[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004101850A - Photosensitive organic and inorganic composite material and semiconductor device using the same - Google Patents

Photosensitive organic and inorganic composite material and semiconductor device using the same Download PDF

Info

Publication number
JP2004101850A
JP2004101850A JP2002263343A JP2002263343A JP2004101850A JP 2004101850 A JP2004101850 A JP 2004101850A JP 2002263343 A JP2002263343 A JP 2002263343A JP 2002263343 A JP2002263343 A JP 2002263343A JP 2004101850 A JP2004101850 A JP 2004101850A
Authority
JP
Japan
Prior art keywords
resin
composite material
inorganic composite
photosensitive organic
photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002263343A
Other languages
Japanese (ja)
Other versions
JP4174275B2 (en
Inventor
Toyomasa Takahashi
高橋  豊誠
Hitoshi Kawaguchi
川口 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002263343A priority Critical patent/JP4174275B2/en
Publication of JP2004101850A publication Critical patent/JP2004101850A/en
Application granted granted Critical
Publication of JP4174275B2 publication Critical patent/JP4174275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Materials For Photolithography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photosensitive organic/inorganic composite material having superior temperature cycle characteristics and a semiconductor device. <P>SOLUTION: In the photosensitive organic inorganic composite material made of a photosensitive resin and an inorganic filler, the content of the inorganic filler is at least 30 vol.% to less than 75 vol.%, the inorganic filler preferably has a scale or plate shape, the maximum grain size is 50 μm or less, and an aspect ratio is 4 or more and 50 or less. The photosensitive organic inorganic composite material is dispersed in the resin while being accumulated in a laminar shape in the resin without generating any secondary condensation. The semiconductor using the photosensitive organic inorganic composite material is provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
高充填された無機フィラーにより高度に補強されかつ、光解像性を有する有機無機複合材料に関するものである。
【0002】
【従来の技術】
近年の電子機器の高機能化並びに軽薄短小化の要求に伴い、電子部品の高密度集積化、さらには高密度実装化が進んできている。これらの電子機器に使用される半導体パッケージは、小型化かつ多ピン化してきており、また、半導体パッケージを含めた電子部品を実装する、実装用基板も小型化してきている。さらには電子機器への収納性を高めるため、リジット基板とフレキシブル基板を積層し一体化して、折り曲げを可能としたリジットフレックス基板が、実装用基板として使われるようになってきている。
【0003】
半導体パッケージはその小型化に伴って、従来のようなリードフレームを使用した形態のパッケージでは、小型化に限界がきているため、最近では回路基板上にチップを実装したものとして、BGA(Ball Grid Array)や、CSP(Chip Scale Package)等の、エリア実装型の新しいパッケージ方式が提案されている。これらの半導体パッケージにおいて、半導体チップの電極と従来型半導体パッケージのリードフレームの機能を有する、半導体パッケージ用基板と呼ばれる、プラスチックやセラミックス等各種材料を使って構成される、サブストレートの端子との電気的接続方法として、ワイヤーボンディング方式やTAB(Tape Automated Bonding)方式、さらにはFC(Frip Chip)方式などが知られている。最近では、半導体パッケージの小型化に有利なFC接続方式を用いた、BGAやCSPの構造が盛んに提案されており、ウエハーレベルCSP(WLCSP)に代表されるように、さらなる小型化のため、CSPを半導体チップサイズにまで小型化されたリアルチップサイズパッケージ(RCSP)が提案されている。
【0004】
このようなパッケージの小型化、薄型化に伴って、1パッケージを構成する絶縁樹脂も少量になり、信頼性に関する樹脂性能の向上が、よりいっそう求められるようになった。BGA・CSP・WLPKGに共通する問題は、感光性樹脂が熱膨張係数の著しく小さいシリコンやウエハーに密着した構造をしているか、もしくは、熱膨張係数がウエハーに拘束されている有機材料に密着した構造をしているため、上記半導体パッケージに対しパッケージの性能を加速して評価する温度サイクル試験(TC試験)を行った場合、感光性樹脂とシリコンとの熱膨張係数のミスマッチにより、樹脂に過大な応力がかかりクラックが発生してしまうことである。このTC試験での信頼性、つまり、耐クラック性は半導体パッケージ用材料として必要不可欠である。
【0005】
しかしながら、とりわけ、メタクリロイル基やアクリロイル基を有する化合物に代表されるような光重合化合物から光架橋して作製された絶縁樹脂や、エポキシ樹脂とその硬化剤に代表されるような熱硬化性樹脂が架橋して作製された絶縁樹脂はじん性に乏しく、TC信頼性に劣る。このため、TC試験での信頼性向上を目的に、ゴム変性して、絶縁樹脂の熱応力を低減させる方法や加工条件により絶縁樹脂の熱応力を低減させる方法が検討されているが、未だ充分な効果が得られないのが実状である。
【0006】
【発明が解決しようとする課題】
本発明は、このような問題点に鑑みなされたものであって、TC試験において耐クラック性に優れた、高信頼性の感光性有機無機複合材料および、それを用いた半導体装置の提供を目的とする。
【0007】
【課題を解決するための手段】
即ち、本発明は、
(1)感光性樹脂、及び無機フィラーから構成される感光性有機無機複合材料において、無機フィラーの含有量が30体積%以上75体積%未満である感光性有機無機複合材料、
(2)無機フィラーが、鱗片状もしくは板状の形状を有し、最大粒径が50μm以下、アスペクト比が4以上50以下である第(1)項記載の感光性有機無機複合材料、
(2)無機フィラーが、鱗片状もしくは板状の形状を有し、最大粒径が40μm以下、アスペクト比が4以上40以下である第(1)項記載の感光性有機無機複合材料、
(4)無機フィラーが、2次凝集を起こすことなく、樹脂中に層状に積み重なるように分散されている第(1)〜(3)項いずれか記載の感光性有機無機複合材料、
(5)第(1)〜(4)項いずれか記載の感光性有機無機複合材料を用いる半導体装置、
である。
【0008】
【発明の実施の形態】
本発明で用いられる無機フィラーは、鱗片状もしくは板状であり、最大粒径50μm以下、アスペクト比が4以上50以下であることが好ましく、更には最大粒径40μm以下、アスペクト比が4以上40以下であることがより好ましい。最大粒径が50μmを超えると、感光性樹脂の解像性を著しく低下させる。また、アスペクト比が4未満であり、形状が球形に近づくとフィラーが層状に積み重なる効果が低下し、フィラーによる樹脂の補強効果が低下する。針状のフィラーを用いると面内で物性に異方性が発現するため好ましくない。また、アスペクト比が50を超えると、フィラーが層状に積み重なる効果は向上するものの、フィラー粒子が薄くなるため、フィラーの厚み方向に伸展するクラックに対する抵抗が低くなり、フィラーによる樹脂の補強効果が低下する。
【0009】
無機フィラーの添加量は30体積%以上、75体積%未満であることが好ましく、更に好ましくは、35体積%以上、70体積%未満である。30体積%未満であると、フィラー粒子間距離が長くなり、フィラーによる樹脂の補強効果が充分ではない。一方、75体積%以上であると、解像性が低下し、感光性樹脂としての機能を発しなくなる。
【0010】
また、本発明は無機フィラーの形状、サイズ、アスペクト比、充填量およびフィラーが層状に積み重なる用に分散されることを特徴とする感光性有機無機複合材料であり、本発明で用いられる感光性のベース樹脂は何ら限定されることはないが、以下のものが例としてあげられる。とりわけ、ネガ型感光性樹脂の耐クラック性の改善効果は大きい。
【0011】
ネガ型感光性樹脂としては、1)アクリロイル基、メタクリロイル基や、ビニル基などのラジカル重合を起こす官能基を有する化合物を1種類または2種類以上に、ベンゾフェノン、ベンゾイル安息香酸、4−フェニルベンゾフェノン、ヒドロキシベンゾフェノン、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインブチルエーテル、ベンゾインイソブチルエーテル、4−フェノキシジクロロアセトフェノン、4−t−ブチル−ジクロロアセトフェノン、4−t−ブチル−トリクロロアセトフェノン、ジエトキシアセトフェノン、エチルアントラキノン、ブチルアントラキノンなどに代表されるような光重合開始剤を1種類または2種類以上添加したものや、2)上記1)にエポキシ樹脂およびその硬化剤、マレイミド、フノール樹脂、シアネート樹脂などの熱硬化性樹脂を添加したものが挙げられる。
【0012】
ポジ型感光性樹脂としては、ポリイミド樹脂、ポリベンゾオキサゾール樹脂などにナフトキノンジアジド類化合物を添加したものが挙げられる。
【0013】
これら無機フィラー、感光性樹脂のほかに、消泡剤、レベリング剤、紫外線吸収剤や、可塑剤が添加されていても良い。また、無機フィラーが層状に積み重なることを阻害しない程度であれば、ゴム粒子や、不定形や球形の無機フィラーを添加してもよい。針状フィラーも、板状もしくは鱗片状フィラーが層状に積み重なることを阻害しない程度で、面内の物性に異方性が出ない程度であれば添加してもよい。
【0014】
本発明の有機無機複合材料は、各種の半導体装置に適用される。。本発明の半導体装置は、如何なる形状であってもよく、また、前記の有機無機複合材料を用いてさえすれば、他材料の構成は如何なるものであってもよい。感光性有機無機複合材料は、例えば、半導体装置内のインターポーザーと呼ばれる回路のソルダーレジストとして使用することもできる。一方、ウエハー上に再配線層を形成するタイプの半導体装置には、その再配線層を保持するために、再配線層とウエハー間に存在する感光性絶縁樹脂層として使用することもできる。また、再配線層を被覆する感光性ソルダーレジストとして使用することもできる。より好ましくは、感光性絶縁樹脂層と感光性ソルダーレジストの両方に用い、半導体装置構成材料中での前記有機無機複合材料の構成比率を高めるのがよい。
【0015】
【実施例】
以下、実施例により更に具体的に説明するが、本発明はこれによって何ら限定されるものではない。
[実施例および比較例]
<感光性樹脂成分>
エポキシ樹脂*1;EPICLON−N865(大日本インキ化学工業(株)製)
フェノール樹脂*2;アロニックス TO−1496(東亞合成(株)製)
光重合モノマー*3;ネオマーPM201(三洋化成(株)製)
光反応開始剤*4;ベンジルジメチルケタール(チバスペシャリティーケミカルズ製)
<無機フィラー成分>
鱗片シリカ;鱗片状、  最大粒径40μm、アスペクト比10
合成マイカ;鱗片状、    最大粒径30μm、アスペクト比 40
球形シリカ;球状、    最大粒径5μm、  アスペクト比 1
マイカ;鱗片状、       最大粒径40μm、アスペクト比30
【0016】
<樹脂溶液の作製>
無機充填剤を除く各樹脂組成物成分を、それぞれ表1に示す配合量に従い、メチルエチルケトン300gに添加し、ディスパーザー(4000rpm)で約1時間撹拌し溶解した。その後、表1に示す配合量の無機充填剤を添加し、樹脂溶液の周囲を氷水で冷却しながら、ディスパーザー(8000rpm)で15分間、さらにゴーリン式撹拌装置(圧力600kg/cm)に通し、加えて、アルティマイザー(圧力200MPa)で処理することにより、感光性有機無機複合材料の溶液を得た。
【0017】
<樹脂付き銅箔の作製>
上記で得た樹脂溶液を、5μm厚の電解銅箔上にバーコーターにより流延塗布し、60℃で10分間、80℃で10分間乾燥することにより、樹脂厚み70μmの樹脂付き銅箔(RCC)を得た。
<ドライフィルムソルダーレジストの作製>
上記で得た樹脂溶液を、25μm厚のPET(ポリエチレンテレフタレート)フィルム上にバーコーターにより流延塗布し、60℃で10分間、80℃で10分間乾燥することにより、樹脂厚み18μmのドライフィルムソルダーレジストを得た。
【0018】
<半導体装置の作製>
図1に温度サイクル信頼性評価用半導体装置の断面概略図を示す。
上記RCCを8インチの半導体ウエハー1の表面にロールラミネーターにより貼り付けし、半導体ウエハー1、絶縁樹脂層2、及び銅箔を積層した構造物を得た。次に、この構造物上にロールラミネーターによりドライフィルムメッキレジストを貼り付けて、メッキレジスト層を形成し、ワイヤーボンドフィンガー、半田ボールパッド、およびそれらをつなぐ回路となるべき部位をフォトリソグラフィー手法により開口した後、該部位に10μm厚みの銅層、5μm厚みのニッケル層、および1μm厚みの金層6を電解メッキにより形成した。この後、メッキレジストを3%水酸化ナトリウム水溶液で剥離除去した後、金メッキ層をレジストとして、RCCの銅箔をフラッシュエッチングし、金メッキ層直下に再配線回路5を形成した。
【0019】
さらに、エッチングにより銅箔が除去された樹脂層表面を、ワイヤーボンドパッド上の部位が現像、開口できるように、平行光露光機を用いて露光し、2.38%テトラメチルアンモニウムハイドロオキサイド水溶液にて、所定位置の樹脂を溶解除去し、その表面に紫外線を500mJ照射した後、180℃1時間加熱することにより、ウエハー上にワイヤーボンディング用の樹脂開口部、および金メッキで表面を被覆されたワイヤーボンドフィンガー、半田ボールパッド、およびこれらをつなぐ再配線回路を持つ、完全硬化した絶縁樹脂層2を得た。
【0020】
次に、70℃に加熱されたロールラミネーターにより、上記のドライフィルムソルダーレジストを再配線回路5上に貼り付け、ワイヤーボンドフィンガー、半田ボールパッドとワイヤーボンディング用として、絶縁樹脂層開口部にフォトマスクを使用し、平行光露光機を用いて250mJで露光し、2.38%テトラメチルアンモニウムハイドロオキサイド水溶液にて所定位置の絶縁樹脂層を溶解除去し、その表面に紫外線を500mJ照射した後、180℃1時間加熱することによりソルダーレジスト層3を硬化させた。次に、樹脂開口部を経由して金ワイヤー8により、半導体ウエハー1と絶縁樹脂上の再配線回路5が接合された後、絶縁樹脂層開口部およびワイヤーボンドフィンガー周辺を印刷封止樹脂(CRP5300住友ベークライト製)4により封止し、180℃1時間で硬化した。そして半田ボール7を搭載し、最後にダイシングすることにより、TC信頼性評価用半導体装置(図1)を得た。サイズは10mm×10mm×1.3mmである。
【0021】
このようにして得られた半導体装置について−65℃/30分〜150℃/30分の条件でサイクル数を50、100、200、300、400、500サイクルと変えてTC試験を行った。そして、TC試験における樹脂層クラックの発生数を顕微鏡観察により測定した(各n=10)。これらの結果を表1に示した。
表1の結果から、実施例は比較例に比べて、TC試験の評価結果が良好であることがわかる。
【0022】
【表1】

Figure 2004101850
【0023】
【発明の効果】
本発明によれば、温度サイクル試験において絶縁樹脂層クラックの発生の問題がない、信頼性に優れた感光性有機無機複合材料および半導体装置を提供できる。
【図面の簡単な説明】
【図1】温度サイクル信頼性評価用半導体装置の断面概略図である。
【符号の説明】
半導体ウエハー 1
絶縁樹脂層 2
ソルダーレジスト層 3
印刷封止樹脂 4
再配線回路 5
ニッケル/金メッキ層 6
半田ボール 7
金ワイヤー 8[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an organic-inorganic composite material that is highly reinforced by a highly filled inorganic filler and has photoresolution.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the demand for higher functionality and lighter, thinner and smaller electronic devices, high-density integration and high-density mounting of electronic components have been advanced. Semiconductor packages used in these electronic devices have become smaller and have more pins, and mounting substrates for mounting electronic components including the semiconductor packages have also become smaller. Furthermore, in order to enhance the storage in electronic devices, a rigid-flex board, in which a rigid board and a flexible board are laminated and integrated to be bent, has been used as a mounting board.
