JPH0719617A - Air current velocity adjusting device of condenser fan - Google Patents
Air current velocity adjusting device of condenser fanInfo
- Publication number
- JPH0719617A JPH0719617A JP5185486A JP18548693A JPH0719617A JP H0719617 A JPH0719617 A JP H0719617A JP 5185486 A JP5185486 A JP 5185486A JP 18548693 A JP18548693 A JP 18548693A JP H0719617 A JPH0719617 A JP H0719617A
- Authority
- JP
- Japan
- Prior art keywords
- condenser
- outside air
- temperature sensor
- blower
- air temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/11—Fan speed control
- F25B2600/111—Fan speed control of condenser fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/027—Condenser control arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、エアコンやショーケー
ス等の空調・冷凍装置に用いられる凝縮器を空冷するた
めの凝縮器用送風機の速度調整装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a speed adjusting device for a blower for a condenser for air-cooling a condenser used in an air conditioner / refrigerator such as an air conditioner or a showcase.
【0002】[0002]
【従来の技術】従来この種エアコン等の空調装置におい
ては、冷凍サイクルを構成する圧縮機及び凝縮器は屋外
に設置され、蒸発器は屋内に設置される。また、凝縮器
には圧縮機から吐出された高温ガス冷媒が流入し、そこ
で凝縮液化するものであるから、従来より凝縮器には凝
縮器用送風機を設け、外気により凝縮器を強制空冷する
よう構成している。2. Description of the Related Art Conventionally, in an air conditioner such as this type of air conditioner, a compressor and a condenser constituting a refrigeration cycle are installed outdoors, and an evaporator is installed indoors. In addition, since the high temperature gas refrigerant discharged from the compressor flows into the condenser and condenses and liquefies there, the condenser is conventionally provided with a condenser blower, and the condenser is forcedly air-cooled by the outside air. is doing.
【0003】ここで、凝縮器用送風機による凝縮器の空
冷が不足すると、凝縮圧力(高圧圧力)が異常に上昇
し、それによって所定の冷凍能力が得られなくなると共
に、機器の損傷をも来す。逆に空冷過多となると凝縮圧
力が上昇できず、冷凍サイクルの低圧圧力が異常に降下
し、低圧圧力スイッチが短期間でON・OFFを繰り返
す所謂ショートサイクル運転が発生して、これによって
も機器の損傷を来す。Here, if the air-cooling of the condenser by the condenser blower is insufficient, the condensing pressure (high pressure) rises abnormally, which makes it impossible to obtain a predetermined refrigerating capacity and damages the equipment. On the contrary, if the air cooling is excessive, the condensing pressure cannot be raised, the low pressure of the refrigeration cycle drops abnormally, and the so-called short cycle operation occurs in which the low pressure switch repeatedly turns on and off in a short period of time. Cause damage.
【0004】そこで、従来より凝縮器のパイプ部分には
その温度(凝縮温度)を検出する凝縮器温度センサーを
設け、この凝縮器温度センサーの出力信号に基づいて制
御装置により図2に示す如き標準的回転数特性にて凝縮
器用送風機の回転数を調整していた。即ち、凝縮温度C
Tが高い場合には凝縮器用送風機の回転率Nを高くして
回転数を速くし、凝縮温度CTが低下するに従って回転
率Nを低下させて行くことにより、凝縮器を適切に空冷
するものである。Therefore, conventionally, a condenser temperature sensor for detecting the temperature (condensation temperature) is provided in the pipe portion of the condenser, and a standard device as shown in FIG. 2 is provided by the controller based on the output signal of the condenser temperature sensor. The rotational speed of the blower for the condenser was adjusted by the characteristic rotational speed characteristic. That is, the condensation temperature C
When T is high, the rotation speed N of the condenser blower is increased to increase the rotation speed, and the rotation speed N is decreased as the condensation temperature CT decreases, thereby appropriately cooling the condenser with air. is there.
【0005】[0005]
【発明が解決しようとする課題】ところで、夏季には他
の季節よりも昼夜を通じて外気温度が上昇するため、凝
縮温度も高くなる。従って、制御装置は凝縮器用送風機
の回転率を高く維持する傾向となり、その騒音も比較的
大きくなる。しかしながら、夏季には一般家庭では窓を
開けて就寝する場合が多く、上述の如く大きい騒音を発
する隣家の凝縮器用送風機により就寝できなくなる問題
があった。By the way, in summer, the outside air temperature rises throughout the day and night compared to other seasons, so the condensation temperature also rises. Therefore, the control device tends to maintain the rotation rate of the condenser blower at a high level, and the noise thereof becomes relatively large. However, in summer, many ordinary households sleep by opening windows, and there is a problem that the blower for the condenser of the adjacent house, which emits a large amount of noise as described above, prevents sleeping.
【0006】本発明は、係る従来の技術的課題を解決す
るために成されたものであり、夏季の夜間に凝縮器用送
風機の騒音により就寝が阻害されることを有効に防止す
ることができる凝縮器用送風機の速度調整装置を提供す
ることを目的とする。The present invention has been made to solve the above-mentioned conventional technical problems, and can effectively prevent the sleep from being disturbed by the noise of the condenser blower at night in summer. An object of the present invention is to provide a speed adjusting device for a ventilation fan.
【0007】[0007]
【課題を解決するための手段】即ち、本発明の凝縮器用
送風機の速度調整装置は、圧縮機、凝縮器、減圧装置及
び蒸発器を順次環状に接続して冷凍サイクルを構成する
と共に、凝縮器を空冷するための凝縮器用送風機を設け
たものに適用され、凝縮器の温度を検出する凝縮器温度
センサーと、この凝縮器温度センサ−の出力に基づき、
所定の標準的特性にて凝縮器用送風機の回転数を調整す
る制御装置と、外気温度を検出する外気温度センサーと
を備え、制御装置は外気温度センサ−の出力に基づき、
夏季の夜間に相当する外気温の場合には、凝縮器用送風
機の回転数を標準的特性よりも低騒音となる特性にて制
御するものである。That is, the speed adjusting device for a condenser blower of the present invention constitutes a refrigeration cycle by connecting a compressor, a condenser, a decompressor and an evaporator in sequence in an annular fashion, and also a condenser. It is applied to those provided with a blower for a condenser for air cooling, and a condenser temperature sensor for detecting the temperature of the condenser, and based on the output of this condenser temperature sensor,
A controller for adjusting the number of revolutions of the condenser blower with predetermined standard characteristics, and an outside air temperature sensor for detecting the outside air temperature are provided, and the controller is based on the output of the outside air temperature sensor-
In the case of an outside temperature corresponding to the nighttime in summer, the rotation speed of the condenser blower is controlled by the characteristic that the noise is lower than the standard characteristic.
【0008】[0008]
【作用】本発明の凝縮器用送風機の速度調整装置によれ
ば、外気温度を検出する外気温度センサーの出力に基づ
き、夏季の夜間に相当する外気温である場合には、制御
装置が標準的特性よりも低騒音となる特性にて凝縮器用
送風機の回転数を制御するので、夏季の夜間には凝縮器
用送風機の発生する騒音を低く抑えることができ、隣家
が窓を開けて就寝している場合等に発生する騒音問題を
解消することができる。特に、凝縮器用送風機の回転数
制御は自動的に切り換えられるので、例えば手動により
切り換える場合に比して操作性が向上すると共に、必要
な期間のみ切り換えられるので、例えば年間を通じて低
騒音となる特性で制御する場合に比して、凝縮圧力の上
昇による消費電力の増大を低減することができる。According to the speed adjusting device for a condenser blower of the present invention, the control device has a standard characteristic when the outside temperature is equivalent to the nighttime in summer, based on the output of the outside temperature sensor for detecting the outside temperature. Since the rotation speed of the condenser blower is controlled with the characteristic of lower noise, the noise generated by the condenser blower can be suppressed to a low level during the summer night, and when the neighbor's house opens the window and sleeps. It is possible to solve the noise problem that occurs in the above. In particular, since the rotation speed control of the condenser blower is automatically switched, the operability is improved as compared with, for example, the case where it is manually switched, and the switching is performed only for a necessary period, so that, for example, with the characteristic of low noise throughout the year. It is possible to reduce an increase in power consumption due to an increase in condensing pressure as compared with the case of controlling.
【0009】[0009]
【実施例】次に、図面に基づき本発明の実施例を詳述す
る。図1は本発明の速度調整装置18を適用する実施例
としてのエアコンACの冷凍サイクルの冷媒回路図、図
2は凝縮器用送風機11の回転数制御特性を示す図、図
3は速度調整装置18を構成する制御装置16のプログ
ラムを示すフローチャートである。図1において、ロー
タリーコンプレッサ、スクロールコンプレッサ等から成
る圧縮機1の吐出側の配管2には凝縮器3を構成する配
管4が接続され、この凝縮器3の出口側は配管6を介し
て減圧装置としての膨張弁7に接続されている。この膨
張弁7は蒸発器8に接続され、蒸発器8の出口側は圧縮
機1に接続されて環状の冷凍サイクルを構成している。Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a refrigerating cycle of an air conditioner AC as an embodiment to which the speed adjusting device 18 of the present invention is applied, FIG. 2 is a view showing a rotational speed control characteristic of a condenser blower 11, and FIG. 3 is a speed adjusting device 18 4 is a flowchart showing a program of the control device 16 constituting the above. In FIG. 1, a pipe 4 constituting a condenser 3 is connected to a discharge side pipe 2 of a compressor 1 including a rotary compressor, a scroll compressor and the like, and an outlet side of the condenser 3 is connected to a pressure reducing device via a pipe 6. Is connected to the expansion valve 7. The expansion valve 7 is connected to the evaporator 8, and the outlet side of the evaporator 8 is connected to the compressor 1 to form an annular refrigeration cycle.
【0010】前記凝縮器3は、複数の熱交換フィンに前
記配管4が挿通された熱交換器9と凝縮器用送風機11
とから成り、凝縮器用送風機11はモーター12とプロ
ペラファン13とから構成されている。そして、蒸発器
8は室内に設置されると共に、圧縮機1及び凝縮器3は
屋外に設置される。また、凝縮器3の熱交換器9の配管
4には凝縮器温度センサ−14が取り付けられると共
に、凝縮器温度センサ−14は凝縮器用送風機11の制
御装置16に接続されている。この制御装置16には更
に凝縮器3が設置された屋外の温度、即ち、外気温度を
検出する外気温度センサ−17が接続され、これら制御
装置16、凝縮器温度センサー14及び外気温度センサ
ー17により凝縮器用送風機11の速度調整装置18が
構成されている。The condenser 3 includes a heat exchanger 9 in which the pipe 4 is inserted through a plurality of heat exchange fins, and a condenser blower 11.
The condenser blower 11 includes a motor 12 and a propeller fan 13. The evaporator 8 is installed indoors, and the compressor 1 and the condenser 3 are installed outdoors. A condenser temperature sensor-14 is attached to the pipe 4 of the heat exchanger 9 of the condenser 3, and the condenser temperature sensor-14 is connected to the controller 16 of the condenser blower 11. The control device 16 is further connected to an outdoor temperature sensor 17 for detecting the outdoor temperature where the condenser 3 is installed, that is, the outdoor air temperature. The control device 16, the condenser temperature sensor 14 and the outdoor air temperature sensor 17 A speed adjusting device 18 of the condenser blower 11 is configured.
【0011】圧縮機1が起動されると、圧縮機1から吐
出された高温高圧のガス冷媒は配管2を経て凝縮器3の
熱交換器9に流入する。熱交換器9には後述する如く凝
縮器用送風機11から外気が通風されており、熱交換器
9に流入した冷媒は空冷されて凝縮液化する。凝縮器3
から出た冷媒は配管6を経て膨張弁7に至り、そこで減
圧された後、蒸発器8に流入してそこで蒸発する。この
ときの吸熱作用により室内を冷却する。そして、蒸発器
8から出た冷媒は圧縮機1に吸入される。尚、圧縮機1
の吸込側(低圧側)には図示しない低圧圧力スイッチが
設けられており、設定圧力(低圧側)の上限と下限を検
知して圧縮機1を運転・停止する。When the compressor 1 is started, the high temperature and high pressure gas refrigerant discharged from the compressor 1 flows into the heat exchanger 9 of the condenser 3 through the pipe 2. As will be described later, the heat exchanger 9 is ventilated with outside air from the condenser blower 11, and the refrigerant flowing into the heat exchanger 9 is air-cooled and condensed and liquefied. Condenser 3
The refrigerant discharged from the refrigerant reaches the expansion valve 7 via the pipe 6, is decompressed there, and then flows into the evaporator 8 to be evaporated there. The room is cooled by the endothermic action at this time. Then, the refrigerant discharged from the evaporator 8 is sucked into the compressor 1. The compressor 1
A low pressure switch (not shown) is provided on the suction side (low pressure side) of the compressor 1, and the compressor 1 is operated / stopped by detecting the upper and lower limits of the set pressure (low pressure side).
【0012】次に、図3を用いて速度調整装置18の制
御装置16による凝縮器用送風機11の回転数制御につ
き説明する。ステップS1にて制御装置16は凝縮器温
度センサー14の出力信号に基づき凝縮器3の熱交換器
9の温度、即ち、凝縮温度CTを入力する。次に、ステ
ップS2にて外気温度センサー17の出力信号に基づき
外気温度ATを入力してステップS3にて外気温度AT
が+21℃〜+27℃の範囲内か否か判断する。Next, the rotation speed control of the condenser blower 11 by the control device 16 of the speed adjusting device 18 will be described with reference to FIG. In step S1, the controller 16 inputs the temperature of the heat exchanger 9 of the condenser 3, that is, the condensation temperature CT based on the output signal of the condenser temperature sensor 14. Next, in step S2, the outside air temperature AT is input based on the output signal of the outside air temperature sensor 17, and in step S3, the outside air temperature AT is input.
Is within the range of + 21 ° C to + 27 ° C.
【0013】外気温度ATが+21℃〜+27℃の範囲
外である場合には、制御装置16はステップS4に進ん
で予め定められた標準的特性より回転数を選択してステ
ップS5にてモーター12へ出力し、モーター12を運
転する。即ち、ステップS4では図2に示す如く凝縮温
度CTが+50℃以上で回転率Nを100%とし、モー
ター12を全速で回転させると共に、凝縮温度CTが+
10℃に低下して回転率Nを0%とし、モーター12を
停止させる直線的な特性にて凝縮器用送風機11のモー
ター12の回転数を選択する。それによって、凝縮器3
の空冷能力を調整し、凝縮器3内の凝縮圧力HPを適正
値に制御する。When the outside air temperature AT is out of the range of + 21 ° C. to + 27 ° C., the control device 16 proceeds to step S4 and selects the rotation speed from the predetermined standard characteristic, and at step S5 the motor 12 is selected. To drive the motor 12. That is, in step S4, as shown in FIG. 2, the condensing temperature CT is + 50 ° C. or more, the rotation rate N is set to 100%, the motor 12 is rotated at full speed, and the condensing temperature CT is +.
The rotation speed N is set to 0% by decreasing to 10 ° C., and the rotation speed of the motor 12 of the condenser blower 11 is selected based on the linear characteristic of stopping the motor 12. Thereby, the condenser 3
The air-cooling capacity is adjusted to control the condensing pressure HP in the condenser 3 to an appropriate value.
【0014】一方、ステップS3にて外気温度ATが+
21℃〜+27℃の範囲内にあるときは、制御装置16
はステップS6に進んで予め実験により求めた低騒音特
性により回転数を選択してステップS5にてモーター1
2へ出力し、モーター12を運転する。ここで、+21
℃〜+27℃の範囲の外気温度ATは、夏季の夜間の外
気温度に相当するものであり、温度差を10℃〜15℃
とすると凝縮温度CTは略+31℃〜+42℃の範囲X
(図2)となる。On the other hand, in step S3, the outside air temperature AT becomes +
When the temperature is within the range of 21 ° C to + 27 ° C, the control device 16
Proceeds to step S6 to select the rotation speed according to the low noise characteristic previously obtained by the experiment, and at step S5 the motor 1
2 is output and the motor 12 is operated. Where +21
The outside air temperature AT in the range of 0 ° C to + 27 ° C corresponds to the outside air temperature at night in summer, and the temperature difference is 10 ° C to 15 ° C.
