[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004172304A - Wiring board and its manufacturing method - Google Patents

Wiring board and its manufacturing method Download PDF

Info

Publication number
JP2004172304A
JP2004172304A JP2002335675A JP2002335675A JP2004172304A JP 2004172304 A JP2004172304 A JP 2004172304A JP 2002335675 A JP2002335675 A JP 2002335675A JP 2002335675 A JP2002335675 A JP 2002335675A JP 2004172304 A JP2004172304 A JP 2004172304A
Authority
JP
Japan
Prior art keywords
metal frame
thermoplastic resin
insulating base
mounting portion
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002335675A
Other languages
Japanese (ja)
Inventor
Kenji Nakamura
憲志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002335675A priority Critical patent/JP2004172304A/en
Publication of JP2004172304A publication Critical patent/JP2004172304A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board wherein an electronic component mounted on an insulating substrate operates with stability and normalcy for a long period of time, a metal cover and a metal frame are easily bonded to each other, and no grave warpage occurs in the insulating substrate, by effectively preventing the metal frame from oxidation-caused corrosion and by firmly bonding the insulating substrate and the metal frame. <P>SOLUTION: The wiring board comprises an organic material-made insulating substrate 1 having a mount A on whose upper surface an electronic component 4 is mounted and having a plurality of wiring conductors 5 running from the mount A toward the lower surface, and a metal frame 2 bonded to the upper surface of the insulating substrate 1 for enclosing the mount A. The upper surface of the metal frame 2 is covered by a thermoplastic resin 3 through which the metal frame 2 is bonded to the insulating substrate 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、上面に電子部品が搭載される搭載部を有する有機材料系の絶縁基体の上面に、前記搭載部を取り込むようにして金属枠体を接合して成る配線基板に関するものである。
【0002】
【従来の技術】
従来、配線基板として、例えば上面に半導体素子等の電子部品がフリップチップ接続により搭載される搭載部およびこの搭載部から下面にかけて導出し、前記電子部品の電極に電気的に接続される銅から成る配線導体を有する有機材料系の絶縁基体と、この絶縁基体の上面に前記搭載部を取り囲むようにしてエポキシ樹脂等の熱硬化性樹脂から成る接着層を介して接合された銅から成る金属枠体とを具備して成る配線基板が知られている。
【0003】
この配線基板は、絶縁基体の搭載部に半導体素子等の電子部品をその各電極が半田バンプや金バンプ等の金属バンプを介して搭載部の配線導体に電気的に接続されるようにしてフリップチップ接続により搭載し、しかる後、金属枠体の上面に金属蓋体をその下面が熱伝導性のグリスを介して電子部品の上面に熱的に結合されるようにして熱硬化性樹脂を介して気密に接合することによって製品としての電子装置となり、この電子装置は、その絶縁基体の下面に導出した配線導体を外部電気回路基板の配線導体に半田を介して接続することにより外部電気回路基板に実装されるとともに搭載する電子部品の電極が外部電気回路に電気的に接続されることとなる。そして、電子部品がその作動時に発生する熱は、熱伝導性のグリスを介して金属蓋体および金属枠体に伝達され、そこから外部に放散される。
【0004】
なお、この従来の配線基板においては、銅から成る金属枠体の酸化腐蝕を防止するために金属枠体の表面にニッケルめっきおよび金めっきから成るめっき金属層を被着させていた。
【0005】
【特許文献1】
特開2001−320145号公報
【0006】
【発明が解決しようとする課題】
しかしながら、この従来の配線基板によると、銅から成る金属枠体は、その酸化腐蝕を防止するためにその表面がニッケルめっき層および金めっき層により順次被覆されており、金めっき層は化学的に安定であり、絶縁基体と金属枠体とを接合する樹脂と強固に接着せずに、そのため電子部品が作動時に発生する熱が絶縁基体と金属枠体との間に繰り返し印加されると、両者の熱膨張係数の相違に起因して発生する応力により絶縁基体と金属枠体との間で剥離が発生し、その結果、絶縁基体と金属枠体との間の気密性が損なわれて搭載する電子部品を長期間にわたり正常に作動させることができないという問題点を有していた。また、金属枠体上に金属蓋体を接合させる際に熱硬化性樹脂を介して接合していることから、接合前に未硬化の熱硬化性樹脂を金属枠体と金属蓋体との間に配置する必要があり、金属蓋体を金属枠体に接合する作業が煩雑であるという問題点を有していた。さらに、搭載部に電子部品を搭載する際や金属枠体に金属蓋体を接合する際、あるいは外部電気回路基板に実装する際等に熱が印加されると、絶縁基体と金属枠体との熱膨張係数の相違に起因して絶縁基体と金属枠体との間に応力が発生し、その応力を両者を接合する接着層で良好に吸収することができずに絶縁基体に大きな反りが発生してしまい、その結果、絶縁基体上面の配線導体と電子部品の電極との間や絶縁基体下面の配線導体と外部電気回路基板の配線導体との間で剥離が発生しやすく、搭載する電子部品を外部電気回路に良好に接続することが困難であるという問題点を有していた。
【0007】
本発明は、かかる従来の問題点に鑑み案出されたものであり、その目的は、金属枠体の酸化腐蝕を有効に防止するとともに絶縁基体と金属枠体とを強固に接合して、それにより絶縁基体に搭載する電子部品を長期間にわたり正常かつ安定に作動させることができるとともに金属蓋体と金属枠体との接合が容易であり、かつ搭載部に電子部品を搭載する際や金属枠体に金属蓋体を接合する際、あるいは外部電気回路基板に実装する際等に絶縁基体に大きな反りが発生することがなく、搭載する電子部品を外部電気回路に良好に接続することが可能な配線基板を提供することにある。
【0008】
【課題を解決するための手段】
本発明の配線基板は、上面に電子部品が搭載される搭載部およびこの搭載部から下面にかけて導出する複数の配線導体を有する有機材料系の絶縁基体と、この絶縁基体の上面に前記搭載部を取り囲むようにして接合された金属枠体とを具備して成る配線基板であって、金属枠体は、その表面に熱可塑性樹脂が被覆されているとともにその熱可塑性樹脂を介して絶縁基体に接合されていることを特徴とするものである。
【0009】
また、本発明の配線基板の製造方法は、上面に電子部品が搭載される搭載部およびこの搭載部から下面にかけて導出する複数の配線導体を有する絶縁基体と、この絶縁基体の搭載部を取り囲む開口部を有するとともに表面が熱可塑性樹脂で被覆された金属枠体とを準備する工程と、絶縁基体の上面に金属枠体を、絶縁基体の搭載部を取り囲むようにして載置するとともに、これらを上下から圧力を印加しながら加熱して金属枠体の熱可塑性樹脂を軟化させて熱可塑性樹脂と絶縁基体とを熱圧着させた後、これらを冷却して絶縁基体と金属枠体とを熱可塑性樹脂を介して接合する工程とを順次行うことを特徴とするものである。
【0010】
本発明の配線基板によれば、金属枠体は熱可塑性樹脂で被覆されているとともにその熱可塑性樹脂を介して絶縁基体に接合されていることから、金属枠体の酸化腐蝕が金属枠体を被覆する熱可塑性樹脂により良好に防止されるとともに、その熱可塑性樹脂を介して絶縁基体と金属枠体とが強固に接合される。また、金属枠体が熱可塑性樹脂で被覆されていることから、その熱可塑性樹脂を介して金属枠体の上面に金属蓋体を容易に接合することができる。さらに、絶縁基体と金属枠体とは熱可塑性樹脂を介して接合されていることから、搭載部に電子部品を搭載する際や金属枠体に金属蓋体を接合する際、あるいは外部電気回路基板に実装する際等に絶縁基体と金属枠体との間に応力が発生したとしても、その応力は両者を接合する熱可塑性樹脂が熱で塑性変形することにより良好に吸収される。
【0011】
また、本発明の配線基板の製造方法によれば、絶縁基体の上面に、表面が熱可塑性樹脂で被覆された金属枠体を載置するとともに、これらを上下から圧力を印加しながら加熱して金属枠体表面の熱可塑性樹脂を軟化させてその熱可塑性樹脂と絶縁基体とを熱圧着させた後、これらを冷却して絶縁基体と金属枠体とを金属枠体に被着させた熱可塑性樹脂を介して接合することから、金属枠体を被覆する熱可塑性樹脂により金属枠体の酸化腐蝕を有効に防止することができるとともにその熱可塑性樹脂を介して絶縁基体と金属枠体とが強固に接合された配線基板を得ることができる。また、金属枠体の表面が熱可塑性樹脂で被覆されていることから、その熱可塑性樹脂を介して金属蓋体を金属枠体に容易に接合することが可能な配線基板とすることができる。
【0012】
【発明の実施の形態】
次に、本発明の配線基板を添付の図面に基づき詳細に説明する。図1は本発明の配線基板の実施の形態の一例を示す断面図であり、1は絶縁基体、2は金属枠体であり、主としてこれらで本発明の配線基板が構成されている。
【0013】
絶縁基体1は、例えばガラス繊維を縦横に織り込んだガラス繊維織物にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させて成る板状の芯体1aの上下面にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂から成る絶縁層1bをそれぞれ複数層ずつ積層して成る有機材料系の多層板であり、その上面中央部には半導体素子等の電子部品4が搭載される搭載部Aを有しており、その搭載部Aから下面にかけては銅箔や銅めっき膜等から成る複数の配線導体5が形成されている。そして、搭載部Aには半導体素子等の電子部品4がその各電極と配線導体5とが半田バンプ6を介して電気的に接続されるフリップチップ接続により搭載される。
【0014】
絶縁基体1を構成する芯体1aは、厚みが0.3〜1.5mm程度であり、その上面から下面にかけて直径が0.1〜1mm程度の複数の貫通孔7を有している。そして、その上下面および各貫通孔7の内壁には配線導体5の一部が被着されており、上下面の配線導体5が貫通孔7を介して電気的に接続されている。
【0015】
このような芯体1aは、ガラス織物に未硬化の熱硬化性樹脂を含浸させたシートを熱硬化させた後、これに上面から下面にかけてドリル加工を施すことにより製作される。なお、芯体1aの上下面の配線導体5は、芯体1a用のシートの上下全面に厚みが3〜50μm程度の銅箔を貼着しておくとともにこの銅箔をシートの硬化後にエッチング加工することにより所定のパターンに形成される。また、貫通孔7の内壁の配線導体5は、芯体1aに貫通孔7を設けた後に、この貫通孔7の内壁に無電解めっき法および電解めっき法により厚みが3〜50μm程度の銅めっき膜を析出させることにより形成される。
【0016】
さらに、芯体1aは、その貫通孔7の内部にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂から成る樹脂柱8が充填されている。樹脂柱8は、貫通孔7を塞ぐことにより貫通孔7の直上および直下に絶縁層1bを形成可能とするためのものであり、未硬化のペースト状の熱硬化性樹脂を貫通孔7内にスクリーン印刷法により充填し、これを熱硬化させた後、その上下面を略平坦に研磨することにより形成される。そして、この樹脂柱8を含む芯体1aの上下面に絶縁層1bが積層されている。
【0017】
芯体1aの上下面に積層された絶縁層1bは、それぞれの厚みが20〜60μm程度であり、各層の上面から下面にかけて直径が30〜100μm程度の複数の貫通孔9を有している。これらの絶縁層1bは、配線導体5を高密度に配線するための絶縁間隔を提供するためのものである。そして、上層の配線導体5と下層の配線導体5とを貫通孔9を介して電気的に接続することにより高密度配線を立体的に形成可能としている。このような絶縁層1bは、厚みが20〜60μm程度の未硬化の熱硬化性樹脂フィルムを芯体1aの上下面に貼着し、これを熱硬化させるとともにレーザー加工により貫通孔9を穿孔し、さらにその上に同様にして次の絶縁層1bを順次積み重ねることによって形成される。なお、各絶縁層1bの表面および貫通孔9内に被着された配線導体5は、各絶縁層1bを形成する毎に各絶縁層1bの表面および貫通孔9内に5〜50μm程度の厚みの銅めっき膜を公知のセミアディティブ法やサブトラクティブ法等のパターン形成法により所定のパターンに被着させることによって形成される。
【0018】
また、絶縁基体1の搭載部Aから下面にかけて形成された配線導体5は、電子部品4の各電極を外部電気回路基板に接続するための導電路として機能し、絶縁基体1の搭載部Aに設けられた部位の一部が電子部品4の各電極に半田バンプ6を介して接合される電子部品接続パッド5aを、絶縁基体1の下面に露出した部位の一部が外部電気回路基板に半田ボール10を介して接続される外部接続パッド5bを形成している。このような電子部品接続パッド5aおよび外部接続パッド5bは、配線導体5に接続された略円形のパターンの外周部をソルダーレジストと呼ばれる最外層の絶縁層1bにより15〜150μm程度の幅で被覆することによりその露出する直径が、電子部品接続パッド5aであれば約70〜200μm程度に、外部接続パッド5bであれば約0.5〜2.5mm程度になるように形成されている。なお、このようなソルダーレジスト1bにより電子部品接続パッド5a同士あるいは外部接続パッド5b同士の半田による電気的な短絡が有効に防止されるとともに電子部品接続パッド5aおよび外部接続パッド5bの絶縁基体1に対する接合強度が高いものとなっている。
【0019】
また、絶縁基体1の上面外周部には、銅やステンレス等の金属から成る金属枠体2が搭載部Aを取り囲むようにして接合されており、この金属枠体2上には銅やアルミニウム等の良熱伝導性の金属から成る金属蓋体11が接合される。この金属枠体2は、厚みが0.5〜2mm程度の四角や六角、八角、あるいは円形の枠状であり、絶縁基体1に金属蓋体11を接合させるための台座として機能するとともに、絶縁基体1の剛性を高めて絶縁基体1に外力による反りや変形が発生することを防止する補強部材として、さらには電子部品4が作動時に発生する熱を外部に放散するための放熱部材として機能する。このような金属枠体2は、銅等から成る金属板に打ち抜き加工や切断加工あるいはエッチング加工等を施すことにより枠状に形成される。
【0020】
また、金属枠体2はその表面が芳香族ポリエステル樹脂等の熱可塑性樹脂3で被覆されており、この熱可塑性樹脂3を介して金属枠体2と絶縁基体1とが接合されている。金属枠体2の表面を被覆する熱可塑性樹脂3は、絶縁基体1に金属枠体2を接合する接着剤として機能するとともに、金属枠体2が酸化腐蝕するのを防止する保護層として機能し、さらには、金属枠体2の上面に金属蓋体11を接合するための接着剤として機能する。このように本発明の配線基板によれば、金属枠体2の表面を被覆する熱可塑性樹脂3により金属枠体2の酸化腐蝕が有効に防止されるとともに絶縁基体1と金属枠体2とが熱可塑性樹脂3を介して強固に接合される。また、金属枠体2を被覆する熱可塑性樹脂3を接着剤として金属枠体2上に金属蓋体11を容易に接合させることができる。そして、絶縁基体1の搭載部Aに電子部品4をその電極が電子部品接続パッド5aに半田バンプ6を介して接合されるようにして搭載するとともに、金属枠体2の上面に金属蓋体11を、その下面が熱伝導性のグリスを介して電子部品4の上面に熱的に結合されるようにして熱可塑性樹脂3を介して接合することによって製品としての電子装置となり、この電子装置における外部接続パッド5bを外部電気回路基板の配線導体に半田ボール10を介して接続することにより外部電気回路基板に実装されることとなる。このとき、絶縁基体1と金属枠体2とは熱可塑性樹脂3を介して接合されていることから、搭載部Aに電子部品4を搭載する際や金属枠体2に金属蓋体11を接合する際、あるいは外部電気回路基板に実装する際等に絶縁基体1と金属枠体2との間に応力が発生したとしても、その応力は両者を接合する熱可塑性樹脂3が熱で塑性変形することにより良好に吸収され、絶縁基体1に大きな反りが発生することが有効に防止される。
【0021】
なお、金属枠体2の表面を被覆する熱可塑性樹脂3は、その厚みが10μm未満であると、金属枠体2の酸化腐蝕を有効に防止することが困難となるとともに絶縁基体1と金属枠体2とを、あるいは金属枠体2と金属蓋体11とを熱可塑性樹脂3を介して強固に接合することが困難となる傾向にあり、他方、200μmを超えると、絶縁基体1と金属枠体2とを接合する際や金属枠体2と金属蓋体11を接合する際に、これらの接合部から熱可塑性樹脂3がはみ出して絶縁基体1や電子部品4を汚染してしまう危険性がある。したがって、金属枠体2の表面を被覆する熱可塑性樹脂3の厚みは10〜200μmの範囲が好ましい。また、金属枠体2の表面を被覆する熱可塑性樹脂3は、その溶融温度が220℃未満の場合、絶縁基体1の搭載部Aに電子部品4を搭載する際や金属枠体2に金属蓋体11を接合する際、あるいは外部電気回路基板に実装する際等に熱可塑性樹脂3が溶融して金属枠体2にずれが発生する危険性がる。したがって、金属枠体2の表面を被覆する熱可塑性樹脂3の溶融温度は220℃以上であることが好ましい。
【0022】
次に、上述した本発明の配線基板の製造方法について、図2および図3を基に説明する。
【0023】
まず、図2に断面図で示すように、上面に電子部品4が搭載される搭載部Aを有するとともに搭載部Aから下面にかけて導出する複数の配線導体5を有する絶縁基体1と、搭載部Aを取り囲む開口部を有するとともに表面が芳香族ポリエステル樹脂等の熱可塑性樹脂3で被覆された金属枠体2とを準備する。熱可塑性樹脂3の厚みは前述したように、10〜200μmの範囲が好ましい。なお、金属枠体2の表面を熱可塑性樹脂3で被覆するには、芳香族ポリエステル樹脂等の熱可塑性樹脂を有機溶剤で溶かした溶液中に金属枠体を浸漬した後、引き上げる方法や熱可塑性樹脂を有機溶剤で溶かした溶液をスプレーで塗布する方法が採用され得る。この場合、金属枠体2は、その表面が熱可塑性樹脂3で被覆されていることから、その酸化腐蝕が熱可塑性樹脂3で良好に防止される。
【0024】
次に、図3に断面図で示すように、絶縁基体1の上面に表面が熱可塑性樹脂3で被覆された金属枠体2を搭載部Aを取り囲むようにして載置するとともに、これらを上下から約10〜50MPaの圧力で加圧しながら、約100〜180℃の温度で加熱して金属枠体2の表面を被覆する熱可塑性樹脂3を軟化させて絶縁基体1と熱可塑性樹脂3とを熱圧着させた後に常温まで冷却することにより、絶縁基体1と金属枠体2とを熱可塑性樹脂3を介して接合する。このように、本発明の製造方法によれば、絶縁基体1の上面に表面が熱可塑性樹脂3で被覆された金属枠体2を載置するとともに、これらを上下から圧力を印加しながら加熱して金属枠体2表面の熱可塑性樹脂3を軟化させて絶縁基体1と熱可塑性樹脂3とを熱圧着させた後、これらを冷却して絶縁基体1と金属枠体2とを熱可塑性樹脂3を介して接合することから、金属枠体2を被覆する熱可塑性樹脂3により金属枠体2の酸化腐蝕を有効に防止することができるとともにその熱可塑性樹脂3を介して絶縁基体1と金属枠体2とが強固に接合された配線基板を得ることができる。また、金属枠体2の表面が熱可塑性樹脂3で被覆されていることから、その熱可塑性樹脂3を介して金属蓋体を金属枠体2に容易に接合することが可能な配線基板とすることができる。
【0025】
なお、本発明は、上述の実施形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更が可能であることはいうまでもない。
【0026】
【発明の効果】
本発明の配線基板によれば、金属枠体は熱可塑性樹脂で被覆されているとともにその熱可塑性樹脂を介して絶縁基体に接合されていることから、金属枠体の酸化腐蝕が金属枠体を被覆する熱可塑性樹脂により良好に防止されるとともに、その熱可塑性樹脂を介して絶縁基体と金属枠体とが強固に接合され、それにより搭載する電子部品を長期間にわたり正常かつ安定に作動させることができる。また、金属枠体が熱可塑性樹脂で被覆されていることから、その熱可塑性樹脂を介して金属枠体の上面に金属蓋体を容易に接合することができる。さらに、絶縁基体と金属枠体とは熱可塑性樹脂を介して接合されていることから、搭載部に電子部品を搭載する際や金属枠体に金属蓋体を接合する際、あるいは外部電気回路基板に実装する際等に絶縁基体と金属枠体との間に応力が発生したとしても、その応力は両者を接合する熱可塑性樹脂が熱で塑性変形することにより良好に吸収され、絶縁基体に大きな反りが発生することはなく、その結果、搭載する電子部品を外部電気回路に良好に接続することができる。
【0027】
また、本発明の配線基板の製造方法によれば、絶縁基体の上に、表面が熱可塑性樹脂で被覆された金属枠体を載置するとともに、これらを上下から圧力を印加しながら加熱して金属枠体表面の熱可塑性樹脂を軟化させて該熱可塑性樹脂と絶縁基体とを熱圧着させた後、これらを冷却して絶縁基体と金属枠体とを金属枠体に被着させた熱可塑性樹脂を介して接合することから、金属枠体を被覆する熱可塑性樹脂により金属枠体の酸化腐蝕を有効に防止することができるとともにその熱可塑性樹脂を介して絶縁基体と金属枠体とが強固に接合された配線基板を得ることができる。また、金属枠体の表面が熱可塑性樹脂で被覆されていることから、その熱可塑性樹脂を介して金属蓋体を金属枠体に容易に接合することが可能な配線基板とすることができる。
【図面の簡単な説明】
【図1】本発明の配線基板の実施の形態の一例を示す断面図である。
【図2】本発明の配線基板の製造方法を説明するための断面図である。
【図3】本発明の配線基板の製造方法を説明するための断面図である。
【符号の説明】
1・・・・・・絶縁基体
A・・・・・・搭載部
2・・・・・・金属枠体
3・・・・・・熱可塑性樹脂
4・・・・・・電子部品
5・・・・・・配線導体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board formed by joining a metal frame to an upper surface of an organic material-based insulating base having a mounting portion on which an electronic component is mounted on the upper surface so as to take in the mounting portion.
[0002]
[Prior art]
Conventionally, as a wiring board, for example, a mounting portion on which an electronic component such as a semiconductor element is mounted by flip-chip connection on the upper surface, and copper that is led out from the mounting portion to the lower surface and electrically connected to the electrode of the electronic component. An organic material-based insulating base having a wiring conductor, and a metal frame made of copper joined to an upper surface of the insulating base via an adhesive layer made of a thermosetting resin such as an epoxy resin so as to surround the mounting portion. A wiring board comprising:
[0003]
This wiring board flips an electronic component such as a semiconductor element on a mounting portion of an insulating base such that each electrode is electrically connected to a wiring conductor of the mounting portion via a metal bump such as a solder bump or a gold bump. It is mounted by chip connection, and then a metal lid is placed on the upper surface of the metal frame so that the lower surface is thermally coupled to the upper surface of the electronic component through the thermally conductive grease, via the thermosetting resin. An electronic device as a product is obtained by airtightly joining the external electric circuit board by connecting a wiring conductor led out on the lower surface of the insulating base to a wiring conductor of the external electric circuit board via solder. And the electrodes of the electronic components to be mounted are electrically connected to an external electric circuit. Then, heat generated when the electronic component is operated is transmitted to the metal lid and the metal frame via the thermally conductive grease, and is radiated to the outside from the metal lid and the metal frame.
[0004]
In this conventional wiring board, a plating metal layer made of nickel plating and gold plating is applied to the surface of the metal frame in order to prevent oxidation corrosion of the metal frame made of copper.
[0005]
[Patent Document 1]
JP 2001-320145 A
[Problems to be solved by the invention]
However, according to this conventional wiring board, the surface of the metal frame made of copper is sequentially coated with a nickel plating layer and a gold plating layer in order to prevent the oxidative corrosion, and the gold plating layer is chemically It is stable and does not firmly adhere to the resin that joins the insulating base and the metal frame. Therefore, when heat generated during operation of the electronic component is repeatedly applied between the insulating base and the metal frame, Of the insulating base and the metal frame due to the stress generated due to the difference in the coefficient of thermal expansion between the insulating base and the metal frame, and as a result, the airtightness between the insulating base and the metal frame is impaired when mounting. There has been a problem that the electronic components cannot be normally operated for a long period of time. In addition, since the metal lid is joined via the thermosetting resin when joining the metal lid on the metal frame, the uncured thermosetting resin is placed between the metal frame and the metal lid before joining. And the operation of joining the metal lid to the metal frame is complicated. Further, when heat is applied when electronic components are mounted on the mounting portion, when the metal lid is joined to the metal frame, or when the electronic component is mounted on an external electric circuit board, the insulating base and the metal frame are displaced. A stress is generated between the insulating base and the metal frame due to a difference in thermal expansion coefficient, and the stress cannot be absorbed well by the adhesive layer that joins the two, and a large warpage occurs in the insulating base. As a result, separation easily occurs between the wiring conductor on the upper surface of the insulating substrate and the electrode of the electronic component, or between the wiring conductor on the lower surface of the insulating substrate and the wiring conductor on the external electric circuit board. Is difficult to connect well to an external electric circuit.
[0007]
The present invention has been devised in view of such a conventional problem, and its object is to effectively prevent oxidative corrosion of a metal frame and to firmly join an insulating base and the metal frame, thereby achieving This allows the electronic components mounted on the insulating substrate to operate normally and stably for a long period of time, facilitates the joining of the metal cover and the metal frame, and is useful when mounting electronic components on the mounting portion or when mounting the metal frame. When the metal cover is bonded to the body or when mounted on an external electric circuit board, the insulating base does not generate a large warp, and the mounted electronic components can be connected well to the external electric circuit. It is to provide a wiring board.
[0008]
[Means for Solving the Problems]
A wiring board according to the present invention includes an organic material-based insulating base having a mounting portion on which an electronic component is mounted on an upper surface and a plurality of wiring conductors extending from the mounting portion to the lower surface, and the mounting portion on an upper surface of the insulating base. And a metal frame joined so as to surround the metal frame, wherein the metal frame has a surface coated with a thermoplastic resin and is bonded to an insulating base via the thermoplastic resin. It is characterized by having been done.
[0009]
Further, the method of manufacturing a wiring board according to the present invention includes an insulating base having a mounting portion on which an electronic component is mounted on an upper surface, a plurality of wiring conductors extending from the mounting portion to the lower surface, and an opening surrounding the mounting portion of the insulating base. Preparing a metal frame having a portion and a surface coated with a thermoplastic resin, and placing the metal frame on the upper surface of the insulating base so as to surround the mounting portion of the insulating base, and After heating while applying pressure from above and below, the thermoplastic resin of the metal frame is softened, and the thermoplastic resin and the insulating substrate are thermocompression-bonded. And a step of joining via a resin.
[0010]
According to the wiring board of the present invention, since the metal frame is covered with the thermoplastic resin and is bonded to the insulating base via the thermoplastic resin, the metal frame is oxidized and corroded. It is prevented well by the covering thermoplastic resin, and the insulating base and the metal frame are firmly joined via the thermoplastic resin. Further, since the metal frame is covered with the thermoplastic resin, the metal lid can be easily joined to the upper surface of the metal frame via the thermoplastic resin. Further, since the insulating base and the metal frame are joined via the thermoplastic resin, the electronic component is mounted on the mounting portion, the metal cover is joined to the metal frame, or the external electric circuit board is mounted. Even when a stress is generated between the insulating base and the metal frame during mounting on a semiconductor device, the stress is favorably absorbed by the thermoplastic deformation of the thermoplastic resin that joins the two.
[0011]
According to the method of manufacturing a wiring board of the present invention, a metal frame whose surface is coated with a thermoplastic resin is placed on the upper surface of the insulating base, and these are heated while applying pressure from above and below. After the thermoplastic resin on the surface of the metal frame is softened and the thermoplastic resin and the insulating substrate are thermocompression-bonded, they are cooled to apply the insulating substrate and the metal frame to the metal frame. Since the metal frame is joined via the resin, the oxidative corrosion of the metal frame can be effectively prevented by the thermoplastic resin covering the metal frame, and the insulating base and the metal frame are strongly bonded via the thermoplastic resin. Can be obtained. Further, since the surface of the metal frame is covered with the thermoplastic resin, it is possible to provide a wiring board that can easily join the metal lid to the metal frame via the thermoplastic resin.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the wiring board of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a sectional view showing an example of an embodiment of a wiring board according to the present invention, wherein 1 is an insulating base, 2 is a metal frame, and these mainly constitute the wiring board of the present invention.
[0013]
The insulating base 1 is made of, for example, a glass fiber fabric in which glass fibers are woven vertically and horizontally and impregnated with a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin. An organic material-based multilayer board formed by laminating a plurality of insulating layers 1b made of a thermosetting resin such as a triazine resin, and a mounting portion on which an electronic component 4 such as a semiconductor element is mounted in a central portion of an upper surface thereof. A, and a plurality of wiring conductors 5 made of a copper foil, a copper plating film, or the like are formed from the mounting portion A to the lower surface. An electronic component 4 such as a semiconductor element is mounted on the mounting portion A by flip-chip connection in which each electrode and the wiring conductor 5 are electrically connected via a solder bump 6.
[0014]
The core 1a constituting the insulating base 1 has a thickness of about 0.3 to 1.5 mm, and has a plurality of through holes 7 having a diameter of about 0.1 to 1 mm from the upper surface to the lower surface. A part of the wiring conductor 5 is attached to the upper and lower surfaces and the inner wall of each through hole 7, and the wiring conductors 5 on the upper and lower surfaces are electrically connected through the through hole 7.
[0015]
Such a core 1a is manufactured by thermally curing a sheet in which a glass fabric is impregnated with an uncured thermosetting resin, and then performing drilling from the upper surface to the lower surface. The wiring conductors 5 on the upper and lower surfaces of the core 1a are formed by attaching a copper foil having a thickness of about 3 to 50 μm to the entire upper and lower surfaces of the sheet for the core 1a and etching the copper foil after the sheet is cured. Thus, a predetermined pattern is formed. The wiring conductor 5 on the inner wall of the through-hole 7 is formed by providing a through-hole 7 in the core 1a and then plating the inner wall of the through-hole 7 with a copper plating having a thickness of about 3 to 50 μm by an electroless plating method and an electrolytic plating method. It is formed by depositing a film.
[0016]
Further, the core 1a is filled with a resin column 8 made of a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin inside the through hole 7. The resin pillar 8 is for enabling the insulating layer 1b to be formed directly above and directly below the through hole 7 by closing the through hole 7, and the uncured paste-like thermosetting resin is placed in the through hole 7. It is formed by filling by a screen printing method, thermally curing the material, and then polishing the upper and lower surfaces thereof to be substantially flat. An insulating layer 1b is laminated on the upper and lower surfaces of the core 1a including the resin columns 8.
[0017]
The insulating layer 1b laminated on the upper and lower surfaces of the core 1a has a thickness of about 20 to 60 μm, and has a plurality of through holes 9 with a diameter of about 30 to 100 μm from the upper surface to the lower surface of each layer. These insulating layers 1b are for providing an insulating interval for wiring the wiring conductors 5 at high density. By electrically connecting the upper layer wiring conductor 5 and the lower layer wiring conductor 5 through the through-hole 9, a high-density wiring can be formed three-dimensionally. Such an insulating layer 1b is formed by attaching an uncured thermosetting resin film having a thickness of about 20 to 60 μm to the upper and lower surfaces of the core body 1a, thermally curing the same, and forming the through holes 9 by laser processing. The insulating layer 1b is formed by successively stacking the next insulating layers 1b in a similar manner. The wiring conductor 5 attached to the surface of each insulating layer 1b and the inside of the through hole 9 has a thickness of about 5 to 50 μm on the surface of each insulating layer 1b and the inside of the through hole 9 every time the insulating layer 1b is formed. Is formed in a predetermined pattern by a known patterning method such as a semi-additive method or a subtractive method.
[0018]
The wiring conductor 5 formed from the mounting portion A of the insulating base 1 to the lower surface functions as a conductive path for connecting each electrode of the electronic component 4 to an external electric circuit board. A part of the provided part is connected to an electronic component connection pad 5a which is joined to each electrode of the electronic part 4 via a solder bump 6, and a part of the part exposed on the lower surface of the insulating base 1 is soldered to an external electric circuit board. An external connection pad 5b connected via the ball 10 is formed. Such electronic component connection pads 5a and external connection pads 5b cover the outer peripheral portion of the substantially circular pattern connected to the wiring conductor 5 with an outermost insulating layer 1b called solder resist with a width of about 15 to 150 μm. Accordingly, the exposed diameter is about 70 to 200 μm for the electronic component connection pad 5a, and about 0.5 to 2.5 mm for the external connection pad 5b. The solder resist 1b effectively prevents an electrical short circuit between the electronic component connection pads 5a or the external connection pads 5b due to soldering, and also prevents the electronic component connection pads 5a and the external connection pads 5b from being in contact with the insulating base 1. The joining strength is high.
[0019]
A metal frame 2 made of a metal such as copper or stainless steel is joined to the outer peripheral portion of the upper surface of the insulating base 1 so as to surround the mounting portion A. The metal lid 11 made of a good heat conductive metal is joined. The metal frame 2 has a square, hexagonal, octagonal, or circular frame shape having a thickness of about 0.5 to 2 mm, and functions as a pedestal for joining the metal lid 11 to the insulating base 1 and has an insulating property. It functions as a reinforcing member that increases the rigidity of the base 1 to prevent the insulating base 1 from being warped or deformed by an external force, and also functions as a heat radiating member for dissipating heat generated when the electronic component 4 operates to the outside. . Such a metal frame 2 is formed in a frame shape by performing a punching process, a cutting process, an etching process, or the like on a metal plate made of copper or the like.
[0020]
Further, the surface of the metal frame 2 is covered with a thermoplastic resin 3 such as an aromatic polyester resin, and the metal frame 2 and the insulating base 1 are joined via the thermoplastic resin 3. The thermoplastic resin 3 covering the surface of the metal frame 2 functions as an adhesive for joining the metal frame 2 to the insulating base 1 and also functions as a protective layer for preventing the metal frame 2 from being oxidized and corroded. Further, it functions as an adhesive for joining the metal lid 11 to the upper surface of the metal frame 2. As described above, according to the wiring board of the present invention, oxidative corrosion of the metal frame 2 is effectively prevented by the thermoplastic resin 3 covering the surface of the metal frame 2 and the insulating base 1 and the metal frame 2 are separated from each other. It is firmly joined via the thermoplastic resin 3. In addition, the metal cover 11 can be easily joined onto the metal frame 2 using the thermoplastic resin 3 covering the metal frame 2 as an adhesive. Then, the electronic component 4 is mounted on the mounting portion A of the insulating base 1 such that its electrodes are bonded to the electronic component connection pads 5 a via the solder bumps 6, and the metal cover 11 is mounted on the upper surface of the metal frame 2. Is bonded to the upper surface of the electronic component 4 via the thermoplastic resin 3 so that the lower surface thereof is thermally coupled to the upper surface of the electronic component 4 via the thermally conductive grease, thereby forming an electronic device as a product. By connecting the external connection pad 5b to the wiring conductor of the external electric circuit board via the solder ball 10, the external connection pad 5b is mounted on the external electric circuit board. At this time, since the insulating base 1 and the metal frame 2 are joined via the thermoplastic resin 3, when the electronic component 4 is mounted on the mounting portion A or when the metal lid 11 is joined to the metal frame 2. When a stress is generated between the insulating base 1 and the metal frame 2 at the time of mounting or mounting on an external electric circuit board or the like, the stress causes the thermoplastic resin 3 joining them to be plastically deformed by heat. As a result, the insulating substrate 1 is well absorbed, and the occurrence of large warpage in the insulating base 1 is effectively prevented.
[0021]
If the thickness of the thermoplastic resin 3 covering the surface of the metal frame 2 is less than 10 μm, it becomes difficult to effectively prevent oxidative corrosion of the metal frame 2 and the insulating base 1 and the metal frame 2 It tends to be difficult to firmly join the body 2 or the metal frame 2 and the metal lid 11 via the thermoplastic resin 3. On the other hand, if it exceeds 200 μm, the insulating base 1 and the metal frame When joining the body 2 or joining the metal frame 2 and the metal lid 11, there is a risk that the thermoplastic resin 3 protrudes from these joints and contaminates the insulating base 1 and the electronic component 4. is there. Therefore, the thickness of the thermoplastic resin 3 covering the surface of the metal frame 2 is preferably in the range of 10 to 200 μm. When the melting temperature of the thermoplastic resin 3 that covers the surface of the metal frame 2 is lower than 220 ° C., when the electronic component 4 is mounted on the mounting portion A of the insulating base 1 or when the metal frame 2 is covered with a metal cover, When the body 11 is joined or mounted on an external electric circuit board, there is a risk that the thermoplastic resin 3 melts and the metal frame 2 is displaced. Therefore, the melting temperature of the thermoplastic resin 3 covering the surface of the metal frame 2 is preferably 220 ° C. or higher.
[0022]
Next, a method of manufacturing the above-described wiring board of the present invention will be described with reference to FIGS.
[0023]
First, as shown in a cross-sectional view in FIG. 2, an insulating base 1 having a mounting portion A on which an electronic component 4 is mounted on the upper surface and having a plurality of wiring conductors 5 extending from the mounting portion A to the lower surface, And a metal frame 2 having an opening surrounding the metal frame and having a surface coated with a thermoplastic resin 3 such as an aromatic polyester resin. As described above, the thickness of the thermoplastic resin 3 is preferably in the range of 10 to 200 μm. In order to cover the surface of the metal frame 2 with the thermoplastic resin 3, the metal frame is immersed in a solution in which a thermoplastic resin such as an aromatic polyester resin is dissolved in an organic solvent, and then pulled up. A method in which a solution obtained by dissolving a resin in an organic solvent is applied by spraying may be employed. In this case, since the surface of the metal frame 2 is coated with the thermoplastic resin 3, the oxidative corrosion is favorably prevented by the thermoplastic resin 3.
[0024]
Next, as shown in a cross-sectional view in FIG. 3, a metal frame 2 whose surface is covered with a thermoplastic resin 3 is placed on the upper surface of the insulating base 1 so as to surround the mounting portion A, and these are vertically moved. While being pressurized at a pressure of about 10 to 50 MPa, the thermoplastic resin 3 covering the surface of the metal frame 2 is softened by heating at a temperature of about 100 to 180 ° C. so that the insulating base 1 and the thermoplastic resin 3 are separated from each other. After the thermocompression bonding, the insulating base 1 and the metal frame 2 are joined via the thermoplastic resin 3 by cooling to room temperature. As described above, according to the manufacturing method of the present invention, the metal frame 2 whose surface is coated with the thermoplastic resin 3 is placed on the upper surface of the insulating base 1, and these are heated while applying pressure from above and below. After the thermoplastic resin 3 on the surface of the metal frame 2 is softened to thermally compress the insulating substrate 1 and the thermoplastic resin 3, they are cooled and the insulating substrate 1 and the metal frame 2 are separated from the thermoplastic resin 3. Can be effectively prevented from oxidizing corrosion of the metal frame 2 by the thermoplastic resin 3 covering the metal frame 2, and the insulating base 1 and the metal frame can be interposed via the thermoplastic resin 3. A wiring board in which the body 2 is firmly joined can be obtained. Further, since the surface of the metal frame 2 is covered with the thermoplastic resin 3, the wiring board can be easily joined to the metal frame 2 via the thermoplastic resin 3. be able to.
[0025]
It should be noted that the present invention is not limited to the example of the above-described embodiment, and various changes can be made without departing from the scope of the present invention.
[0026]
【The invention's effect】
According to the wiring board of the present invention, since the metal frame is covered with the thermoplastic resin and is bonded to the insulating base via the thermoplastic resin, the metal frame is oxidized and corroded. In addition to being well prevented by the covering thermoplastic resin, the insulating base and the metal frame are firmly bonded via the thermoplastic resin, thereby allowing the mounted electronic components to operate normally and stably for a long period of time. Can be. Further, since the metal frame is covered with the thermoplastic resin, the metal lid can be easily joined to the upper surface of the metal frame via the thermoplastic resin. Further, since the insulating base and the metal frame are joined via the thermoplastic resin, the electronic component is mounted on the mounting portion, the metal cover is joined to the metal frame, or the external electric circuit board is mounted. Even when stress is generated between the insulating base and the metal frame during mounting on the substrate, the stress is well absorbed by the plastic deformation of the thermoplastic resin that joins the two, and the large stress is applied to the insulating base. No warpage occurs, and as a result, the mounted electronic components can be connected well to an external electric circuit.
[0027]
According to the method of manufacturing a wiring board of the present invention, a metal frame whose surface is coated with a thermoplastic resin is placed on an insulating base, and these are heated while applying pressure from above and below. After the thermoplastic resin on the surface of the metal frame is softened and the thermoplastic resin and the insulating substrate are thermocompression-bonded, they are cooled to apply the insulating substrate and the metal frame to the metal frame. Since the metal frame is joined via the resin, the oxidative corrosion of the metal frame can be effectively prevented by the thermoplastic resin covering the metal frame, and the insulating base and the metal frame are strongly bonded via the thermoplastic resin. Can be obtained. Further, since the surface of the metal frame is covered with the thermoplastic resin, it is possible to provide a wiring board that can easily join the metal lid to the metal frame via the thermoplastic resin.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a wiring board of the present invention.
FIG. 2 is a cross-sectional view illustrating a method of manufacturing a wiring board according to the present invention.
FIG. 3 is a cross-sectional view for explaining the method for manufacturing a wiring board of the present invention.
[Explanation of symbols]
1 ... insulating base A ... mounting part 2 ... metal frame 3 ... thermoplastic resin 4 ... electronic parts 5 ... .... Wiring conductors

Claims (2)

上面に電子部品が搭載される搭載部および該搭載部から下面にかけて導出する複数の配線導体を有する有機材料系の絶縁基体と、該絶縁基体の上面に前記搭載部を取り囲むようにして接合された金属枠体とを具備して成る配線基板であって、前記金属枠体は、その表面に熱可塑性樹脂が被覆されているとともに該熱可塑性樹脂を介して前記絶縁基体に接合されていることを特徴とする配線基板。An organic material-based insulating base having a mounting portion on which the electronic component is mounted on the upper surface and a plurality of wiring conductors extending from the mounting portion to the lower surface, and joined to the upper surface of the insulating base so as to surround the mounting portion; A wiring board comprising a metal frame, wherein the metal frame has a surface coated with a thermoplastic resin and is bonded to the insulating base via the thermoplastic resin. Characteristic wiring board. 上面に電子部品が搭載される搭載部および該搭載部から下面にかけて導出する複数の配線導体を有する絶縁基体と、前記搭載部を取り囲む開口部を有するとともに表面が熱可塑性樹脂で被覆された金属枠体とを準備する工程と、前記絶縁基体の上面に前記金属枠体を、前記搭載部を取り囲むようにして載置するとともに、これらを上下から圧力を印加しながら加熱して前記熱可塑性樹脂を軟化させて該熱可塑性樹脂と前記絶縁基体とを熱圧着させた後、これらを冷却して前記絶縁基体と前記金属枠体とを前記熱可塑性樹脂を介して接合する工程とを順次行うことを特徴とする配線基板の製造方法。An insulating base having a mounting portion on which an electronic component is mounted on the upper surface and a plurality of wiring conductors extending from the mounting portion to the lower surface; and a metal frame having an opening surrounding the mounting portion and having a surface coated with a thermoplastic resin Preparing a body, and mounting the metal frame on the upper surface of the insulating base so as to surround the mounting portion, and heating the thermoplastic resin while applying pressure from above and below to remove the thermoplastic resin. Softening and thermocompression bonding the thermoplastic resin and the insulating substrate, and then cooling them and joining the insulating substrate and the metal frame via the thermoplastic resin. A method for manufacturing a wiring board, which is characterized by the following.
JP2002335675A 2002-11-19 2002-11-19 Wiring board and its manufacturing method Pending JP2004172304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335675A JP2004172304A (en) 2002-11-19 2002-11-19 Wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335675A JP2004172304A (en) 2002-11-19 2002-11-19 Wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004172304A true JP2004172304A (en) 2004-06-17

Family

ID=32699746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335675A Pending JP2004172304A (en) 2002-11-19 2002-11-19 Wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004172304A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016092893A1 (en) * 2014-12-12 2017-04-27 株式会社メイコー Molded circuit module and manufacturing method thereof
CN112582370A (en) * 2019-09-27 2021-03-30 恒劲科技股份有限公司 Flip chip package substrate and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016092893A1 (en) * 2014-12-12 2017-04-27 株式会社メイコー Molded circuit module and manufacturing method thereof
US10271432B2 (en) 2014-12-12 2019-04-23 Meeko Electronics Co., Ltd. Encapsulated circuit module, and production method therefor
TWI699159B (en) * 2014-12-12 2020-07-11 日商名幸電子股份有限公司 Molded circuit module and manufacturing method thereof
CN112582370A (en) * 2019-09-27 2021-03-30 恒劲科技股份有限公司 Flip chip package substrate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR100232414B1 (en) Multilayer circuit board and manufacture method thereof
JP4592751B2 (en) Method for manufacturing printed wiring board
US10745819B2 (en) Printed wiring board, semiconductor package and method for manufacturing printed wiring board
WO2007126090A1 (en) Circuit board, electronic device and method for manufacturing circuit board
JP2016063130A (en) Printed wiring board and semiconductor package
JP2002290022A (en) Wiring board, its manufacturing method, and electronic device
JP2005191156A (en) Wiring plate containing electric component, and its manufacturing method
JP4875925B2 (en) Multilayer wiring board and manufacturing method thereof
JP6669330B2 (en) Printed circuit board with built-in electronic components and method of manufacturing the same
JP2004327743A (en) Wiring board with solder bump and its producing process
JP2004172304A (en) Wiring board and its manufacturing method
JP2001077536A (en) Printed wiring board with built-in electronic circuit board, and manufacture thereof
JP2007059588A (en) Method of manufacturing wiring board, and wiring board
JP2003282774A (en) Wiring board and its manufacturing method
JP2004055958A (en) Wiring board with pin, and electronic device using same
JP6367902B2 (en) Wiring board
JP2004165328A (en) Wiring board having solder bump and its manufacturing method
JP2003338574A (en) Wiring board with pin and electronic device using the same
JP2004119544A (en) Wiring board and its manufacturing method
JP4395356B2 (en) Wiring board manufacturing method
JP2007115952A (en) Interposer substrate and manufacturing method thereof
JP2004119442A (en) Method for manufacturing wiring board with solder bump
JP2005209847A (en) Method of manufacturing wiring board
JP2017201674A (en) Printed wiring board and method of manufacturing the same
JP2004327741A (en) Wiring board with solder bump and its producing process