[0003]
As the size of a semiconductor package has been reduced, the size of a conventional package using a lead frame has reached its limit in miniaturization. Recently, a BGA (Ball Grid) has been used as a package mounted on a circuit board. A new area-mounting type packaging system such as an array (Array) or a CSP (Chip Scale Package) has been proposed. In these semiconductor packages, the electrical connection between the electrodes of the semiconductor chip and the terminals of the substrate made of various materials such as plastics and ceramics, which are called semiconductor package substrates and have the function of the lead frame of the conventional semiconductor package. As a typical connection method, a wire bonding method, a TAB (Tape Automated Bonding) method, and an FC (Flip Chip) method are known. Recently, BGA and CSP structures using an FC connection method that is advantageous for miniaturization of semiconductor packages have been actively proposed, and as represented by wafer level CSP (WLCSP), for further miniaturization, A real chip size package (RCSP) in which the CSP is reduced to the size of a semiconductor chip has been proposed.
[0004]
As such packages have become smaller and thinner, the amount of insulating resin constituting one package has become smaller, and there has been a further demand for improved resin performance with respect to reliability. The problem common to BGA, CSP, and WLPKG is that the photosensitive resin has a structure in which the thermal expansion coefficient is extremely small and is in close contact with silicon or a wafer, or the thermal expansion coefficient is in close contact with an organic material that is constrained by the wafer. Due to the structure, when a temperature cycle test (TC test) is performed on the above semiconductor package to accelerate and evaluate the performance of the package, the resin becomes excessively large due to a mismatch in the thermal expansion coefficient between the photosensitive resin and silicon. Stress is applied and cracks occur. Reliability in the TC test, that is, crack resistance, is indispensable as a material for a semiconductor package.
[0005]
However, in particular, an insulating resin produced by photocrosslinking from a photopolymerizable compound represented by a compound having a methacryloyl group or an acryloyl group, or a thermosetting resin represented by an epoxy resin and a curing agent thereof. The insulating resin produced by crosslinking has poor toughness and poor TC reliability. For this reason, for the purpose of improving the reliability in the TC test, a method of reducing the thermal stress of the insulating resin by rubber modification and a method of reducing the thermal stress of the insulating resin by processing conditions have been studied. In fact, it is not possible to obtain such an effect.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and has as its object to provide a highly reliable photosensitive organic-inorganic composite material having excellent crack resistance in a TC test, and a semiconductor device using the same. And
[0007]
[Means for Solving the Problems]
That is, the present invention
(1) a photosensitive organic-inorganic composite material comprising a photosensitive resin and an inorganic filler, wherein the content of the inorganic filler is 30% by volume or more and less than 75% by volume;
(2) The photosensitive organic-inorganic composite material according to (1), wherein the inorganic filler has a flaky or plate-like shape, a maximum particle size of 50 μm or less, and an aspect ratio of 4 to 50.
(2) The photosensitive organic-inorganic composite material according to (1), wherein the inorganic filler has a flaky or plate-like shape, a maximum particle size of 40 μm or less, and an aspect ratio of 4 to 40.
(4) The photosensitive organic-inorganic composite material according to any one of (1) to (3), wherein the inorganic filler is dispersed in the resin so as to be stacked in layers without causing secondary aggregation.
(5) A semiconductor device using the photosensitive organic-inorganic composite material according to any one of (1) to (4),
It is.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The inorganic filler used in the present invention is in the form of a scale or a plate, and preferably has a maximum particle size of 50 μm or less and an aspect ratio of 4 or more and 50 or less, and further has a maximum particle size of 40 μm or less and an aspect ratio of 4 or more and 40 or less. It is more preferred that: When the maximum particle size exceeds 50 μm, the resolution of the photosensitive resin is significantly reduced. Further, when the aspect ratio is less than 4 and the shape approaches a sphere, the effect of stacking the fillers in layers decreases, and the effect of reinforcing the resin with the fillers decreases. It is not preferable to use an acicular filler because anisotropy is exhibited in physical properties in a plane. Further, when the aspect ratio exceeds 50, although the effect of stacking the filler in a layered form is improved, the filler particles become thinner, so that the resistance to cracks extending in the thickness direction of the filler decreases, and the effect of reinforcing the resin with the filler decreases. I do.
[0009]
The addition amount of the inorganic filler is preferably 30% by volume or more and less than 75% by volume, and more preferably 35% by volume or more and less than 70% by volume. If it is less than 30% by volume, the distance between the filler particles becomes long, and the effect of reinforcing the resin with the filler is not sufficient. On the other hand, when the content is 75% by volume or more, the resolution is reduced and the function as a photosensitive resin is not exerted.
[0010]
Further, the present invention is a photosensitive organic-inorganic composite material characterized in that the shape, size, aspect ratio, filling amount and filler of the inorganic filler are dispersed for stacking in a layered form, and the photosensitive material used in the present invention The base resin is not limited at all, but the following are examples. In particular, the effect of improving the crack resistance of the negative photosensitive resin is great.
[0011]
Examples of the negative photosensitive resin include: 1) one or more compounds having a functional group that causes radical polymerization, such as an acryloyl group, a methacryloyl group, or a vinyl group; benzophenone, benzoylbenzoic acid, 4-phenylbenzophenone; Hydroxybenzophenone, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, benzoin isobutyl ether, 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 4-t-butyl-trichloroacetophenone, diethoxyacetophenone, ethylanthraquinone And one or more kinds of photopolymerization initiators typified by butylanthraquinone, etc., and 2) epoxy resin and its curing in the above 1) , Maleimide, Funoru resins include those obtained by adding a thermosetting resin such as cyanate resin.
[0012]
Examples of the positive photosensitive resin include a resin obtained by adding a naphthoquinonediazide compound to a polyimide resin, a polybenzoxazole resin, or the like.
[0013]
In addition to the inorganic filler and the photosensitive resin, an antifoaming agent, a leveling agent, an ultraviolet absorber, and a plasticizer may be added. In addition, rubber particles or irregular or spherical inorganic fillers may be added as long as the inorganic fillers do not hinder stacking in layers. Needle-like fillers may also be added as long as they do not hinder stacking of plate-like or flake-like fillers in layers, and do not cause anisotropy in in-plane physical properties.
[0014]
The organic-inorganic composite material of the present invention is applied to various semiconductor devices. . The semiconductor device of the present invention may have any shape, and any other material may be used as long as the organic-inorganic composite material is used. The photosensitive organic-inorganic composite material can be used, for example, as a solder resist for a circuit called an interposer in a semiconductor device. On the other hand, in a semiconductor device of a type in which a rewiring layer is formed on a wafer, it can be used as a photosensitive insulating resin layer existing between the rewiring layer and the wafer in order to hold the rewiring layer. Further, it can be used as a photosensitive solder resist for covering the rewiring layer. More preferably, it is used for both the photosensitive insulating resin layer and the photosensitive solder resist to increase the composition ratio of the organic-inorganic composite material in the semiconductor device constituting material.
[0015]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[Examples and Comparative Examples]
<Photosensitive resin component>
Epoxy resin * 1; EPICLON-N865 (manufactured by Dainippon Ink and Chemicals, Inc.)
Phenol resin * 2; Aronix TO-1496 (manufactured by Toagosei Co., Ltd.)
Photopolymerizable monomer * 3; Neomer PM201 (manufactured by Sanyo Chemical Co., Ltd.)
Photoreaction initiator * 4: Benzyl dimethyl ketal (manufactured by Ciba Specialty Chemicals)
<Inorganic filler component>
Scale silica; scale, maximum particle size 40 μm, aspect ratio 10
Synthetic mica; scaly, maximum particle size 30 μm, aspect ratio 40
Spherical silica; spherical, maximum particle size 5 μm, aspect ratio 1
Mica; scale-like, maximum particle size 40 μm, aspect ratio 30
[0016]
<Preparation of resin solution>
Each resin composition component except the inorganic filler was added to 300 g of methyl ethyl ketone according to the compounding amount shown in Table 1, and the mixture was stirred and dissolved with a disperser (4000 rpm) for about 1 hour. Thereafter, an inorganic filler having the compounding amount shown in Table 1 was added, and the resin solution was passed through a Gaulin-type stirring device (pressure 600 kg / cm 2 ) for 15 minutes with a disperser (8000 rpm) while cooling the periphery of the resin solution with ice water. In addition, a solution of a photosensitive organic-inorganic composite material was obtained by performing treatment with an ultimateizer (pressure 200 MPa).
[0017]
<Preparation of copper foil with resin>
The resin solution obtained above was cast and applied on a 5 μm-thick electrolytic copper foil with a bar coater, and dried at 60 ° C. for 10 minutes and at 80 ° C. for 10 minutes to obtain a resin-coated copper foil (RCC) having a resin thickness of 70 μm. ) Got.
<Production of dry film solder resist>
The resin solution obtained above is cast on a 25 μm-thick PET (polyethylene terephthalate) film by a bar coater, and dried at 60 ° C. for 10 minutes and at 80 ° C. for 10 minutes to form a dry film solder having a resin thickness of 18 μm. A resist was obtained.
[0018]
<Production of semiconductor device>
FIG. 1 is a schematic sectional view of a semiconductor device for evaluating temperature cycle reliability.
The RCC was attached to the surface of an 8-inch semiconductor wafer 1 by a roll laminator to obtain a structure in which the semiconductor wafer 1, the insulating resin layer 2, and a copper foil were laminated. Next, a dry film plating resist is stuck on this structure by a roll laminator to form a plating resist layer, and a wire bond finger, a solder ball pad, and a portion to be a circuit connecting them are opened by photolithography. After that, a copper layer having a thickness of 10 μm, a nickel layer having a thickness of 5 μm, and a gold layer 6 having a thickness of 1 μm were formed on the portions by electrolytic plating. Thereafter, the plating resist was peeled off with a 3% aqueous sodium hydroxide solution, and then the RCC copper foil was flash-etched using the gold plating layer as a resist to form a rewiring circuit 5 immediately below the gold plating layer.
