【0001】
【発明の属する技術分野】
この発明は、豪雨等による雨水を道路表面の透水機能により排水して貯め、道路の冠水および河川の増水を防ぐと共に、この貯留水を再び道路の透水層に浸潤させることにより、都市部のヒートアイランド現象の原因の一つとされる道路余熱を気化放散させて除去する循環システムに関する。
【0002】
【従来の技術】
これまでの排水性舗装道路は、路上に及ぶ雨水、即ち道路上に及んだ降雨水および降雨による溢水を、透水層の多孔質構造の空隙を利用した透水機能により道路側溝に導入し、河川へと流入排出させていた(特許第2775392号)。
【0003】
また昨今、夏期において都市部の気温が日没後も下がらないヒートアイランド現象は、日中に太陽照射で焼き温められ高温となった道路余熱が一要因であるとされている。この道路余熱を冷まし取りヒートアイランド現象を緩和させるシステムとして、道路面に埋設したパイプ内に冷水を通水して、道路面内に蓄えられている熱を冷まし取って道路余熱を下げ、気温以下に低下させた道路面の余熱を大気に接触させることにより、焼けたままの道路面の余熱による大気温上昇を抑止することが試みられている(特開平6−137731号)。
【0004】
さらに排水性舗装道路において、道路の透水層の空隙に鉱物質微粉末、吸水性ポリマーなどから成る保水材を充填させることにより、この保水材の保水機能により道路上の雨水を吸水して保持し、その水分の気化熱により路面温度を奪い冷まして大気のヒートアイランド現象を抑える機構も試みられている。
【0005】
【発明が解決しようとする課題】
このように従来の排水性舗装道路における雨水排出機構は、その雨水を再利用することなく単に河川に排出させるに止まり、また舗装道路の余熱放散機構にあっても、道路面内のパイプに冷水を通すことにより、パイプを通して道路面を冷し、冷水の冷気を間接的に大気に接触させているに過ぎず、しかも通水についても排水性舗装道路による雨水の再利用にまでは及んでいない。
【0006】
また保水材を充填する排水性舗装道路にあっては、保水材に雨水を含んだ際、これによって道路透水層の空隙が閉ざされて排水機能を有効に働かせることができなくなると共に、保水乾燥作用を反復するうち、保水材の機能も劣化し目詰まり等で水捌けが悪くなり、道路面から雨水を排出する排水性舗装道路本来の機能が損なわれ、自動車の走行に支障を来すばかりでなく、煩雑なメンテナンスを要するなどの問題があった。
【0007】
従って、排水性舗装道路では、これまでの排水機構から、豪雨などによる急激な降雨時には、各道路への雨水等が一気に河川に流入排出されるため、河川の水嵩が急速に増加し、河川が氾濫する危険を孕んでいた。
【0008】
また、埋設パイプへの通水による舗装道路の余熱放散機構では、通路としてのパイプ内を通る冷水によりパイプを通して間接的に道路面を冷やす構成であるため、道路面に接する大気への温度伝達作用は消極的であって熱伝達効率が低調であると共に、道路面上への雨水を貯水し再利用するにまで及んでいないため、前記豪雨などによる洪水対策には配慮されていなかった。
【0009】
この発明はこれらの課題を解決し、排水性舗装道路の多孔質構造による排水および蒸散作用を利用して、雨水の大量貯水による再利用並びに余熱放散効率を良くすることを目的とする。
【0010】
【課題を解決するための手段】
この発明は上記課題を解決するため、道路の路床上に各層の路盤を形成し、その上層に不透水層、次いで道路表面に透水層を形成した排水性舗装道路に、これに相対して設置した地下貯水槽を、前記不透水層面を経て接続し、該道路上に及んだ雨水を不透水層の横断勾配または縦断勾配により前記地下貯水槽に導入して貯水し、道路内部には透水層に向けて穿設せる噴出孔を備えた噴水通路を前記不透水層の横断勾配または縦断勾配を利用すべく敷設形成し、該噴水通路に前記地下貯水槽の貯留水を、ポンプ等の送水装置により強制的に透水層に送水噴出すべく接続して成る排水性舗装道路における雨水循環システムを提案する。
【0011】
道路上に直接降雨した雨水は勿論、降雨により道路上に溢れ流れ来た雨水を、道路表面の透水層の多孔質構造を利用して帯水浸潤させ、余分な雨水は透過して不透水層上を横断勾配または縦断勾配により流れて地下貯水槽に導入排出して貯水することにより、短時間に集中して降雨する豪雨のような多量の雨水を道路上に溢れ冠水することを防ぐと共に、道路上に及んだ多量の雨水を無駄に河川に排出放流することなく地下貯水槽に貯留し、河川の急激な増水を阻止する。
【0012】
地下貯水槽に貯められた雨水は、噴水通路に送られ噴出孔を通して透水層の多孔質構造内に噴出供給して帯水浸潤させ、余剰給水は横断勾配または縦断勾配により多孔質構造の細孔を通して不透水層面を流れ、前記降雨時と同様に地下貯水槽へと還流して循環する。
【0013】
この循環システムにより貯留確保した雨水を、噴出孔を通して透水層に噴出させた帯水浸潤状態において、道路に蓄えられた余熱を、道路表面まで通じる多孔質の多数の空隙孔を通して気化熱として奪い冷まし、その気化熱(低温)を道路面に接する大気中に放散することにより、道路面に接する大気温の上昇を抑えて、日没後(夜間)も都市の気温が下がらないヒートアイランド現象を緩和する。
【0014】
加えて、透水層内に噴出した貯留雨水の噴出力および浸潤流力により、透水層における多孔質組織の目詰まりを流し除いて排水機能を確保する。
【0015】
管状通路部材を用い、その通路に沿う下側を少なくとも50%を不透水層に埋没させて噴水通路を形成した雨水循環システムでは、一連の断面管状をなす通路部材により道路上からの負荷に変形または破損することなく、噴水通路を堅固に確保することができ、更にその断面の少なくとも50%を不透水層に埋設することにより、堅牢な粗粒アスファルト組織の不透水層で下側50%乃至それ以上を埋め護られて支持されいるため、一層堅牢な噴水通路が形成される。
【0016】
地下貯水槽の水位検出装置に加え、透水層の帯水浸潤測定装置および温度測定装置並びに制御装置を備えた雨水循環システムでは、検知測定した地下貯水槽の水位および透水層の帯水浸潤状態の情報を確認しながら、制御装置に設定した温度に基づく測定温度値をもって、制御装置で温度的に送水装置をオン−オフ自動制御することにより、測定温度に基いて道路透水層における貯留雨水での帯水浸潤状態を確保し、道路の余熱による大気温の上昇影響を自動的に制御管理する。
【0017】
また制御装置に備えたタイマー機能を利用して時間を設定することにより、地下貯水槽の水位および透水層の帯水浸潤状態の情報を自動確認しながら、制御装置で送水装置の稼働を時間(定期)的にオン−オフ自動制御することができる。
【0018】
【発明の実施の形態】
この発明に係る排水性舗装道路における雨水循環システムの実施の形態を、図面を用いて説明すると、図1はこの発明を実施せる排水性舗装道路における雨水循環システムを縦断して示す要部の正面図、図2は同雨水循環システムを示す要部の平面図、図3は同雨水循環システムの道路要部を拡大して示す縦断正面図、図4は排水性舗装道路における雨水循環システムの他の実施例を示す道路要部の縦断正面図、図5は同雨水循環システムの通路部材を示す一部の平面図、図6は排水性舗装道路における給排水機構の他の実施例を示す要部の縦断正面図、図7は排水性舗装道路における給排水機構の他の実施例を示す要部の縦断正面図、図8は排水性舗装道路における給排水機構の他の実施例を示す要部の縦断正面図である。
【0019】
【実施例】
図1〜3を用いて、この発明に係る排水性舗装道路における雨水循環システムの一実施例を説明すると、雨水循環システムは各層から成る路盤3a上に、不透水層3、透水層2を順次敷設構築した排水性舗装道路1と、該道路1に相対して構築した地下貯水槽9を雨水が不透水層3面を経由して流動貯留すべく接続連通して構成する。
【0020】
各層の路盤3aは、地盤そのままの路床を均しローラーで踏み固めて15cm前後の厚さに順次形成し、該路盤3a上には粗粒状の骨材に比較的多めのアスファルトを混合した混合物を敷き詰めてローラーで踏み固めた不透水層3を5cm前後の厚さに舗装形成し、不透水層3上には防水層(図示省略)を塗布介設し、またはこれを省略して、比較的粗い骨材に少なめのアスファルトを混合した強度の面を考慮して、大凡空隙率20〜25%程度とした混合物を敷き詰め、ローラーで5cm前後の厚さに踏み固めて透水層2を形成舗装し排水性舗装道路1を構成するもので、透水層2の空隙率構造は20%前後が最適である。
【0021】
循環機構として、幅方向の中央から両側に向けて分水嶺状に傾斜する横断勾配を形成した道路1において、道路1の横断勾配の頂部に当たる幅方向の中央に、断面円形をなし上方に向けて噴出孔5,5を穿設した管状の通路部材4aを、道路1の長手方向に沿って埋設すべく断面円形の下側50%(半分)を不透水層3面に埋め据えて固定し、上側半分を透水層2に埋没状態に敷設して噴水通路4を埋設形成し、該噴水通路4はパイプから成る給水路6により前記地下貯水槽9にポンプ9aを介して接続し、地下貯水槽9内の貯留水9dを噴水通路4に供給すべく構成する。
【0022】
噴水水路4を形成する断面円形の通路部材4aの不透水層3面への埋め据える深さは、道路1面にかかる荷重と通路部材4aの耐荷重を考慮して下側50%(半分)以上であってもよいが、通路部材4aの素材および構造を堅牢に構成することにより、それ以下でも可能である。
【0023】
前記地下貯水槽9には水位検出装置9bを、道路1の透水層2には温度測定器10および帯水浸潤測定器11を設置し、これら水位検出装置9b、温度測定器10および帯水浸潤測定器11を制御装置12を介して前記ポンプ9aに電気配線にて接続し、前記水位検出装置9bによる地下貯水槽9の検知水位と帯水浸潤測定器11で測定した道路1の透水層2内の帯水浸潤状態を確認しながら、制御装置12に設定した温度または時間に基づく温度測定器10で測定した道路1面の温度値により、制御装置12でポンプ9aをオン−オフ制御して排水性舗装道路における雨水循環システムを自動化すべく構成し、その電力をこれら各装置に接続した太陽光線発電機13により供給するものである。また、制御装置12が有するタイマー機能を利用して、前記測定検出した情報に基づきポンプ9aを時間的に制御することも可能である。
【0024】
図面では、温度測定器10は道路1の透水層2に設置した状態で説明されているが、道路1の近傍に設置して道路1近くの大気温度を測定し、この測定温度に基いて制御装置12でポンプ9aを作動制御する構成であってもよく、制御装置12への設定温度値を加減操作することにより、道路1面の測定温度と略同等の気温状態で貯留水9dを透水層2に噴出することができ、道路1の余熱を気化熱として奪い冷まして放散し、道路面に接する大気の温度上昇を抑える効果は得られるものである。
【0025】
雨水の地下貯水槽9への流動貯水は、道路1の両側に一方の側壁に導水孔7a,7aを、上壁にスリット状の導水孔7bをそれぞれ穿設した鉄筋コンクリートから成る側溝7,7を長手方向に沿って、道路1の両側における不透水層3の表面に前記側溝7,7の導水孔7a,7aが同じ高さ位置に臨むべく接続設置し、該側溝7,7の所定箇所に配設連通させた同じく鉄筋コンクリートから成る集水枡8,8の比較的大きな導水開口部(図示省略)に、道路1の長手方向に沿う所定箇所に横断方向の一方側に導くべく勾配を付して設けた導水路3bの両端を接続連通し、一方側の側溝7における集水枡8の排水孔(図示省略)を排水路8aにて地下貯水槽9に接続して構築するものである。なお、側溝7は道路1の長手方向に沿い縦断勾配を付して設置することは勿論である。
【0026】
道路1上に降り、また溢れ流れた雨水は、透水層2を透過して不透水層3面で受け止めて、道路1の横断勾配および縦断勾配により不透水層3面を両側に流れ、導水孔7aを通して側溝7,7内に導いて集水枡8に集め、排水路8aにて地下貯水槽9へと落差により順次排出貯水し、集中豪雨時には道路1上に溢れた雨水は、側溝7,7の上壁に長手方向に沿って穿設したスリット状の導水孔7b,7bを通して側溝7,7内に導入し地下貯水槽9に排出するもので、地下貯水槽9における余剰雨水は上方に設けた排出口9cからオーバーフローさせて放流すべく構成する。
【0027】
このように側溝7の側壁に点設した比較的小さい導水孔7a,7aが、道路1の両側における不透水層3面と相対する高さ位置に臨むべく側溝7,7を設置し、側溝7から集水枡8,8へ、集水枡8から比較的大きな排水孔(図示省略)を通して道路1上の雨水を素早く地下貯水槽9へと導入排出して、道路1表面に水溜まりのできることをなくし、降雨時の自動車走行における水はね、スリップ、さらには夜間のヘッドライト反射による眩惑などの危険を解消して安全な道路環境を確保するものである。
【0028】
集水枡8は、底部に側溝7より一段深くした泥溜め部を有するが、図2に示すように別個に設けた泥溜め枡8bを介在させた排水路8aにより前記集水枡8を地下貯水槽9に接続することにより、土砂の地下貯水槽9への流入を二重に効率よく阻止して、地下貯水槽9内のヘドロ沈澱を防止し貯留水9dの汚濁防止効果を更に高くすることができる。
【0029】
図面では、両側の側溝7,7に相対して配設した集水枡8,8を横断方向に接続連通した導水路3bにより、他方側の集水枡8の雨水を一方側の集水枡8に導いて、一方側にのみ設けた地下貯水槽9に導入排水する実施例について説明したが、他方側にも別の地下貯水槽を設けて、他方側の集水枡8の雨水を各個に導入排水することも可能である。
【0030】
【実施例】
図4,5を用いて雨水循環システムにおける噴水水路の他の実施例を説明すると、道路1に埋設形成する噴水通路4は、噴出孔5,5を穿設した断面半円形をなす天板4bと扁平な底板4cを、内部に板状の支柱4d,4dを配して熔接結合した外形が板付き蒲鉾形の通路部材4aにより構成し、該通路部材4aの底板4c部を、幅方向の中央から両側に下り傾斜する横断勾配の道路1中央の不透水層3面上に長手方向に沿って据え付けて固定し、その上から透水層2を敷設施工して前記通路部材4aを埋没させて道路1に噴水通路4を形成埋設することにより、通路部材4aの耐荷重力を強化して頑強な噴水通路4を形成し、雨水循環システムの耐久性を向上させる。
【0031】
以上各実施例では、噴水通路4を幅方向の中央から両側に下り傾斜する道路1中央に長手方向に沿って埋設形成した雨水循環システムについて説明したが、図6に示すように幅方向の片側(右側)にのみ下がり傾斜する横断勾配の道路1、例えば、路盤上に不透水層3、透水層2を順次積層形成して構築した道路1のカーブ部分のような幅方向の一方にのみ下がり傾斜する部分では、横断勾配の頂部高位に当たる道路1の片側に設置した断面U字形をなす開放状の側溝7寄りに噴水通路4を形成することにより、ポンプ9aの作動で地下貯水槽9の貯留水9dを給水路6を経て噴水通路4に供給し、該噴水通路4から噴出する貯留水9dは横断勾配を利用して透水層2全面に空隙通路を通して帯水浸潤して流れ及び、余剰給水は麓部低位側の側溝7に導水孔7aを通して排出し、集水枡および排水路(いずれも図示省略)を経由して地下貯水槽9に還流する。なお、横断勾配の頂部高位側の側溝7に導水孔(図示省略)を設けることにより、一時的な豪雨の際に道路1上に溢れ溜まる雨水を頂部高位側の側溝7の上方開放部は勿論、不透水層3上の雨水も導水孔(図示省略)を通して側溝7に導入排水することができるため、さらに排水効率を良くし、一時的な豪雨による大量の雨水も素早く道路1面上から引き除くことができる。
【0032】
また、図7に示すように幅方向の中央から両側に下り傾斜する横断勾配の道路に中央分離帯1aを設けた道路1では、横断勾配の頂部高位に当たる中央分離帯1aの両脇に沿って埋設した噴水通路4,4に、ポンプ9aの作動により地下貯水槽9の貯留水9dを給水路6を経て供給し、該噴水通路4から噴出する貯留水9dは横断勾配により道路1両側の側溝7,7に向かって透水層2の空隙通路を浸潤しながら不透水層3全面に亘り流れ及び、導水孔7a,7aにて側溝7,7に導くことができる。
【0033】
また図8に示すように、道路1の両側に沿って片側に側壁を設けない断面倒への字形に形成した側溝7を設置し、不透水層3表面の両側において長手方向に沿って一段下がった凹溝状の透水構造から成る導水帯3cを透水層2に接続して設け、道路1の長手方向に沿って付した勾配の前記導水帯3cの下降部に、所定箇所に配設した集水枡8の側壁に設けた導水開口部8cを接続することにより、道路不透水層3面の雨水を導水帯3cを経て集水枡8に集めると共に、集中豪雨時など一時に多量の降雨があって雨水が道路1の透水層2表面にまで溢れた場合、この雨水を透水層2表面と同位の倒への字形側溝7の一側辺から溝部7cに導いて、集水枡8に上部の導水開口部8cを通して集め、効率よく地下貯水槽9に導入排出させることができるもので、既に説明した管状、断面U字形など両側壁を有する側溝7にあっても、側壁における導水孔7aは必ずしも必要ではない。
【0034】
上記で説明した実施例における噴水通路4を形成するに用いる通路部材4aは、耐荷重性の点で主としてステンレススチールなどの不銹金属素材から成り、剛性が確保することができれば硬質の合成樹脂素材を用いることも可能である。
【0035】
なお、噴水通路4の埋設についても、噴水通路4の強度を確保するに適した道路1の長手方向に沿った走行車の荷重影響を受け難い横断方向の中央部、側部に埋没敷設した実施例について説明したが、噴水通路4の耐荷重構造を強化することにより、走行車線域下または幅断方向に沿っても埋設形成することができ、殊に長い坂状態が続く道路1では専ら縦断勾配を利用して噴水通路4を幅方向に沿って埋設形成するものである。