Then, the condensation temperature CT is approximately + 31 ° C to + 42 ° C in the range X
(Fig. 2).
【0015】そして、前記低騒音となる回転数特性で
は、図2に示す如く凝縮温度CTが+40℃で回転率N
が50%となるよう前記標準的回転数特性を平行移動さ
せる。標準的回転数特性では凝縮温度CTが+40℃の
とき回転率Nは75%であり、低騒音となる回転数特性
では回転率が25%低下することになる。これによる回
転数の低下により凝縮器用送風機11の発生する騒音は
低下するので、夏季の夜間に、隣家が窓を開けて就寝し
ている場合等に発生する騒音問題を解消することができ
る。特に、係る凝縮器用送風機11の回転数制御は自動
的に切り換えられるので、例えば手動により切り換える
場合に比して操作性が向上すると共に、必要な期間(夏
季の夜間に相当する期間)のみ切り換えられるので、例
えば年間を通じて低騒音となる特性で制御する場合に比
して、必要なときのみ凝縮器用送風機11の回転数を低
下させることができ、空冷能力の低下による凝縮圧力の
上昇で消費電力が増大する不都合を最小限に抑制でき
る。As shown in FIG. 2, the condensing temperature CT is + 40.degree.
The standard rotational speed characteristic is translated so that the ratio becomes 50%. In the standard rotation speed characteristic, the rotation rate N is 75% when the condensing temperature CT is + 40 ° C., and in the rotation speed characteristic that causes low noise, the rotation rate decreases by 25%. Since the noise generated by the condenser blower 11 is reduced due to the decrease in the rotation speed due to this, it is possible to solve the noise problem that occurs when the neighbor's house opens the window and goes to bed at night in summer. In particular, since the rotation speed control of the condenser blower 11 is automatically switched, the operability is improved as compared with, for example, a case where it is manually switched, and only a necessary period (a period corresponding to night in summer) is switched. Therefore, for example, as compared with the case where control is performed with low noise throughout the year, the number of rotations of the condenser blower 11 can be reduced only when necessary, and power consumption is increased due to increase in condensation pressure due to reduction in air cooling capacity. Increasing inconvenience can be suppressed to a minimum.
【0016】ここで、圧縮機1の始動時に外気温度AT
が高い場合(例えは+43℃)には、凝縮器温度センサ
ー14の温度検知が凝縮圧力HPの上昇に対して追従で
きず、前記標準的回転特性による制御では図4の(a)
に示す如く凝縮器用送風機11のモーター13の回転数
上昇が遅れ、同様にaで示す如く凝縮圧力HPが異常高
圧となる。When the compressor 1 is started, the outside air temperature AT
Is high (for example, + 43 ° C.), the temperature detection of the condenser temperature sensor 14 cannot follow the rise of the condensing pressure HP, and the standard rotation characteristic control shown in FIG.
As shown in, the increase in the rotation speed of the motor 13 of the condenser blower 11 is delayed, and similarly, the condensation pressure HP becomes an abnormally high pressure as indicated by a.
【0017】逆に、圧縮機1の始動時に外気温度ATが
極端に低く(例えば+20℃)凝縮圧力HPが低くなっ
ている場合(約8Kg/cm2 以下)、圧縮機1と同時
に凝縮器用送風機11が始動すると、図4の(c)に示
す如く凝縮圧力HPが上昇できず、これに伴い低圧圧力
LPも直ぐに低下する(図6に破線で示す)。係る場
合、フラッシュガスが発生して膨張弁7が正常な弁開度
でなくなるようになるが、前記低圧圧力スイッチの下限
以下の圧力になるので、圧縮機1は停止する(CUT
OUT)。その後、低圧圧力LPが上昇して上限の圧力
を越えると圧縮機1は再始動されるが(CUT I
N)、低圧圧力LPが低下してまた圧縮機1が停止す
る。これによって、圧縮機1は数秒或いは数十秒間の間
隔で運転・停止される所謂ショートサイクル運転を繰り
返すようになり、エアコンACの冷却能力が著しく低下
する。On the contrary, when the outside air temperature AT is extremely low (for example, + 20 ° C.) when the compressor 1 is started and the condensing pressure HP is low (about 8 Kg / cm 2 or less), the compressor 1 and the blower for the condenser are at the same time. When 11 is started, the condensation pressure HP cannot be increased as shown in FIG. 4C, and the low pressure LP is immediately decreased accordingly (shown by the broken line in FIG. 6). In such a case, flash gas is generated and the expansion valve 7 is no longer at a normal valve opening. However, since the pressure is below the lower limit of the low pressure switch, the compressor 1 is stopped (CUT).
OUT). After that, when the low pressure LP increases and exceeds the upper limit pressure, the compressor 1 is restarted (CUT I
N), the low pressure LP decreases and the compressor 1 stops again. As a result, the compressor 1 repeats a so-called short cycle operation in which it is operated and stopped at intervals of several seconds or tens of seconds, and the cooling capacity of the air conditioner AC is significantly reduced.
【0018】そこで、実施例では図7のフローチャート
に示す如く、速度調整装置18の制御装置16がステッ
プS7で圧縮機1を始動した場合、ステップS8で外気
温度センサー17より外気温度ATを入力する。そし
て、ステップS9にて表1の関係より凝縮器用送風機1
1のモーター12の回転数(回転率N)とモーター12
の始動までの遅延時間を選択する。Therefore, in the embodiment, as shown in the flowchart of FIG. 7, when the control device 16 of the speed adjusting device 18 starts the compressor 1 in step S7, the outside air temperature AT is input from the outside air temperature sensor 17 in step S8. . Then, in step S9, the blower 1 for the condenser is drawn from the relationship shown in Table 1.
Number of rotations of the motor 12 (rotation rate N) and the motor 12 of 1
Select the delay time to start.
【0019】[0019]
【表1】 [Table 1]
【0020】そして、ステップS10で図2の標準的回
転数特性に優先してモーター12に出力する。即ち、具
体的には外気温度ATが例えば+43℃と云う高温の場
合には、制御装置16は表1より遅延時間0s(秒)、
モーター12の回転率Nが100%を選択し、モーター
12を運転する。これによって、凝縮器用送風機11は
図5に実線(破線は従来)で示す如く圧縮機1の始動と
同時に100%の回転率Nで運転される。これによっ
て、凝縮器3は強力に空冷されるので、凝縮圧力HPの
異常上昇が抑えられる(図5)。Then, in step S10, the standard rotation speed characteristic of FIG. That is, specifically, when the outside air temperature AT is a high temperature of, for example, + 43 ° C., the control device 16 indicates from Table 1 that the delay time is 0 s (second),
The rotation rate N of the motor 12 is selected to be 100%, and the motor 12 is operated. As a result, the condenser blower 11 is operated at a rotation rate N of 100% at the same time when the compressor 1 is started, as shown by the solid line (broken line is conventional) in FIG. As a result, the condenser 3 is strongly air-cooled, and an abnormal increase in the condensation pressure HP is suppressed (FIG. 5).
【0021】逆に、外気温度ATが例えば0℃と云う極
端に低い温度の場合には、制御装置16は表1より遅延
時間60s、モーター12の回転率Nが30%を選択
し、モーター12を運転する。これによって、凝縮器用
送風機11は図6に実線(破線は従来)で示す如く圧縮
機1の始動から60s後に遅延して始動され、更に、そ
の回転率Nは30%で運転される。これによって、凝縮
器3が過度に空冷されることがなくなるので、凝縮圧力
HPの上昇が確保されると共に、低圧圧力LPの低下も
緩和されるので、前述の如きショートサイクル運転の発
生が解消される(図6)。On the contrary, when the outside air temperature AT is extremely low such as 0 ° C., the control device 16 selects the delay time 60 s and the rotation rate N of the motor 12 of 30% from Table 1, and the motor 12 To drive. As a result, the condenser blower 11 is started after a delay of 60 seconds from the start of the compressor 1 as shown by the solid line (broken line is conventional) in FIG. 6, and the rotation rate N is operated at 30%. As a result, the condenser 3 is prevented from being excessively cooled by air, so that the condensing pressure HP is ensured to rise and the low pressure LP is reduced to be reduced, so that the occurrence of the short cycle operation as described above is eliminated. (Fig. 6).
【0022】次に、制御装置16はステップS11で圧
縮機1の始動から120s経過したか判断し、経過する
までは上記始動時の回転数制御を実行し、経過したらス
テップS12で図2の標準的回転数特性より回転数を選
択し、ステップS13でモーター12に出力し、以後は
前述の制御(図3)に移行する。Next, the control device 16 judges in step S11 whether 120 s has elapsed from the start of the compressor 1, and executes the rotation speed control at the start up until the time elapses, and when it has elapsed, in step S12 the standard of FIG. The rotation speed is selected from the target rotation speed characteristic, and the rotation speed is output to the motor 12 in step S13, and thereafter, the above-described control (FIG. 3) is performed.
【0023】一方、凝縮器温度センサー14が断線等に
より異常となると、上述の如き凝縮器用送風機11の運
転制御が不可能となるため、従来では図9に破線で示す
如く凝縮温度CTに係わらず、例えば回転率Nが60%
一定で凝縮器用送風機11を運転せざるを得なかった。
係る定速制御では外気温度ATによって凝縮温度CTが
変化した場合、凝縮圧力HPを適正値に維持できなくな
り、運転効率が低下する。On the other hand, if the condenser temperature sensor 14 becomes abnormal due to disconnection or the like, it becomes impossible to control the operation of the condenser blower 11 as described above. Therefore, conventionally, regardless of the condensation temperature CT as shown by the broken line in FIG. , For example, the rotation rate N is 60%
The blower 11 for the condensers had to be operated constantly.
In such constant speed control, when the condensation temperature CT changes due to the outside air temperature AT, the condensation pressure HP cannot be maintained at an appropriate value, and the operating efficiency decreases.
【0024】そこで、実施例の速度調整装置18の制御
装置16は、図8のフローチャートのステップS14で
凝縮器温度センサー14及び外気温度センサー17によ
り凝縮温度CT及び外気温度ATを入力し、ステップS
15にて凝縮器温度センサー14に前述の如き異常が発
生したか否か判断し、発生していなければステップS1
6で図2の標準的回転数特性にて回転数を選択し、ステ
ップS17でモーター12に出力するが、異常が発生し
ていたら、ステップS18に進んで表2の外気温度AT
のみの特性によりモーター12の回転数(回転率N)を
選択してステップS17でモーター12に出力する。Therefore, the control device 16 of the speed adjusting device 18 of the embodiment inputs the condensation temperature CT and the outside air temperature AT by the condenser temperature sensor 14 and the outside air temperature sensor 17 in step S14 of the flowchart of FIG.
At 15, it is judged whether or not the above-mentioned abnormality occurs in the condenser temperature sensor 14, and if not, step S1
The rotation speed is selected in the standard rotation speed characteristic of FIG. 2 in 6 and output to the motor 12 in step S17. If an abnormality occurs, the process proceeds to step S18 and the outside air temperature AT of Table 2 is selected.
The number of rotations (rotation rate N) of the motor 12 is selected according to the characteristics of only the above, and the result is output to the motor 12 in step S17.
【0025】[0025]
【表2】 [Table 2]
【0026】即ち、具体的には外気温度ATが+30℃
以上と高い場合にはモーター12の回転率Nを100%
とし、凝縮器3を強力に空冷すると共に、例えは+20
℃では60%の回転率Nとする。また、外気温度ATが
極めて低く、0℃の場合にはモーター12を停止する図
9の如き制御が行われる。That is, specifically, the outside air temperature AT is + 30 ° C.
When the above is high, the rotation rate N of the motor 12 is 100%.
And strongly cool the condenser 3 and, for example, +20
At a temperature of 60 ° C., the rotation rate N is 60%. Further, when the outside air temperature AT is extremely low and is 0 ° C., the control as shown in FIG. 9 for stopping the motor 12 is performed.
【0027】これによって、凝縮器温度センサー14が
故障した場合にも、外気温度ATに基づいて凝縮器用送
風機11を略適正な回転数で制御することができるよう
になり、凝縮器3の凝縮圧力HPを適正な値に維持して
効率的な冷却運転を行うことが可能となる。As a result, even if the condenser temperature sensor 14 fails, the condenser blower 11 can be controlled at a substantially proper rotational speed based on the outside air temperature AT, and the condenser pressure of the condenser 3 can be controlled. It is possible to maintain the HP at an appropriate value and perform an efficient cooling operation.
【0028】また、凝縮器温度センサー14が配管4か
ら外れたり、断熱不良或いは取付不良が発生した場合に
は、凝縮器温度センサー14が凝縮温度CTを正確に検
出できなくなる。従来では係る不良は検知できなかった
が、実施例の速度調整装置18の制御装置16は、図1
0のフローチャートのステップS19で凝縮器温度セン
サー14及び外気温度センサー17により凝縮温度CT
及び外気温度ATを入力し、ステップS20で圧縮機1
が始動してから2分経過した以後の通常運転中か否か判
断し、否であればステップS26に進んで前記図2の標
準的回転数特性にてモーター12の回転数を選択し、ス
テップS25で出力する。そして、圧縮機1の始動から
2分経過して通常運転となると、ステップS21に進ん
で凝縮温度CTと外気温度ATの差(CT−AT)を計
算し、ステップS22で差が5℃以下か否か判断する。Further, when the condenser temperature sensor 14 is disengaged from the pipe 4 or the insulation failure or the attachment failure occurs, the condenser temperature sensor 14 cannot accurately detect the condensation temperature CT. Conventionally, such a defect could not be detected, but the control device 16 of the speed adjusting device 18 according to the embodiment has a configuration shown in FIG.
In step S19 of the flowchart of No. 0, the condensation temperature CT is set by the condenser temperature sensor 14 and the outside air temperature sensor 17.
And the outside air temperature AT are input, and in step S20, the compressor 1
It is determined whether or not the engine is in the normal operation after 2 minutes have elapsed since the engine started, and if not, the process proceeds to step S26 to select the rotation speed of the motor 12 based on the standard rotation speed characteristic of FIG. Output in S25. Then, when 2 minutes have passed from the start of the compressor 1 and the normal operation is performed, the process proceeds to step S21 to calculate a difference (CT-AT) between the condensation temperature CT and the outside air temperature AT, and whether the difference is 5 ° C. or less in step S22. Judge whether or not.
【0029】差が5℃以下の場合には凝縮器温度センサ
ー14が配管4からの熱影響を殆ど受けていないため、
ステップS23で凝縮器温度センサー14が配管4から
外れていると判断し、ステップS24で前記表2の外気
温度ATのみの特性によりモーター12の回転数(回転
率N)を選択してステップS25でモーター12に出力
する。これによって、凝縮器温度センサー14の取付異
常の場合にも、外気温度ATに基づいて凝縮器用送風機
11を略適正な回転数で制御することができるようにな
り、凝縮器3の凝縮圧力HPを適正な値に維持して効率
的な冷却運転を行うことが可能となる。When the difference is 5 ° C. or less, the condenser temperature sensor 14 is hardly affected by the heat from the pipe 4,
In step S23, it is determined that the condenser temperature sensor 14 is disconnected from the pipe 4, and in step S24, the rotation speed (rotation rate N) of the motor 12 is selected according to the characteristics of the outside air temperature AT in Table 2 above, and in step S25. Output to the motor 12. As a result, even when the condenser temperature sensor 14 is abnormally attached, the condenser blower 11 can be controlled at a substantially proper rotational speed based on the outside air temperature AT, and the condensing pressure HP of the condenser 3 can be controlled. It is possible to maintain an appropriate value and perform efficient cooling operation.
【0030】尚、実施例ではエアコンを例に説明した
が、係る空調機に限らず、ショーケース等の冷凍機器に
も本発明は有効である。Although the air conditioner has been described as an example in the embodiment, the present invention is not limited to such an air conditioner, but the present invention is also effective for refrigeration equipment such as a showcase.
【0031】[0031]
【発明の効果】以上詳述した如く本発明によれば、外気
温度を検出する外気温度センサーの出力に基づき、夏季
の夜間に相当する外気温である場合には、制御装置が標
準的特性よりも低騒音となる特性にて凝縮器用送風機の
回転数を制御するので、夏季の夜間には凝縮器用送風機
の発生する騒音を低く抑えることができ、隣家が窓を開
けて就寝している場合等に発生する騒音問題を解消する
ことができる。特に、凝縮器用送風機の回転数制御は自
動的に切り換えられるので、例えば手動により切り換え
る場合に比して操作性が向上すると共に、必要な期間の
み切り換えられるので、例えば年間を通じて低騒音とな
る特性で制御する場合に比して、凝縮圧力の上昇による
消費電力の増大を低減することができるものである。As described in detail above, according to the present invention, based on the output of the outside air temperature sensor for detecting the outside air temperature, when the outside air temperature is equivalent to the nighttime in summer, the control device has a standard characteristic. Since the rotation speed of the condenser blower is controlled by the characteristic that it also has low noise, the noise generated by the condenser blower can be suppressed to a low level during the summer night, and when the next house is sleeping with the window open, etc. It is possible to solve the noise problem that occurs in the. In particular, since the rotation speed control of the condenser blower is automatically switched, the operability is improved as compared with, for example, the case where it is manually switched, and the switching is performed only for a necessary period, so that, for example, with the characteristic of low noise throughout the year. The increase in power consumption due to the increase in condensing pressure can be reduced as compared with the case of controlling.
【図1】本発明を適用する実施例としてのエアコンの冷
凍サイクルの冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle of an air conditioner as an embodiment to which the present invention is applied.
【図2】本発明の速度調整装置による凝縮器用送風機の
回転数制御特性を示す図である。FIG. 2 is a diagram showing a rotational speed control characteristic of a condenser blower according to the speed adjusting device of the present invention.
【図3】本発明の速度調整装置を構成する制御装置のプ
ログラムを示すフローチャートである。FIG. 3 is a flowchart showing a program of a control device that constitutes the speed adjusting device of the present invention.
【図4】従来の圧縮機始動からの経過時間と凝縮圧力の
関係を示す図である。FIG. 4 is a diagram showing the relationship between the elapsed time from the start of a conventional compressor and the condensing pressure.
【図5】外気温度が高い状態で実施例の速度調整装置に
より凝縮器用送風機を制御した場合の圧縮機始動からの
経過時間と凝縮圧力の関係を示す図である。FIG. 5 is a diagram showing the relationship between the elapsed time from the start of the compressor and the condensing pressure when the fan for a condenser is controlled by the speed adjusting device of the embodiment when the outside air temperature is high.
【図6】外気温度が低い状態で実施例の速度調整装置に
より凝縮器用送風機を制御した場合の圧縮機始動からの
経過時間と凝縮圧力の関係を示す図である。FIG. 6 is a diagram showing the relationship between the elapsed time from the start of the compressor and the condensing pressure when the fan for a condenser is controlled by the speed adjusting device of the embodiment when the outside air temperature is low.
【図7】実施例の速度調整装置による圧縮機始動時の凝
縮器用送風機の制御プログラムを示すフローチャートで
ある。FIG. 7 is a flowchart showing a control program for the condenser blower at the time of starting the compressor by the speed adjusting device of the embodiment.
【図8】実施例の速度調整装置による凝縮器温度センサ
ーの異常時の凝縮器用送風機の制御プログラムを示すフ
ローチャートである。FIG. 8 is a flow chart showing a control program for the condenser blower when the condenser temperature sensor is abnormal by the speed adjusting apparatus of the embodiment.
【図9】外気温度のみによる凝縮器用送風機の回転数制
御を説明する図である。FIG. 9 is a diagram illustrating the rotation speed control of the condenser blower based only on the outside air temperature.
【図10】実施例の速度調整装置による凝縮器温度セン
サー取付不良時の凝縮器用送風機の制御プログラムを示
すフローチャートである。FIG. 10 is a flow chart showing a control program of the blower for the condenser when the condenser temperature sensor is not properly attached by the speed adjusting device of the embodiment.
1 圧縮機 3 凝縮器 7 膨張弁 8 蒸発器 11 凝縮器用送風機 12 モーター 14 凝縮器温度センサー 16 制御装置 17 外気温度センサー 18 速度調整装置 1 Compressor 3 Condenser 7 Expansion valve 8 Evaporator 11 Blower for condenser 12 Motor 14 Condenser temperature sensor 16 Control device 17 Outside air temperature sensor 18 Speed adjustment device
Claims (1)
順次環状に接続して冷凍サイクルを構成すると共に、前
記凝縮器を空冷するための凝縮器用送風機を設けたもの
において、前記凝縮器の温度を検出する凝縮器温度セン
サーと、この凝縮器温度センサ−の出力に基づき、所定
の標準的特性にて前記凝縮器用送風機の回転数を調整す
る制御装置と、外気温度を検出する外気温度センサーと
を備え、前記制御装置は前記外気温度センサ−の出力に
基づき、夏季の夜間に相当する外気温の場合には、前記
凝縮器用送風機の回転数を前記標準的特性よりも低騒音
となる特性にて制御することを特徴とする凝縮器用送風
機の速度調整装置。1. A compressor in which a compressor, a condenser, a decompression device and an evaporator are sequentially connected in an annular fashion to form a refrigeration cycle, and a condenser blower for air-cooling the condenser is provided. A condenser temperature sensor for detecting the temperature of the condenser, a controller for adjusting the number of revolutions of the condenser blower with predetermined standard characteristics based on the output of the condenser temperature sensor, and an outside air temperature for detecting the outside air temperature. A sensor, the control device, based on the output of the outside air temperature sensor, when the outside air temperature corresponds to the nighttime in summer, the rotation speed of the blower for the condenser is lower than the standard characteristic. A speed adjusting device for a blower for a condenser, which is controlled by characteristics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18548693A JP3311432B2 (en) | 1993-06-29 | 1993-06-29 | Speed control device for blower for condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18548693A JP3311432B2 (en) | 1993-06-29 | 1993-06-29 | Speed control device for blower for condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0719617A true JPH0719617A (en) | 1995-01-20 |
JP3311432B2 JP3311432B2 (en) | 2002-08-05 |
Family
ID=16171616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18548693A Expired - Fee Related JP3311432B2 (en) | 1993-06-29 | 1993-06-29 | Speed control device for blower for condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3311432B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001272087A (en) * | 2000-03-29 | 2001-10-05 | Daikin Ind Ltd | Refrigeration system |
JP2004116995A (en) * | 2004-01-26 | 2004-04-15 | Hitachi Ltd | Refrigerating unit |
JP2007187345A (en) * | 2006-01-11 | 2007-07-26 | Kobe Steel Ltd | Heat pump system |
WO2010045112A1 (en) * | 2008-10-14 | 2010-04-22 | Liebert Corporation | Integrated quiet and energy efficient modes of operation for air-cooled condenser |
WO2017065309A1 (en) * | 2015-10-16 | 2017-04-20 | ダイキン工業株式会社 | Heat pump-type heating device |
JP2018146142A (en) * | 2017-03-02 | 2018-09-20 | シャープ株式会社 | Air conditioner |
-
1993
- 1993-06-29 JP JP18548693A patent/JP3311432B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001272087A (en) * | 2000-03-29 | 2001-10-05 | Daikin Ind Ltd | Refrigeration system |
JP2004116995A (en) * | 2004-01-26 | 2004-04-15 | Hitachi Ltd | Refrigerating unit |
JP2007187345A (en) * | 2006-01-11 | 2007-07-26 | Kobe Steel Ltd | Heat pump system |
WO2010045112A1 (en) * | 2008-10-14 | 2010-04-22 | Liebert Corporation | Integrated quiet and energy efficient modes of operation for air-cooled condenser |
WO2017065309A1 (en) * | 2015-10-16 | 2017-04-20 | ダイキン工業株式会社 | Heat pump-type heating device |
JP2017075763A (en) * | 2015-10-16 | 2017-04-20 | ダイキン工業株式会社 | Heat pump type heating device |
CN108139121A (en) * | 2015-10-16 | 2018-06-08 | 大金工业株式会社 | Heat-pump-type heating unit |
CN108139121B (en) * | 2015-10-16 | 2019-04-12 | 大金工业株式会社 | Heat-pump-type heating device |
JP2018146142A (en) * | 2017-03-02 | 2018-09-20 | シャープ株式会社 | Air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP3311432B2 (en) | 2002-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010223494A (en) | Air conditioner | |
JP6785987B2 (en) | Refrigeration cycle equipment | |
CN108050585B (en) | Air conditioner and control method thereof | |
CN115031351B (en) | Air conditioner and defrosting control method thereof | |
JP3445861B2 (en) | Air conditioner | |
JP4231247B2 (en) | Air conditioner | |
JPH1030835A (en) | Controller for air conditioner | |
JPH0719617A (en) | Air current velocity adjusting device of condenser fan | |
WO2020003490A1 (en) | Air conditioning device | |
JP3868265B2 (en) | Air conditioner | |
JP2007212023A (en) | Air conditioning system | |
JPH0814672A (en) | Freezer device | |
JP2003050066A (en) | Controller for air conditioner | |
JP4223101B2 (en) | Air conditioner | |
JP3462551B2 (en) | Speed control device for blower for condenser | |
JP3443442B2 (en) | Air conditioner | |
JP3526393B2 (en) | Air conditioner | |
JP2006343095A (en) | Air conditioner | |
JPH09210427A (en) | Air conditioner | |
JP2000257984A (en) | Ar conditioner | |
JP2536337B2 (en) | Operation control device for air conditioner | |
JP4404420B2 (en) | Air conditioner control device | |
JP4131619B2 (en) | Outdoor fan control method and apparatus for air conditioner and air conditioner | |
JP2005241019A (en) | Control method for air conditioner | |
JP2002071187A (en) | Air conditioning apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080524 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090524 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090524 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100524 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110524 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120524 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130524 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |