【0001】
【発明の属する技術分野】
本発明は空気調和機に係わり、特にインバータにより運転制御されるインバータ圧縮機の暖房運転制御を改良した空気調和機に関する。
【0002】
【従来の技術】
従来、ヒートポンプ式空気調和機は、暖房運転起動時、室内ユニットからの冷風吹出しを防止するため、凝縮温度が所定の温度に到達してから送風機を運転させている(例えば、特許文献1)。
【0003】
しかしながら、従来のヒートポンプ式空気調和機は、冷媒が密閉形圧縮機の密閉ケース内の冷凍機油に多量に溶け込むと、圧縮機の始動時にケース内の圧力が急に低下した場合、冷凍機油の中に溶けていた冷媒が蒸発し、冷凍機油の中で冷媒の気泡が発生するオイルフォーミングといわれる現象が起きて、潤滑不良を起こすことがある。冷風吹出しを防止するために、凝縮温度が上昇した時点で送風機を運転すると、凝縮温度T℃の時点では、冷凍機油に溶け込んでいた冷媒が蒸発しきれずに、多量に残った状態にあるため、送風運転と共に、冷凍サイクル圧が低下し、上記オイルフォーミング現象が発生する。
【0004】
また、図6に示すように、従来の空気調和機において、冷風吹出しを防止するため、凝縮温度が所定の温度T1℃に達するまで室内側送風機を駆動させず、さらに、オイルフォーミング現象を防止するために、インバータ圧縮機の回転数上昇速度は、通常のN1rps/secで運転されているが、暖房能力が低下して吹出される温風温度が低下し快適性が得られず、さらに、回転数上昇速度を単にN1rps/secにするだけでは、図6の凝縮温度に表れるように凝縮温度の低下(圧縮機ケース内の圧力の急速な低下)が生じ、十分にオイルフォーミング現象を抑制することができない。
【0005】
このオイルフォーミグ現象が起きると、油ポンプが正常に冷凍機油を送ることができなくなるという問題があり、また、蒸発する冷媒と共に冷凍機油を圧縮機外に吐出する問題があり、さらに、送風機運転により、凝縮温度が一時的に低下するため、暖房立上りが遅くなり、快適性が低下するという問題があった。
【0006】
【特許文献1】
実公昭55−31468号公報(第2頁左欄第32行〜右欄第3行、図面)
【0007】
【発明が解決しようとする課題】
そこで、オイルフォーミグ現象を防止して圧縮機の油ポンプが圧縮機の潤滑部に正常に冷凍機油を送ることができ、蒸発する冷媒と共に冷凍機油を圧縮機外に吐出することがなく、さらに、暖房立上りに遅れがなく快適性が図れる空気調和機が要望されていた。
【0008】
本発明は上述した事情を考慮してなされたもので、オイルフォーミグ現象を防止して油ポンプが正常に冷凍機油を送ることができ、蒸発する冷媒と共に冷凍機油を圧縮機外に吐出することがなく、さらに、暖房立上りに遅れがなく快適性が図れる空気調和機を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の1つの態様によれば、インバータにより運転制御されるインバータ圧縮機を有する空気調和機において、冷媒の凝縮温度を検知する凝縮温度検知手段と、この凝縮温度検知手段が検知した凝縮温度信号を受信し室内側送風機を制御する送風機制御手段と、前記凝縮温度検知手段が検知した凝縮温度信号を受信し前記インバータ圧縮機の回転数を制御する圧縮機制御手段とを設け、暖房運転の起動時に前記室内側送風機が運転されるタイミングに応じて、前記インバータ圧縮機の回転数上昇速度を変更させることを特徴とする空気調和機が提供される。これにより、オイルフォーミグ現象を防止して油ポンプが正常に冷凍機油を送ることができ、蒸発する冷媒と共に冷凍機油を圧縮機外に吐出することがなく、さらに、暖房立上りに遅れがなく快適性が図れる空気調和機が実現される。
【0010】
好適な一例では、上記回転数上昇速度の変更は、上昇速度の増加である。
【0011】
【発明の実施の形態】
以下、本発明に係わる空気調和機の第1実施形態について添付図面を参照して説明する。
【0012】
図1は本発明に係わる空気調和機の第1実施形態の概念図である。
【0013】
図1に示すように、本第1実施形態の空気調和機1は、冷媒を圧縮し、インバータにより運転制御される回転速度可変の密閉形のインバータ圧縮機2と、暖房運転時インバータ圧縮機2が圧縮した高温冷媒が流れる室内側熱交換器3と、冷媒が蒸発する室外側熱交換器4と、室内側熱交換器3に送風しファンとモータからなる室内側送風機5と、冷媒の凝縮温度を検知する凝縮温度検知手段6と、この凝縮温度検知手段6が検知した凝縮温度信号を受信し室内側送風機5の回転数を制御する送風機制御手段7と、凝縮温度検知手段6が検知した凝縮温度信号を受信しインバータ圧縮機2の回転数を制御する圧縮機制御手段8とを具備している。
【0014】
上記凝縮温度検知手段6は、暖房運転時、冷媒の凝縮温度を検知できるように、例えば、室内側熱交換器3に取付けられている。
【0015】
また、送風機制御手段7は、室内側送風機制御部7aと室内側送風機駆動部7bで構成され、凝縮温度検知手段6からの凝縮温度信号に基づき室内側送風機5の回転数を、ON/OFFを含め制御できるようになっている。
【0016】
さらに、圧縮機制御手段8は、圧縮機制御部8aと圧縮機駆動部(インバータ)8bで構成され、室内側送風機制御部7aを介して、凝縮温度検知手段6からの凝縮温度信号に基づき、インバータ圧縮機2の回転数を制御するようになっている。
【0017】
次に本発明に係わる空気調和機の制御方法について、図2に示す制御フローチャート及び図3に示す制御関連図に沿って説明する。
【0018】
インバータ圧縮機2を含む室外機は停止状態にあり、暖房運転を開始し、インバータ圧縮機2を通常の回転数上昇速度のN1rps/secで運転する(S1)。
凝縮温度検出手段6により凝縮温度を検出する(S2)。
室内側送風機制御部7a及び室内側送風機駆動部7bを介して凝縮温度がT1℃以上になった時点で室内側送風機5を駆動する(S3)。
室内側送風機5が駆動するタイミングで、圧縮機8の回転数上昇速度をN2rps/secに変更、例えば増加する(S4)。
凝縮温度が[T1+ΔT]となるとこれを異常として検出する(S5)。
凝縮温度が[T1+ΔT]の異常状態を検出した時点で、インバータ圧縮機の回転数上昇速度を通常のN1rps/secに戻し、目標回転数(空調負荷に対応する回転数)まで上昇させる(S6)。
【0019】
上記のように室内側送風機5のON/OFF制御及びインバータ圧縮機2の回転数上昇速度を制御することにより、冷凍サイクル圧力低下が抑制され、圧縮機ケース内のオイルフォーミング現象が抑制される。
【0020】
これにより、インバータ圧縮機2の潤滑不良が解消され、室内送風機5の運転時における凝縮温度低下が防止されるため、室内ユニットの温風の低下が防止され、さらに、暖房立上り時間の短縮となるため、ユーザの暖房快適性が向上する。
【0021】
また、本発明に係わる空気調和機の第2実施形態について説明する。
【0022】
上記第1実施形態が、インバータ圧縮機の回転数を空調負荷に対応する目標回転数まで連続的に上昇させていくものにおいて、暖房運転の起動時に室内側送風機が運転するタイミングに応じて、インバータ圧縮機の回転数上昇速度を増加させるのに対して、本第2実施形態は、インバータ圧縮機の回転数を空調負荷に対応した目標回転数まで上昇させる場合、複数の所定目標回転数毎に保持しながら段階的に上昇させていく空気調和機に適用したものである。
【0023】
本第2実施形態を図4に示す制御フローチャート及び図5に示す制御関連図に沿って説明する。
【0024】
インバータ圧縮機2を含む室外機は停止状態にあり、暖房運転を開始し、インバータ圧縮機2を通常の回転数上昇速度のN1rps/secで運転する(S11)。
目標の回転数n1で保持する(S12)。
凝縮温度検出手段6により凝縮温度を検知し、室内側送風機制御部7aで凝縮温度≧T℃か否か判断する(S13)。
凝縮温度がT℃以上になった時点で、室内側送風機制御部7a及び室内側送風機駆動部7bを介して室内側送風機5を駆動する(S14)。
【0025】
室内側送風機5が駆動するタイミングで、インバータ圧縮機の回転数上昇速度をN2rps/secに増加する(S15)。
凝縮温度が[T1+ΔT]を検出するとこれを異常と判断する(S16)。
凝縮温度が[T1+ΔT]の異常状態を検出した時点で、目標回転数n2に保持する(S17)。
所定時間経過後、目標回転数n3にするため、インバータ圧縮機2の回転数上昇速度を通常のN1rps/secに戻す(S18)。
目標回転数n3に保持する(S19)。
【0026】
上記のように室内側送風機5のON/OFF制御、インバータ圧縮機2の回転数上昇速度制御及び所定の目標回転数に保持することにより、冷凍サイクル圧力低下が抑制され、圧縮機ケース内のオイルフォーミング現象が抑制される。
【0027】
【発明の効果】
本発明に係わる空気調和機によれば、圧縮機の油ポンプが圧縮機の潤滑部に正常に冷凍機油を送ることができ、蒸発する冷媒と共に油を圧縮機のケース外に吐出することがなく、さらに、暖房立上りに遅れがなく快適性が図れる空気調和機を提供することができる。
【図面の簡単な説明】
【図1】本発明に係わる空気調和機の第1実施形態の概念図。
【図2】本発明に係わる空気調和機の第1実施形態の制御フローチャート。
【図3】本発明に係わる空気調和機の第1実施形態の制御関連図。
【図4】本発明に係わる空気調和機の第2実施形態の制御フローチャート。
【図5】本発明に係わる空気調和機の第2実施形態の制御関連図。
【図6】従来の空気調和機の制御関連図。
【符号の説明】
1 空気調和機
2 インバータ圧縮機
3 室内側熱交換器
4 室外側熱交換器
5 室内側送風機
6 凝縮温度検知手段
7 送風機制御手段
7a 室内側送風機制御部
7b 室内側送風機駆動部
8 圧縮機制御手段
8a 圧縮機制御部
8b 圧縮機駆動部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner, and more particularly to an air conditioner in which heating operation control of an inverter compressor, which is controlled by an inverter, is improved.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a heat pump type air conditioner, when a heating operation is started, a blower is operated after a condensing temperature reaches a predetermined temperature in order to prevent blowing of cool air from an indoor unit (for example, Patent Document 1).
[0003]
However, the conventional heat pump type air conditioner has a problem that when a large amount of refrigerant is dissolved in the refrigerating machine oil in the closed case of the hermetic compressor, if the pressure in the case suddenly drops when the compressor is started, the refrigerant in the refrigerating machine oil may not be used. In some cases, a phenomenon called oil forming occurs in which the refrigerant dissolved in the refrigerant evaporates and bubbles of the refrigerant are generated in the refrigerating machine oil, resulting in poor lubrication. When the blower is operated at the time when the condensing temperature rises in order to prevent the blowing of the cold air, at the time of the condensing temperature T ° C., the refrigerant dissolved in the refrigerating machine oil is not completely evaporated and remains in a large amount. Along with the blowing operation, the refrigeration cycle pressure decreases, and the above-described oil forming phenomenon occurs.
[0004]
In addition, as shown in FIG. 6, in the conventional air conditioner, the indoor blower is not driven until the condensing temperature reaches a predetermined temperature T 1 ° C in order to prevent the blowing of cold air, and further, the oil forming phenomenon is prevented. In order to achieve this, the rotation speed of the inverter compressor is increased at a normal N 1 rps / sec. However, the heating capacity is reduced and the temperature of the hot air blown out is reduced, and comfort cannot be obtained. Further, simply setting the rotation speed increasing speed to N 1 rps / sec causes a decrease in the condensing temperature (a rapid decrease in the pressure in the compressor case) as shown in the condensing temperature in FIG. The phenomenon cannot be suppressed.
[0005]
When this oil forming phenomenon occurs, there is a problem that the oil pump cannot normally send the refrigerating machine oil, and there is a problem that the refrigerating machine oil is discharged to the outside of the compressor together with the evaporating refrigerant. As a result, the condensing temperature is temporarily lowered, so that there is a problem that the rise of heating is delayed and comfort is reduced.
[0006]
[Patent Document 1]
Japanese Utility Model Publication No. 55-31468 (page 32, left column, line 32 to right column, third line, drawing)
[0007]
[Problems to be solved by the invention]
Therefore, the oil pump of the compressor can normally send the refrigerating machine oil to the lubricating part of the compressor by preventing the oil forming phenomenon, so that the refrigerating machine oil is not discharged out of the compressor together with the evaporating refrigerant. There has been a demand for an air conditioner that can provide comfort without delay in heating startup.
[0008]
The present invention has been made in consideration of the above-described circumstances, and an oil pump can normally send refrigerating machine oil by preventing an oil forming phenomenon, and discharge refrigerating machine oil to the outside of a compressor together with evaporating refrigerant. It is another object of the present invention to provide an air conditioner that can provide comfort without delay in heating start-up without delay.
[0009]
[Means for Solving the Problems]
To achieve the above object, according to one aspect of the present invention, in an air conditioner having an inverter compressor whose operation is controlled by an inverter, a condensing temperature detecting means for detecting a condensing temperature of a refrigerant; Blower control means for receiving a condensation temperature signal detected by the means and controlling the indoor blower, and compressor control means for receiving the condensation temperature signal detected by the condensation temperature detection means and controlling the rotation speed of the inverter compressor; And an air conditioner characterized by changing a rotation speed increasing speed of the inverter compressor according to a timing at which the indoor blower is operated at the time of starting a heating operation. As a result, the oil pump can send the refrigerating machine oil normally by preventing the oil forming phenomenon, and the refrigerating machine oil is not discharged to the outside of the compressor together with the evaporating refrigerant. This realizes an air conditioner with improved performance.
[0010]
In a preferred example, the change in the rotation speed increasing speed is an increase in the increasing speed.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of an air conditioner according to the present invention will be described with reference to the accompanying drawings.
[0012]
FIG. 1 is a conceptual diagram of a first embodiment of an air conditioner according to the present invention.
[0013]
As shown in FIG. 1, an air conditioner 1 of the first embodiment compresses a refrigerant, and has a variable rotation speed hermetic inverter compressor 2 that is operated and controlled by an inverter. The indoor heat exchanger 3 through which the high-temperature refrigerant compressed, the outdoor heat exchanger 4 in which the refrigerant evaporates, the indoor blower 5 that blows the indoor heat exchanger 3 and includes a fan and a motor, and condenses the refrigerant The condensation temperature detecting means 6 for detecting the temperature, the blower control means 7 for receiving the condensation temperature signal detected by the condensation temperature detecting means 6 and controlling the rotation speed of the indoor blower 5, and the condensation temperature detecting means 6 The compressor control means 8 receives a condensation temperature signal and controls the rotation speed of the inverter compressor 2.
[0014]
The condensing temperature detecting means 6 is attached to, for example, the indoor heat exchanger 3 so as to detect the condensing temperature of the refrigerant during the heating operation.
[0015]
The blower control unit 7 includes an indoor blower control unit 7a and an indoor blower drive unit 7b, and controls the number of revolutions of the indoor blower 5 based on a condensation temperature signal from the condensation temperature detection unit 6 to ON / OFF. It is possible to control including.
[0016]
Further, the compressor control means 8 is constituted by a compressor control section 8a and a compressor drive section (inverter) 8b, and based on a condensing temperature signal from the condensing temperature detecting means 6 via the indoor blower control section 7a. The rotation speed of the inverter compressor 2 is controlled.
[0017]
Next, a control method of the air conditioner according to the present invention will be described with reference to a control flowchart shown in FIG. 2 and a control-related diagram shown in FIG.
[0018]
The outdoor unit including the inverter compressor 2 is in a stopped state, starts a heating operation, and operates the inverter compressor 2 at a normal rotation speed increasing speed of N 1 rps / sec (S1).
The condensation temperature is detected by the condensation temperature detection means 6 (S2).
The indoor blower 5 is driven when the condensing temperature becomes equal to or higher than T 1 ° C via the indoor blower control unit 7a and the indoor blower drive unit 7b (S3).
At the timing when the indoor blower 5 is driven, the rotation speed increasing speed of the compressor 8 is changed to, for example, increased to N 2 rps / sec (S4).
When the condensation temperature becomes [T 1 + ΔT], this is detected as abnormal (S5).
When the condensing temperature detects an abnormal state of [T 1 + ΔT], the rotation speed of the inverter compressor is returned to the normal N 1 rps / sec and increased to the target rotation speed (the rotation speed corresponding to the air conditioning load). (S6).
[0019]
As described above, the ON / OFF control of the indoor blower 5 and the control of the rotation speed increasing speed of the inverter compressor 2 suppress the decrease in the refrigeration cycle pressure and the oil forming phenomenon in the compressor case.
[0020]
Thereby, poor lubrication of the inverter compressor 2 is eliminated, and a decrease in the condensing temperature during operation of the indoor blower 5 is prevented. Therefore, a decrease in the warm air in the indoor unit is prevented, and the heating start-up time is shortened. Therefore, the heating comfort of the user is improved.
[0021]
Further, a second embodiment of the air conditioner according to the present invention will be described.
[0022]
In the first embodiment, the rotation speed of the inverter compressor is continuously increased to a target rotation speed corresponding to the air-conditioning load. In contrast to increasing the rotation speed increasing speed of the compressor, the second embodiment increases the rotation speed of the inverter compressor to a target rotation speed corresponding to the air conditioning load. This is applied to an air conditioner that gradually rises while holding it.
[0023]
The second embodiment will be described with reference to a control flowchart shown in FIG. 4 and a control-related diagram shown in FIG.
[0024]
The outdoor unit including the inverter compressor 2 is in a stopped state, starts a heating operation, and operates the inverter compressor 2 at a normal rotation speed increasing speed of N 1 rps / sec (S11).
Held at a rotational speed n 1 of the target (S12).
The condensing temperature is detected by the condensing temperature detecting means 6, and it is determined whether or not the condensing temperature ≧ T ° C. by the indoor-side blower controller 7a (S13).
When the condensing temperature becomes equal to or higher than T ° C., the indoor blower 5 is driven via the indoor blower controller 7a and the indoor blower driver 7b (S14).
[0025]
At the timing when the indoor blower 5 is driven, the rotation speed increasing speed of the inverter compressor is increased to N 2 rps / sec (S15).
When the condensation temperature detects [T 1 + ΔT], it is determined that this is abnormal (S 16).
When the condensation temperature is detected the abnormal state of the [T 1 + ΔT], it holds the target rotational speed n 2 (S17).
After a predetermined time, to the target rotational speed n 3, it returns the rotational speed increase speed of the inverter compressor 2 to the normal N 1 rps / sec (S18) .
It holds the target rotational speed n 3 (S19).
[0026]
As described above, the ON / OFF control of the indoor blower 5, the rotation speed increase speed control of the inverter compressor 2, and the holding at the predetermined target rotation speed suppress the refrigeration cycle pressure drop, and reduce the oil in the compressor case. The forming phenomenon is suppressed.
[0027]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the air conditioner which concerns on this invention, the oil pump of a compressor can normally send refrigerating machine oil to the lubrication part of a compressor, and does not discharge oil with the evaporated refrigerant | coolant out of the case of a compressor. Further, it is possible to provide an air conditioner in which comfort can be achieved without delay in heating rise.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a first embodiment of an air conditioner according to the present invention.
FIG. 2 is a control flowchart of a first embodiment of the air conditioner according to the present invention.
FIG. 3 is a control-related diagram of the first embodiment of the air conditioner according to the present invention.
FIG. 4 is a control flowchart of a second embodiment of the air conditioner according to the present invention.
FIG. 5 is a control-related diagram of a second embodiment of the air conditioner according to the present invention.
FIG. 6 is a control-related diagram of a conventional air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Inverter compressor 3 Indoor heat exchanger 4 Outdoor heat exchanger 5 Indoor blower 6 Condensation temperature detection means 7 Blower control means 7a Indoor blower control section 7b Indoor blower drive section 8 Compressor control means 8a Compressor control unit 8b Compressor drive unit