【0036】
地下貯水槽9は長い距離の道路1上に及んだ大量の雨水を排水路8aを経て導入貯水すべく、周辺状況により道路1の近傍地または遠隔地に相対して設置し、硬質合成樹脂、鉄筋コンクリートなどの素材から成る内部に大きな空洞部を有する空隙率の大きいブロック材を組み立てて構築し、または形枠に鉄筋を配しコンクリートを打設構築して成るもので、道路1の所定間隔毎に埋没敷設した各噴水通路4,4を前記地下貯水槽9に給水路6で接続して排水性舗装道路における雨水循環システムを構成する。
【0037】
この発明の雨水循環システムの実施において、前記自動化システムに代え、日中の気温上昇に基づいてヒートアイランド現象の発生を予測し、地下貯水槽9の貯留水位を確認した上でポンプ9aを手動で遠隔作動させ、タイマー設定により一定時間、道路1の多孔質構造の透水層2内に貯留水9dを供給し帯水浸潤させることができ、その電源として前述で説明した太陽光線発電機のほか、一般の電力を使用することも勿論可能である。さらに大量の雨水を導入貯留した地下貯水槽9は、災害時の消火などに用いる防火用水槽としても活用することができ、その効果は更に大きい。
【0038】
【発明の効果】
この発明の排水性舗装道路における雨水循環システムは上記で説明した構成から成り、道路上に降り注ぎ、また流れ込んできた大量の雨水は透水層を透過して不透水層により地下貯水槽に素早く排出貯留し、多量の降雨が短時間に集中する豪雨時に道路が冠水したり、水溜まりのできるのを防ぐと共に、この大量の雨水を河川に排出放流することがないので、河川の急激な増水を阻止し、洪水による氾濫を未然に防止する。
【0039】
ことに、長く広い道路を利用して流れ集めた雨水を地下貯水槽に貯水し、この大量の貯留水を、道路の噴水通路に送水供給して透水層内に噴出させ、不透水層の勾配による落差で多孔質構造にて連通する透水層の空隙を全面に亘り帯水浸潤し、これが道路余熱を気化熱にて奪い冷まして、道路余熱によるヒートアイランド現象を解消させ、余り流れる貯留水は降雨時と同様に側溝から地下貯水槽へと排出貯水して再利用するもので、この大量の雨水を利用して透水層の連通する空隙を通して余熱を気化させる循環システムを特徴とする。
【0040】
送水装置に水位検出装置、加えて帯水浸潤測定器および気温測定装置並びに制御装置を備えた雨水循環システムでは、水位検出装置で検知した地下貯水槽の水位を検出して貯留水の量と帯水浸潤測定器で測定した道路透水層内の帯水浸潤状態を確認した上で、制御装置に設定した時間および温度に基づいて気温測定器での測定温度をもって、時間的および温度的に送水装置(ポンプ)を制御装置によりオン−オフ自動作動すべく制御して、道路の余熱による大気温上昇を抑制する気温管理を自動化することにより、ヒートアイランド現象を効率よく解消することができ、加えて太陽光線発電機により、排水利用の循環システムの省エネ効果を更に顕著にする。
【図面の簡単な説明】
【図1】この発明を実施せる排水性舗装道路における雨水循環システムを縦断して示す要部の正面図である。
【図2】図1の雨水循環システムを示す要部の平面図である。
【図3】図1の雨水循環システムにおける道路要部を拡大して示す縦断正面図である。
【図4】排水性舗装道路における雨水循環システムの他の実施例を示す道路要部の縦断正面図である。
【図5】図4の雨水循環システムの通路部材を示す一部の平面図である。
【図6】排水性舗装道路における給排水機構の他の実施例を示す要部の縦断正面図である。
【図7】排水性舗装道路における給排水機構の他の実施例を示す要部の縦断正面図である。
【図8】排水性舗装道路における給排水機構の他の実施例を示す要部の縦断正面図である。
【符号の説明】
1 道路
2 透水層
3 不透水層
4 噴水通路
4a 通路部材
4b 天板
4c 底板
4d 支柱
5 噴出孔
9 地下貯水槽
9a ポンプ
9b 水位検出装置
9d 貯留水
10 温度測定器
11 帯水浸潤測定器
12 制御装置
13 太陽光線発電機[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention drains and stores rainwater due to heavy rains and the like by the permeation function of the road surface, prevents flooding of the road and increase of river water, and infiltrates the permeated layer of the road again into the permeation layer of the road, thereby providing heat islands in urban areas. The present invention relates to a circulating system for removing and evaporating and removing road residual heat, which is one of the causes of the phenomenon.
[0002]
[Prior art]
Conventional drainage pavement roads introduce rainwater over the road, that is, rainwater over the road and overflow due to rainfall, into the road gutter by a permeation function using pores of the porous structure of the water-permeable layer. (Japanese Patent No. 2775392).
[0003]
In recent years, the heat island phenomenon, in which the temperature in urban areas does not decrease even after sunset in summer, is considered to be due in part to the residual heat of roads, which have been heated to a high temperature by being baked by the sun during the day. As a system to cool this road heat and mitigate the heat island phenomenon, cool water is passed through pipes buried in the road surface to cool down the heat stored in the road surface and reduce the road heat remaining, lowering the temperature below the temperature Attempts have been made to suppress the rise in ambient temperature due to the residual heat of the burnt road surface by bringing the reduced residual heat of the road surface into contact with the atmosphere (Japanese Patent Laid-Open No. Hei 6-137731).
[0004]
Furthermore, on a drainable pavement road, by filling the pores of the water permeable layer of the road with a water retention material composed of mineral fine powder, a water-absorbing polymer, etc., the water retention function of the water retention material absorbs and retains rainwater on the road. A mechanism has been attempted in which the road surface temperature is deprived by the heat of vaporization of the water to cool the road surface, thereby suppressing the heat island phenomenon in the atmosphere.
[0005]
[Problems to be solved by the invention]
As described above, the rainwater discharge mechanism of the conventional drainable pavement road merely discharges the rainwater to the river without reusing it, and even in the residual heat dissipation mechanism of the pavement road, the cold water flows through the pipe in the road surface. By passing the water, the road surface is cooled through pipes, and the cold air of the cold water is indirectly brought into contact with the atmosphere, and the water flow does not extend to the reuse of rainwater by drainage pavement roads .
[0006]
In the case of drainage-paved roads filled with water-retaining materials, when rainwater is included in the water-retaining materials, the gaps in the road permeable layer are closed and the drainage function cannot be effectively operated, and the water-retaining and drying function is also required. In addition, the function of the water retention material deteriorates and the drainage becomes poor due to clogging, etc., and the original function of the drainage pavement that drains rainwater from the road surface is impaired, which not only hinders the driving of cars And complicated maintenance is required.
[0007]
Therefore, on drainable pavement roads, from the drainage mechanism up to now, during sudden rainfall due to heavy rain, etc., rainwater etc. to each road flows into and out of the river at a stretch, the water volume of the river increases rapidly, and the river becomes There was a danger of flooding.
[0008]
In addition, in the mechanism for dissipating residual heat on a pavement road by passing water through a buried pipe, the surface of the road is indirectly cooled through the pipe by cold water passing through the inside of the pipe as a passage, so the temperature is transmitted to the atmosphere in contact with the road surface. Is passive, has low heat transfer efficiency, and does not even store and reuse rainwater on the road surface. Therefore, no consideration has been given to countermeasures against floods caused by the heavy rain and the like.
[0009]
It is an object of the present invention to solve these problems and to improve the efficiency of reusing rainwater by storing a large amount of rainwater and dissipating residual heat by utilizing the drainage and transpiration of the porous structure of a drainable pavement road.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has a basement of each layer formed on a roadbed of a road, an impermeable layer on the upper layer, and a drainage pavement road on which a water-permeable layer is formed on the road surface. The underground water storage tank is connected through the impervious layer surface, and rainwater that has reached the road is introduced into the underground water storage tank by the cross gradient or longitudinal gradient of the impermeable layer to store water therein. A fountain passage provided with a spout hole drilled toward the layer is laid so as to use the transverse gradient or vertical gradient of the impermeable layer, and the water stored in the underground water storage tank is supplied to the fountain passage with a pump or the like. This paper proposes a rainwater circulation system on a drainable pavement connected by a device to forcibly discharge water to the permeable layer.
[0011]
Using the porous structure of the water-permeable layer on the road surface, the rainwater that overflowed onto the road due to the rain, as well as the rainwater that directly rained on the road, was infiltrated into the aquifer. By flowing along the cross slope or vertical slope and introducing and discharging into the underground water storage tank to store water, it prevents a large amount of rainwater such as heavy rain that concentrates in a short time from overflowing on the road and flooding, The large amount of rainwater that reaches the road is stored in an underground water tank without being discharged and released to the river, preventing rapid rise of the river.
[0012]
The rainwater stored in the underground water tank is sent to the fountain passage and jetted out through the orifice into the porous structure of the permeable layer to infiltrate the aquifer, and excess water is supplied to the porous structure by the transverse gradient or longitudinal gradient. Through the water-impervious layer surface, and circulates back to the underground water storage tank in the same manner as during rainfall.
[0013]
In the aquifer infiltration state, in which rainwater stored and secured by this circulation system is ejected to the permeable layer through the orifice, the residual heat stored in the road is taken as vaporization heat through a number of porous pores that pass to the road surface and cooled. By dissipating the heat of vaporization (low temperature) to the atmosphere in contact with the road surface, the rise of the large temperature in contact with the road surface is suppressed, and the heat island phenomenon in which the temperature of the city does not decrease even after sunset (at night) is reduced.
[0014]
In addition, the drainage function is ensured by removing clogging of the porous tissue in the permeable layer by the jetting power and the infiltrating flow force of the stored rainwater squirted into the permeable layer.
[0015]
In a rainwater circulation system in which a fountain passage is formed by using a tubular passage member and burying at least 50% of the lower side along the passage in an impermeable layer, a series of passage members having a tubular cross section deforms into a load on the road. Alternatively, the fountain passage can be secured firmly without being damaged, and at least 50% of its cross section is buried in the impermeable layer, so that the rigid impervious layer of coarse asphalt structure has a lower 50% or less. More robust fountain passages are formed because they are buried and supported above that.
[0016]
In addition to the water level detection device of the underground reservoir, the rainwater circulation system equipped with the aquifer infiltration measuring device, temperature measuring device, and control device of the underground reservoir will detect the measured water level of the underground reservoir and the state of infiltration of the aquifer. While confirming the information, the control device automatically controls the water supply device on and off based on the measured temperature value based on the temperature set in the control device. To secure the inundation state of the aquifer and to automatically control and manage the influence of the rise in the atmospheric temperature due to the residual heat of the road.
[0017]
In addition, by setting the time using the timer function provided in the controller, the controller can automatically check the water level of the underground reservoir and the state of infiltration of the water in the permeable layer while controlling the operation of the water feeder by the controller ( On-off automatic control can be performed periodically.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a rainwater circulation system in a drainable pavement according to the present invention will be described with reference to the drawings. FIG. 1 is a front view of a main part of a rainwater circulation system in a drainage pavement in which the present invention is implemented. Fig. 2 is a plan view of a main part showing the rainwater circulation system, Fig. 3 is a longitudinal sectional front view showing an enlarged main part of the rainwater circulation system, and Fig. 4 is another view of the rainwater circulation system on a drainable paved road. FIG. 5 is a partial plan view showing a passage member of the rainwater circulation system, and FIG. 6 is a main part showing another embodiment of a water supply / drainage mechanism on a drainable pavement road. FIG. 7 is a vertical front view of a main part showing another embodiment of a water supply / drainage mechanism on a drainable pavement road, and FIG. 8 is a vertical section of a main part showing another embodiment of a water supply / drainage mechanism on a drainage pavement road. It is a front view.
[0019]
【Example】
One embodiment of a rainwater circulation system for a drainable pavement according to the present invention will be described with reference to FIGS. 1 to 3. The rainwater circulation system includes an impervious layer 3 and a permeable layer 2 sequentially on a subbase 3a composed of respective layers. The drainage paved road 1 laid and constructed and the underground water storage tank 9 constructed opposite to the road 1 are connected and connected so that rainwater can flow and be stored via the impermeable layer 3.
[0020]
The roadbed 3a of each layer is formed by squeezing the ground as it is with a leveling roller and successively forming a thickness of about 15 cm, and a mixture of a relatively large amount of asphalt and a coarse-grained aggregate is formed on the roadbed 3a. A water-impervious layer 3 laid down and squeezed by a roller is paved to a thickness of about 5 cm, and a waterproof layer (not shown) is applied on the water-impermeable layer 3 or is omitted. Taking into account the strength of a mixture of coarse asphalt and a small amount of asphalt, a mixture with a porosity of about 20 to 25% is laid, and squeezed to a thickness of about 5 cm with a roller to form a permeable layer 2. The drainage paved road 1 is constituted, and the porosity structure of the permeable layer 2 is optimally around 20%.
[0021]
As a circulation mechanism, on the road 1 having a cross slope inclined in a watershed manner from the center in the width direction toward both sides, a circular cross section is formed at the center in the width direction corresponding to the top of the cross slope of the road 1 and the jet is ejected upward. In order to embed the tubular passage member 4a having the holes 5 and 5 in the longitudinal direction of the road 1, the lower 50% (half) of the circular section is embedded in the impermeable layer 3 and fixed. A half of the fountain passage 4 is buried in the permeable layer 2 to bury the fountain passage 4. The fountain passage 4 is connected to the underground water storage tank 9 via a pump 9a by a water supply path 6 composed of a pipe. It is configured to supply the stored water 9d to the fountain passage 4.
[0022]
The depth at which the passage member 4a having a circular cross section that forms the fountain channel 4 is buried in the water-impermeable layer 3 is 50% lower (half) in consideration of the load applied to the road 1 and the withstand load of the passage member 4a. Although the above may be adopted, the material and structure of the passage member 4a may be configured to be robust, and may be less than that.
[0023]
A water level detector 9b is installed in the underground water storage tank 9, and a temperature measuring device 10 and a water infiltration measuring device 11 are installed in the permeable layer 2 of the road 1, and the water level detecting device 9b, the temperature measuring device 10, and the water infiltration device are installed. A measuring device 11 is connected to the pump 9a via a control device 12 by electric wiring, and the water level of the road 1 measured by the aquifer infiltration measuring device 11 and the water level detected in the underground water storage tank 9 by the water level detecting device 9b. The pump 9a is turned on and off by the control device 12 based on the temperature value of the road 1 surface measured by the temperature measuring device 10 based on the temperature or time set in the control device 12 while checking the infiltration state of the water in the inside. The rainwater circulation system on the drainage paved road is configured to be automated, and its power is supplied by a solar power generator 13 connected to each of these devices. Further, it is also possible to temporally control the pump 9a based on the information detected and detected by using the timer function of the control device 12.
[0024]
In the drawing, the temperature measuring device 10 is described as being installed on the permeable layer 2 of the road 1. However, the temperature measuring device 10 is installed near the road 1 to measure the air temperature near the road 1, and control based on the measured temperature. The operation of the pump 9a may be controlled by the device 12, and the temperature of the storage water 9d may be controlled by adjusting the set temperature value to the control device 12 so that the temperature of the stored water 9d is substantially equal to the measured temperature of the road 1. 2, the remaining heat of the road 1 is taken as vaporization heat, cooled and radiated, and the effect of suppressing a rise in the temperature of the atmosphere in contact with the road surface is obtained.
[0025]
The rainwater flowing into the underground water storage tank 9 is provided with side grooves 7, 7 made of reinforced concrete having water guide holes 7a, 7a on one side wall and slit-shaped water guide holes 7b on the upper wall on both sides of the road 1. Along the longitudinal direction, the water guide holes 7a, 7a of the side grooves 7, 7 are connected and installed on the surface of the water-impermeable layer 3 on both sides of the road 1 so as to face the same height position. The relatively large water-guiding openings (not shown) of the water collecting basins 8, 8 made of reinforced concrete, which are provided and communicated with each other, are provided with a gradient so as to guide them to one side in the transverse direction at a predetermined location along the longitudinal direction of the road 1. The two ends of the water conduit 3b are connected and communicated, and the drain hole (not shown) of the water collecting basin 8 in one side groove 7 is connected to the underground water storage tank 9 through the drain channel 8a. The side groove 7 is of course installed along the longitudinal direction of the road 1 with a vertical gradient.
[0026]
The rainwater that has descended on the road 1 and overflowed passes through the permeable layer 2 and is received by the impermeable layer 3, and flows on both sides of the impermeable layer 3 due to the cross slope and the longitudinal gradient of the road 1, and the water holes 7a, the water is guided into the gutters 7, 7 and collected in the water collecting basin 8, and the water is sequentially discharged and stored in the drainage channel 8a by the head to the underground water storage tank 9. At the time of the torrential rain, the rainwater overflowing on the road 1 is removed by the gutter 7, 7 7 is introduced into the side grooves 7, 7 through slit-shaped water guide holes 7b, 7b formed in the upper wall along the longitudinal direction and discharged into the underground water storage tank 9. The excess rainwater in the underground water storage tank 9 is directed upward. It is configured to overflow and discharge from the provided discharge port 9c.
[0027]
The relatively small water guide holes 7a, 7a dotted on the side wall of the side groove 7 as described above are provided with the side grooves 7, 7 so as to reach the height position opposite to the surface of the water-impermeable layer 3 on both sides of the road 1. From the catchment basin 8 and from the catchment basin 8 through a relatively large drainage hole (not shown) to quickly introduce and discharge the rainwater on the road 1 into the underground water storage tank 9 to form a water pool on the surface of the road 1. The present invention eliminates the dangers of splashing, slipping, and dazzling due to headlight reflection at night during running of a car during rainfall, thereby ensuring a safe road environment.
[0028]
Although the water collecting basin 8 has a mud pool portion at the bottom part one step deeper than the side groove 7, the water collecting basin 8 is underground by a drainage channel 8a interposed with a separately provided mud storing basin 8b as shown in FIG. By connecting to the water storage tank 9, the inflow of sediment into the underground water storage tank 9 is effectively prevented twice, preventing sludge sedimentation in the underground water storage tank 9 and further increasing the pollution prevention effect of the stored water 9 d. be able to.
[0029]
In the drawing, rainwater in the other water collecting basin 8 is collected by the water collecting basin 8 on the other side by a water conduit 3b that connects and connects the water collecting basins 8, 8 disposed opposite to the side grooves 7, 7 on both sides in the transverse direction. In the embodiment described above, the underground water storage tank 9 provided only on one side is introduced and drained. However, another underground water storage tank is provided on the other side, and the rainwater in the water collecting basin 8 on the other side is individually discharged. It is also possible to introduce wastewater into the area.
[0030]
【Example】
Referring to FIGS. 4 and 5, another embodiment of the fountain channel in the rainwater circulation system will be described. A fountain channel 4 buried in a road 1 has a top plate 4b having a semicircular cross section in which jet holes 5, 5 are formed. And a flat bottom plate 4c, a plate-shaped support 4d, 4d disposed inside and welded and connected to each other to form a passage member 4a having a plate-like shape and a bottom plate 4c of the passage member 4a in the width direction. It is installed and fixed along the longitudinal direction on the surface of the impermeable layer 3 at the center of the road 1 with a cross slope that slopes down from the center to both sides, and the permeable layer 2 is laid from there and constructed to bury the passage member 4a. By forming and burying the fountain passage 4 in the road 1, the load bearing capacity of the passage member 4a is strengthened to form a robust fountain passage 4, thereby improving the durability of the rainwater circulation system.
[0031]
In each of the embodiments described above, the rainwater circulation system in which the fountain passage 4 is buried along the longitudinal direction at the center of the road 1 that slopes down from the center in the width direction to both sides has been described, but as shown in FIG. (Right side) A road 1 with a cross slope that slopes down only to the right, for example, only one side in the width direction such as a curved portion of the road 1 constructed by sequentially forming an impermeable layer 3 and a water-permeable layer 2 on a roadbed. In the sloping part, the fountain passage 4 is formed near the open side groove 7 having a U-shaped cross section installed on one side of the road 1 at the top of the cross slope, and the underground water storage tank 9 is stored by the operation of the pump 9a. The water 9d is supplied to the fountain passage 4 through the water supply passage 6, and the stored water 9d spouted from the fountain passage 4 is infiltrated by the aquifer through the void passage over the entire surface of the permeable layer 2 by utilizing the transverse gradient, and flows and surplus water supply Is the lower part of the foot Discharged through the water guide holes 7a into the groove 7, the water collecting chambers and drainage (both not shown) via the reflux underground water storage tank 9. By providing a water guiding hole (not shown) in the side groove 7 on the top high side of the cross slope, rainwater that overflows and accumulates on the road 1 in the case of temporary heavy rain is of course collected in the upper opening of the side groove 7 on the top high side. Also, since the rainwater on the impermeable layer 3 can be introduced and drained into the gutter 7 through the water guide hole (not shown), the drainage efficiency is further improved, and a large amount of rainwater due to temporary heavy rain can be quickly pulled from the road 1 surface. Can be excluded.
[0032]
In addition, as shown in FIG. 7, on the road 1 in which the median strip 1 a is provided on a traverse slope that inclines down from both sides from the center in the width direction, along the both sides of the median strip 1 a, which is at the top of the cross slope. By operating the pump 9a, the stored water 9d of the underground water storage tank 9 is supplied to the buried fountain passages 4 and 4 via the water supply passage 6, and the stored water 9d ejected from the fountain passage 4 is cross-graded by the side grooves on both sides of the road 1. The water flows over the entire surface of the water-impermeable layer 3 while infiltrating the void passages of the water-permeable layer 2 toward the water-permeable layers 2, and can be guided to the side grooves 7, 7 at the water introduction holes 7 a, 7 a.
[0033]
As shown in FIG. 8, a side groove 7 formed in an inverted cross section without a side wall on one side is provided along both sides of the road 1, and one step is lowered along the longitudinal direction on both sides of the surface of the impermeable layer 3. A water conduction zone 3c having a concave groove-shaped water permeability structure is provided so as to be connected to the water permeable layer 2, and is provided at a predetermined location in a descending portion of the water conduction zone 3c having a gradient along the longitudinal direction of the road 1. By connecting the water introduction openings 8c provided on the side walls of the water basin 8, the rainwater on the road impermeable layer 3 is collected in the water collection basin 8 via the water conveyance zone 3c, and at the same time, a large amount of rainfall occurs during a torrential downpour. If rainwater overflows to the surface of the permeable layer 2 of the road 1, the rainwater is guided to the groove 7 c from one side of the inverted groove 7 on the same level as the surface of the permeable layer 2, and Collected through the water introduction opening 8c and efficiently introduced and discharged into the underground water storage tank 9. It shall in tubular already described, even in the gutter 7 having side walls, such as U-shaped cross-section, water conducting hole 7a of the side wall is not necessarily required.
[0034]
The passage member 4a used for forming the fountain passage 4 in the above-described embodiment is mainly made of a stainless metal material such as stainless steel in terms of load resistance, and is a hard synthetic resin material if rigidity can be secured. Can also be used.
[0035]
The fountain passage 4 is also buried at the center and sides in the transverse direction, which are not easily affected by the load of a traveling vehicle along the longitudinal direction of the road 1 suitable for securing the strength of the fountain passage 4. Although the example has been described, by strengthening the load-bearing structure of the fountain passage 4, the fountain passage 4 can be buried below the traveling lane area or along the width-cutting direction. The fountain passage 4 is buried along the width direction by utilizing the gradient.
[0036]
The underground water storage tank 9 is installed relative to a nearby area or a remote area of the road 1 depending on the surrounding conditions so as to introduce and store a large amount of rainwater over the long distance road 1 through the drainage channel 8a. A block made of a material such as reinforced concrete, which has a large cavity inside and is constructed by assembling a large porosity block, or by arranging a reinforcing bar on a formwork and casting concrete to form a predetermined interval of the road 1. Each of the fountain passages 4 and 4 buried and buried is connected to the underground water storage tank 9 by a water supply channel 6 to constitute a rainwater circulation system on a drainable paved road.
[0037]
In the implementation of the rainwater circulation system of the present invention, the occurrence of the heat island phenomenon is predicted based on the temperature rise during the day instead of the automated system, and the pump 9a is manually and remotely controlled after confirming the stored water level in the underground water storage tank 9. When the timer is set, the stored water 9d can be supplied into the porous permeable layer 2 of the road 1 to infiltrate the aquifer for a certain period of time by setting the timer. In addition to the above-described solar power generator, Of course, it is also possible to use electric power. Furthermore, the underground water storage tank 9 into which a large amount of rainwater is introduced and stored can also be used as a fire prevention water tank used for fire extinguishing in the event of a disaster, and the effect is even greater.
[0038]
【The invention's effect】
The rainwater circulation system for a drainable pavement road according to the present invention has the above-described configuration, and a large amount of rainwater that flows down onto the road and flows into the underground storage tank through the permeable layer through the permeable layer is quickly discharged and stored. In addition, it prevents roads from being flooded and water pools during heavy rainfall when a large amount of rainfall is concentrated in a short period of time, and it does not discharge and discharge this large amount of rainwater into rivers. Prevent flooding.
[0039]
In particular, rainwater collected using long and wide roads is stored in an underground water storage tank, and this large amount of stored water is supplied to the fountain passage of the road to be jetted into the permeable layer, and the gradient of the impermeable layer is increased. Due to the head drop, the pores of the permeable layer communicating with the porous structure are infiltrated with water throughout the entire surface, this deprives the road residual heat with vaporization heat and cools it, eliminates the heat island phenomenon due to road residual heat, and the excess flowing water is rainfall In the same way as in the past, water is discharged from the gutter to the underground water storage tank for reuse, and is characterized by a circulation system that uses this large amount of rainwater to vaporize residual heat through the communicating gap of the permeable layer.
[0040]
In a rainwater circulation system equipped with a water level detection device, a water infiltration measurement device, a temperature measurement device, and a control device in the water supply device, the water level of the underground storage tank detected by the water level detection device is detected, and the amount of stored water and After confirming the infiltration state of the aquifer in the road permeable layer measured by the water infiltration measuring device, the temperature and temperature measured by the temperature measuring device based on the time and temperature set in the control device, and the time and temperature of the water transmission device The heat island phenomenon can be effectively eliminated by controlling the pump (pump) so as to be automatically turned on and off by a control device, and by automatically controlling the temperature to suppress the rise in the temperature due to the residual heat of the road. The light beam generator further enhances the energy saving effect of the circulation system using wastewater.
[Brief description of the drawings]
FIG. 1 is a front view of a main part of a drainage pavement embodying the present invention, which is taken along a vertical line to show a rainwater circulation system.
FIG. 2 is a plan view of a main part showing the rainwater circulation system of FIG. 1;
FIG. 3 is a longitudinal sectional front view showing a main part of a road in the rainwater circulation system of FIG. 1 in an enlarged manner.
FIG. 4 is a longitudinal sectional front view of a main part of a road showing another embodiment of a rainwater circulation system on a drainable pavement road.
FIG. 5 is a partial plan view showing a passage member of the rainwater circulation system of FIG. 4;
FIG. 6 is a longitudinal sectional front view of a main part showing another embodiment of a water supply / drainage mechanism on a drainable pavement road.
FIG. 7 is a longitudinal sectional front view of a main part showing another embodiment of a water supply / drainage mechanism on a drainable pavement road.
FIG. 8 is a longitudinal sectional front view of a main part showing another embodiment of a water supply / drainage mechanism on a drainable pavement road.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Road 2 Permeable layer 3 Impervious layer 4 Fountain passage 4a Passage member 4b Top plate 4c Bottom plate 4d Strut 5 Outlet 9 Underground water tank 9a Pump 9b Water level detecting device 9d Reservoir 10 Temperature measuring instrument 11 Water infiltration measuring instrument 12 Control Device 13 Solar power generator