[0019]
Further, the surface of the resin layer from which the copper foil has been removed by the etching is exposed using a parallel light exposure machine so that a portion on the wire bond pad can be developed and opened, and is exposed to a 2.38% tetramethylammonium hydroxide aqueous solution. Then, the resin at a predetermined position is dissolved and removed, the surface is irradiated with ultraviolet rays at 500 mJ, and then heated at 180 ° C. for 1 hour, thereby forming a resin opening for wire bonding on the wafer and a wire having a surface coated with gold plating. A fully cured insulating resin layer 2 having a bond finger, a solder ball pad, and a rewiring circuit connecting them was obtained.
[0020]
Next, the above dry film solder resist is stuck on the rewiring circuit 5 by a roll laminator heated to 70 ° C., and a photomask is formed on the opening of the insulating resin layer for wire bonding fingers, solder ball pads and wire bonding. Is exposed at 250 mJ using a parallel light exposure machine, the insulating resin layer at a predetermined position is dissolved and removed with a 2.38% aqueous solution of tetramethylammonium hydroxide, and the surface is irradiated with 500 mJ of ultraviolet light. The solder resist layer 3 was cured by heating at 1 ° C. for 1 hour. Next, after the semiconductor wafer 1 and the redistribution circuit 5 on the insulating resin are joined by the gold wire 8 via the resin opening, the opening of the insulating resin layer and the periphery of the wire bond finger are printed with a sealing resin (CRP5300). (Manufactured by Sumitomo Bakelite) 4 and cured at 180 ° C. for 1 hour. Then, the solder balls 7 were mounted, and finally dicing was performed to obtain a semiconductor device for evaluating TC reliability (FIG. 1). The size is 10 mm × 10 mm × 1.3 mm.
[0021]
The semiconductor device obtained in this manner was subjected to a TC test under the conditions of −65 ° C./30 minutes to 150 ° C./30 minutes while changing the number of cycles to 50, 100, 200, 300, 400, and 500 cycles. Then, the number of occurrences of cracks in the resin layer in the TC test was measured by microscopic observation (n = 10 each). Table 1 shows the results.
From the results shown in Table 1, it is understood that the evaluation results of the TC test of the examples are better than those of the comparative examples.
[0022]
[Table 1]
Figure 2004101850
[0023]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the photosensitive organic-inorganic composite material excellent in reliability which does not have the problem of generation | occurrence | production of an insulating resin layer crack in a temperature cycle test and a semiconductor device can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a semiconductor device for evaluating temperature cycle reliability.
[Explanation of symbols]
Semiconductor wafer 1
Insulating resin layer 2
Solder resist layer 3
Printing sealing resin 4
Rewiring circuit 5
Nickel / gold plating layer 6
Solder ball 7
Gold wire 8

Claims (5)

感光性樹脂、及び無機フィラーから構成される感光性有機無機複合材料において、無機フィラーの含有量が30体積%以上75体積%未満であることを特徴とする感光性有機無機複合材料。A photosensitive organic-inorganic composite material comprising a photosensitive resin and an inorganic filler, wherein the content of the inorganic filler is 30% by volume or more and less than 75% by volume. 無機フィラーが、鱗片状もしくは板状の形状を有し、最大粒径が50μm以下、アスペクト比が4以上50以下である請求項1記載の感光性有機無機複合材料。The photosensitive organic-inorganic composite material according to claim 1, wherein the inorganic filler has a flaky or plate-like shape, a maximum particle diameter of 50 µm or less, and an aspect ratio of 4 to 50. 無機フィラーが、鱗片状もしくは板状の形状を有し、最大粒径が40μm以下、アスペクト比が4以上40以下である請求項1記載の感光性有機無機複合材料。The photosensitive organic-inorganic composite material according to claim 1, wherein the inorganic filler has a flaky or plate-like shape, a maximum particle size of 40 µm or less, and an aspect ratio of 4 or more and 40 or less. 無機フィラーが、2次凝集を起こすことなく、樹脂中に層状に積み重なるように分散されている請求項1〜3いずれか記載の感光性有機無機複合材料。The photosensitive organic-inorganic composite material according to any one of claims 1 to 3, wherein the inorganic filler is dispersed in the resin so as to be layered without causing secondary aggregation. 請求項1〜4のいずれか記載の感光性有機無機複合材料を用いることを特徴とする半導体装置。A semiconductor device using the photosensitive organic-inorganic composite material according to claim 1.
JP2002263343A 2002-09-09 2002-09-09 Photosensitive organic / inorganic composite material and semiconductor device using the same Expired - Fee Related JP4174275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263343A JP4174275B2 (en) 2002-09-09 2002-09-09 Photosensitive organic / inorganic composite material and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263343A JP4174275B2 (en) 2002-09-09 2002-09-09 Photosensitive organic / inorganic composite material and semiconductor device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008186414A Division JP4715877B2 (en) 2008-07-17 2008-07-17 Photosensitive organic / inorganic composite material and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2004101850A true JP2004101850A (en) 2004-04-02
JP4174275B2 JP4174275B2 (en) 2008-10-29

Family

ID=32263111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263343A Expired - Fee Related JP4174275B2 (en) 2002-09-09 2002-09-09 Photosensitive organic / inorganic composite material and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP4174275B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291394A (en) * 2004-05-31 2007-11-08 Sumitomo Bakelite Co Ltd Resin composition, adhesive film and resin varnish
JP2010217683A (en) * 2009-03-18 2010-09-30 Jsr Corp Aluminum-containing photosensitive resin composition and pattern forming method
JP2011075923A (en) * 2009-09-30 2011-04-14 Taiyo Holdings Co Ltd Photocurable resin composition, dry film and cured product of the same, and printed wiring board using those
JP2011164304A (en) * 2010-02-08 2011-08-25 Taiyo Holdings Co Ltd Photocurable resin composition, dry film and cured product of the same, and printed wiring board using the same
JP2012047832A (en) * 2010-08-24 2012-03-08 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive film, method for forming rib pattern, method for forming hollow structure, and electronic component
JP2012068615A (en) * 2010-05-20 2012-04-05 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive film, method for forming rib pattern, method for forming hollow structure, and electronic component
WO2012090532A1 (en) * 2010-12-28 2012-07-05 太陽インキ製造株式会社 Photocurable resin composition, dry film and cured object obtained therefrom, and printed wiring board obtained using these
JP2014078045A (en) * 2014-01-24 2014-05-01 Taiyo Holdings Co Ltd Photocurable resin composition, dry film and cured product of the composition, and printed wiring board using the same
CN104950579A (en) * 2010-05-20 2015-09-30 日立化成工业株式会社 Photosensitive resin composition, photosensitive film, rib pattern formation method, hollow structure and formation method for same, and electronic component
WO2018062408A1 (en) 2016-09-30 2018-04-05 富士フイルム株式会社 Laminate and manufacturing method for semiconductor element
WO2018221457A1 (en) 2017-05-31 2018-12-06 富士フイルム株式会社 Photosensitive resin composition, polymeric precursor, cured film, laminate, cured film production method, and semiconductor device
JP2019091855A (en) * 2017-11-16 2019-06-13 積水化学工業株式会社 Non-development type resist curable composition, printed wiring board and method for manufacturing electronic component
JP2019091854A (en) * 2017-11-16 2019-06-13 積水化学工業株式会社 Non-development type resist photocurable composition and method for manufacturing electronic component
WO2020066416A1 (en) 2018-09-28 2020-04-02 富士フイルム株式会社 Photosensitive resin composition, cured film, laminate, method for producing cured film, and semiconductor device
WO2020116336A1 (en) 2018-12-05 2020-06-11 富士フイルム株式会社 Photosensitive resin composition, pattern forming method, cured film, multilayer body and device
WO2020116238A1 (en) 2018-12-05 2020-06-11 富士フイルム株式会社 Pattern forming method, photosensitive resin composition, cured film, laminate, and device
WO2020189358A1 (en) 2019-03-15 2020-09-24 富士フイルム株式会社 Curable resin composition, cured film, layered body, cured film production method, semiconductor device, and polymer precursor
WO2021100768A1 (en) 2019-11-21 2021-05-27 富士フイルム株式会社 Pattern forming method, photocurable resin composition, layered body manufacturing method, and electronic device manufacturing method
WO2022202647A1 (en) 2021-03-22 2022-09-29 富士フイルム株式会社 Negative photosensitive resin composition, cured product, laminate, method for producing cured product, and semiconductor device
JP2023032895A (en) * 2021-08-27 2023-03-09 株式会社タムラ製作所 Photosensitive resin composition, photocured product of photosensitive resin composition, and printed wiring board coated with photosensitive resin composition
WO2023032545A1 (en) 2021-08-31 2023-03-09 富士フイルム株式会社 Cured product production method, laminate production method, semiconductor device manufacturing method, and processing liquid
WO2023162687A1 (en) 2022-02-24 2023-08-31 富士フイルム株式会社 Resin composition, cured article, laminate, method for producing cured article, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2023190064A1 (en) 2022-03-29 2023-10-05 富士フイルム株式会社 Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291394A (en) * 2004-05-31 2007-11-08 Sumitomo Bakelite Co Ltd Resin composition, adhesive film and resin varnish
JP2010217683A (en) * 2009-03-18 2010-09-30 Jsr Corp Aluminum-containing photosensitive resin composition and pattern forming method
JP2011075923A (en) * 2009-09-30 2011-04-14 Taiyo Holdings Co Ltd Photocurable resin composition, dry film and cured product of the same, and printed wiring board using those
JP2011164304A (en) * 2010-02-08 2011-08-25 Taiyo Holdings Co Ltd Photocurable resin composition, dry film and cured product of the same, and printed wiring board using the same
JP2012068615A (en) * 2010-05-20 2012-04-05 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive film, method for forming rib pattern, method for forming hollow structure, and electronic component
CN104950579A (en) * 2010-05-20 2015-09-30 日立化成工业株式会社 Photosensitive resin composition, photosensitive film, rib pattern formation method, hollow structure and formation method for same, and electronic component
JP5799952B2 (en) * 2010-05-20 2015-10-28 日立化成株式会社 Photosensitive resin composition, photosensitive film, rib pattern forming method, hollow structure and forming method thereof, and electronic component
JP2012047832A (en) * 2010-08-24 2012-03-08 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive film, method for forming rib pattern, method for forming hollow structure, and electronic component
WO2012090532A1 (en) * 2010-12-28 2012-07-05 太陽インキ製造株式会社 Photocurable resin composition, dry film and cured object obtained therefrom, and printed wiring board obtained using these
JPWO2012090532A1 (en) * 2010-12-28 2014-06-05 太陽インキ製造株式会社 Photocurable resin composition, dry film and cured product thereof, and printed wiring board using them
JP5771221B2 (en) * 2010-12-28 2015-08-26 太陽インキ製造株式会社 Photocurable resin composition, dry film and cured product thereof, and printed wiring board using them
JP2014078045A (en) * 2014-01-24 2014-05-01 Taiyo Holdings Co Ltd Photocurable resin composition, dry film and cured product of the composition, and printed wiring board using the same
WO2018062408A1 (en) 2016-09-30 2018-04-05 富士フイルム株式会社 Laminate and manufacturing method for semiconductor element
WO2018221457A1 (en) 2017-05-31 2018-12-06 富士フイルム株式会社 Photosensitive resin composition, polymeric precursor, cured film, laminate, cured film production method, and semiconductor device
JP2019091855A (en) * 2017-11-16 2019-06-13 積水化学工業株式会社 Non-development type resist curable composition, printed wiring board and method for manufacturing electronic component
JP2019091854A (en) * 2017-11-16 2019-06-13 積水化学工業株式会社 Non-development type resist photocurable composition and method for manufacturing electronic component
WO2020066416A1 (en) 2018-09-28 2020-04-02 富士フイルム株式会社 Photosensitive resin composition, cured film, laminate, method for producing cured film, and semiconductor device
WO2020116336A1 (en) 2018-12-05 2020-06-11 富士フイルム株式会社 Photosensitive resin composition, pattern forming method, cured film, multilayer body and device
WO2020116238A1 (en) 2018-12-05 2020-06-11 富士フイルム株式会社 Pattern forming method, photosensitive resin composition, cured film, laminate, and device
WO2020189358A1 (en) 2019-03-15 2020-09-24 富士フイルム株式会社 Curable resin composition, cured film, layered body, cured film production method, semiconductor device, and polymer precursor
WO2021100768A1 (en) 2019-11-21 2021-05-27 富士フイルム株式会社 Pattern forming method, photocurable resin composition, layered body manufacturing method, and electronic device manufacturing method
WO2022202647A1 (en) 2021-03-22 2022-09-29 富士フイルム株式会社 Negative photosensitive resin composition, cured product, laminate, method for producing cured product, and semiconductor device
JP2023032895A (en) * 2021-08-27 2023-03-09 株式会社タムラ製作所 Photosensitive resin composition, photocured product of photosensitive resin composition, and printed wiring board coated with photosensitive resin composition
JP7405803B2 (en) 2021-08-27 2023-12-26 株式会社タムラ製作所 Photosensitive resin composition, photocured product of the photosensitive resin composition, and printed wiring board coated with the photosensitive resin composition
WO2023032545A1 (en) 2021-08-31 2023-03-09 富士フイルム株式会社 Cured product production method, laminate production method, semiconductor device manufacturing method, and processing liquid
WO2023162687A1 (en) 2022-02-24 2023-08-31 富士フイルム株式会社 Resin composition, cured article, laminate, method for producing cured article, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2023190064A1 (en) 2022-03-29 2023-10-05 富士フイルム株式会社 Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device

Also Published As

Publication number Publication date
JP4174275B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP4174275B2 (en) Photosensitive organic / inorganic composite material and semiconductor device using the same
JP4935670B2 (en) Semiconductor device, resin composition for buffer coating, resin composition for die bonding, and resin composition for sealing
TWI715734B (en) Manufacturing method of semiconductor device, manufacturing method of flip chip semiconductor device, semiconductor device, and flip chip semiconductor device
JP4633878B2 (en) Manufacturing method of semiconductor device
US7999354B2 (en) Resin composition, filling material, insulating layer and semiconductor device
JP4961761B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device
WO2011064971A1 (en) Production method for electronic device, electronic device, production method for electronic device package, and electronic device package
JP2013251368A (en) Semiconductor device manufacturing method, thermosetting resin composition used therefor and semiconductor device obtained thereby
JP2011195742A (en) Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package
JP2016213321A (en) Semiconductor device manufacturing method and semiconductor device
JP4715877B2 (en) Photosensitive organic / inorganic composite material and semiconductor device using the same
JP4876317B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device
JP5157980B2 (en) Manufacturing method of semiconductor element sealing body and manufacturing method of semiconductor package
JPWO2016063908A1 (en) Photosensitive adhesive composition and semiconductor device
JP2013251369A (en) Semiconductor device manufacturing method, thermosetting resin composition used therefor and semiconductor device obtained thereby
JP2009091566A (en) Adhesive composition and adhesive sheet using it
JP2020060773A (en) Negative type photosensitive resin composition, semiconductor device and electronic apparatus
JP2001294843A (en) Adhesive composition for semiconductor apparatus, adhesive sheet for semiconductor apparatus using the same, and semiconductor apparatus
JP2012044193A (en) Adhesive sheet for semiconductor device, component for semiconductor device and semiconductor device using the same
JP2010219451A (en) Method of manufacturing semiconductor element sealing body, and method of manufacturing semiconductor package
JP2004128353A (en) Semiconductor device
JP2016139754A (en) Method for manufacturing semiconductor device
JP7348857B2 (en) Manufacturing method of semiconductor device
JP3911776B2 (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JP3911777B2 (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Ref document number: 4174275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees