JP2004154713A - Ultrapure water manufacturing apparatus - Google Patents
Ultrapure water manufacturing apparatus Download PDFInfo
- Publication number
- JP2004154713A JP2004154713A JP2002324252A JP2002324252A JP2004154713A JP 2004154713 A JP2004154713 A JP 2004154713A JP 2002324252 A JP2002324252 A JP 2002324252A JP 2002324252 A JP2002324252 A JP 2002324252A JP 2004154713 A JP2004154713 A JP 2004154713A
- Authority
- JP
- Japan
- Prior art keywords
- pump
- water
- ultrapure water
- membrane
- ion exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、半導体デバイス、液晶ディスプレイ、シリコンウエハ、プリント基板等の電子部品工場、あるいは医薬品製造工場で広く使用されている超純水を製造する超純水製造装置において、ユースポイントで必要な供給水圧や水量を確保し、且つ金属濃度が極めて低い超純水を製造する超純水製造装置に関するものである。
【0002】
【従来の技術】
半導体デバイス、液晶ディスプレイ、シリコンウエハ、プリント基板等の電子部品製造あるいは医薬品の製造工程において使用される超純水は、イオン状物質、微粒子、有機物、溶存ガスおよび生菌等の不純物の含有量が極めて少ない高度な水質が要求されている。例えば、近年の半導体製造用超純水の要求値は、比抵抗が18.2MΩ・cm、0.05μm以上の微粒子数が1個/ml以下、TOCが1μg/l以下、金属が5ng/l以下と非常に厳しいものである。
【0003】
従来、こうした要求に対し、被処理水を前処理工程、1次純水製造装置及び2次純水製造装置(サブシステム)と順に通水することにより、超純水が製造されている。例えば特許文献1の特開平10−57956号公報には、超純水中の溶存酸素量を効率的に除去する目的で、1次純水系システムと2次純水系システムとを備えた超純水製造装置において、2次純水系システムに紫外線酸化装置、非再生型イオン交換装置及び膜式脱気装置をこの順に通水するように設置した超純水製造装置が開示されている。また、特許文献2の特開平11−77091号公報には、特にシリコンウエハー表面の自然酸化膜形成に結びつく超純水中に存在する過酸化水素を除去する目的で、一次純水を少なくとも185nm付近の波長を照射可能な紫外線酸化装置、合成炭素系粒状吸着剤を充填した酸化性物質分解装置、膜式脱気装置、非再生型イオン交換装置の順に通水して超純水を得るように設置した超純水製造装置が開示されている。
【0004】
また、特許文献3の特開平11−260787号公報には、シリコン物品の表面を洗浄液及びリンス液で順次処理することを含むシリコン物品表面の清浄化方法であって、超純水をユースポイント直前で、膜内部にイオン交換機能を有する高分子鎖が保持されている多孔膜であって、膜1g当たり0.2〜10ミリ当量のイオン交換基を有し、平均孔径0.01〜1μmの多孔膜を充填したモジュールでさらに処理した水を、前記洗浄液の調製液及び/又は前記リンス液として用いる方法が開示されている。この方法は2次純水製造装置により製造された超純水を、更にイオン吸着膜モジュールに通水することにより、より清浄な表面を有するシリコン物品を得るというものである。
【0005】
いずれの装置または方法においても、1次純水製造装置で製造した1次純水を様々な装置を設置した2次純水製造装置で処理し、種々の不純物を除去することにより、超純水を製造している。このように、2次純水製造装置では、多くの装置を連ねることになるため、ユースポイントへの送水のための圧力損失が大きくなってしまうという問題がある。
【0006】
そのため、ユースポイントで必要な供給水圧と水量を確保するためには、超純水製造装置の運転にあたって、揚程の高い送水ポンプを使用する必要がある。ところが、2次純水製造装置及びユースポイントまでの付帯設備では、使用するポンプの揚程には制限がある。なぜなら、半導体デバイス、液晶ディスプレイ、シリコンウエハ、プリント基板等の電子部品製造工場用の超純水は、金属不純物の混入を特に嫌うこと及び施工性、経済性の面から、配管を始めとするシステム内の部材のほとんどに金属配管に比べ耐圧性の低い樹脂製品、例えば、PVC、PVdF、PPなどからなる材質のものを採用しているからである。非定常運転時での操作ミス、例えばバルブ締め切り運転による事故を想定すると、かなり低めの揚程を持つポンプを使用する必要があるため、なおさらである。このため、ユースポイントでの供給水圧不足、水量不足が問題となる。
【0007】
最近、ユースポイントでの供給水圧不足や水量不足に対し、2次純水製造装置の下流側部分にもう1台ポンプ(以下、「第2ポンプ」と言う)を設置し、昇圧してユースポイントでの必要供給水圧、水量を確保することが行われている。この場合、第2ポンプの後段に多くの装置を設けると、その分圧力損失が生じ、エネルギー消費が多くなり、結果ランニングコストが高くなるため、第2ポンプの後段にはできる限り装置を設けないとすることが、当業者らの技術常識である。
また、現在の超純水製造用として開発されている種々の超純水用ポンプが、金属溶出や微粒子の発生を極力抑制したものであり、万が一の微粒子の発生に備えて念のために膜分離装置のみ設置していればよく、第2ポンプを通水した後の超純水中の金属の溶出については、要求水質を満足することもあって、特段の対策は採られていないのが現状である。
【0008】
【特許文献1】
特開平10−57956号公報(請求項1)
【特許文献2】
特開平11−77091号公報(請求項1)
【特許文献3】
特開平11−260787号公報(請求項1)
【0009】
【発明が解決しようとする課題】
しかしながら、このような第2ポンプを配置しユースポイントで必要な供給水圧や水量を十分に確保できる超純水製造装置から供給される超純水を使用する半導体デバイス等の製造工程では、使用する超純水の水質が要求水質を満足するものであっても、第2ポンプの設置を省略して供給される超純水を使用する場合に比べて、半導体デバイスの歩留まりが悪いという問題があった。
【0010】
従って、本発明の目的は、ユースポイントで必要な供給水圧や水量を確保すると共に、不純物濃度が極めて低く、且つ製品歩留まりに悪影響しない超純水を製造する超純水製造装置を提供することにある。
【0011】
【課題を解決するための手段】
かかる実情において、本発明者は鋭意検討を行った結果、(i)金属の溶出を極力低減した超純水用ポンプであっても、実際には極々微量の金属の溶出が起こっており、これが製品の歩留まりを低下させていること、(ii)従来は第2ポンプの前段に設置することが最適であると考えられていたイオン交換装置を第2ポンプより後段に設置することにより、超純水製造システム全体としては、大きな圧力損失がほとんどなく、ユースポイントで必要な供給水圧や水量を確保しつつ、且つ金属濃度の極めて低い超純水を得ると共に、従前同様の製品歩留まりを維持できること等を見出し、本発明を完成するに至った。
【0012】
すなわち、本発明は、1次純水を処理して超純水を製造する超純水製造装置において、1次純水を送水する第1ポンプと、該第1ポンプの後段に配置されるユースポイントでの供給水圧を高める第2ポンプと、該第2ポンプの後段に配置されるイオン交換装置を備える超純水製造装置を提供するものである。本発明によれば、圧力損失がほとんどなく、ユースポイントで必要な供給水圧や水量を確保しつつ、且つ金属濃度の極めて低い超純水を得ると共に、第2ポンプの設置を省略して供給される超純水の場合と同様の製品歩留まりを維持できる。
【0013】
【発明の実施の形態】
本発明の超純水製造装置は、1次純水を処理して超純水を製造する装置であり、いわゆる2次純水製造装置又はサブシステムと称されるものである。従って、1次純水は、原水をいわゆる前処理システム及び1次純水システムで処理して得られるものである。具体的には例えば、原水貯槽に一旦貯留した工業用水等の原水を前処理システムに通水し、原水中の懸濁物質及び有機物の一部の除去を行い、濾過水槽を経て、一次純水システムに前処理水を供給し、該前処理水を水中の不純物イオンの除去を行う脱塩装置、水中の無機イオン、有機物、微粒子等の除去を行う逆浸透膜装置、水中の溶存酸素等の溶存ガスの除去を行う真空脱気装置、残存するイオン等を除去する再生型混床式脱塩装置に、順に通水することによって得られる高純度の水である。この1次純水は、通常1次純水貯留槽へ送水される。
【0014】
本発明の超純水製造装置は、1次純水を送水する第1ポンプと、該第1ポンプの後段に配置されるユースポイントでの供給水圧を高める第2ポンプを使用する。通常、第1ポンプは1次純水貯留槽の後段で該貯留槽の直近に配置するが、第1ポンプからユースポイントまでには各種装置を設置するため圧力損失が生じる。このため第2ポンプを設けてユースポイントでの必要供給水圧、水量を確保する。超純水製造装置における第2ポンプの設置位置はできるだけユースポイント近くに設けることが、ポンプ容量を小さくでき設置費用やランニングコストを低減できる点で望ましい。第1ポンプ及び第2ポンプとしては、超純水製造用に使用されている公知のものを使用でき、配管の径や長さ及び超純水製造装置に配置する各種装置の種類や数を考慮して、適切な全揚程と流量を与えるものが好適である。具体的には、ステンレス材料が使用されるキャンドモーターポンプ、カスケードポンプ、渦巻きポンプ等が挙げられる。これら第1ポンプ及び第2ポンプは同一又は異なっていてもよく、市販品を使用できる。
【0015】
本発明において、第2ポンプの後段にはイオン交換装置を設置する。従来、超純水用第2ポンプの摺動部分からは極微量の微粒子の発生は避けられないとしても水質上問題となる金属の溶出は起こらないと思われていた。しかし、実際には金属濃度は水質基準を下回るものの、製品の歩留まりに影響するような極々微量の金属が溶出している。このため、該イオン交換装置はこの極々微量の金属を除去するために設置する。第2ポンプの後段には、通常他の装置を介在させることなく、直ちにイオン交換装置を設置する形態がほとんどである。ただし、イオン交換装置としてイオン吸着膜装置を使用する場合、第2ポンプとイオン吸着膜装置との間に膜分離装置を設置してもよい。非再生型イオン交換装置と異なり、イオン吸着膜装置からの微粒子の発生はほとんどないため、該イオン吸着膜装置をユースポイントの直近の装置としても問題はない。
【0016】
また該イオン交換装置の後段、すなわち該イオン交換装置とユースポイト間には膜分離装置を設置しそれ以外の装置を設置しないことが、ユースポイントでの必要供給水圧、水量を確保すると共に、第2ポンプ等から発生する極微量の微粒子を除去して製品の歩留まりを高めることができる点で好適である。なお、イオン交換装置としてイオン吸着膜装置を使用する場合、該イオン吸着膜装置で微粒子を除去できるため、膜分離装置の設置を省略できる。
【0017】
第2ポンプの後段に設置されるイオン交換装置としては、特に限定されないが、例えば非再生型イオン交換装置(カートリッジポリッシャーとも呼ばれる)及びイオン吸着膜装置が挙げられる。これらのイオン交換装置は1個単独又は2個以上を組合せて使用することもできるが、1個単独での使用でも極々微量の金属は十分除去できると共に、圧力損失を最小限に抑えることができる点で好ましい。
【0018】
非再生型イオン交換装置としては、特に限定されないが、例えば、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂との混床によるイオン交換装置(混床1塔式)、強塩基性陰イオン交換樹脂の単床によるイオン交換装置(単床1塔式)、強酸性陽イオン交換樹脂の単床によるイオン交換装置(単床1塔式)、強塩基性陰イオン交換樹脂の単床層を入口側、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂との混床層を出口側に設けた複層式イオン交換装置(複層1塔式)、及びキレート樹脂の単床によるイオン交換装置(単床1塔式)が挙げられる。このうち、混床1塔式イオン交換装置を用いた場合には、混床層内のいずれの位置においても水のpHの変化がないため、効率のよいイオン交換ができるという利点が得られる。また、金属イオンの溶出量が少ないような使用条件であれば、キレート樹脂によるイオン交換装置を使うことができ、キレート樹脂によるイオン交換装置の方が好ましい場合もある。本発明における超純水製造装置が、主に遷移金属である鉄イオンの除去を目的としており、キレート交換樹脂は、捕捉機構から、アニオン交換樹脂やカチオン交換樹脂に比べ一度捕捉した遷移金属類イオンを特に離しにくいという性質を持っており、極微量の遷移金属イオンを除去するのに適しているからである。
【0019】
イオン吸着膜装置としては、特に限定されないが、アニオン吸着膜、カチオン吸着膜、キレート膜を前記非再生型イオン交換装置と同様、使用条件に応じて適宜使用したものからなる。アニオン吸着膜は、例えば、4級アミン基をアニオン交換基として持つ多孔膜や焼結多孔体が挙げられ、カチオン吸着膜は、例えば、スルホン基、りん酸基またはカルボキシル基等をカチオン交換基として持つ多孔膜や焼結多孔体が挙げられ、キレート膜は、水中の金属イオンとキレートを形成することができるエチレンジアミンなどを持つ多孔膜や焼結多孔体が挙げられる。また、膜形状としては、中空糸状、平膜状、プリーツ状、チューブ状、繊維状等が挙げられる。
【0020】
前記イオン交換装置の後段で使用することがある膜分離装置としては、特に限定されないが、超純水中の微粒子を除去することができる精密濾過膜や限外濾過膜等を備えたものが挙げられる。膜形状としては中空糸状、平膜状、プリーツ状、チューブ状、繊維状等の適宜形状に形成したものを使用でき、膜の材質としては特に限定されないが、例えばセルロース系有機重合体、ポリアミド、ポリイミド、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)等が挙げられる。
【0021】
また、本発明において、前記第1ポンプと前記第2ポンプの間に設置される装置としては、特に制限されず従来の超純水製造装置で使用される各種不純物除去装置が挙げられる。このうち、少なくとも膜式脱気装置を備えることが好適な形態である。膜式脱気装置は、例えばシリコンウエハの表面上の自然酸化膜形成に影響する溶存酸素を低減するために設置するものである。耐圧の低い膜式脱気装置を第2ポンプの後段に設置したのでは、第2ポンプの容量を大きくできず、ユースポイントで必要な供給水圧が得られないこともある。膜式脱気装置としては、気体分離膜を備えており、気体分離膜で仕切られた一方の室に被処理水を流すと共に、他方の室を減圧にすることにより、被処理水中に含まれるガスを気体分離膜を通して他方の室に移行させて除去する形式の装置が使用できる。気体分離膜としては、ポリテトラフルオロエチレン等のフッ素系、ポリエチレン、ポリプロピレン等のオレフィン系、シリコーンゴム系等の高分子膜を中空糸膜状等の適宜形状に形成したものが挙げられる。
【0022】
また、本発明においては、第1ポンプと第2ポンプの間に、紫外線照射装置、非再生型イオン交換装置及び膜式脱気装置を備えることが好適な形態であり、更に、紫外線照射装置、非再生型イオン交換装置及び膜式脱気装置を、この順で配置することが、例えばシリコンウエハの表面上の自然酸化膜形成に影響する溶存酸素をより低減することができる点で更に好適な形態である。紫外線照射装置としては、185nm付近の波長を照射可能な紫外線ランプを備えたものが被処理水中の有機物を分解するのに適している点で好適である。用いる紫外線ランプとしては、特に限定されないが、低圧水銀ランプが好ましい。また、紫外線照射装置としては、流通型または浸漬型が挙げられ、このうち、流通型が処理効率の点から好ましい。また、ここで用いる非再生型イオン交換装置としては、前記非再生型イオン交換装置と同様のものを用いることができる。
【0023】
次に、本実施の形態例における超純水製造装置の具体的なフローを下記に例示する。ここで、純水槽は1次純水を貯留する1次純水貯留槽を、熱交は熱交換器を、第1Pは第1ポンプを、第2Pは第2ポンプを、CPは非再生型イオン交換装置を、IFはイオン吸着膜装置を、UFは限外濾過膜装置を、MDは膜式脱気装置を、UVは紫外線照射装置を、POUはユースポイントをそれぞれ示す。また、括弧内の装置は省略可能であることを示す。なお、下記フローでは明示しないが、一般に、超純水はPOUで使用、不使用に拘らずいずれの場合でもユースポイントから循環配管を通って1次純水貯留槽に戻り、閉ループを形成し、常時循環している。
【0024】
(1)純水槽→第1P→熱交→UV→第2P→CP→UF→POU
(2)純水槽→第1P→熱交→MD→UV→第2P→CP→UF→POU
(3)純水槽→第1P→熱交→UV→MD→第2P→CP→UF→POU
(4)純水槽→第1P→熱交→MD→UV→CP→第2P→CP→UF→POU
(5)純水槽→第1P→熱交→UV→MD→CP→第2P→CP→UF→POU
(6)純水槽→第1P→熱交→UV→CP→MD→第2P→CP→UF→POU
(7)純水槽→第1P→熱交→UV→CP→第2P→IF→(UF)→POU
(8)純水槽→第1P→熱交→MD→UV→CP→第2P→IF→(UF)→POU
(9)純水槽→第1P→熱交→UV→MD→CP→第2P→IF→(UF)→POU
(10)純水槽→第1P→熱交→UV→CP→MD→第2P→IF→(UF)→POU
(11)純水槽→第1P→熱交→UV→CP→第2P→(UF)→IF→POU
(12)純水槽→第1P→熱交→MD→UV→CP→第2P→(UF)→IF→POU
(13)純水槽→第1P→熱交→UV→MD→CP→第2P→(UF)→IF→POU
(14)純水槽→第1P→熱交→UV→CP→MD→第2P→(UF)→IF→POU
(15)純水槽→第1P→・・・→UF→第2P→CP→UF→POU
(16)純水槽→第1P→・・・→UF→第2P→IF→(UF)→POU
【0025】
上記(1)〜(6)に係る形態は第2ポンプとユースポイント間に非再生型イオン交換装置と限外濾過膜装置をこの順で設置したものである。この形態例の場合、第2ポンプを設置すると共に、該ポンプの後段に設置する装置を極力少なくしているため、比較的小さな容量のポンプであっても低下した供給水圧を高めてユースポイントに供給することができる。また、第2ポンプから発生する極々微量の金属イオンを非再生型イオン交換装置で除去すると共に、極微量の微粒子を限外濾過膜装置で除去して製品の歩留まりを高めることができる。上記(7)〜(10)に係る形態は、主に上記(1)〜(6)に係る形態の非再生型イオン交換装置に代えて、イオン吸着膜装置を設置したものである。本形態例によれば前記形態例と同様の効果を奏する他、イオン吸着膜装置は微粒子除去能を有することから、該装置の後段にある限外濾過膜装置の設置を省略することができる。また、限外濾過膜装置を前段に、イオン吸着膜装置をその後段に設置する形態であっても上記(7)〜(10)に係る形態と同様の効果を奏する(上記(11)〜(14))。
【0026】
また、本発明において、第2ポンプの直前に膜分離装置を設置してもよい。具体的には上記(15)及び(16)に係る形態がその例示であって、第2ポンプの前段に限外濾過膜装置を設置するものである。例えば半導体製造工程における超純水製造装置では各種装置群を配設した超純水供給サイトとユースポイントは数十m〜数百m離れていることが多い。このような場合、既設の第1ポンプのみで送水する超純水製造装置では、超純水供給サイトの最終装置は限外濾過膜装置などの膜分離装置であり、該膜分離装置から流出した直後の超純水を保証水質としている。しかし、数十m〜数百mもの配管による圧力損失や汚染粒子の混入に対処するため、将来ユースポイント直前で保証水質とすることも考えられる。この場合、既設の超純水供給サイトにある膜分離装置の後段であって、距離的に離れたユースポイント直前で第2ポンプ、イオン交換装置、必要に応じて膜分離装置をこの順で設置することが、比較的小さな容量のポンプで低下した水圧を高め且つ不純物濃度が極めて低い超純水をユースポイントに確実に供給することができる点で好適である。なお、第2ポンプの前段及び後段に膜分離装置を用いる場合、両装置は同一又は異なっていてもよい。
【0027】
【実施例】
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単なる例示であって、本発明を制限するものではない。
実施例1
上記(2)の形態(純水槽→第1P→熱交→MD→UV→第2P→CP→UF→POU)の超純水製造装置を使用して超純水を製造した。この超純水をPOUでシリコンウエハの洗浄に使用すると共に、所定の箇所からサンプリングを行ない鉄イオンの定量分析を行った。その結果を表1に示す。なお、超純水はPOUで使用、不使用に拘らずいずれの場合でもユースポイントから循環配管を通って1次純水貯留槽に戻り閉ループを形成し、常時循環させた。なお、超純水製造装置を構成する第1ポンプ、第2ポンプ及びイオン交換装置の仕様、サンプリング場所及び金属イオンの定量分析方法等は下記の通りである。
【0028】
・第1ポンプ、第2ポンプ;「ノンシールポンプSGM」(日機装社製)
・イオン交換装置;容器内に、H形の強酸性陽イオン交換樹脂とOH形の強塩基性陰イオン交換樹脂との混合樹脂「ESG−2」(オルガノ社製)を充填した非再生型イオン交換装置
・イオン交換装置通水条件;SV50
・サンプリング場所;第2ポンプ入口、第2ポンプ出口、限外濾過膜装置出口の3箇所
【0029】
(金属イオンの定量分析方法)
特開2001−153854号公報の実施例1記載のイオン吸着膜法を用いた。また、このイオン吸着膜はT.Hori et al.,J.Membr.Sci.,132(1997)203−211に記載の方法により作製した。すなわち濃縮用のカチオン吸着膜(膜1g当たりのイオン交換基:1.6ミリ当量、モジュールとしてのイオン交換基1.5ミリ当量、平均孔径0.1μm)を超純水製造装置の所定の場所から分岐して設置し、超純水中の鉄イオン濃度を測定した。通水期間は1日間、通水速度は100ml/分で約144L通水した。超純水中の鉄イオンをカチオン吸着膜に捕捉した後、捕捉した鉄イオンは高純度硝酸「TAMAPURE AA−100」(多摩化学社製)を稀釈した1N硝酸50mlを用いて溶離し、溶離液中の金属量をICP−MSにて測定した。濃縮率は144/0.05=2880倍であるから、溶離液中の金属量(ng)を濃縮倍率で除した値が超純水中の鉄イオン濃度となる。
【0030】
比較例1
上記(2)の形態に代えて、純水槽→第1P→熱交→MD→UV→CP→第2P→UF→POUの超純水製造装置を用いた以外は、実施例1と同様の方法で行った。すなわち、比較例1は実施例1の第2ポンプとその後段にある非再生型イオン交換装置を入れ替え、非再生型イオン交換装置を第2ポンプ前段に設置したものである。その結果を表1に示す。
【0031】
実施例2
上記(2)の形態に代えて、上記(4)の形態(純水槽→第1P→熱交→MD→UV→CP→第2P→CP→UF→POU)の超純水製造装置を用いた以外は、実施例1と同様の方法で行った。その結果を表1に示す。
【0032】
比較例2
上記(4)の形態に代えて、純水槽→第1P→熱交→MD→UV→CP→第2P→UF→POUの超純水製造装置を用いた以外は、実施例2と同様の方法で行った。すなわち、比較例2は実施例2の第2ポンプの後段にある非再生型イオン交換装置を省略したものである。その結果を表1に示す。
【0033】
【表1】
【0034】
実施例1及び実施例2において、第2ポンプからの鉄イオンの溶出が認められたが、後段の非再生型イオン交換装置及び限外濾過膜装置を通過することにより、0.1ng/l以下まで減少した。また、実施例1及び実施例2においてはシリコンウエハの歩留まりが問題とされることはなかった。これに対して比較例1及び比較例2は第2ポンプからの鉄イオンの溶出が同様に認められたが、当該鉄イオンは除去されることなく、そのままユースポイントへ供給された。また、比較例1及び比較例2においてはシリコンウエハの歩留まりが低い傾向であったため問題とされた。なお、実施例及び比較例では金属イオンの定量方法として、上記方法以外に、サンプリングした超純水を減容濃縮した後、ICP−MS分析するボトルサンプリング法でも行なったが、比較例1、2の第2ポンプ出口及び実施例1、2及び比較例1、2の限外濾過膜装置出口の値はいずれも測定限界の1.0ng/l以下であり、第2ポンプの後段に設置した非再生型イオン交換装置の効果が確認できなかった。
【0035】
【発明の効果】
本発明の超純水製造装置によれば、昇圧するために使用する第2ポンプの後段に、イオン交換装置を配置することにより、第2ポンプでわずかに溶出する金属イオンを除去することができ、ユースポイントでの適切な供給水圧、水量を確保しつつ、金属イオン濃度が0.1ng/l以下と極めて低い、製品歩留まりに悪影響しない超純水を製造できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an ultra-pure water production apparatus for producing ultra-pure water widely used in electronic component factories such as semiconductor devices, liquid crystal displays, silicon wafers, printed circuit boards, or pharmaceutical factories, at a point of use that is required at a point of use. TECHNICAL FIELD The present invention relates to an ultrapure water production apparatus which secures water pressure and water volume and produces ultrapure water having an extremely low metal concentration.
[0002]
[Prior art]
Ultrapure water used in the manufacture of electronic components such as semiconductor devices, liquid crystal displays, silicon wafers, and printed circuit boards or in the manufacturing process of pharmaceuticals has a high content of impurities such as ionic substances, fine particles, organic substances, dissolved gases, and viable bacteria. Extremely low water quality is required. For example, in recent years, the required values of ultrapure water for semiconductor production are as follows: specific resistance is 18.2 MΩ · cm, number of particles having a particle size of 0.05 μm or more is 1 / ml or less, TOC is 1 μg / l or less, and metal is 5 ng / l. The following is very severe.
[0003]
Conventionally, ultrapure water has been produced by passing water to be treated through a pretreatment step, a primary pure water producing apparatus, and a secondary pure water producing apparatus (subsystem) in this order. For example, Japanese Patent Application Laid-Open No. H10-57956 of Patent Document 1 discloses an ultrapure water provided with a primary pure water system and a secondary pure water system for the purpose of efficiently removing the dissolved oxygen amount in the ultrapure water. In the production apparatus, an ultrapure water production apparatus in which an ultraviolet oxidation apparatus, a non-regenerative ion exchange apparatus, and a membrane deaerator are installed in a secondary pure water system so as to pass water in this order is disclosed. Japanese Patent Application Laid-Open No. H11-77091 of Patent Document 2 discloses that, in order to remove hydrogen peroxide present in ultrapure water, which is particularly associated with the formation of a natural oxide film on the surface of a silicon wafer, primary water at least around 185 nm is used. Ultra-pure water is obtained by passing water through an ultraviolet oxidizer capable of irradiating the same wavelength, an oxidizing substance decomposer filled with a synthetic carbon-based particulate adsorbent, a membrane deaerator, and a non-regenerative ion exchanger in this order. An installed ultrapure water production device is disclosed.
[0004]
Japanese Patent Application Laid-Open No. H11-260787 of Patent Document 3 discloses a method of cleaning the surface of a silicon article, which comprises sequentially treating the surface of the silicon article with a cleaning liquid and a rinsing liquid. A porous membrane having a polymer chain having an ion exchange function held inside the membrane, having 0.2 to 10 milliequivalents of ion exchange groups per gram of the membrane and having an average pore diameter of 0.01 to 1 μm. A method is disclosed in which water further treated by a module filled with a porous membrane is used as a preparation liquid for the cleaning liquid and / or a rinsing liquid. According to this method, ultrapure water produced by a secondary pure water producing apparatus is further passed through an ion adsorption membrane module to obtain a silicon article having a cleaner surface.
[0005]
In any apparatus or method, the primary pure water produced by the primary pure water producing apparatus is treated by the secondary pure water producing apparatus provided with various apparatuses to remove various impurities, thereby obtaining ultrapure water. Has been manufactured. As described above, in the secondary pure water production apparatus, since many apparatuses are connected, there is a problem that a pressure loss for water supply to a use point increases.
[0006]
Therefore, in order to secure the required supply water pressure and water amount at the point of use, it is necessary to use a water pump with a high head when operating the ultrapure water production apparatus. However, in the secondary pure water production apparatus and the incidental facilities up to the point of use, there are restrictions on the head of the pump used. This is because ultrapure water for the production of electronic components such as semiconductor devices, liquid crystal displays, silicon wafers, and printed circuit boards is particularly difficult to mix with metallic impurities, and because of its workability and economical efficiency, systems such as piping. This is because, for most of the members inside, a resin product having a lower pressure resistance than a metal pipe, for example, a material made of PVC, PVdF, PP or the like is used. Assuming an operation error during an unsteady operation, for example, an accident due to a valve shut-off operation, it is all the more necessary to use a pump having a considerably lower head. For this reason, there is a problem of insufficient supply water pressure and water quantity at the point of use.
[0007]
Recently, due to insufficient supply water pressure and water volume at the point of use, another pump (hereinafter referred to as “second pump”) has been installed downstream of the secondary pure water production equipment, and the pressure has been increased by increasing the point of use. The required supply water pressure and the amount of water in the country are being secured. In this case, if many devices are provided downstream of the second pump, pressure loss will occur, energy consumption will increase, and running costs will increase. Therefore, devices will not be provided downstream of the second pump as much as possible. It is common technical knowledge of those skilled in the art.
In addition, various ultrapure water pumps that are currently being developed for ultrapure water production have minimized metal elution and generation of fine particles. It is sufficient to install only a separation device, and no special measures have been taken for elution of metals in ultrapure water after passing through the second pump, in part because the required water quality is satisfied. It is the current situation.
[0008]
[Patent Document 1]
JP-A-10-57956 (Claim 1)
[Patent Document 2]
JP-A-11-77091 (Claim 1)
[Patent Document 3]
JP-A-11-260787 (Claim 1)
[0009]
[Problems to be solved by the invention]
However, such a second pump is used in a manufacturing process of a semiconductor device or the like using ultrapure water supplied from an ultrapure water production apparatus capable of sufficiently securing a required supply water pressure and water amount at a point of use. Even if the water quality of the ultrapure water satisfies the required water quality, there is a problem that the yield of semiconductor devices is lower than in the case of using ultrapure water supplied without installing the second pump. Was.
[0010]
Accordingly, it is an object of the present invention to provide an ultrapure water production apparatus that produces ultrapure water having an extremely low impurity concentration and having no adverse effect on the product yield, while ensuring the required supply water pressure and water amount at a point of use. is there.
[0011]
[Means for Solving the Problems]
Under such circumstances, the present inventors have conducted intensive studies. As a result, even in the case of (i) a pump for ultrapure water in which the elution of metal is reduced as much as possible, an extremely small amount of metal is actually eluted. (Ii) By installing an ion exchange device after the second pump, which was conventionally considered to be optimally installed before the second pump, ultra-pure As a whole, the water production system has almost no large pressure loss, secures the required supply pressure and amount of water at the point of use, obtains ultrapure water with extremely low metal concentration, and maintains the same product yield as before. And completed the present invention.
[0012]
That is, the present invention provides an ultrapure water production apparatus for producing ultrapure water by treating primary pure water, and a first pump for supplying the primary pure water, and a use pump disposed downstream of the first pump. It is an object of the present invention to provide an ultrapure water production apparatus including a second pump for increasing the supply water pressure at a point, and an ion exchange device disposed downstream of the second pump. ADVANTAGE OF THE INVENTION According to this invention, while obtaining a supply water pressure and water amount required at a point of use with almost no pressure loss, and obtaining ultrapure water with extremely low metal concentration, it is supplied by omitting installation of a second pump. The same product yield as in the case of ultrapure water can be maintained.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The apparatus for producing ultrapure water of the present invention is an apparatus for producing ultrapure water by treating primary pure water, and is referred to as a so-called secondary pure water producing apparatus or subsystem. Therefore, primary pure water is obtained by treating raw water with a so-called pretreatment system and a primary pure water system. Specifically, for example, raw water such as industrial water once stored in a raw water storage tank is passed through a pretreatment system, a part of suspended substances and organic substances in the raw water is removed, and the primary purified water is passed through a filtration water tank. A pretreatment water is supplied to the system, and a desalination device for removing impurity ions in the water, a reverse osmosis membrane device for removing inorganic ions, organic substances, fine particles and the like in the water, a dissolved oxygen in the water, etc. High-purity water obtained by sequentially passing water through a vacuum deaerator for removing dissolved gases and a regenerative mixed-bed desalter for removing remaining ions and the like. This primary pure water is usually sent to a primary pure water storage tank.
[0014]
The apparatus for producing ultrapure water of the present invention uses a first pump for supplying primary pure water and a second pump for increasing supply water pressure at a use point disposed downstream of the first pump. Normally, the first pump is arranged immediately after the primary pure water storage tank at a stage subsequent to the storage tank. However, since various devices are installed from the first pump to the use point, pressure loss occurs. For this reason, a second pump is provided to secure the required supply water pressure and water amount at the point of use. It is desirable that the installation position of the second pump in the ultrapure water production apparatus be provided as close to the use point as possible, since the pump capacity can be reduced and the installation cost and running cost can be reduced. As the first pump and the second pump, known pumps used for ultrapure water production can be used, and the diameter and length of the pipe and the type and number of various devices arranged in the ultrapure water production apparatus are taken into consideration. It is preferable to provide an appropriate total head and flow rate. Specific examples include a canned motor pump, a cascade pump, and a spiral pump using a stainless steel material. These first and second pumps may be the same or different, and commercially available products can be used.
[0015]
In the present invention, an ion exchange device is installed downstream of the second pump. Conventionally, it has been thought that even if generation of a very small amount of fine particles is inevitable from the sliding portion of the second pump for ultrapure water, elution of metal, which is a problem in water quality, does not occur. However, in reality, although the metal concentration is lower than the water quality standard, an extremely small amount of metal elutes, which affects the product yield. For this reason, the ion exchange device is installed to remove this extremely small amount of metal. In most cases, an ion exchange device is immediately installed immediately after the second pump without any intervening other devices. However, when using an ion adsorption membrane device as an ion exchange device, a membrane separation device may be installed between the second pump and the ion adsorption membrane device. Unlike a non-regeneration type ion exchange apparatus, since there is almost no generation of fine particles from the ion adsorption membrane apparatus, there is no problem even if the ion adsorption membrane apparatus is used immediately adjacent to the point of use.
[0016]
In addition, the subsequent installation of the ion exchange device, that is, the installation of a membrane separation device between the ion exchange device and the use point, and no installation of other devices, ensures the necessary supply water pressure and water amount at the use point, and It is suitable in that a very small amount of fine particles generated from the two pumps or the like can be removed and the product yield can be increased. When an ion adsorption membrane device is used as the ion exchange device, fine particles can be removed by the ion adsorption membrane device, so that the installation of the membrane separation device can be omitted.
[0017]
The ion exchange device installed downstream of the second pump is not particularly limited, but includes, for example, a non-regeneration type ion exchange device (also called a cartridge polisher) and an ion adsorption membrane device. These ion exchangers can be used alone or in combination of two or more. However, even when used alone, extremely small amounts of metals can be sufficiently removed and pressure loss can be minimized. It is preferred in that respect.
[0018]
The non-regenerating type ion exchange device is not particularly limited. For example, an ion exchange device (mixed bed single column type) using a mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin, Ion exchange device with single bed of ion exchange resin (single bed, one column), ion exchange device with single bed of strong acid cation exchange resin (single bed, one column), single bed layer of strong basic anion exchange resin On the inlet side, a multi-layered ion exchange device (multi-layered single-column type) provided with a mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin on the outlet side, and a single bed of a chelating resin An ion exchange device (single-bed, single-column type) may be used. Among them, in the case of using a mixed-bed single-column ion-exchange device, there is no change in the pH of water at any position in the mixed-bed layer, so that there is an advantage that efficient ion exchange can be performed. In addition, under conditions in which the amount of metal ions eluted is small, an ion exchange device using a chelate resin can be used, and an ion exchange device using a chelate resin may be more preferable. The ultrapure water production apparatus according to the present invention is mainly intended for removing iron ions as transition metals, and the chelate exchange resin is a trapping mechanism, and the transition metal ions once trapped compared to the anion exchange resin or the cation exchange resin. This is because they have the property of being particularly difficult to separate, and are suitable for removing trace amounts of transition metal ions.
[0019]
The ion adsorption membrane device is not particularly limited, but includes an anion adsorption membrane, a cation adsorption membrane, and a chelate membrane appropriately used in accordance with the conditions of use, as in the non-regenerative ion exchange device. Examples of the anion adsorption membrane include a porous membrane having a quaternary amine group as an anion exchange group and a sintered porous body. The cation adsorption membrane includes, for example, a sulfone group, a phosphate group, a carboxyl group, or the like as a cation exchange group. Examples of the chelate membrane include porous membranes and sintered porous bodies having ethylenediamine capable of forming chelates with metal ions in water. Examples of the membrane shape include a hollow fiber shape, a flat membrane shape, a pleated shape, a tube shape, and a fibrous shape.
[0020]
The membrane separation device that may be used in the subsequent stage of the ion exchange device is not particularly limited, and examples thereof include a device provided with a microfiltration membrane or an ultrafiltration membrane capable of removing fine particles in ultrapure water. Can be As the membrane shape, a hollow fiber shape, a flat membrane shape, a pleated shape, a tube shape, those formed in an appropriate shape such as a fiber shape can be used, and the material of the membrane is not particularly limited, but for example, a cellulose-based organic polymer, polyamide, Examples include polyimide, polysulfone, polyethersulfone, polyacrylonitrile, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), and the like.
[0021]
In the present invention, a device installed between the first pump and the second pump is not particularly limited, and includes various impurity removing devices used in a conventional ultrapure water production device. Of these, it is a preferred embodiment to provide at least a membrane deaerator. The film-type deaerator is installed, for example, to reduce dissolved oxygen that affects formation of a natural oxide film on the surface of a silicon wafer. If the membrane deaerator having a low pressure resistance is installed at the subsequent stage of the second pump, the capacity of the second pump cannot be increased, and the required supply water pressure may not be obtained at the point of use. The membrane type deaerator is provided with a gas separation membrane, and while the water to be treated flows into one of the chambers separated by the gas separation membrane, and the other chamber is depressurized, the gas is included in the water to be treated. An apparatus of a type in which gas is removed by transferring the gas through a gas separation membrane to the other chamber can be used. Examples of the gas separation membrane include those in which a polymer membrane such as a fluorine-based membrane such as polytetrafluoroethylene, an olefin-based membrane such as polyethylene or polypropylene, or a silicone rubber-based membrane is formed into an appropriate shape such as a hollow fiber membrane.
[0022]
Further, in the present invention, it is a preferable mode to provide an ultraviolet irradiation device, a non-regenerative ion exchange device, and a membrane deaerator between the first pump and the second pump. Arranging the non-regenerative ion exchange device and the membrane deaerator in this order is more preferable, for example, in that the dissolved oxygen affecting the formation of a natural oxide film on the surface of the silicon wafer can be further reduced. It is a form. As an ultraviolet irradiation apparatus, an apparatus equipped with an ultraviolet lamp capable of irradiating a wavelength around 185 nm is preferable in that it is suitable for decomposing organic substances in the water to be treated. The ultraviolet lamp used is not particularly limited, but a low-pressure mercury lamp is preferred. Examples of the ultraviolet irradiation device include a flow type and an immersion type. Among them, the flow type is preferable from the viewpoint of processing efficiency. Further, as the non-regenerative ion exchange device used here, the same device as the non-regenerative ion exchange device can be used.
[0023]
Next, a specific flow of the ultrapure water production apparatus according to the present embodiment will be exemplified below. Here, the pure water tank is a primary pure water storage tank for storing primary pure water, heat exchange is a heat exchanger, first P is a first pump, second P is a second pump, and CP is a non-regenerative type. An ion exchange device, IF is an ion adsorption membrane device, UF is an ultrafiltration membrane device, MD is a membrane deaerator, UV is an ultraviolet irradiation device, and POU is a point of use. Also, the devices in parentheses indicate that they can be omitted. Although not explicitly shown in the following flow, in general, ultrapure water returns to the primary pure water storage tank through the circulating pipe from the point of use, regardless of whether it is used or not in the POU, forming a closed loop, It is constantly circulating.
[0024]
(1) Pure water tank → 1st P → heat exchange → UV → 2nd P → CP → UF → POU
(2) Pure water tank → 1st P → heat exchange → MD → UV → 2nd P → CP → UF → POU
(3) Pure water tank → 1st P → heat exchange → UV → MD → 2nd P → CP → UF → POU
(4) Pure water tank → 1st P → heat exchange → MD → UV → CP → 2nd P → CP → UF → POU
(5) Pure water tank → 1st P → heat exchange → UV → MD → CP → 2nd P → CP → UF → POU
(6) Pure water tank → 1st P → heat exchange → UV → CP → MD → 2nd P → CP → UF → POU
(7) Pure water tank → 1st P → heat exchange → UV → CP → 2nd P → IF → (UF) → POU
(8) Pure water tank → 1st P → heat exchange → MD → UV → CP → 2nd P → IF → (UF) → POU
(9) Pure water tank → 1st P → heat exchange → UV → MD → CP → 2nd P → IF → (UF) → POU
(10) Pure water tank → 1st P → heat exchange → UV → CP → MD → 2nd P → IF → (UF) → POU
(11) Pure water tank → 1st P → heat exchange → UV → CP → 2nd P → (UF) → IF → POU
(12) Pure water tank → 1st P → heat exchange → MD → UV → CP → 2nd P → (UF) → IF → POU
(13) Pure water tank → 1st P → heat exchange → UV → MD → CP → 2nd P → (UF) → IF → POU
(14) Pure water tank → 1st P → heat exchange → UV → CP → MD → 2nd P → (UF) → IF → POU
(15) Pure water tank → 1st P → ... → UF → 2nd P → CP → UF → POU
(16) Pure water tank → 1st P → ... → UF → 2nd → IF → (UF) → POU
[0025]
In the modes according to the above (1) to (6), a non-regenerative ion exchange device and an ultrafiltration membrane device are installed in this order between the second pump and the point of use. In the case of this embodiment, the second pump is installed, and the equipment installed at the subsequent stage of the pump is reduced as much as possible. Can be supplied. In addition, a very small amount of metal ions generated from the second pump can be removed by the non-regeneration type ion exchange device, and a very small amount of fine particles can be removed by the ultrafiltration membrane device, so that the product yield can be improved. In the embodiments according to the above (7) to (10), an ion adsorption membrane device is installed mainly in place of the non-regenerative ion exchange device in the embodiment according to the above (1) to (6). According to the present embodiment, in addition to the same effects as those of the above-described embodiment, since the ion-adsorbing membrane device has a capability of removing fine particles, it is possible to omit the installation of the ultrafiltration membrane device at the subsequent stage of the device. In addition, even in a mode in which the ultrafiltration membrane device is installed in the preceding stage and the ion-adsorbing membrane device is installed in the subsequent stage, the same effects as those in the embodiments (7) to (10) can be obtained (the above (11) to (10)). 14)).
[0026]
In the present invention, a membrane separation device may be installed immediately before the second pump. Specifically, the modes according to the above (15) and (16) are examples thereof, and an ultrafiltration membrane device is installed in a stage preceding the second pump. For example, in an ultrapure water production apparatus in a semiconductor production process, an ultrapure water supply site in which various equipment groups are provided and a use point are often separated by tens to hundreds of meters. In such a case, in the existing ultrapure water production apparatus that supplies water only with the first pump, the final apparatus at the ultrapure water supply site is a membrane separation apparatus such as an ultrafiltration membrane apparatus, which has flowed out of the membrane separation apparatus. The ultrapure water immediately after is guaranteed water quality. However, in order to cope with pressure loss and contamination of contaminant particles due to pipes of several tens to several hundreds of meters, it is conceivable to use a guaranteed water quality immediately before a use point in the future. In this case, a second pump, an ion exchange device, and, if necessary, a membrane separation device are installed in this order immediately after the membrane separation device at the existing ultrapure water supply site and immediately before a use point that is far apart. This is preferable in that the reduced water pressure can be increased with a pump having a relatively small capacity, and ultrapure water having an extremely low impurity concentration can be reliably supplied to the point of use. In addition, when a membrane separation device is used in a stage before and after the second pump, both devices may be the same or different.
[0027]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
Example 1
Ultrapure water was produced using the ultrapure water production apparatus of the form (2) (pure water tank → first P → heat exchange → MD → UV → second P → CP → UF → POU). This ultrapure water was used for cleaning the silicon wafer with the POU, and sampling was performed from a predetermined location to perform quantitative analysis of iron ions. Table 1 shows the results. Regardless of whether the ultrapure water was used or not used in the POU, in any case, the ultrapure water returned from the point of use through the circulation pipe to the primary pure water storage tank to form a closed loop, and was constantly circulated. The specifications of the first pump, the second pump, and the ion exchange device that constitute the ultrapure water production device, the sampling location, the method of quantitatively analyzing metal ions, and the like are as follows.
[0028]
・ First and second pumps: "Non-seal pump SGM" (manufactured by Nikkiso Co., Ltd.)
-Ion exchange device: Non-regenerating type ions filled in a container with a mixed resin "ESG-2" (manufactured by Organo Corporation) of a strongly acidic cation exchange resin in the H form and a strongly basic anion exchange resin in the OH form. Exchange device / ion exchange device
・ Sampling locations: 3 places of second pump inlet, second pump outlet, and ultrafiltration membrane device outlet
(Method for quantitative analysis of metal ions)
The ion adsorption membrane method described in Example 1 of JP-A-2001-153854 was used. This ion-adsorbing film is made of T.I. Hori et al. , J. et al. Membr. Sci. , 132 (1997) 203-211. That is, a cation adsorption membrane for concentration (ion exchange groups per gram of membrane: 1.6 milliequivalents, ion exchange groups as a module 1.5 milliequivalents, and an average pore diameter of 0.1 μm) is placed at a predetermined location in the ultrapure water production apparatus , And the iron ion concentration in ultrapure water was measured. Approximately 144 L of water was passed at a water flow rate of 100 ml / min for a period of one day. After trapping iron ions in ultrapure water on the cation adsorption membrane, the trapped iron ions were eluted with 50 ml of 1N nitric acid diluted with high-purity nitric acid “TAMAPURE AA-100” (manufactured by Tama Chemical Co., Ltd.). The amount of metal in the sample was measured by ICP-MS. Since the concentration ratio is 144 / 0.05 = 2880 times, the value obtained by dividing the metal amount (ng) in the eluent by the concentration ratio is the iron ion concentration in the ultrapure water.
[0030]
Comparative Example 1
A method similar to that of Example 1 except that an ultrapure water production apparatus of pure water tank → first P → heat exchange → MD → UV → CP → second P → UF → POU was used instead of the above mode (2). I went in. That is, in Comparative Example 1, the second pump of Example 1 and the non-regenerative ion exchange device at the subsequent stage were replaced, and the non-regenerative ion exchange device was installed at the stage before the second pump. Table 1 shows the results.
[0031]
Example 2
An ultrapure water production apparatus of the form (4) (pure water tank → first P → heat exchange → MD → UV → CP → second P → CP → UF → POU) was used instead of the form (2). Except for the above, the procedure was the same as in Example 1. Table 1 shows the results.
[0032]
Comparative Example 2
A method similar to that of Example 2 except that an ultrapure water production apparatus of pure water tank → first P → heat exchange → MD → UV → CP → second P → UF → POU was used instead of the mode of the above (4). I went in. That is, in Comparative Example 2, the non-regenerative ion exchange device downstream of the second pump of Example 2 was omitted. Table 1 shows the results.
[0033]
[Table 1]
[0034]
In Examples 1 and 2, elution of iron ions from the second pump was observed. However, by passing through a non-regeneration type ion exchange device and an ultrafiltration membrane device at the subsequent stage, 0.1 ng / l or less was obtained. Down to. Further, in Examples 1 and 2, the yield of the silicon wafer was not a problem. On the other hand, in Comparative Examples 1 and 2, elution of iron ions from the second pump was similarly observed, but the iron ions were supplied to the point of use without being removed. Further, in Comparative Examples 1 and 2, the yield of silicon wafers tended to be low, which was problematic. In addition, in Examples and Comparative Examples, as a method of quantifying metal ions, in addition to the above-described method, volume reduction and concentration of sampled ultrapure water were performed by a bottle sampling method in which ICP-MS analysis was performed. The values at the outlet of the second pump and the outlets of the ultrafiltration membrane devices of Examples 1 and 2 and Comparative Examples 1 and 2 are all less than the measurement limit of 1.0 ng / l. The effect of the regenerative ion exchange device could not be confirmed.
[0035]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the ultrapure water production apparatus of this invention, the metal ion slightly eluting by a 2nd pump can be removed by arrange | positioning an ion exchange apparatus at the latter stage of the 2nd pump used for raising a pressure. It is possible to produce ultrapure water having an extremely low metal ion concentration of 0.1 ng / l or less, which does not adversely affect the product yield, while ensuring appropriate supply water pressure and water volume at the point of use.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002324252A JP3963319B2 (en) | 2002-11-07 | 2002-11-07 | Ultrapure water production equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002324252A JP3963319B2 (en) | 2002-11-07 | 2002-11-07 | Ultrapure water production equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004154713A true JP2004154713A (en) | 2004-06-03 |
JP3963319B2 JP3963319B2 (en) | 2007-08-22 |
Family
ID=32803895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002324252A Expired - Fee Related JP3963319B2 (en) | 2002-11-07 | 2002-11-07 | Ultrapure water production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3963319B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007136441A (en) * | 2005-10-19 | 2007-06-07 | Hitachi Chem Co Ltd | Ultrapure water production apparatus |
WO2008053826A1 (en) * | 2006-10-31 | 2008-05-08 | Kurita Water Industries Ltd. | Method of increasing purity of ultrapure water and apparatus therefor |
JP2011224489A (en) * | 2010-04-21 | 2011-11-10 | Japan Organo Co Ltd | Stainless steel for ultrapure water producing apparatus, method for manufacturing the same, and ultrapure water producing apparatus |
JP2015108526A (en) * | 2013-12-03 | 2015-06-11 | 株式会社ディスコ | Water quality inspection device |
JP2021084044A (en) * | 2019-11-25 | 2021-06-03 | オルガノ株式会社 | Ultrapure water production system and water quality management method thereof |
-
2002
- 2002-11-07 JP JP2002324252A patent/JP3963319B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007136441A (en) * | 2005-10-19 | 2007-06-07 | Hitachi Chem Co Ltd | Ultrapure water production apparatus |
WO2008053826A1 (en) * | 2006-10-31 | 2008-05-08 | Kurita Water Industries Ltd. | Method of increasing purity of ultrapure water and apparatus therefor |
JP5326572B2 (en) * | 2006-10-31 | 2013-10-30 | 栗田工業株式会社 | Ultrapure water purification method and ultrapure water production system |
US9156001B2 (en) | 2006-10-31 | 2015-10-13 | Kurita Water Industries Ltd. | Method and apparatus for further purifying ultrapure water |
JP2011224489A (en) * | 2010-04-21 | 2011-11-10 | Japan Organo Co Ltd | Stainless steel for ultrapure water producing apparatus, method for manufacturing the same, and ultrapure water producing apparatus |
JP2015108526A (en) * | 2013-12-03 | 2015-06-11 | 株式会社ディスコ | Water quality inspection device |
JP2021084044A (en) * | 2019-11-25 | 2021-06-03 | オルガノ株式会社 | Ultrapure water production system and water quality management method thereof |
JP7555184B2 (en) | 2019-11-25 | 2024-09-24 | オルガノ株式会社 | Ultrapure water production equipment and water quality control method |
Also Published As
Publication number | Publication date |
---|---|
JP3963319B2 (en) | 2007-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102092441B1 (en) | Ultrapure water production apparatus | |
US6858145B2 (en) | Method of removing organic impurities from water | |
US5980716A (en) | Water treatment apparatus for a fuel cell system | |
TW200302206A (en) | Hydrogen-dissolved water production apparatus | |
KR102287709B1 (en) | Ultrapure Water Manufacturing System | |
US20050263458A1 (en) | Process for removing organics from ultrapure water | |
CN110678420A (en) | Ultrapure water production system and ultrapure water production method | |
TWI408107B (en) | Extra-pure water production equipment and operating method thereof | |
JPH0760291A (en) | Production of pyrogen-free high-purity water | |
WO2016136650A1 (en) | Removal device of fine particles in water and ultrapure water production/supply system | |
CN110379532B (en) | Method and device for treating radioactive waste liquid | |
JP3963319B2 (en) | Ultrapure water production equipment | |
KR102393133B1 (en) | Wet cleaning apparatus and wet cleaning method | |
JPS62110795A (en) | Device for producing high-purity water | |
JP3778158B2 (en) | Ultrapure water production equipment | |
JP3985500B2 (en) | Ultrapure water supply method | |
JPH09253638A (en) | Ultrapure water making apparatus | |
JP3982355B2 (en) | Ion exchange device and ultrapure water production device | |
JP5135654B2 (en) | Secondary pure water production equipment | |
CN206751571U (en) | A kind of ultra-pure water process units | |
JP2007229718A (en) | Washing apparatus for membrane separator for ultrapure water production | |
WO2024209833A1 (en) | Cleaning method of membrane housing, membrane housing cleaned by the cleaning method, and ultrapure water manufacturing apparatus including the membrane housing | |
JP5257175B2 (en) | Ultrapure water production equipment | |
Deshmukh | Ultrapure water production | |
WO2019188964A1 (en) | Ultrapure water production system and ultrapure water production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050603 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061107 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070313 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070517 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3963319 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100601 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110601 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110601 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120601 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120601 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130601 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |