coating film, comprising an electromagnet that generates a magnetic force.
[0041]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The configuration of the present invention can be realized by a simple method based on a very simple principle.
The principle configuration is magnetic levitation. When two magnetic bodies of the same polarity, such as a permanent magnet, approach each other, a repulsive force acts to move them away, but an unfixed magnetic body that is freely movable in a gravitational field remains where the force is balanced by gravity. By using this principle and magnetizing a Gaussian amount of a magnet corresponding to gravity, it can be kept at a predetermined gap.
[0042]
If the outside of the core rotation type has the same polarity magnetic pole with respect to the polarity of the inner surface of the outer die coating, there is no repulsion and contact with the core rotation type inside the outer die coating. Can be adjusted by the balance of the force of the magnetic force by the weight of the mold and the magnetic flux density.
[0043]
FIGS. 1A and 1B are diagrams showing a schematic configuration of a coating film forming apparatus according to a first embodiment of the present invention, wherein FIG. 1A is a side view and FIG.
As shown in FIG. 1, a ring-shaped magnetized body 12a (fixed-side magnetized body) having different polarities on both sides is fitted into both ends of the outer surface coating mold 11a. Above the plate magnet blade 21a, which is a floating magnet with a different pole, a plate magnet blade 21a is sandwiched in a plane direction so as to be vertically movable from both sides in parallel with the vertical direction from both sides of the plate magnet blade 21a. Is adjusted to a predetermined gap by the repulsive force of the magnetic force and floats. The coating liquid 51 applied by rotating the outer surface coating die 11a has a uniform thickness while being pushed away by the antinode of the floating plate magnet blade 21a. In other words, by using a blade utilizing the phenomenon of floating by the repulsive force of the same polarity magnetism, the coating support and the coating liquid film thickness can be controlled to a constant smooth and uniform film, and the uniform film thickness without blade marks can be obtained. A coating film can be formed. Since the plate magnet blade 21a, which is the second magnetized flat plate, is widened in the vertical direction, there is a possibility that the side magnets 21 and the rotational moment are constantly generated. Therefore, the side plate 21b can prevent such a problem.
[0044]
Since the plate magnet blade 21a, which is the second magnetized flat plate, is wide and vertically polarized in the vertical direction, the blade surface in contact with the liquid surface can be reduced (sharpened). This is advantageous for preventing generation of marks. Further, since the distance between the NS different poles is increased, the attractive force between the different poles with the fixed magnetized body can be reduced, so that the sideways fall and the generation of the rotational moment can be reduced.
[0045]
FIGS. 2A and 2B are views showing a schematic configuration of a coating film forming apparatus according to a second embodiment of the present invention, wherein FIG. 2A is a side view and FIG.
FIG. 2 shows a manner of disposing a fixed magnetized body in an outer surface coating mold 11a according to a second embodiment of the present invention. In an open type coating mold, a non-rotating bar magnet 12b (fixed side magnetized body) is fixed inside. ) Can be placed. At that time, the outer surface coating die 11a is put on the driving roller 31a and the driven roller 31b and rotates. The bar magnet 12b is vertically magnetized with different polarities. The applied coating liquid 51 has a uniform film thickness while being pushed away by the antinode of the floating plate magnet blade 21a. In other words, by using a blade utilizing the phenomenon of floating by the repulsive force of the same polarity magnetism, the coating support and the coating liquid film thickness can be controlled to a constant smooth and uniform film, and the uniform film thickness without blade marks can be obtained. A coating film can be formed.
[0046]
Since the plate magnet blade, which is the second magnetized flat plate, is wide and vertically polarized in the vertical direction, the blade surface in contact with the liquid surface can be made small (sharp), so that the liquid surface can be made uniform and the blade marks can be made uniform. It is advantageous for prevention of occurrence. Further, since the distance between the NS different poles is increased, the attractive force between the different poles with the fixed magnetized body can be reduced, so that the sideways fall and the generation of the rotational moment can be reduced.
[0047]
Since the second magnetized flat plate is widened in the vertical direction, there is a possibility that the side plate or the rotation moment may be constantly generated. Therefore, it can be prevented by providing the side plate.
[0048]
3A and 3B are diagrams showing a schematic configuration of a coating film forming apparatus according to a third embodiment of the present invention, wherein FIG. 3A is a side view, and FIG.
FIG. 3 shows an example of the inner surface coating die 11b. A ring-shaped magnetized body 12a is fitted into both ends of the inner surface coating mold 11b, and a cylindrical (or columnar) roller 21c magnetized on the opposite front and back poles is disposed, and a predetermined force is generated by gravity and repulsion. It is emerging at the gap distance. Although not shown, the coating liquid 51 is discharged from the nozzle and discharged to the inner peripheral surface of the inner coating die 11b while being made uniform by the lower floating roller 21c.
When the coating film is the inner surface of the coated substrate / support, the fixed magnetized body that causes the floating blade to float is the substrate / support.
[0049]
When the coating film 51 is formed on the inner surface of the coating substrate / support, if the floating blade is a flat plate, a jig such as a side plate for preventing rollover must be provided inside the coating mold, so that a small closed space can be used. Although it is difficult to adjust the layout, a cylindrical (cylindrical) shape like the floating roller 21c has no anisotropy even when rotated, and layout in a narrow closed space becomes easy. The isotropic property can be realized by a magnetized body in the radial direction.
[0050]
FIG. 4 is a view showing a schematic configuration of a floating roller take-out device in the order of steps.
FIG. 4 is a schematic view when the floating body roller 21c is taken out of the inner surface application die 11b. Since the rolled magnet 21c which floats has a small gap with the coating liquid film 51, even if it is slightly displaced obliquely, it comes into contact with the coating film and causes abnormal appearance.
[0051]
First, FIG. 4 (A) shows a magnetized rod 41a having a magnetic pole attracting a magnetic body or a floating magnetized body with a different polarity, at a position where the attractive force does not reach the coating type shaft and the floating body axis. insert.
[0052]
Next, as shown in FIG. 4 (B), when the magnetized rod 41a comes to a predetermined position, it is slowly lowered to the lower part of the coating die 11b. I do.
[0053]
As shown in FIG. 4C, by pulling out the insertion jig 41a that has attracted the roller 21c in parallel with the rotation axis, the influence on the coating film can be avoided.
[0054]
It is extremely difficult to take out the floating body roller 21c, which is a floating body that floats at a close distance of 1 mm or less inside the inner surface coating die 11b without coming into contact with the coating film 51. After inserting a magnetic body or a magnet with a different polarity at a distance that does not attract the body, the body can be evenly separated from the coating film 51 by approaching the magnetized floating body.
[0055]
FIG. 5 is a diagram showing a schematic configuration of a device for inserting and taking out a floating body roller in the order of steps.
FIG. 5 is a schematic diagram in the case where the floating roller 21c is inserted, set, and removed after application.
First, as shown in FIG. 5A, an insertion jig 41a in which the roller 21c is previously attracted by the electromagnet 42 is inserted in parallel with the axis of the coating die 11b.
Next, as shown in FIG. 5B, when the insertion jig 41a reaches a predetermined position, it is stopped.
Next, as shown in FIG. 5 (C), the electromagnet 42 is turned off by approaching a predetermined distance to the lower portion of the coating die to eliminate the magnetic force.
Next, as shown in FIG. 5D, when the insertion jig 41a is pulled up in the direction of the center axis, the roller 21c floats so as to float there.
[0056]
Next, as shown in FIG. 5E, the insertion jig 41a is pulled out of the mold along the axial direction. After the coating film pressure is equalized, removal may be performed in the reverse process. The insertion jig 41a is inserted in parallel with the axis of the coating die 11b while the electromagnet 42 is turned off, and approaches the lower roller 21c of the coating die. Then, after the electromagnet is turned on and the roller 21c is attracted, the roller 21c is lifted in the direction of the central axis, and is further pulled out horizontally from the mold.
[0057]
By using the electromagnet 42 capable of generating magnetic poles of different and the same polarity for the insertion jig 41a as a detachable insertion jig, not only the removal of the floating body roller 21c, which is a floating body, from the coating mold 11b, but also the coating Insertion after application of the liquid is also possible, and even when the core magnetic material is attracted to the floating roller 21c, it can be separated and separated by the repulsive force due to the generation of the same magnetic force. Further, since the floating body can be pulled out from the insertion, automation becomes easy.
[0058]
Above, (1) magnets move away from each other due to the repulsive force of the same poles
(2) A magnet with a certain weight repels with a magnet of the same polarity, but the magnet placed on the fixed magnet stays in a predetermined position in the space balanced by gravity and the repulsive force of the magnet. .
[0059]
In the case of the outer surface coating type, (3) a floating plate magnet is used, parallel side plates are provided on both sides of the magnet to prevent rotation and dropping, and baffle plates (magnet holding bodies) for preventing movement are provided at both ends in the axial direction. Provide
(4) The side plate and baffle plate are integrally molded by injection molding
(4) By using a material having a material that is insoluble in the coating liquid and has a releasability in the lower part of the external magnet and facing the rotating body, the outer surface deformation due to the adhesion of the coating liquid is prevented.
(6) The fixed magnet is integrated with the rotating body
(7) In the case of a rigid rotating body, it is easy to provide a step at both ends and fit a ring magnetized inside and outside with different polarities.
{Circle around (8)} In the case of a belt rotating body, elastic magnets such as rubber having different polarities are attached to both ends of the belt.
[0060]
In case of inner coating type
{Circle around (1)} The rotating body of the core placed in the rotating body of the cylinder is a magnetized body of the outer rotating body (coating type) and the rotating body of the core (coat bar) which stay at the bottom of the outer rotating body due to gravity. Heteropolar magnetization occurs in the radial direction. At this time, the magnetic pole on the inner surface of the outer mold and the surface magnetic pole on the core rotor are the same.
{Circle around (2)} The magnetized area of the outer die and the core rotor is preferably the entire area in the axial direction, but may be at both ends, and floats at predetermined positions due to the own weight of the core rotor and the repulsive magnetic force of the coating die.
(3) The loading of the core rotating body may be performed before or after the application of the coating liquid.
(4) The spin-coated application liquid is made uniform by the core rotating body to a constant liquid level.
(5) When drying while rotating, the liquid level drops due to the removal of the solvent and moves away from the core rotor.
{Circle around (6)} In the case of heating and drying, the gap distance of the temporary core rotating body becomes narrow due to a decrease in magnetic force due to a rise in temperature.
(7) When the coating liquid is dry to the touch to the extent that it loses fluidity, take out the core rotor so that it does not come into contact with the film surface (for example, attach it to a magnet of a different polarity and lift it to near the center axis of the coating die) Then, the mold is pulled out horizontally in the axial direction of the mold), and then transferred to a heating furnace for each mold in the same manner as in the conventional centrifugal molding method.
[0061]
[Example 1]
The configuration is the same as the configuration shown in FIG. 1. A step is provided in the outer periphery of both ends of an aluminum rotary coating type having a length of φ60 and a length of 360 mm, each having a width of 30 mm, and a ring-shaped magnetized body having an outer N pole is fitted to both ends. did. Above the vertical side of this coating type, a side plate having a space of 0.1 mm on both sides is used. The plate was placed so that the pole was at the bottom, and the flat-plate magnetized body floated 0.4 mm above the outer surface of the coating mold.
[0062]
A polyimide endless belt having a diameter of 60 and a film thickness of 100 μm was previously mounted on the outer die as a base, and then the side plate and the flat-plate magnetized body were set on the upper part of the coating die. A two-component mixed type silicone rubber diluent was applied from the side of the coating die by spray coating to an average liquid thickness of 300 μm. The thickness of the coating liquid was unevenly distributed at first, but was uniformized in contact with the upper floating blade. Thereafter, when the film was heated and dried at 100 ° C. with a heater attached to the back, the thickness of the coating liquid was reduced, and the gap of the flat-plate magnetized body was slightly reduced. No trace of contact was observed on the coating film, and when the film became dry to the touch, the heating was stopped, the flat-plate magnetized body was removed, and the coating film was moved to a heating furnace for each substrate, and preheated to 160 ° C and 200 ° C. The main heating was performed to manufacture an endless belt having a 200 μm elastic layer. The laminated film was good without any trace of contact (blade trace).
[0063]
When the coating film is the outer surface of the coated substrate / support, the fixed magnetized member for floating the floating blade can be provided on the substrate / support itself or provided inside the substrate / support. When the magnetized member provided in the above is used, even if unevenness / fluctuation of the rotation of the substrate / support occurs, the floating blade fluctuates in accordance with the unevenness / fluctuation of the rotation of the substrate / support, so that the film thickness is always constant. The uniformity of the film thickness is further improved.
[0064]
When the coating film causes the floating blade to float on the outer surface of the coating substrate / support, it is better to dispose the coating film in the upper vertical direction of the coating substrate / support in order to maintain the balance between the magnetic repulsion and the gravity of its own weight. It is easy to calculate the balance between the magnetic flux density and the weight, and is desirable in the layout setting.
[0065]
[Example 2]
The configuration shown in FIG. 2 is the same as the configuration shown in FIG. 2, and a bar magnet having an N pole is inserted at a predetermined gap inside an aluminum core bar having a length of φ70 and a length of 360 mm. As a side plate having a space of 0.1 mm, a flat magnetized body with a width of 1 mm, a width of 10 mm, a length of 340 mm, and a surface coated with PTFE, which is magnetized with different poles at the top and bottom, is placed so that the N pole faces down. The flat magnetized body was raised 0.3 mm above the outer surface of the cored bar.
[0066]
After setting the side plate and the flat-plate magnetized body on the upper part of the coating die on this aluminum core, a two-component mixed type silicone rubber diluent was applied from the side of the coating die by spray coating to an average liquid thickness of 300 μm. The thickness of the coating liquid was unevenly distributed at first, but was uniformized in contact with the upper floating blade. Thereafter, when the film was heated and dried at 100 ° C. with a heater attached to the back, the thickness of the coating solution was reduced, and the gap of the flat-plate magnetized body was slightly reduced. However, when the thickness became about 270 μm, the coating solution was separated from the coating solution. No trace of contact was observed on the coating film, and when the film became dry to the touch, the heating was stopped, the flat-plate magnetized body was removed, and the coating film was moved to a heating furnace for each substrate, and preheated to 160 ° C and 200 ° C. Was heated to produce a roller having a 200 μm elastic layer. The laminated film was good without any trace of contact (blade trace).
[0067]
As described above, when the coating film is the outer surface of the coating substrate / support, the fixed magnetized body for floating the floating blade can be provided on the substrate / support itself, or can be provided inside the substrate / support. When the base / support is a nonmagnetic metal or resin, the magnetic force acts through the member, so that the blade can be levitated and the coating liquid can be made uniform in film thickness. Further, even when the coating film is formed on the surface while the flexible belt is driven by a plurality of driving / following rollers, an internal magnetized body can be disposed on the flat portion to make the coating film uniform. .
[0068]
[Example 3]
The configuration shown in FIG. 3 is the same as that shown in FIG. 3, and both ends of the non-coated portion of the cylindrical inner surface of a cylindrical aluminum having an inner diameter of 180 φ are cut to form a spigot portion, and the portion is magnetized in the radial direction with the inner surface as the N pole. As the outer die fitted with a ring, a core rotor with an outer diameter of 10 mmφ with an outer surface fitted with a ring magnet of N pole is inserted so that both ends hang on the magnetized part of the outer die. From the surface to 200 μm. A portion of the core rotating body corresponding to the outer die coating portion in the axial center region is coated with a releasable fluororesin.
[0069]
Since the surface of the core rotating body, which is a floating body, is coated with a fluororesin, it is releasable, insoluble and solvent repellent. It is possible to reduce the fluctuation due to some impact by increasing the inertia force as a floating body having a large specific gravity, such as a metal, without being damaged. Here, the solvent repellency refers to the property of repelling a solvent.
[0070]
Furthermore, since the surface of the floating body is coated with the fluororesin, the release mold is insoluble and the solvent repellency can be realized. As a floating body having a large specific gravity, such as a metal, the inertia force can be increased to reduce the fluctuation with respect to some impact.
[0071]
While rotating the coating die at 100 rpm, a dilute solution of polyamic acid, which is a stock solution of polyimide, was spirally applied to the side surface of the coating die while moving the nozzle. After removing the coating nozzle, the rotation speed of the coating die was increased to 1000 rpm, and the coating was heated to 100 ° C. with an external heater to remove the solvent to the extent of dry to the touch. After that, insert a paramagnetic iron rod near the center of the coating mold shaft, lower it in parallel to the bottom of the coating mold, attract the core rotor with magnetic force, move it to the center of the coating mold shaft again, and apply. I pulled it out of the mold. Thereafter, the rotation of the coating die was stopped, and the coating die was transferred to a heating furnace and subjected to heat treatment at the curing temperature of the coating film to produce an endless belt of 70 μm.
[0072]
The inner surface of the coating liquid, which had formed a concave-convex surface in the state of the coating liquid, floated and was homogenized by a core rotating body that kept a certain distance, and became a uniform liquid film. (In other words, the liquid film thickness was reduced) and the core film was separated from the core rotating body. However, no endless belt with uniform and good film thickness was obtained without the occurrence of blade marks particularly during the contact and separation of the entire coating film. Was.
[0073]
[Example 4]
In the manufacture of the endless belt of Example 3, a magnet having an S pole on its surface (in place of a paramagnetic iron bar) is used as a jig, and a coating type that does not exert an attraction force (attraction) with a core rotating body. Insert at a height near the central axis (Fig. 4 (A)), and when it reaches a predetermined position, draw closer to the core rotor (Fig. 4 (B)), and move again to a height near the central axis. Then, it was pulled out (FIG. 4 (C)). In the same manner as in Example 3, the film could be taken out without coming into contact with the coating die or the coating film, and a uniform and good endless belt was produced.
[0074]
[Example 5]
In the manufacture of the endless belt of Example 3, first, an electromagnet was attached to a portion corresponding to both ends of the core rotor in place of the paramagnetic iron bar after forming a coating liquid film by spray coating inside the mold, The core rotor is attracted and inserted by magnetic force (FIG. 5 (A)), and when it comes to a predetermined position (FIGS. 5 (B) and (C)), the magnetic force is erased and the core rotor is separated and floated. (FIGS. 5 (D) and (E)), and after the coating was uniformized, it was inserted again and attracted and taken out by the action of the electromagnet magnetic force. In the same manner as in Example 3, the film could be taken out without coming into contact with the coating die or the coating film, and a uniform and good endless belt was produced.
[0075]
[Comparative Example 1]
In a coating die for forming an external coating film similar to that of the first embodiment, a fixed blade is provided at a fixed distance to a conventional coating die in place of a magnetic levitation blade, and after coating with a coating liquid, a predetermined film thickness is fixed by contact shaving and then fixed. Moved the blade. The swelling of the coating liquid at the moment of contact and separation could not be prevented, and a convex portion was generated in a part in the circumferential direction, and remained after the subsequent heat treatment, so-called blade marks were generated.
[0076]
[Comparative Example 2]
The core rotor of Example 3 was a non-magnetized plastic roll made of a light material, and the surface thereof was coated as a coating bar coated with a releasable fluororesin. When the film was heated and dried, the film was hardened to some extent and the rotation was stopped to check the surface properties of the film. As a result, the formed film was largely wavy in the circumferential direction.
[0077]
[Comparative Example 3]
The coating die of Example 3 is mounted on two driving / following rollers having a rotation axis in the horizontal direction to be in an open state, and the core rotating body coat bar of Comparative Example 2 is provided outside the coating die and inside of the coating die. After adjusting the gap distance, a coating solution was applied and dried by heating to form a film. Although the formed film was smooth, the difference between the film thicknesses at both ends was 10% or more. Inspection revealed that the coating mold was eccentric and the gap with the rotating mold was different at both ends because the coat bar was fixed.
[0078]
[Comparative Example 4]
In the same manner as in Example 3, the floating rotary blade was lifted to the center of the coating die with great care by hand and pulled out from the coating die in the state of the coating, the coating and the dry film to the touch. The balance was lost and it came into contact with the inner surface of the coating mold. For this reason, the trace dented by the contact remained as it was in the subsequent heat treatment, resulting in an abnormal appearance. With the intermediate transfer belt using this belt, an abnormal image with white spots occurred.
The present invention is not limited to the above embodiment. That is, various modifications can be made without departing from the gist of the present invention.
[0079]
【The invention's effect】
As described above, according to the first and tenth aspects of the present invention, the coating support and the coating liquid film thickness can be kept constant by using a floating magnetized body utilizing a phenomenon of floating by the repulsive force of the same polarity magnetism. A smooth and uniform film can be controlled, and a uniform coating film having no blade marks can be formed.
[0080]
According to the second and eleventh aspects of the present invention, when the floating magnetized material has an affinity for the coating solution, it adheres closely to the coating solution when it is in contact with the coating solution and is pulled backward with respect to the downstream of rotation so that the film thickness becomes inadequate. Since it is uniform, it needs to be mold releasing, insoluble and solvent repellent.
[0081]
According to the third and twelfth aspects of the present invention, since the surface of the floating body is coated with the fluororesin, it is possible to realize the releasability, the insolubility and the solvent repellency. In this case, the coating mold is not damaged and the inertia force is increased as a floating body having a large specific gravity, such as metal, so that the fluctuation can be reduced with respect to a slight impact.
[0082]
According to the fourth and thirteenth aspects of the present invention, when the coating film is the outer surface of the coating substrate / support, the fixed magnetized body for floating the floating blade is provided on the substrate / support itself or the substrate / support. Can be provided inside. When the base / support is a nonmagnetic metal or resin, the magnetic force acts through the member, so that the blade can be levitated and the coating liquid can be made uniform in film thickness. Further, even when the coating film is formed on the surface while the flexible belt is driven by a plurality of driving / following rollers, an internal magnetized body can be disposed on the flat portion to make the coating film uniform. .
[0083]
Further, according to the invention of claims 5 and 14, when the coating film is the inner surface of the coating substrate / support, the diffusion of the coating solution can be prevented and the environment is very friendly.
[0084]
According to the sixth and fifteenth aspects of the present invention, when the coating film causes the floating blade to float on the outer surface of the coating substrate / support, it is necessary to maintain the balance between the magnetic repulsive force and the gravity of its own weight. It is easier to calculate the balance between the magnetic flux density and the weight, and it is preferable to set the layout in the vertical direction of the upper part of the body.
[0085]
According to the seventh aspect of the present invention, when the coating film is on the inner surface of the coating substrate / support, the fixed magnetized body for floating the floating blade is the substrate / support.
[0086]
According to the invention of claims 8 and 19, when the coating film is formed on the inner surface of the coating substrate / support, if the floating magnet is flat, a jig such as a side plate for preventing rollover is provided inside the coating mold. This makes it difficult to adjust the layout in a narrow closed space. However, a cylindrical (cylindrical) shape has no anisotropy even when rotated, and facilitates layout in a narrow closed space. The isotropic property can be realized by a magnetized body in the radial direction.
[0087]
According to the ninth aspect of the present invention, it is extremely difficult to take out a floating body floating within a short distance of 1 mm or less inside the coating mold without coming into contact with the coating film. After inserting a magnetic body or a magnet with a different polarity at a distance that does not attract the body, the body can be evenly moved away from the coating film by approaching the magnetized floating body.
[0088]
According to the sixteenth aspect of the present invention, since the second magnetized flat plate is vertically wide and polarized in a different polarity, the blade surface in contact with the liquid surface can be reduced (sharpened). This is advantageous for uniformity and prevention of blade marks.
[0089]
According to the seventeenth aspect of the present invention, since the floating magnetized body is widened in the vertical direction, there is a possibility that a sideways fall or a rotational moment is constantly generated, so that it can be prevented by providing a side plate.
[0090]
According to the invention of claim 18, when the coating film is formed on the inner surface of the coating substrate / support, if the floating blade is flat, a jig such as a side plate for preventing rollover must be provided inside the coating mold. This makes it difficult to adjust the layout in a narrow closed space. However, the cylindrical (cylindrical) shape has no anisotropy even when rotated, and facilitates layout in a narrow closed space. The isotropic property can be realized by a magnetized body in the radial direction.
[Brief description of the drawings]
FIG. 1 is a view showing a schematic configuration of a coating film forming apparatus according to a first embodiment of the present invention.
FIG. 2 is a view showing a schematic configuration of a coating film forming apparatus according to a second embodiment of the present invention.
FIG. 3 is a view showing a schematic configuration of a coating film forming apparatus according to a third embodiment of the present invention.
FIG. 4 is a view showing a schematic configuration of a device for taking out a floating body roller.
FIG. 5 is a diagram showing a schematic configuration of a device for inserting and removing a floating body roller.
[Explanation of symbols]
11a External coating type
11b Inner coating type
12a Ring-shaped magnetized body
12b bar magnet
21a Plate magnet
21b Side plate
21c Floating body roller (roller magnetized body)
31a drive roller
31b driven roller
41a Magnetized rod (insertion jig)
42 electromagnet
51 Coating liquid

Claims (20)

回転体からなる塗布型の内表面又は外表面に塗布液を供給し、塗布型の内表面又は外表面から同極磁気反発力により膜厚形成高さに浮遊着磁体を磁気浮上させた後、塗布型を回転させることにより塗布型表面に供給された塗布液の膜厚を均一化することを特徴とする塗布膜の形成方法。After supplying the coating liquid to the inner surface or the outer surface of the coating mold composed of the rotating body, and magnetically levitating the floating magnetized body to the film forming height by the same polarity magnetic repulsion from the inner surface or the outer surface of the coating mold, A method for forming a coating film, characterized in that the coating die is rotated to make the thickness of the coating liquid supplied to the coating die surface uniform. 前記塗布液と接触する浮遊着磁体の少なくとも接触面が、前記塗布液に対して、離型性、非溶解性、かつ撥溶剤性であることを特徴とする請求項1に記載の塗布膜の形成方法。The coating film according to claim 1, wherein at least a contact surface of the floating magnetized body that comes into contact with the coating liquid is releasable, insoluble, and solvent-repellent with respect to the coating liquid. Forming method. 前記塗布液と接触する浮遊着磁体の少なくとも接触面がフッ素樹脂で被覆されていることを特徴とする請求項2に記載の塗布膜の形成方法。The method for forming a coating film according to claim 2, wherein at least a contact surface of the floating magnetized body that comes into contact with the coating liquid is coated with a fluororesin. 請求項1〜3の何れかに記載の塗布膜の形成方法において、前記塗布液の塗布面が前記塗布型の外表面であり、塗布型内部に固定側着磁体を配置し、該固定側着磁体に対して塗布型外部対向面が同極の浮遊着磁体を一定距離に浮遊して配置し、浮遊着磁体の下端部が塗布型の外表面に塗布された塗布液と接触して所定の厚さの塗布膜を形成することを特徴とする塗布膜の形成方法。The method for forming a coating film according to any one of claims 1 to 3, wherein a coating surface of the coating liquid is an outer surface of the coating die, and a fixed-side magnetized body is disposed inside the coating die. The coating-type external facing surface of the coating magnetic material has the same polarity of the floating magnetized material floating at a certain distance, and the lower end of the floating magnetized material comes into contact with the coating liquid applied on the outer surface of the coating mold and has a predetermined shape. A method for forming a coating film, comprising forming a coating film having a thickness. 請求項1〜3の何れかに記載の塗布膜の形成方法において、前記塗布液の塗布面が前記塗布型の外表面であり、塗布型の全域あるいは両端一部領域を着磁体とし、該着磁体に対して塗布型外部対向面と同極の浮遊着磁体を一定距離に浮遊して配置し、浮遊着磁体の下端部で塗布型の表面に塗布された塗布液と接触して所定の厚さの塗布膜を形成することを特徴とする塗布膜の形成方法。The method for forming a coating film according to any one of claims 1 to 3, wherein the coating surface of the coating liquid is an outer surface of the coating die, and a whole or a part of both ends of the coating die is a magnetized body. A floating magnetized body having the same polarity as the coating-type external facing surface is floated at a certain distance to the magnetic body, and the bottom surface of the floating magnetized body comes into contact with the coating liquid applied to the coating mold surface at a predetermined thickness. A method for forming a coating film, comprising: forming a coating film having a thickness of 10 .mu.m. 請求項4又は5において浮遊着磁体が平板で塗布型に対して鉛直上方に配設されていることを特徴とする塗布膜の形成方法。6. The method for forming a coating film according to claim 4, wherein the floating magnetized body is a flat plate and is disposed vertically above the coating mold. 請求項1〜3に何れかに記載の塗布膜の形成方法において、塗布面が回転体の内面であり、塗布型の軸方向の全域あるいは両端一部領域を着磁体とし、該塗布型に対して塗布型内部対向面と同極の浮遊着磁体を一定距離に浮遊して配置し、浮遊着磁体の下端部が塗布型の内表面に塗布された塗布液と接触して所定の厚さの塗布膜を形成することを特徴とする塗布膜の形成方法。The method for forming a coating film according to any one of claims 1 to 3, wherein the coating surface is an inner surface of the rotating body, and a whole or a part of both ends in the axial direction of the coating mold is a magnetized body. A floating magnetized body having the same polarity as the inside facing surface of the coating type is floated at a certain distance, and the lower end of the floating magnetized body comes in contact with the coating liquid applied to the inner surface of the coating type to have a predetermined thickness. A method for forming a coating film, comprising forming a coating film. 請求項7に記載の塗布膜の形成方法において、浮遊着磁体が円筒形状であり、浮遊着磁体の着磁部はラディアル方向の表面と裏面に異極分極していることを特徴とする塗布膜の形成方法。8. The method of forming a coating film according to claim 7, wherein the floating magnetized body has a cylindrical shape, and the magnetized portion of the floating magnetized body is polar-polarized on the front surface and the back surface in the radial direction. Formation method. 請求項8に記載の塗布膜の形成方法において、塗布液を塗布し膜厚均一化後、磁性体治具を塗布型の軸中心付近に軸に平行に挿入した後、浮遊着磁体に平行に近接して浮遊着磁体を磁性体治具に吸着し、その後逆過程で引き出すことを特徴とする塗布膜の形成方法。9. The method for forming a coating film according to claim 8, wherein the coating liquid is applied and the film thickness is made uniform, and then the magnetic jig is inserted near the axis center of the coating mold in parallel with the axis, and then in parallel with the floating magnetized body. A method for forming a coating film, comprising: adsorbing a floating magnetized body to a magnetic jig in close proximity thereto, and then pulling out the magnetized body in a reverse process. 回転体からなる塗布型の内面又は外面に塗布液を供給する手段と、塗布型の内表面又は外表面から磁気反発力により膜厚形成高さに浮遊着磁体を磁気浮上させる手段と、塗布型を回転させる手段とを備え、塗布型を回転させることにより塗布型表面に供給された塗布液の膜厚を均一化することを特徴とする塗布膜の形成装置。Means for supplying a coating liquid to the inner or outer surface of the coating mold comprising a rotating body, means for magnetically levitating the floating magnetized body to a film-forming height by magnetic repulsion from the inner or outer surface of the coating mold, and Means for rotating the coating die, and uniformizing the thickness of the coating liquid supplied to the coating die surface by rotating the coating die. 前記塗布液と接触する浮遊着磁体の少なくとも接触面が、前記塗布液に対して、離型性、非溶解性、かつ撥溶剤性であることを特徴とする請求項10に記載の塗布膜の形成装置。The coating film according to claim 10, wherein at least a contact surface of the floating magnetized body that comes into contact with the coating liquid is releasable, insoluble, and solvent-repellent with respect to the coating liquid. Forming equipment. 前記塗布液と接触する浮遊着磁体の少なくとも接触面がフッ素樹脂で被覆されていることを特徴とする請求項11に記載の塗布膜の形成装置。The coating film forming apparatus according to claim 11, wherein at least a contact surface of the floating magnetized body that comes into contact with the coating liquid is coated with a fluororesin. 請求項10〜12の何れかに記載の塗布膜の形成装置において、前記塗布液の塗布面が前記塗布型の外表面であり、塗布型内部に固定側着磁体が配置され、該固定側着磁体に対して塗布型外部対向面が同極の浮遊着磁体を一定距離に浮遊して配置し、浮遊着磁体の下端部が塗布型の外表面に塗布された塗布液と接触して所定の厚さの塗布膜を形成することを特徴とする塗布膜の形成装置。13. The coating film forming apparatus according to claim 10, wherein the coating surface of the coating liquid is an outer surface of the coating die, and a fixed-side magnetized body is disposed inside the coating die. The coating-type external facing surface of the coating magnetic material has the same polarity of the floating magnetized material floating at a certain distance, and the lower end of the floating magnetized material comes into contact with the coating liquid applied on the outer surface of the coating mold and has a predetermined shape. A coating film forming apparatus for forming a coating film having a thickness. 請求項10〜12の何れかに記載の塗布膜の形成装置において、前記塗布液の塗布面が前記塗布型の外表面であり、塗布型の全域あるいは両端一部領域を着磁体とし、該着磁体に対して塗布型外部対向面と同極の浮遊着磁体を一定距離に浮遊して配置し、浮遊着磁体の下端部で塗布型の表面に塗布された塗布液と接触して所定の厚さの塗布膜を形成することを特徴とする塗布膜の形成装置。13. The coating film forming apparatus according to claim 10, wherein the coating surface of the coating liquid is an outer surface of the coating die, and the whole or part of both ends of the coating die is a magnetized body. A floating magnetized body having the same polarity as the coating-type external facing surface is floated at a certain distance to the magnetic body, and the bottom surface of the floating magnetized body comes into contact with the coating liquid applied to the coating mold surface at a predetermined thickness. An apparatus for forming a coating film, comprising: 請求項13又は14にに記載の塗布膜の形成装置において、浮遊着磁体が平板で塗布型に対して鉛直上方に配設されていることを特徴とする塗布膜の形成装置。The coating film forming apparatus according to claim 13, wherein the floating magnetized body is a flat plate and disposed vertically above the coating mold. 請求項15の塗布膜の形成装置において、前記浮遊着磁体は鉛直方向に幅広く、かつその幅方向に異極が着磁された部材であることを特徴とする塗布膜の形成装置。16. The coating film forming apparatus according to claim 15, wherein the floating magnetized member is a member that is wide in a vertical direction and magnetized with a different pole in the width direction. 請求項16の浮遊着磁体の両側面に平行平板を備えていることを特徴とする塗布膜の形成装置。17. An apparatus for forming a coating film, comprising parallel flat plates on both side surfaces of the floating magnetized body according to claim 16. 円筒状回転体塗布型の内面に塗布液を注入して膜を形成する塗布膜の形成装置において、前記回転体塗布型の軸方向の全域あるいは両端領域をラディアル方向に異極着磁体で形成し、回転体塗布型の内部で従動する中子回転体の表面側全域あるいは両端領域を回転体塗布型内面と同極のラディアル方向に異極着磁体を配設したことを特徴とする塗布膜の形成装置。In a coating film forming apparatus for forming a film by injecting a coating liquid into an inner surface of a cylindrical rotating body coating die, an entire region or both end regions in the axial direction of the rotating body coating die are formed in a radial direction with a different polarity magnetized body. The coating film is characterized in that a different polarity magnetized body is arranged in the radial direction of the same polarity as the inner surface of the rotating body coating die on the entire surface side or both end regions of the core rotating body driven inside the rotating body coating mold. Forming equipment. 請求項18に記載の塗布膜の形成装置において、浮遊着磁体が円筒形状であり、浮遊着磁体の着磁部はラディアル方向の表面と裏面に異極分極していることを特徴とする塗布膜の形成装置。20. The coating film forming apparatus according to claim 18, wherein the floating magnetized body has a cylindrical shape, and a magnetized portion of the floating magnetized body is polar-polarized on a front surface and a back surface in a radial direction. Forming equipment. 請求項19に記載の塗布膜の形成装置において、前記浮遊着磁体の脱着用ジグ部材に、浮遊着磁体と対応する部位の全域もしくは両端部に異極及び同極の磁力を発生する電磁石を設けたことを特徴とする塗布膜の形成装置。20. The coating film forming apparatus according to claim 19, wherein the jig member for detaching and attaching the floating magnetized body is provided with an electromagnet that generates magnetic poles of different polarity and the same polarity in the entire region or at both ends of a portion corresponding to the floating magnetized body. An apparatus for forming a coating film.
JP2002276292A 2002-09-20 2002-09-20 Method and apparatus for forming coating film Withdrawn JP2004113833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002276292A JP2004113833A (en) 2002-09-20 2002-09-20 Method and apparatus for forming coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276292A JP2004113833A (en) 2002-09-20 2002-09-20 Method and apparatus for forming coating film

Publications (1)

Publication Number Publication Date
JP2004113833A true JP2004113833A (en) 2004-04-15

Family

ID=32272203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276292A Withdrawn JP2004113833A (en) 2002-09-20 2002-09-20 Method and apparatus for forming coating film

Country Status (1)

Country Link
JP (1) JP2004113833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272748A (en) * 2013-06-14 2013-09-04 中核(天津)科技发展有限公司 Hanging-point-free high-pressure static spraying method for bonding neodymium-iron-boron annular magnetic steel
CN114405783A (en) * 2022-01-28 2022-04-29 天津市久跃科技有限公司 Spraying method for spraying welding part of guide plate die

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272748A (en) * 2013-06-14 2013-09-04 中核(天津)科技发展有限公司 Hanging-point-free high-pressure static spraying method for bonding neodymium-iron-boron annular magnetic steel
CN114405783A (en) * 2022-01-28 2022-04-29 天津市久跃科技有限公司 Spraying method for spraying welding part of guide plate die

Similar Documents

Publication Publication Date Title
TWI316502B (en) Substrate transportation device
US20150079305A1 (en) Manufacturing method and manufacturing apparatus for printing magnetic orientation master and magnetic pigment presswork
US9323144B2 (en) Method for microcontact printing
JP2694092B2 (en) Magnet roller, method for manufacturing the magnet roller, apparatus for manufacturing the magnet roller, developing unit, and copying apparatus including the developing unit
JPS62150274A (en) Electronic copying magnetic brush unit
US20150041514A1 (en) Substrate rollers
JP2004113833A (en) Method and apparatus for forming coating film
US20120076939A1 (en) Method of producing endless band-shaped body
JP4831342B2 (en) Preform heating system
JP2007078043A (en) Ball arrangement method and ball arrangement device for ball bearing
JP4071586B2 (en) Endless belt manufacturing method and composite rotating body
US9209673B2 (en) Devices, systems, and methods for energy conversion
KR101172743B1 (en) Contactless imprint apparatus
JP3798589B2 (en) Substrate processing method and substrate processing apparatus
US6990307B2 (en) Device for transporting particles
KR20220119003A (en) Imprint, texturing or embossing systems with unbalanced rollers
JP2007044626A (en) Apparatus for forming coating film
CN216151877U (en) Processing device for magnetorheological polishing
JP4519586B2 (en) Molding equipment
JP4673981B2 (en) Can body outer surface treatment equipment
JP2004315192A (en) Transporting roller
KR101129898B1 (en) Magnetic wheel assembly for transferring a conductive plate and apparatus having the same
JP3838799B2 (en) Centrifugal formation method
JP4243910B2 (en) Manufacturing method of centrifugal mold
KR20080057508A (en) Drying apparatus of coating steel plate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110