[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004173028A - Solid-state image pickup device - Google Patents

Solid-state image pickup device Download PDF

Info

Publication number
JP2004173028A
JP2004173028A JP2002337444A JP2002337444A JP2004173028A JP 2004173028 A JP2004173028 A JP 2004173028A JP 2002337444 A JP2002337444 A JP 2002337444A JP 2002337444 A JP2002337444 A JP 2002337444A JP 2004173028 A JP2004173028 A JP 2004173028A
Authority
JP
Japan
Prior art keywords
solid
imaging device
state imaging
substrate
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002337444A
Other languages
Japanese (ja)
Inventor
Hideo Yamamoto
秀男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002337444A priority Critical patent/JP2004173028A/en
Publication of JP2004173028A publication Critical patent/JP2004173028A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state image pickup device which has yield improved by hermetical sealing wherein an adhesive or a sealing resin is prevented from protruding to a light reception area of the solid-state image pickup device, a high reliability by preventing degradation of imaging characteristics, and satisfactory heat dissipation characteristics. <P>SOLUTION: A solid-state imaging device 1 is electrically connected to a wiring pattern 4 formed on one surface of a substrate 3 having an opening part 12 opposed to a light receiving area 11, with a projecting electrode 7 between them by an adhesive 8. A light-transmissive member 5 is made to adhere to the other surface of the substrate so as to seal the opening part, and a sealing member 6 having a recessed part allowing the solid-state imaging device to be stored therein is made to adhere to the substrate from the rear side of the solid-state imaging device so as to surround it to hermetically seal the solid-state imaging device, and thus the solid-state imaging device is constituted. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、固体撮像素子の実装技術、特に固体撮像素子に薄型構造の気密封止実装を施して構成した固体撮像装置に関する。
【0002】
【従来の技術】
【特許文献1】特開平8−148666号公報
【0003】
近年、CCDやCMOSセンサー等の固体撮像素子は、デジタルカメラの他、パソコン、携帯電話等にまで搭載されるようになっており、ますます小型化、薄型化の実装形態の要求が強まっている。
【0004】
これらの要求を満たすために、例えば特開平8−148666号公報に開示されているようなマイクロレンズ付きの固体撮像装置が提案されている。この固体撮像装置の構成を図4に示す。図4において、101 はマイクロレンズ102 を設けた固体撮像素子で、該固体撮像素子101 は、その受光エリアに対向した開口部を有する可撓性基板等からなる基板103 の一方の面に形成された配線パターン104に、固体撮像素子101 上の突起電極107 を介し異方導電性接着剤等の接着剤108により電気的に接続され、前記基板103 の他方の面に前記開口部を塞ぐように透光性部材105 が接着され、固体撮像素子101 の表面に形成されているマイクロレンズ102 と前記透光性部材105 との間に空間が設けられて構成されているものである。すなわち、固体撮像素子101 の受光エリアが気密封止された状態となっている。
【0005】
このように構成された固体撮像装置においては、小型化及び薄型化が可能になると共に、撮像領域(受光エリア)上における結露や撮像特性の劣化を防止して、信頼性を確保できるなど多くの利点を有するものである。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来提案の固体撮像装置においても、次のような課題がある。すなわち、従来提案の構造の固体撮像装置では、受光エリアを取り囲むように固体撮像素子101 の表面の全周囲を、異方導電性接着剤等の接着剤108 で接着するように構成しているため、その異方導電性接着剤等の接着剤108 が受光エリアに浸み出してしまうことがあり、特に、固体撮像素子101 の電極パッドが2方向のみに配置されている場合、受光エリア外縁部の電極パッドのない2方向にも異方導電性接着剤等の接着剤108 を塗布せねばならず、この場合、この方向の基板103 には配線パターンがないため、接着剤108 が流れ出し易く、歩留まりの確保が難しかった。
【0007】
すなわち、従来の提案の固体撮像装置の構造では、異方導電性接着剤等の接着剤108 の受光エリアへの浸み出しによる歩留まりの低下という問題があった。また、浸み出した接着剤の影響により、撮像特性が劣化してしまうという問題もあった。更に、上記のような小型、薄型の構造では、セラミック等のパッケージがないため固体撮像素子101 の放熱性が悪いという欠点があり、特に消費電流の多いCCDを撮像素子として用いた場合では大きな問題であった。
【0008】
本発明は、従来提案の固体撮像装置における上記問題点を解消するためになされたもので、接着剤あるいは封止樹脂などが固体撮像素子の受光エリアへ浸み出すのを防止して歩留まりの向上を図ると共に、撮像特性の劣化を防止して高い信頼性、更には良好な放熱特性を有する固体撮像装置を提供することを目的とする。
【0009】
請求項毎に目的を述べると、請求項1に係る発明は、接着剤あるいは封止樹脂などの固体撮像素子の受光エリアへの浸み出しによる撮像特性の劣化を防止して、高歩留まりで高信頼性のある固体撮像装置を提供することを目的とする。請求項2に係る発明は、更に、良好な放熱特性を有する固体撮像を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するため、請求項1に係る発明は、固体撮像素子と、該固体撮像素子の受光エリアに対向した開口部を有し、一方の面に形成された配線パターンに突起電極を介して前記固体撮像素子が電気的に接続された基板と、該基板の他方の面に前記開口部を封止するように接着された透光性部材とを有する固体撮像装置において、前記固体撮像素子を収納可能な凹部を有する封止部材を前記固体撮像素子の裏面側から該固体撮像素子を取り囲むように前記基板に接着し気密封止することを特徴とするものである。
【0011】
このように構成された固体撮像装置においては、固体撮像素子の裏面側が封止部材により気密封止されるように構成されているので、固体撮像素子と基板の配線パターンとの接続部における、接着剤あるいは封止樹脂の受光エリアへの浸み出しによる撮像特性への悪影響を防止して、高歩留まりで高信頼性のある固体撮像装置を実現することが可能となる。
【0012】
請求項2に係る発明は、請求項1に係る固体撮像装置において、前記封止部材は、放熱部材であり、前記固体撮像素子の裏面に接着されていることを特徴とするものである。
【0013】
このように、封止部材を放熱部材とし、固体撮像素子の裏面に接着させることにより、請求項1に係る固体撮像装置における作用効果に加えて、より放熱効果のある固体撮像装置が実現可能となる。また、封止部材を選択することにより、固体撮像装置の機械的強度を増すことも可能となる。
【0014】
【発明の実施の形態】
(第1の実施の形態)
次に、本発明の実施の形態について説明する。図1は、本発明に係る固体撮像装置の第1の実施の形態を示す断面図で、図2は透光性部材を取り除き且つマイクロレンズを概略的に示す平面図である。両図において、1はマイクロルレンズ2を備えた固体撮像素子で、該固体撮像素子1は、電極パッド上に形成された突起電極7を介して、固体撮像素子1の受光エリア11に対向した開口部12を有する可撓性基板などからなる基板3の一方の面に形成された配線パターン4に、異方導電性接着剤などの接着剤8により接着して電気的に接続し、基板3の他方の面には前記開口部12を塞ぐように、透光性部材5が接着剤9にて接着されている。更に、固体撮像素子1を収納可能な凹部を有する封止部材6を、固体撮像素子1の裏面側から、該固体撮像素子1を取り囲むようにして基板3に封止用接着剤10にて接着して、固体撮像素子1を気密封止している。このとき、固体撮像素子1の裏面と封止部材6は接着されておらず空隙を有している。
【0015】
このように、固体撮像素子1の裏面側から固体撮像素子1を取り囲むように封止部材6を基板3に接着して気密封止を行っているため、前述した固体撮像素子1と基板3の配線パターン4との接着に際しては、電極パッド上の突起電極7の周囲のみを接着剤8にて接着すればよい。すなわち、接着剤8は、固体撮像素子1上の突起電極7と基板3の配線パターン4との電気的接続を保持することを目的とするものであり、固体撮像素子1と基板3との間の封止を主目的としなくてもよいので、固体撮像素子1の受光エリア11に、はみ出すほどの接着剤量を必要としない。
【0016】
ここで、基板3としては可撓性基板に限らず、セラミック,ガラス繊維強化エポキシ樹脂,金属等の硬質性基板でもよい。透光性部材5としては、ガラスは勿論のこと、塩化ビニールやアクリル等の透明樹脂や、ローパスフィルター,IRカットフィルター,レンズ,プリズム等の光学部材で構成してもよい。封止部材6としては、セラミック,ガラス繊維強化エポキシ樹脂,金属等が考えられる。また、突起電極7としては、ワイヤボンド方式で形成されたAu ,Cu 等のスタッドバンプや、メッキ方式で形成されたAu ,Ag ,Cu ,In ,ハンダ等のバンプの他、金属ボールや表面に金属メッキされた樹脂ボールや印刷等でパターン形成された導電性接着剤等でもよい。
【0017】
このように構成された固体撮像装置によれば、固体撮像素子1の気密封止用の接着あるいは封止は、固体撮像素子の表面側の透光性部材5及び裏面側からの封止部材6により行われるため、固体撮像素子1と基板3との接着にあたっては、異方導電性接着剤などの接着剤8は固体撮像素子1の電極パッド付近のみ、すなわち突起電極7を介しての固体撮像素子1と基板3の配線パターン4との接着部のみに形成すればよく、しかも接着剤の量も必要最低限にまで少なくすることができ、勿論封止樹脂などの塗布なども必要としない。したがって、接着剤8の受光エリア11への浸み出しを防止することができ、固体撮像素子1の撮像特性の劣化を防止すると共に、高歩留まりで高信頼性のある固体撮像装置が実現できる。
【0018】
特に、図示例のように、例えば電極パッドが2方向のみの固体撮像素子の実装にあたっては、接着剤を塗布する領域は2方向ですむため、接着剤などの受光エリアへの浸み出しによる撮像特性の劣化の防止は、より顕著となる。
【0019】
(第2の実施の形態)
次に、第2の実施の形態について説明する。図3に本実施の形態に係る固体撮像装置の断面図を示す。ここでは、第1の実施の形態と同一の構成要素には同一の符号を付して示し、その説明を省略する。この実施の形態は、図3に示すように、放熱部材からなる放熱兼用封止部材13が基板3への接着と同時に、固体撮像素子1の裏面にも接着剤14により接着されるように構成したもので、その他の構成及び構造は第1の実施の形態と同様である。
【0020】
ここで、放熱兼用封止部材13としては、熱伝導性の高いAl ,Cu ,真鍮,SUS,42アロイ,コバール等の金属などが好ましい。あるいは金属をコアとする基板でもよい。また、固体撮像素子1の裏面との接着にあたっては、熱伝導性の高い接着剤が好ましいが、エポキシ系,フェノール系,シリコン系等の、放熱兼用封止部材13の基板3への接着に用いる封止用接着剤10と共用してもよい。
【0021】
このように、放熱兼用封止部材13を放熱部材として固体撮像素子1の裏面に接着させることにより、たとえ固体撮像素子1が発熱しても、放熱兼用封止部材13により放熱されるため、放熱性のよい固体撮像装置を実現できる。また、放熱兼用封止部材13として金属を用いることにより、固体撮像装置の機械的強度を増すことができる。
【0022】
なお、上記各実施の形態では、固体撮像素子と基板の配線パターンとの電気的接続、すなわち固体撮像素子の電極パッド上の突起電極と基板の配線パターンとの電気的接続において、接着剤を用いているが、突起電極と配線パターンとの接続強度が十分であれば(例えば、突起電極がハンダバンプで形成されている場合は、配線パターンに溶融接続されるため、機械的強度が充分得られる)、必ずしも接着剤は必要としない。この接着剤は固体撮像素子上の突起電極と基板の配線パターンとの電気的接続の確保を目的とするものであり、固体撮像素子と基板間の封止を目的とするものではないからである。
【0023】
【発明の効果】
以上実施の形態に基づいて説明したように、請求項1に係る発明によれば、接着剤あるいは封止樹脂の受光エリアへの浸み出しを防止して、撮像特性の劣化を防ぐと共に、小型、薄型で高歩留まり及び高信頼性の固体撮像装置を得ることができる。請求項2に係る発明によれば、請求項1に係る固体撮像装置に比べてより放熱効果の高い固体撮像装置を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る固体撮像装置の第1の実施の形態を示す断面図である。
【図2】図1に示した第1の実施の形態の一部省略平面図である。
【図3】本発明の第2の実施の形態を示す断面図である。
【図4】従来提案の固体撮像装置を示す断面図である。
【符号の説明】
1 固体撮像素子
2 マイクロレンズ
3 基板
4 配線パターン
5 透光性部材
6 封止部材
7 突起電極
8 接着剤
9 接着剤
10 接着剤
11 受光エリア
12 基板開口部
13 放熱兼用封止部材
14 接着剤
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid-state imaging device mounting technique, and more particularly to a solid-state imaging device configured by applying a thin structure to a solid-state imaging device in a hermetically sealed manner.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. 8-148666
2. Description of the Related Art In recent years, solid-state imaging devices such as CCDs and CMOS sensors have been mounted on personal computers, mobile phones, and the like in addition to digital cameras, and there has been an increasing demand for smaller and thinner mounting forms. .
[0004]
In order to satisfy these requirements, for example, a solid-state imaging device with a microlens as disclosed in Japanese Patent Application Laid-Open No. 8-148666 has been proposed. FIG. 4 shows the configuration of this solid-state imaging device. In FIG. 4, reference numeral 101 denotes a solid-state imaging device provided with a microlens 102. The solid-state imaging device 101 is formed on one surface of a substrate 103 made of a flexible substrate or the like having an opening facing the light receiving area. The wiring pattern 104 is electrically connected to the wiring pattern 104 by an adhesive 108 such as an anisotropic conductive adhesive through a protruding electrode 107 on the solid-state imaging device 101 so that the other surface of the substrate 103 closes the opening. The translucent member 105 is adhered, and a space is provided between the microlens 102 formed on the surface of the solid-state imaging device 101 and the translucent member 105. That is, the light receiving area of the solid-state imaging device 101 is airtightly sealed.
[0005]
In the solid-state imaging device configured as described above, it is possible to reduce the size and thickness of the solid-state imaging device, to prevent dew condensation on the imaging region (light receiving area) and to prevent deterioration of the imaging characteristics, and to ensure reliability. It has advantages.
[0006]
[Problems to be solved by the invention]
However, the above-mentioned conventional solid-state imaging device also has the following problem. That is, the solid-state imaging device having the conventionally proposed structure is configured so that the entire periphery of the surface of the solid-state imaging device 101 is bonded with an adhesive 108 such as an anisotropic conductive adhesive so as to surround the light receiving area. The adhesive 108 such as an anisotropic conductive adhesive may ooze into the light receiving area. In particular, when the electrode pads of the solid-state imaging device 101 are arranged in only two directions, It is necessary to apply an adhesive 108 such as an anisotropic conductive adhesive also in two directions where no electrode pad is provided. In this case, since there is no wiring pattern on the substrate 103 in this direction, the adhesive 108 easily flows out. It was difficult to secure the yield.
[0007]
That is, the structure of the conventionally proposed solid-state imaging device has a problem in that the yield decreases due to seepage of the adhesive 108 such as an anisotropic conductive adhesive into the light receiving area. Also, there is a problem that the imaging characteristics are deteriorated due to the influence of the exuded adhesive. Further, the small and thin structure as described above has a drawback that the solid-state image sensor 101 has poor heat dissipation because there is no package of ceramic or the like. Particularly, a large problem occurs when a CCD which consumes a large amount of current is used as the image sensor. Met.
[0008]
The present invention has been made to solve the above-mentioned problems in the conventionally proposed solid-state imaging device, and prevents the adhesive or the sealing resin from seeping into the light-receiving area of the solid-state imaging device, thereby improving the yield. It is another object of the present invention to provide a solid-state imaging device having high reliability by preventing deterioration of imaging characteristics and further having good heat radiation characteristics.
[0009]
The invention according to claim 1 is to prevent deterioration of imaging characteristics due to seepage of a solid-state imaging device such as an adhesive or a sealing resin into a light receiving area, and to achieve high yield and high yield. An object is to provide a reliable solid-state imaging device. Another object of the present invention is to provide a solid-state imaging device having good heat radiation characteristics.
[0010]
[Means for Solving the Problems]
In order to solve the above problem, the invention according to claim 1 has a solid-state imaging device and an opening facing a light receiving area of the solid-state imaging device, and a wiring pattern formed on one surface is provided with a projection electrode interposed therebetween. A solid-state imaging device comprising: a substrate to which the solid-state imaging device is electrically connected; and a translucent member adhered to the other surface of the substrate so as to seal the opening. A sealing member having a recess capable of accommodating the solid-state image sensor is adhered to the substrate from the back side of the solid-state image sensor so as to surround the solid-state image sensor and hermetically sealed.
[0011]
In the solid-state imaging device configured as described above, the back surface side of the solid-state imaging device is configured to be hermetically sealed by the sealing member. It is possible to realize a solid-state imaging device with high yield and high reliability by preventing adverse effects on imaging characteristics due to seepage of the agent or the sealing resin into the light receiving area.
[0012]
According to a second aspect of the present invention, in the solid-state imaging device according to the first aspect, the sealing member is a heat radiating member, and is adhered to a back surface of the solid-state imaging device.
[0013]
As described above, by using the sealing member as a heat radiating member and bonding the sealing member to the back surface of the solid-state imaging device, it is possible to realize a solid-state imaging device having more heat radiation effect in addition to the operation and effect of the solid-state imaging device according to claim 1. Become. Further, by selecting a sealing member, it is possible to increase the mechanical strength of the solid-state imaging device.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment)
Next, an embodiment of the present invention will be described. FIG. 1 is a sectional view showing a first embodiment of a solid-state imaging device according to the present invention, and FIG. 2 is a plan view schematically showing a microlens with a light-transmitting member removed. In both figures, reference numeral 1 denotes a solid-state imaging device provided with a microlens 2, and the solid-state imaging device 1 faces a light receiving area 11 of the solid-state imaging device 1 via a protruding electrode 7 formed on an electrode pad. An adhesive 8 such as an anisotropic conductive adhesive is used to electrically connect to a wiring pattern 4 formed on one surface of a substrate 3 such as a flexible substrate having an opening 12. A light-transmitting member 5 is adhered to the other surface with an adhesive 9 so as to cover the opening 12. Further, a sealing member 6 having a recess capable of accommodating the solid-state imaging device 1 is bonded to the substrate 3 with a sealing adhesive 10 from the back side of the solid-state imaging device 1 so as to surround the solid-state imaging device 1. Thus, the solid-state imaging device 1 is hermetically sealed. At this time, the back surface of the solid-state imaging device 1 and the sealing member 6 are not bonded and have a gap.
[0015]
As described above, since the sealing member 6 is adhered to the substrate 3 so as to surround the solid-state imaging device 1 from the back surface side of the solid-state imaging device 1, the hermetic sealing is performed. When bonding to the wiring pattern 4, only the periphery of the protruding electrode 7 on the electrode pad may be bonded with the adhesive 8. That is, the adhesive 8 is intended to maintain the electrical connection between the protruding electrode 7 on the solid-state imaging device 1 and the wiring pattern 4 on the substrate 3, and the adhesive 8 is provided between the solid-state imaging device 1 and the substrate 3. Therefore, the amount of the adhesive that sticks out of the light receiving area 11 of the solid-state imaging device 1 is not required.
[0016]
Here, the substrate 3 is not limited to a flexible substrate, but may be a hard substrate made of ceramic, glass fiber reinforced epoxy resin, metal, or the like. The translucent member 5 may be made of not only glass but also a transparent resin such as vinyl chloride or acrylic, or an optical member such as a low-pass filter, an IR cut filter, a lens, and a prism. As the sealing member 6, ceramic, glass fiber reinforced epoxy resin, metal or the like can be considered. As the protruding electrode 7, a stud bump made of Au, Cu, or the like formed by a wire bonding method, a bump made of Au, Ag, Cu, In, solder, or the like formed by a plating method, as well as a metal ball or a surface. A metal-plated resin ball or a conductive adhesive patterned by printing or the like may be used.
[0017]
According to the solid-state imaging device thus configured, the solid-state imaging device 1 is hermetically sealed for adhesion or sealing by the light-transmitting member 5 on the front surface side of the solid-state imaging device and the sealing member 6 from the rear surface side. When the solid-state imaging device 1 is bonded to the substrate 3, the adhesive 8 such as an anisotropic conductive adhesive is applied only in the vicinity of the electrode pad of the solid-state imaging device 1, that is, the solid-state imaging via the protruding electrode 7. It may be formed only at the bonding portion between the element 1 and the wiring pattern 4 of the substrate 3, and the amount of the adhesive can be reduced to the minimum necessary. Needless to say, application of a sealing resin or the like is not required. Therefore, it is possible to prevent the adhesive 8 from seeping into the light receiving area 11, prevent the imaging characteristics of the solid-state imaging device 1 from deteriorating, and realize a solid-state imaging device with high yield and high reliability.
[0018]
In particular, when mounting a solid-state image sensor having only two electrode pads, as shown in the illustrated example, the area to which the adhesive is applied is limited to two directions. The prevention of the deterioration of the characteristics becomes more remarkable.
[0019]
(Second embodiment)
Next, a second embodiment will be described. FIG. 3 shows a cross-sectional view of the solid-state imaging device according to the present embodiment. Here, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. In this embodiment, as shown in FIG. 3, the heat-radiating / sealing member 13 made of a heat-radiating member is bonded to the substrate 3 and, at the same time, to the back surface of the solid-state imaging device 1 with an adhesive 14. The other configuration and structure are the same as those of the first embodiment.
[0020]
Here, as the heat dissipation / sealing member 13, a metal such as Al 2, Cu 3, brass, SUS, 42 alloy, and Kovar having high thermal conductivity is preferable. Alternatively, a substrate having a metal core may be used. For bonding to the back surface of the solid-state imaging device 1, an adhesive having high thermal conductivity is preferable. However, it is used for bonding the heat-radiating sealing member 13 of epoxy, phenol, silicon or the like to the substrate 3. It may be shared with the sealing adhesive 10.
[0021]
In this manner, by adhering the heat dissipation / sealing member 13 as a heat dissipation member to the back surface of the solid-state imaging device 1, even if the solid-state imaging device 1 generates heat, the heat is radiated by the heat dissipation / sealing member 13. A good solid-state imaging device can be realized. In addition, by using metal as the heat-radiating / sealing member 13, the mechanical strength of the solid-state imaging device can be increased.
[0022]
In each of the above embodiments, an adhesive is used in the electrical connection between the solid-state imaging device and the wiring pattern of the substrate, that is, the electrical connection between the protruding electrode on the electrode pad of the solid-state imaging device and the wiring pattern of the substrate. However, if the connection strength between the protruding electrode and the wiring pattern is sufficient (for example, if the protruding electrode is formed by solder bumps, it is fused and connected to the wiring pattern, so that sufficient mechanical strength is obtained). However, an adhesive is not necessarily required. This adhesive is intended to ensure electrical connection between the protruding electrodes on the solid-state imaging device and the wiring pattern of the substrate, and is not intended to seal between the solid-state imaging device and the substrate. .
[0023]
【The invention's effect】
As described above with reference to the embodiment, according to the first aspect of the present invention, it is possible to prevent the adhesive or the sealing resin from seeping into the light receiving area, to prevent the deterioration of the imaging characteristics, and to reduce the size. Thus, a thin, high-yield and highly reliable solid-state imaging device can be obtained. According to the second aspect of the present invention, it is possible to obtain a solid-state imaging device having a higher heat radiation effect than the solid-state imaging device according to the first aspect.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of a solid-state imaging device according to the present invention.
FIG. 2 is a partially omitted plan view of the first embodiment shown in FIG.
FIG. 3 is a sectional view showing a second embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a conventionally proposed solid-state imaging device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solid-state image sensor 2 Microlens 3 Substrate 4 Wiring pattern 5 Translucent member 6 Sealing member 7 Protruding electrode 8 Adhesive 9 Adhesive 10 Adhesive 11 Light receiving area 12 Substrate opening 13 Heat dissipation / sealing member 14 Adhesive

Claims (2)

固体撮像素子と、該固体撮像素子の受光エリアに対向した開口部を有し、一方の面に形成された配線パターンに突起電極を介して前記固体撮像素子が電気的に接続された基板と、該基板の他方の面に前記開口部を封止するように接着された透光性部材とを有する固体撮像装置において、前記固体撮像素子を収納可能な凹部を有する封止部材を前記固体撮像素子の裏面側から該固体撮像素子を取り囲むように前記基板に接着し気密封止することを特徴とする固体撮像装置。A solid-state imaging device, a substrate having an opening facing the light receiving area of the solid-state imaging device, and a substrate to which the solid-state imaging device is electrically connected via a protruding electrode to a wiring pattern formed on one surface; A solid-state imaging device having a light-transmitting member bonded to the other surface of the substrate so as to seal the opening, wherein the solid-state imaging device includes a sealing member having a recess capable of accommodating the solid-state imaging device. A solid-state imaging device, which is adhered to the substrate so as to surround the solid-state imaging device from the back side of the device and hermetically sealed. 前記封止部材は、放熱部材であり、前記固体撮像素子の裏面に接着されていることを特徴とする請求項1に係る固体撮像装置。The solid-state imaging device according to claim 1, wherein the sealing member is a heat radiation member, and is adhered to a back surface of the solid-state imaging device.
JP2002337444A 2002-11-21 2002-11-21 Solid-state image pickup device Pending JP2004173028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337444A JP2004173028A (en) 2002-11-21 2002-11-21 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337444A JP2004173028A (en) 2002-11-21 2002-11-21 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JP2004173028A true JP2004173028A (en) 2004-06-17

Family

ID=32700954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337444A Pending JP2004173028A (en) 2002-11-21 2002-11-21 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JP2004173028A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173463A (en) * 2004-12-17 2006-06-29 Dainippon Printing Co Ltd Sensor module
JP2007282195A (en) * 2006-04-11 2007-10-25 Chicony Electronics Co Ltd Camera lens module and manufacturing method thereof
JP2011086670A (en) * 2009-10-13 2011-04-28 Renesas Electronics Corp Manufacturing method of solid-state image pickup device
JP2012238687A (en) * 2011-05-11 2012-12-06 Sony Corp Semiconductor package, semiconductor device manufacturing method and solid state image pickup device
WO2012173014A1 (en) 2011-06-13 2012-12-20 オリンパス株式会社 Image capture device and electronic apparatus employing same
JP2014527722A (en) * 2011-08-19 2014-10-16 アイエムアイ ユーエスエー, インコーポレイテッドImi Usa, Inc. Flip chip mounted imaging chip

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173463A (en) * 2004-12-17 2006-06-29 Dainippon Printing Co Ltd Sensor module
JP2007282195A (en) * 2006-04-11 2007-10-25 Chicony Electronics Co Ltd Camera lens module and manufacturing method thereof
JP2011086670A (en) * 2009-10-13 2011-04-28 Renesas Electronics Corp Manufacturing method of solid-state image pickup device
JP2012238687A (en) * 2011-05-11 2012-12-06 Sony Corp Semiconductor package, semiconductor device manufacturing method and solid state image pickup device
US10483308B2 (en) 2011-05-11 2019-11-19 Sony Corporation Reducing thickness of module in solid state imaging device
WO2012173014A1 (en) 2011-06-13 2012-12-20 オリンパス株式会社 Image capture device and electronic apparatus employing same
US9439559B2 (en) 2011-06-13 2016-09-13 Olympus Corporation Image pickup apparatus and electronic device using the same
JP2014527722A (en) * 2011-08-19 2014-10-16 アイエムアイ ユーエスエー, インコーポレイテッドImi Usa, Inc. Flip chip mounted imaging chip

Similar Documents

Publication Publication Date Title
KR100494044B1 (en) Image pickup device and process for producing the same
US9455358B2 (en) Image pickup module and image pickup unit
KR100755165B1 (en) Semiconductor device, module for optical devices, and manufacturing method of semiconductor device
US6737292B2 (en) Method of fabricating an image sensor module at the wafer level and mounting on circuit board
US20050104991A1 (en) Imaging element, imaging device, camera module and camera system
US8194162B2 (en) Imaging device
JP2008130738A (en) Solid-state imaging element
CN108293088A (en) The manufacturing method of Optical devices and Optical devices
JP5730678B2 (en) IMAGING DEVICE AND ELECTRONIC DEVICE USING THE SAME
JP2008263550A (en) Solid-state imaging device and manufacturing method therefor
JP2011018747A (en) Imaging unit
JP2004173028A (en) Solid-state image pickup device
JP2008300574A (en) Solid-state imaging device
JP2010205780A (en) Imaging unit
JPH07231074A (en) Solid-state image sensing module
JP5479972B2 (en) Imaging device
US20250006755A1 (en) Semiconductor device and electronic equipment
JP2020021904A (en) Solid-state imaging device and method of manufacturing the same
JP2004172432A (en) Solid-state image sensing device
EP4235769A1 (en) Imaging device, electronic apparatus, and method for manufacturing imaging device
JP2000307907A (en) Image pickup device and picture photographing device
JP2009111130A (en) Imaging apparatus and its manufacturing method
WO2023162713A1 (en) Semiconductor device, electronic apparatus and method for manufacturing semiconductor device
JP2006245359A (en) Photoelectric conversion device, and manufacturing method thereof
JP2012090033A (en) Imaging module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303