[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4071586B2 - Endless belt manufacturing method and composite rotating body - Google Patents

Endless belt manufacturing method and composite rotating body Download PDF

Info

Publication number
JP4071586B2
JP4071586B2 JP2002273662A JP2002273662A JP4071586B2 JP 4071586 B2 JP4071586 B2 JP 4071586B2 JP 2002273662 A JP2002273662 A JP 2002273662A JP 2002273662 A JP2002273662 A JP 2002273662A JP 4071586 B2 JP4071586 B2 JP 4071586B2
Authority
JP
Japan
Prior art keywords
core
outer mold
rotating body
type
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002273662A
Other languages
Japanese (ja)
Other versions
JP2004106404A (en
Inventor
稔 松尾
茂治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002273662A priority Critical patent/JP4071586B2/en
Publication of JP2004106404A publication Critical patent/JP2004106404A/en
Application granted granted Critical
Publication of JP4071586B2 publication Critical patent/JP4071586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真複写機、ファクシミリ、あるいはプリンタ等のベルト装置に使用される無端ベルトの製造方法及びその無端ベルトの製造時等に用いられる複合回転体に関するものである。
【0002】
【従来の技術】
従来、継ぎ目のない無端(シームレス)ベルトは、種々のベルト装置で用いられている。例えば、電子写真複写機等の画像形成装置においては、トナー画像又は転写材の担持体としての転写ベルトとして用いられている。
【0003】
このような用途に適用する無端ベルトの製造方法としては、図2に示すように、回転する円筒形状の塗布型1の内部に、無端ベルト材質としての樹脂もしくはその前駆体である塗布液3を注入して塗布型1を高速回転させ、その遠心力により離型層2の内面上に塗布膜厚を均一化した後、乾燥固化処理、冷却を経て、剥離脱型して無端ベルトを得る遠心成形法が知られている。
【0004】
この遠心成形法は、無端ベルトを作成する方法としては、次のような優れた利点がある。1)膜厚の調整が塗布液量で任意に調整できる。2)必要量のみ塗布液を塗布すればよく、材利用効率がよい。3)外型内部は閉空間となっており、溶剤除去の際には、排気経路に溶剤トラップを設けることで、外部に排出される溶剤を効率よく回収できる。
【0005】
しかしながら、この遠心成形法による無端ベルトの製造方法の難点は、塗布後の溶剤が乾燥して流動や液垂れしなくなるまで、回転を停止することができないことであり、そのために、生産効率が悪いことである。
【0006】
そこで、この遠心成形方法の問題点を解決するために、塗布型(外型)の底部に回転体を設置し、この塗布型の回転に伴って、回転体(中子型回転体)を塗布型の底部で従動回転させることで、その生産効率を上げるようにした無端ベルトの製造方法が提案されている。(例えば、特許文献1参照)
【0007】
さらに、図3に示すように、回転する円筒形状の外型4の底部に、外型4の回転に伴って従動回転する複数の中子型回転体5を設置した複合回転体を用いた遠心成形法が提案されている。この図3に示す複合回転体の2個の中子型回転体5は、重力により外型4の底部付近のバランスする位置で留まり、互いに接触している。また、外型4が回転すると、中子型回転体5は外型4の回転方向に摺動しながら回転し、隣り合った中子型回転体5同士の接触面での回転は、互いに逆方向となる。そのため、互いに摺動性が良好で摩擦圧がかからない場合は、互いの回転を保持できるが、回転数が大きくなると、お互いの回転速度を減速させることになる。
【0008】
【特許文献1】
特開2000−127256号公報(第2−5頁、第1図)
【0009】
【発明が解決しょうとする課題】
ところで、図3に示すように構成した複合回転体を用いた遠心成形法にあっては、外型4の回転に伴って、複数の中子型回転体5が自重により外型4の底部で転がるように従動回転する。このとき、互いに隣り合った中子型回転体5は、図3(a)で示すように、その互いに接触するところにおける回転が逆方向(クロスカウンター)となる。そのために互いに摺動性が良好で摩擦圧がかからない場合は、互いの回転を保持できるが、回転数が大きくなると、お互いの回転速度を減速してしまう。それが極端な場合は、一方の中子型回転体5が外型4の回転に引きずられて外型4の上部まで移動して落下し、他の中子型回転体5にぶつかり変形するという問題点があった。また、水平度が悪いと、横ずれして回転保持具と中子型回転体5がぶつかり、擦りキズが発生し、ついには変形してしまうという問題点があった。
【0010】
また、複数の中子型回転体が互いにぶつからないようにするために、その中子型回転体間の隙間に、径の小さい補助中子型回転子を挿入する方法があるが、径が違っても中子型回転体が互いに接触する限りは、外型に対して従動回転方向が同じであるから、中子型回転体同士、あるいは補助中子型回転子の回転方向は逆回転となり、動的摩擦係数と回転数の微妙な調整をしないと、互いに回転数を減じてスムーズな回転や塗布液の膜形成に必要な回転数が得られなくなる場合があった。
【0011】
本発明は、上記従来の技術の有する問題点に鑑みてなされたものであり、その目的とするところは、回転する外型の内部に設置した複数の中子型回転体が回転のフレやむらを起こすことなく回転し、良好な塗布膜を得ることができる無端ベルトの製造方法及び複合回転体を提供しようとするものである。
【0012】
【課題を解決するための手段】
上記の目的を達成するために、請求項1の発明は、回転する外型の内部に、外型の回転に伴って従動回転する複数の中子型回転体を設置してなる複合回転体を用いた遠心成形法による無端ベルトの製造方法において、表裏異極に分極した磁石を両端部あるいは軸方向全域に設けた中子型回転体を用い、磁力の反発作用で中子型回転体同士の接触を防止することを特徴とするものである。
上記方法により、中子型回転体同士の接触を磁力の反発作用で防止し、良好な塗布膜を形成する。
【0013】
請求項2の発明は、回転する外型の内部に、その回転体の回転に伴って従動回転する複数の中子型回転体を設置した複合回転体において、中子型回転体の両端部あるいは軸方向全域に表裏異極に分極した磁石を設け、磁力の反発作用で中子型回転体同士の接触を防止したことを特徴とするものである。
上記構成により、中子型回転体の磁石が互いに反発して非接触となり、中子型回転体の回転を良好にする。
【0014】
請求項3の発明は、請求項2記載の複合回転体において、上記外型は、非磁性体であることを特徴とするものである。
上記構成により、外型が磁性体であった場合、中子型回転体の磁石が外型に引きつけられて、中子型回転体の回転に影響が出るが、外型を非磁性体とすることで、磁力の影響をなくし、中子型回転体の回転を良好にする。
【0015】
請求項4の発明は、請求項2記載の複合回転体において、上記中子型回転体は、両端部が表裏異極に分極した磁石で、中央部領域は非磁性体であることを特徴とするものである。
上記構成により、中子型回転体の両端部に磁石を設けた場合、中子回転体本体が磁性体であると、磁力の力線が本体に生じて、表裏異極に分極が変化して、他の中子型回転体との力のバランスが崩れるが、中子型回転体の中央部領域を非磁性体とすることで、磁力の影響をなくし、中子型回転体の回転を良好にする。
【0016】
【発明の実施の形態】
本発明の実施の形態を実施例に基づき図面を参照して説明する。
図1は、遠心成形法で使用される非磁性材からなる円筒状の外型6の軸方向断面図である。この外型6は、円筒形アルミ材等の非磁性材からなる金型で、その円筒形の内周面にタフラム処理を施している。この外型6は、水平な軸で回転されるように構成されている。また、外型6の内面の底部には、円筒形の中子型回転体7を2個設置している。この2個の中子型回転体7は、その両端に外面がN極のリング状の磁石8をそれぞれ設けている。さらに、この中子回転体7の中央部領域7aは、非磁性体で形成している。
【0017】
この2個の中子型回転体7の両端に、外面がN極の磁石8をそれぞれ設けた原理的な構成は、磁気浮上である。永久磁石のような同極の2個の磁性体は、互いに近づけると、反発力が働いて遠ざかるが、重力場で固定していない磁性体は、重力により力がバランスしたところで留まる。この原理を利用して、重力に見合った磁石8のガウス量を着磁すれば、所定のギャップのところで磁性体を留めることが可能となる。
【0018】
したがって、上記のように、表面を同極としたリング状の磁石8を両端に設けた中子型回転体7を2個用いることにより、この2個の中子型回転体7は、図1(a)に示すように、それぞれが同極の磁極をもつことにより、互いに反発して非接触となり、そのギャップは、中子型回転体7の重量と磁束密度による磁力のバランスにより釣り合ったところで決まる。また、外型6の内壁の曲面で規制されている場合でも、その分力に応じた重量成分と磁力のバランスとなり、互いに接触することなく外型6の回転に伴って、中子型回転体7は、滑らかに回転することができる。
【0019】
また、上記のように、外型6を非磁性体で形成することは、外型6が磁性体であると、中子型回転体7のリング状の磁石8が外型6に引きつけられるので、回転がスムーズではなくなるため、外型6を非磁性体とすることで、磁力の影響をなくして回転をスムーズにするように構成している。また、中子型回転体7の中央領域7aを非磁性体で形成することは、中子型回転体7の両端部にリング状の磁石8を設けた場合に、中子回転体7本体が磁性体であると、磁力の力線が本体に生じて、表裏異極分極が変化して、他の中子型回転体7との力のバランスが崩れる。したがって、中子型回転体7の中央領域7aを非磁性体とすることで、磁力の影響をなくして、回転をスムーズにするように構成している。
【0020】
なお、上述の図1の示す実施例では、中子型回転体7の両端に磁石8を設けた場合について説明したが、表裏異極に分極した磁石8を中子型回転体7の軸方向全域に設けることにより、上述した実施例と同様な効果を得ることができる。
【0021】
〔実施例1〕次に、本実施形態のより具体的な実施例を説明する。
内径φ180mmの円筒形アルミ材からなる円筒型の内面をタフラム処理を施して外型6として構成し、その中に、両端それぞれ20mm、外面がN極のリング状の磁石8をはめ込んだ外径φ70mmの中子型回転体7を2個挿入した。2個の中子型回転体7は、外型4の円筒形の内面には底面付近で接触しているが、互いには、2mm以上離れていた。外型4を回転したが、中子型回転体7の回転は、700rpmレベルでは、相互の中子型回転体7の間隔は保たれており、回転は滑らかであった。
【0022】
予め導電材として、カーボンブックを添加したポリアミドイミドワニスを溶媒DMAC(N,N−ジメチルアセトアミド)に30%に希釈した溶液を外型6の内部に注液ノズルを用いて注入し、100rpmの回転状態で塗布し、その後、700rpmの高速回転しながら塗布膜を均一にした後、さらに、80℃で溶剤を乾燥した。その後回転を止めて型を取り外し、堰止めを取り外して、加熱炉に移し、まず100℃で加熱して溶剤の予備過熱、さらに、200℃の温度で過熱して完全除去を行なった。塗布膜が充分硬化した後、冷却して取り出したが、膜の浮きはなく、良好に硬化膜が形成されていた。
【0023】
このベルト膜の両端部縁をナイフエッジで僅かに浮かし、手で端部より剥離したが、剥離はスムーズで剥離跡も残らなかった。また、ベルト膜の中央部は型内面に接する外面も光沢を持ち、極めて平滑な面が得られた。こうして作成したベルトの端部を切り落とし、所定の寸法の中間転写ベルトとしてフルカラー複写機に搭載して画像を評価した。この実施例1の無端ベルトは、常に表面が滑らかで、画像のボソツキはなく良好であった。
【0024】
〔実施例2〕内径φ330mmの円筒回転体の外型に、上記実施例1と同様に形成した外形φ70mmの中子型回転体を3個配置して回転したが、中子型回転体の回転は、700rpmレベルでも、複数の中子型回転体の間隔は保たれて相互は非接触であり、回転は滑らかであった。予め用意したポリアミドイミドの塗布液を100rpmの回転で塗布して加熱乾燥硬化を行い、浮きのない膜が形成された。剥離脱型の際は、極めて滑らかにするすると剥離していった。そうして作成したベルトの端部を切り落とし、所定の寸法の定着ベルトとして、フルカラー複写機に搭載して画像を評価した。の実施例2の無端ベルトは、常に表面が滑らかで、画像のボソツキ等はなく、定着性は良好であった。
【0025】
〔比較例1〕上記実施例1及び実施例2の比較例を示す。
上記実施例1と同じ外型に、磁石を取り付けない中子型回転体2個を補助中子型回転子を用いずに回転しながら、塗布乾燥を行なった。100rpmの回転塗布時には、中子型回転体は2個とも滑らかに回転していたが、その回転数を大きくすると、中子型回転体は、外型の回転方向へ引っ張られては底部に戻る揺り籠的な揺動の動きを示し、さらに回転を大きくすると、500rpmでは、持ち上げられた中子型回転体が外型内面に沿わずに落下してしまった。はなはだしい時は、中子型回転体が変形して回転がスムーズでなくなり、再度使用することができなかった。そこで、比較例1の塗布後、回転数を300rpm程度にして中子型回転体の落下が無いレベルで回転して乾燥処理を行ったが、乾燥終了成膜後、外観を観察すると、膜は充分延伸しきれずに波を打った状態であった。
【0026】
〔比較例2〕実施例2と同じ外型に、磁石を取り付けない中子型回転体3個を補助中子型回転子を用いずに回転しながら、塗布乾燥を行なった。100rpmの回転塗布時には、中子型回転体3個は多少揺り籠的な動きの揺動を示したが、塗布ノズルの位置から大きく変動は無く塗布は可能であったが、液の延伸のためさらに回転数を大きくすると、500rpmでは持ち上げられた中子型回転体が外型内面に沿わず落下してしまった。はなはだしい時は、塗布液が中子型回転体の端部より流れ出し、外型まで汚してしまった。
【0027】
【発明の効果】
以上説明したように、請求項1の発明によれば、従来の遠心成形法では、塗布された塗布液が、指で触ってもくっつかない程度の指触乾燥レベルまで乾燥させないと回転は停止できないので、生産効率が低かったが、表面を同極にした磁石を設けた複数の中子型回転体を用いることにより、生産性の向上を図ることができる。また、その際の中子型回転体同士の接触を磁力の反発作用で防止することができるので、中子型回転体の回転をスムーズにすることができるとともに、変形事故等の発生を防ぐことができ、複数の中子型回転体を用いた遠心成形が実現でき、良好な塗布膜を得ることができる。
【0028】
請求項2の発明によれば、中子型回転体の軸方向全域あるいは両端部に表裏異極に分極した磁石を設けたことにより、中子型回転体同士が非接触とすることができ、回転をスムーズにすることができる。
【0029】
請求項3の発明によれば、外型を非磁性体とすることにより、磁力の影響をなくして回転をスムーズにすることが可能となる。
【0030】
請求項4の発明によれば、中子型回転体の両端部が表裏異極に分極した磁石で、中央部領域は非磁性体で形成したことにより、磁力の影響をなくして回転をスムーズにすることが可能となる。
【図面の簡単な説明】
【図1】(a)(b)は、本発明に係る遠心成形法による無端ベルトの製造方法に用いる複合回転体の模式的な断面図((a)は径方向断面、(b)は長手方向断面)である。
【図2】従来の遠心成形法による無端ベルトの製造方法に用いる複合回転体の模式的な軸線方向断面図である。
【図3】従来の遠心成形法による無端ベルトの製造方法に用いる複合回転体の模式的な断面図((a)は径方向断面、(b)は長手方向断面)である。
【符号の説明】
1 塗布型
2 離型層
3 塗布液
4、6 外型
5、7 中子型回転体
7a 中央部領域
8 磁石
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of an endless belt used in a belt apparatus such as an electrophotographic copying machine, a facsimile machine, or a printer, and a composite rotating body used in manufacturing the endless belt.
[0002]
[Prior art]
Conventionally, seamless endless (seamless) belts are used in various belt devices. For example, in an image forming apparatus such as an electrophotographic copying machine, it is used as a transfer belt as a carrier for a toner image or a transfer material.
[0003]
As shown in FIG. 2, an endless belt manufacturing method applied to such an application includes, as shown in FIG. 2, a coating liquid 3 that is a resin or a precursor thereof as a material for an endless belt. The coating mold 1 is rotated at a high speed, the coating film thickness is made uniform on the inner surface of the release layer 2 by the centrifugal force, and then dried, solidified, cooled, and peeled off to obtain an endless belt. A molding method is known.
[0004]
This centrifugal molding method has the following excellent advantages as a method for producing an endless belt. 1) Adjustment of the film thickness can be arbitrarily adjusted by the amount of coating solution. 2) It is only necessary to apply the coating solution in a necessary amount, and the material utilization efficiency is good. 3) The inside of the outer mold is a closed space, and when removing the solvent, a solvent trap can be provided in the exhaust path to efficiently recover the solvent discharged to the outside.
[0005]
However, the difficulty of the endless belt manufacturing method by this centrifugal molding method is that the rotation cannot be stopped until the solvent after application is dried and no longer flows or dripping, and therefore the production efficiency is poor. That is.
[0006]
Therefore, in order to solve the problems of this centrifugal molding method, a rotating body is installed at the bottom of the coating mold (outer mold), and the rotating body (core type rotating body) is applied as the coating mold rotates. A method of manufacturing an endless belt has been proposed in which the production efficiency is increased by being driven to rotate at the bottom of the mold. (For example, see Patent Document 1)
[0007]
Further, as shown in FIG. 3, a centrifugal operation using a composite rotating body in which a plurality of core-type rotating bodies 5 that are driven to rotate as the outer mold 4 rotates is installed at the bottom of the rotating cylindrical outer mold 4. A molding method has been proposed. The two core type rotators 5 of the composite rotator shown in FIG. 3 remain in a balanced position near the bottom of the outer die 4 due to gravity and are in contact with each other. When the outer mold 4 rotates, the core rotor 5 rotates while sliding in the rotation direction of the outer mold 4, and the rotations at the contact surfaces of the adjacent core rotors 5 are opposite to each other. Direction. Therefore, when the slidability is good and the friction pressure is not applied, the rotation of each other can be maintained. However, when the rotation speed increases, the rotation speed of each other is reduced.
[0008]
[Patent Document 1]
JP 2000-127256 A (page 2-5, FIG. 1)
[0009]
[Problems to be solved by the invention]
By the way, in the centrifugal molding method using the composite rotating body configured as shown in FIG. 3, as the outer mold 4 rotates, a plurality of core-type rotating bodies 5 are caused by their own weight at the bottom of the outer mold 4. It rotates following to be rolled. At this time, as shown in FIG. 3 (a), the core-type rotating bodies 5 adjacent to each other rotate in the reverse direction (cross counter) where they contact each other. Therefore, when the slidability is good and no frictional pressure is applied, the rotation of each other can be maintained. However, when the number of rotations increases, the rotation speed of each other is reduced. If it is extreme, one of the core-type rotating bodies 5 is dragged by the rotation of the outer mold 4, moves to the top of the outer mold 4, falls, and collides with the other core-type rotating body 5 to be deformed. There was a problem. In addition, when the level is poor, there is a problem that the rotating holder and the core-type rotating body 5 collide with each other and collide with each other, causing scratches and eventually deforming.
[0010]
In order to prevent multiple core rotors from colliding with each other, there is a method of inserting an auxiliary core rotor with a small diameter in the gap between the core rotors. However, as long as the core-type rotors are in contact with each other, the driven rotation direction is the same with respect to the outer mold, so the rotation directions of the core-type rotors or the auxiliary core-type rotors are reverse rotations, If the dynamic friction coefficient and the number of revolutions are not finely adjusted, the number of revolutions may be reduced, and the number of revolutions required for smooth rotation and film formation of the coating solution may not be obtained.
[0011]
The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a plurality of core-type rotating bodies installed inside a rotating outer mold so that the rotational flutter and unevenness of the core-type rotating bodies can be reduced. It is an object of the present invention to provide an endless belt manufacturing method and a composite rotating body that can be rotated without causing any trouble and obtain a good coating film.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 provides a composite rotating body in which a plurality of core-type rotating bodies that are driven to rotate as the outer mold rotates are installed inside the rotating outer mold. In the endless belt manufacturing method using the centrifugal molding method used , a core-type rotating body provided with magnets polarized on the opposite sides of the front and back sides at the both ends or in the entire axial direction is used . It is characterized by preventing contact .
By the above method, the contact between the core-type rotating bodies is prevented by the repulsive action of magnetic force, and a good coating film is formed.
[0013]
According to a second aspect of the present invention, there is provided a composite rotating body in which a plurality of core-type rotating bodies that are driven to rotate in accordance with the rotation of the rotating body are installed inside the rotating outer mold. Magnets polarized in different directions on the front and back sides are provided in the entire axial direction, and the contact between the core-type rotating bodies is prevented by the repulsive action of magnetic force .
With the above configuration, the magnets of the core-type rotating body repel each other and become non-contact, and the core-type rotating body rotates well.
[0014]
According to a third aspect of the present invention, in the composite rotating body according to the second aspect, the outer mold is a non-magnetic material.
With the above configuration, if the outer mold is a magnetic body, the magnet of the core rotor is attracted to the outer mold and affects the rotation of the core rotor, but the outer mold is a non-magnetic body. Thus, the influence of the magnetic force is eliminated, and the rotation of the core type rotating body is improved.
[0015]
According to a fourth aspect of the present invention, in the composite rotating body according to the second aspect, the core-type rotating body is a magnet whose both ends are polarized to opposite polarities, and the central region is a non-magnetic body. To do.
With the above configuration, when magnets are provided at both ends of the core-type rotor, if the core rotor body is a magnetic body, magnetic lines of force are generated in the body, and the polarization changes to the opposite polarity. The balance of the force with other core type rotors is lost, but by making the central area of the core type rotors nonmagnetic, the effect of magnetic force is eliminated and the core type rotors rotate well. To.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described based on examples with reference to the drawings.
FIG. 1 is an axial sectional view of a cylindrical outer mold 6 made of a nonmagnetic material used in a centrifugal molding method. The outer mold 6 is a mold made of a non-magnetic material such as a cylindrical aluminum material, and the inner peripheral surface of the cylindrical shape is subjected to a turfrum treatment. The outer mold 6 is configured to be rotated around a horizontal axis. Two cylindrical core-type rotating bodies 7 are installed at the bottom of the inner surface of the outer mold 6. The two core-type rotators 7 are provided with ring-shaped magnets 8 each having an N-pole outer surface at both ends thereof. Further, the central region 7a of the core rotor 7 is formed of a nonmagnetic material.
[0017]
The principle configuration in which the magnets 8 having N poles on the outer surface are provided at both ends of the two core type rotors 7 is magnetic levitation. When two magnetic bodies having the same polarity, such as a permanent magnet, are brought close to each other, a repulsive force works and moves away, but a magnetic body that is not fixed in the gravitational field stays where the force is balanced by gravity. By using this principle and magnetizing a Gaussian amount of the magnet 8 commensurate with gravity, it is possible to hold the magnetic body at a predetermined gap.
[0018]
Therefore, as described above, by using two core-type rotators 7 provided with ring-shaped magnets 8 having the same surface on both ends, the two core-type rotators 7 are formed as shown in FIG. As shown in (a), the magnetic poles having the same polarity repel each other and become non-contact, and the gap is balanced by the balance between the weight of the core-type rotor 7 and the magnetic force due to the magnetic flux density. Determined. Further, even when the outer mold 6 is restricted by the curved surface of the inner wall, the balance between the weight component and the magnetic force according to the component force is obtained, and the core-type rotor is rotated with the rotation of the outer mold 6 without contacting each other. 7 can rotate smoothly.
[0019]
Further, as described above, the outer mold 6 is formed of a non-magnetic material because the ring-shaped magnet 8 of the core rotor 7 is attracted to the outer mold 6 when the outer mold 6 is a magnetic material. Since the rotation is not smooth, the outer mold 6 is made of a non-magnetic material so that the effect of magnetic force is eliminated and the rotation is made smooth. In addition, the central region 7a of the core-type rotor 7 is formed of a non-magnetic material when the ring-shaped magnets 8 are provided at both ends of the core-type rotor 7 so that the core rotor 7 main body is If it is a magnetic body, a magnetic force line is generated in the main body, the front / back heteropolar polarization changes, and the balance of the force with the other core-type rotating body 7 is lost. Therefore, the central region 7a of the core type rotator 7 is made of a non-magnetic material so that the influence of the magnetic force is eliminated and the rotation is made smooth.
[0020]
In the above-described embodiment shown in FIG. 1, the case where the magnets 8 are provided at both ends of the core-type rotating body 7 has been described. By providing in the whole area, the same effect as the embodiment described above can be obtained.
[0021]
[Example 1] Next, a more specific example of this embodiment will be described.
A cylindrical inner surface made of a cylindrical aluminum material having an inner diameter of 180 mm is subjected to a turfram treatment to form an outer mold 6, in which an outer diameter of 70 mm is fitted with ring-shaped magnets 8 having both ends of 20 mm and outer surfaces of N poles. Two core type rotors 7 were inserted. The two core rotors 7 are in contact with the cylindrical inner surface of the outer mold 4 in the vicinity of the bottom surface, but are separated from each other by 2 mm or more. Although the outer mold 4 was rotated, the rotation of the core-type rotating body 7 was smooth at the 700 rpm level because the distance between the core-type rotating bodies 7 was maintained.
[0022]
As a conductive material, a solution prepared by diluting a polyamideimide varnish with carbon book added to 30% in the solvent DMAC (N, N-dimethylacetamide) was injected into the outer mold 6 using a liquid injection nozzle and rotated at 100 rpm. After coating in the state, the coating film was made uniform while rotating at a high speed of 700 rpm, and the solvent was further dried at 80 ° C. Thereafter, the rotation was stopped, the mold was removed, the weir was removed, and it was transferred to a heating furnace, where it was first heated at 100 ° C. to preheat the solvent, and further heated at a temperature of 200 ° C. for complete removal. After the coating film was sufficiently cured, the film was cooled and taken out, but the film did not float and the cured film was formed well.
[0023]
The edges of both ends of the belt film were slightly lifted with a knife edge and peeled off from the end by hand, but the peeling was smooth and no peeling trace was left. In addition, the central portion of the belt film was glossy on the outer surface in contact with the inner surface of the mold, and an extremely smooth surface was obtained. The end of the belt thus prepared was cut off and mounted on a full-color copying machine as an intermediate transfer belt having a predetermined size to evaluate the image. The endless belt of Example 1 always had a smooth surface and was good without image blur.
[0024]
[Embodiment 2] Three core rotors having an outer diameter of 70 mm formed in the same manner as in the first embodiment are arranged on the outer mold of a cylindrical rotor having an inner diameter of 330 mm and rotated. Even at the 700 rpm level, the interval between the plurality of core-type rotors was maintained, and they were not in contact with each other, and the rotation was smooth. A polyamideimide coating solution prepared in advance was applied at a rotation rate of 100 rpm and heat-dried and cured to form a film that did not float. At the time of peeling and demolding, peeling occurred when it was made extremely smooth. The end of the belt thus prepared was cut off and mounted on a full-color copying machine as a fixing belt of a predetermined size, and the image was evaluated. The endless belt of Example 2 always had a smooth surface, no image blur, etc., and good fixability.
[0025]
[Comparative Example 1] A comparative example of Example 1 and Example 2 will be described.
Application drying was performed while rotating two core type rotors without magnets attached to the same outer mold as in Example 1 without using an auxiliary core type rotor. At the time of spin coating at 100 rpm, both of the core-type rotors were smoothly rotated. However, when the number of rotations is increased, the core-type rotor is returned to the bottom when pulled in the direction of rotation of the outer mold. When the rotation was further increased, the lifted core-type rotating body dropped at 500 rpm without being along the inner surface of the outer mold. When it was very bad, the core-type rotating body was deformed and the rotation was not smooth, so it could not be used again. Therefore, after the application of Comparative Example 1, the number of rotations was set to about 300 rpm, and the drying process was performed by rotating at a level where the core-type rotating body was not dropped. It was in a state where it was not fully stretched and waved.
[0026]
[Comparative Example 2] Coating and drying were carried out on the same outer mold as in Example 2 while rotating three core rotors without magnets without using an auxiliary core rotor. At the time of spin coating at 100 rpm, the three core-type rotors showed somewhat rocking motion, but the coating was possible with no significant fluctuations from the position of the coating nozzle. When the number of rotations was further increased, the core-type rotor that was lifted at 500 rpm fell off along the inner surface of the outer mold. When it was serious, the coating solution flowed out from the end of the core type rotor and contaminated the outer mold.
[0027]
【The invention's effect】
As described above, according to the first aspect of the invention, in the conventional centrifugal molding method, the rotation cannot be stopped unless the applied coating solution is dried to a touch dry level that does not stick even when touched with a finger. Therefore, although the production efficiency was low, the productivity can be improved by using a plurality of core-type rotating bodies provided with magnets having the same polarity on the surface. In addition, since the contact between the core-type rotating bodies can be prevented by the repulsive action of the magnetic force, the core-type rotating body can be smoothly rotated and the occurrence of a deformation accident or the like can be prevented. Therefore, centrifugal molding using a plurality of core-type rotating bodies can be realized, and a good coating film can be obtained.
[0028]
According to the invention of claim 2, by providing magnets polarized in the front and back different polarities in the entire axial direction or both ends of the core type rotor, the core rotors can be brought into non-contact with each other, The rotation can be made smooth.
[0029]
According to the third aspect of the present invention, the outer mold is made of a non-magnetic material, so that it is possible to eliminate the influence of magnetic force and make the rotation smooth.
[0030]
According to the invention of claim 4, since both ends of the core type rotating body are magnets polarized in opposite front and back sides and the central region is formed of a non-magnetic body, the rotation can be smoothly performed without the influence of magnetic force. It becomes possible to do.
[Brief description of the drawings]
1A and 1B are schematic cross-sectional views of a composite rotating body used in a method for producing an endless belt by centrifugal molding according to the present invention, where FIG. 1A is a radial cross section, and FIG. Direction cross section).
FIG. 2 is a schematic axial sectional view of a composite rotating body used in a conventional method for producing an endless belt by centrifugal molding.
FIG. 3 is a schematic cross-sectional view ((a) is a radial cross-section and (b) is a longitudinal cross-section) of a composite rotating body used in a conventional method for producing an endless belt by centrifugal molding.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coating type 2 Release layer 3 Coating liquid 4, 6 Outer type 5, 7 Core type rotary body 7a Center part area | region 8 Magnet

Claims (4)

回転する外型の内部に、外型の回転に伴って従動回転する複数の中子型回転体を設置して成る複合回転体を用いた遠心成形法による無端ベルトの製造方法において、
表裏異極に分極した磁石を両端部あるいは軸方向全域に設けた中子型回転体を用い、磁力の反発作用で中子型回転体同士の接触を防止することを特徴とする無端ベルトの製造方法。
In the manufacturing method of an endless belt by centrifugal molding using a composite rotating body in which a plurality of core-type rotating bodies that are driven to rotate as the outer mold rotates are installed inside the rotating outer mold,
Manufacture of an endless belt characterized by using a core-type rotating body provided with magnets polarized on both sides or in the entire axial direction to prevent contact between core-type rotating bodies by the repulsive action of magnetic force Method.
回転する外型の内部に、その回転体の回転に伴って従動回転する複数の中子型回転体を設置した複合回転体において、
中子型回転体の両端部あるいは軸方向全域に表裏異極に分極した磁石を設け、磁力の反発作用で中子型回転体同士の接触を防止したことを特徴とする複合回転体。
In a composite rotating body in which a plurality of core-type rotating bodies that are driven to rotate as the rotating body rotates are installed inside the rotating outer mold,
A composite rotator characterized in that magnets polarized in opposite front and back poles are provided at both ends or in the entire axial direction of the core rotator, and contact between the core rotators is prevented by a repulsive action of magnetic force .
請求項2記載の複合回転体において、前記外型は、非磁性体であることを特徴とする複合回転体。  3. The composite rotating body according to claim 2, wherein the outer mold is a non-magnetic body. 請求項2記載の複合回転体において、前記中子型回転体は、両端部が表裏異極に分極した磁石で、中央部領域は非磁性体であることを特徴とする複合回転体。  3. The composite rotator according to claim 2, wherein the core-type rotator is a magnet whose both ends are polarized to opposite polarities, and a central region is a non-magnetic body.
JP2002273662A 2002-09-19 2002-09-19 Endless belt manufacturing method and composite rotating body Expired - Fee Related JP4071586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273662A JP4071586B2 (en) 2002-09-19 2002-09-19 Endless belt manufacturing method and composite rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273662A JP4071586B2 (en) 2002-09-19 2002-09-19 Endless belt manufacturing method and composite rotating body

Publications (2)

Publication Number Publication Date
JP2004106404A JP2004106404A (en) 2004-04-08
JP4071586B2 true JP4071586B2 (en) 2008-04-02

Family

ID=32270364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273662A Expired - Fee Related JP4071586B2 (en) 2002-09-19 2002-09-19 Endless belt manufacturing method and composite rotating body

Country Status (1)

Country Link
JP (1) JP4071586B2 (en)

Also Published As

Publication number Publication date
JP2004106404A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US20150041514A1 (en) Substrate rollers
JPH05190317A (en) Magnet roller, method and apparatus for manufacture there0f, developer and duplicator provided therewith
JP4071586B2 (en) Endless belt manufacturing method and composite rotating body
US6500367B2 (en) Method of forming a seamless belt
JP3694890B2 (en) Endless belt manufacturing method, endless belt and image forming apparatus
US20120076939A1 (en) Method of producing endless band-shaped body
JP4551576B2 (en) Seamless belt manufacturing method
JP2005247475A (en) Wrinkle stretch method for web and its device
JP2017223805A5 (en)
JP2009265322A5 (en)
JP3838799B2 (en) Centrifugal formation method
JP2001301083A (en) Durable polyimide film, method for manufacturing the film, and use of the same
JP4057708B2 (en) Coating type and endless belt manufacturing method
JP2005088272A (en) Manufacturing method of seamless tubular article, cylindrical core body, seamless tubular article and image forming apparatus
JP2000158459A (en) Method and apparatus for centrifugal molding
JP4011267B2 (en) Manufacturing method of endless belt
JP3519963B2 (en) Endless belt forming device
JP3893224B2 (en) Endless belt manufacturing method
US20050143240A1 (en) Polymer sleeve member for an image cylinder or a blanket cylinder
JP2001215804A (en) Magnetic development roll and method of its manufacture
JP3904343B2 (en) Endless belt forming method
JPH04358181A (en) Magnetic roll consisting of crystalline thermoplastic resin composite material and production thereof
JP4519586B2 (en) Molding equipment
JP3574619B2 (en) Belt manufacturing method and belt
JP2011197230A (en) Intermediate transfer belt and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Effective date: 20070730

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080108

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080117

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130125

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees