【0001】
【発明の属する技術分野】
本発明は表示素子に関わり、特に自発光のフルカラー有機エレクトロルミネッセンス素子の製造方法に係わる。
【0002】
【従来の技術】
近年、情報化社会の進展により、情報を表示する表示素子のニーズがとみに高まっている。現在までに実用化されているものとしては、CRT(Cathod Ray Tube)、LCD(Liquid Crystal Display)、PDP(Plasma Display Panel)等がある。しかし、CRTはサイズ並びに消費電力が大きい、LCDは大画面化が難しくかつ高価である、PDPは薄型化が難しくかつ高価である、というようにそれぞれ欠点を抱えている。これらの欠点を克服して、ここ数年、次世代表示装置の主役と目されるようになってきたのが、有機エレクトロルミネッセンス(以下有機EL)ディスプレイである。有機ELディスプレイの特徴は、製造コストが低い、大画面化が容易、消費電力が小さい、素子の動作速度が速い、等である。
【0003】
有機EL素子は、有機材料よりなる微少領域に電流が流すと自発光するものである。一般的な有機EL素子の構成を図3に示す。ガラス基板21上にITO膜などの透明電極22が形成され、この透明電極22と陰極23との間に正電荷と電子との再結合により発光する発光層24が配されている。透明電極22と発光層24との間には、透明電極22側より順に、透明電極22からの正電荷が入りやすくするための正孔注入層25、注入された正電荷を発光層24まで運ぶための正孔輸送層26が形成されており、発光層24と陰極23との間には、陰極23側より順に、陰極23からの電子が入りやすくするための電子注入層27電子を発光層24まで運ぶための電子輸送層28が形成されている。
【0004】
これらの層の中で、正孔注入層25、正孔輸送層26、電子輸送層28、電子注入層27、陰極23は、共通、つまり、それぞれ単一の膜を使用できる。それに対して透明電極22と発光層24は、発光色ごとに分離して成膜する必要がある。つまり、1画素にR(Red)、G(Green)、B(Blue)の3色の発光を要するのであるが、透明電極22と発光層24では画素ごと、発光色ごとに分離して成膜する必要がある。透明電極22は、有機EL素子を駆動するTFT(Thin Film Transistor)を基板21に作り込む際に同時に各色ごとに個別に形成されており、発光層24は、独自の工程で各色ごとに個別に形成されている。
【0005】
有機EL素子の製造方法を具体的に説明する。正孔注入層25、正孔輸送層26、発光層24、電子輸送層28、電子注入層27、陰極23は、真空蒸着法という薄膜形成方法で形成される。図4は一般的な真空蒸着装置を示し、成膜室31、真空ポンプ32、蒸着源33、金属板よりなるシャッター34を備えている。真空ポンプ32はロータリーポンプ35、ターボ分子ポンプ36等で構成されている。蒸着源33は、ヒータ37を巻装した坩堝38などで構成され、蒸着物質39を保持するものである。
【0006】
このような真空蒸着装置において、成膜室31の蒸着源33の上方に基板40を成膜面を下向きにして設置し、次いで成膜室31を気密状態にしてロータリーポンプ35を動作させて排気し、それにより到達する0.1Pa程度の真空度では不足なので、さらにターボ分子ポンプ36を動作させて10−3Paまで排気し、その後に蒸着源33で蒸着物質39を加熱する。
【0007】
このようなほぼ真空状態では、蒸着物質39が容易に蒸発して、蒸着源33よりも温度の低い基板40の上に堆積し膜を形成するのであるが、その際に蒸着源33と基板40との間のシャッター34を必要な時間だけ開けることで、蒸着物質39の膜厚をコントロールする。また、このような蒸着方法では基板40全面に均一に膜が形成されるので、膜を付着させたくない部分をマスクで遮蔽する。
【0008】
正孔注入層25、正孔輸送層26、電子輸送層28、電子注入層27、陰極23では、膜を形成する部分と形成しない部分とを大きく分ければよいので、図5に示すようなメタルマスク41、すなわち金属製の板(厚さ0.2〜0.5mm)に大きな開口部41aを形成しその周囲を遮蔽部41bとしたものが用いられる。
【0009】
それに対し、発光層24のRGB塗り分けに要求されるような数十〜数百μmサイズの微小なパターンを形成するためには、図6(a)(b)に示すような、多数の微小穴42aが周期性を持って形成されているメタルマスク42を用い、その全ての微小穴42aを正確に成膜位置に合わせる必要がある。そのために、たとえば図7に示すように、X、Y、Z、θ方向に移動可能な基板ホルダー43に基板40を載せて、メタルマスク42に対する基板40の位置を調整できるようになっている。
【0010】
RGBを塗り分ける手順を図8に基いて説明すると、まず、図8(a) に示すように、メタルマスク42の穴42aを基板40上のRの成膜位置に正確に対応させ、上述した蒸着物質39であるRの発光材料を付着させて発光層24Rを形成する。この時にはGBの部分はメタルマスク42の遮蔽部42bで塞がれているため、Rの発光材料が付着することはない。次に、図8(b) に示すように、メタルマスク42の穴42aをGの成膜位置に対応させ、Gの発光材料を付着させて発光層24Gを形成する。この時にはRBの部分はメタルマスク42の遮蔽部42bで塞がれているため、Gの発光材料が付着することはない。さらに、図8(c) に示すように、メタルマスク42の穴42aをBの成膜位置に対応させ、Bの発光材料を付着させて発光層24Bを形成する。
【0011】
なおその際に、全ての穴42aを正確に成膜位置に合わせるために、通常は、図9(a) に示すような位置合わせマーク40M,42Mがそれぞれ基板40とメタルマスク42に刻まれている。これらマーク40M,42Mはメタルマスク42のパターンよりも外周側に相応する位置に刻まれており、上述した図6のメタルマスク42では、互いに隣接する2つの隅部の近傍に刻まれている。一般に、基板40のマーク40Mは十字形、メタルマスク42のマーク42Mは、基板40のマーク40Mよりも一回り大きい十字形を複数個並べた形状、図示した例では3個の十字形を一部ずつ重ねて並べた形状である。
【0012】
位置合わせの手順を説明すると、まず、基板40をメタルマスク42の上方0.1〜0.5mm離れた位置に配置する。この位置は、位置合わせを観察するために基板40の上方に設置される光学式検出手段44の一例であるCCDカメラにとって、基板40のマーク40Mとメタルマスク42のマーク42Mが同じ視野で十分に焦点が合う位置である。この際のCCDカメラが捕らえる画像は、初期では図9(b) のようにマーク40M,42Mの位置は互いにずれている。このずれをなくすようにX、Y、θの微調機構を用いて調整して、図9(c) のようにマーク40M,42Mの位置を合わせる。その後に、基板40を降下させてメタルマスク42の上に載せる。わずかな距離を直線的に降下させるだけなので、この基板40の移動によってメタルマスク42との位置関係がずれることはない。この状態で、上述したような下方からの蒸着物質39を堆積させて膜形成を行なうのである(たとえば特許文献1参照)。
【0013】
【特許文献1】
特開2000−36384号公報
【0014】
【発明が解決しようとする課題】
しかしながら、上記したような従来のマークでは、十分な位置合わせ精度を出すのが難しい。つまり従来は、CCDカメラにより近い基板40のマーク40Mの十字形をメタルマスク42のマーク42Mの十字形よりも小さく刻むことで、2つのマーク40M,42Mを合わせた時の明暗差をとらえ、位置合わせの合否を判定しているのであるが、目視での判断であることや、画像上でのぼけ等を考慮すると、図9に示すように、基板40のマーク40Mの線幅d1はメタルマスク42のマーク42Mの線幅d2の2/3倍が最大の限界である。この最大限の場合(d1=d2×2/3)に、マーク40M,42Mをd2の±1/6倍の位置精度で位置合わせすることが可能であり、通常のd2は100〜60μmであるため、マーク40M,42M(したがって基板40,メタルマスク42)の位置合わせ精度は10〜16μmになる。この位置合わせ精度では、将来的に必要になると言われている位置合わせ精度1〜5μmを達成することは難しいのである。
【0015】
本発明は上記問題点を解決するもので、メタルマスクと基板とを高精度で位置合わせすることができ、それによりメタルマスクのパターンを正確に転写できる有機エレクトロルミネッセンス素子の製造方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記課題を解決するために、基板とメタルマスクに回折格子状の位置合わせ用マークを設けることにより、高精度の位置合わせを実現する。
【0017】
ここで回折格子状とは、それぞれのマークの線部を所定方向に沿って一定のピッチで配置するとともに、一方のマークの線部を他方のマークの線部間の間隙に重なり合うように配置した状態を言う。回折格子は、刻み幅(線幅および間隙幅)が10μm以下となるように、溝状(凹状)に刻んだり、あるいはペイントすることで形成される。
【0018】
このような回折格子状のマークを互いに対応する位置に形成しておくことで、2つのマークを光学的に観察することにより、何本の線部が重なっているのか、その重なりがどの程度であるのか、を画像や戻り光量として捕らえることができる。このため、画像や戻り光量を参照しながら、一方のマークの線部が他方のマークの線部間の間隙に完全に重なるように位置調整することにより、メタルマスクと基板とを精度よく位置合わせすることができる。
【0019】
この原理を図面を用いて説明する。図10において、メタルマスクの回折格子状のマーク51は、同一形状(ほぼ長方形)の5本の線部51a〜51eを平行に同一ピッチで配列して形成したものであり、基板の回折格子状のマーク52は、メタルマスクの線部51a〜51eと同一形状,同一ピッチで4本の線部52a〜52dを平行に配列して形成したものである。
【0020】
図11(a)〜(e)はそれぞれ、基板を位置A〜位置Eに移動させた時のマーク51,52の重なり状態(マーク52に添えた符号(A)〜(E)は基板の位置を表わす)の変化を示し、これは、たとえばCCDカメラで撮像した画像上で観察される。図12は、図11と同様に基板を位置A〜位置Eに移動させた時のマーク51,52の重なり状態の変化を画像データから、あるいはレーザ光を照射することにより、計測した戻り光量を示す。
【0021】
図11および図12からわかるように、A,E位置では2つのマーク51,52のずれが大きいため戻り光量が大きく、B,D位置では2つのマーク51,52は概ね位置が合っているが格子の刻み幅以下のずれがあり、C位置では2つのマークはほぼ完全に位置が合っていて、一方のマーク52の線部が他方のマーク51の線部間の間隙に完全に重なっているため、戻り光量は最低になる。
【0022】
このように、回折格子状のマークを利用すると、戻り光量と位置ずれとの間に相関式が成り立つため、戻り光量からマークの位置ずれ量を定量的に測定できる。この原理によれば、理論上は位置ずれ量の測定に限界はなくなり、従来は不可能であった位置合わせ精度1〜5μmも可能である。
【0023】
請求項1記載の発明は、微小穴よりなるパターンが形成された金属箔製のメタルマスクを蒸着源と基板との間に配置し、前記メタルマスクと基板とをそれぞれに形成された位置合わせ用マークにより位置合わせし密着させた後に、前記蒸着源に保持された発光用有機材料などの蒸着物質を前記メタルマスクの微小穴を通して基板表面に堆積させて、微小穴に対応する蒸着物質のパターンを成膜する有機エレクトロルミネッセンス素子の製造方法において、前記メタルマスクおよび透明な前記基板の位置合わせ用マークをそれぞれ、複数本の線部により回折格子状に形成しておき、前記メタルマスクと基板とを近接させ位置合わせする際に、メタルマスクに背反する基板の背面側から前記マークを検出して、一方のマークの線部が他方のマークの線部間の間隙に重なるように、メタルマスクまたは基板の位置を調整することを特徴とする。
【0024】
請求項2記載の発明は、画素を構成する3色のパターンを各色ごとに成膜する都度に、前記回折格子状のマークを用いてメタルマスクと基板とを位置合わせすることを特徴とする。
【0025】
請求項3記載の発明は、メタルマスクおよび基板のマークをCCDカメラで撮像し、撮像画像上で一方のマークの線部と他方のマークの線部間の間隙との重なりを認識することを特徴とする。
【0026】
請求項4記載の発明は、メタルマスクおよび基板のマーク部分にレーザ光を照射し、戻り光量で一方のマークの線部と他方のマークの線部間の間隙との重なりを認識することを特徴とする。
【0027】
請求項5記載の発明は、有機エレクトロルミネッセンス素子の製造に用いられる透明な基板であって、蒸着の際に密着配置されるメタルマスクに形成された回折格子状の位置合わせ用マークに対応する位置に、このメタルマスクの位置合わせ用マークの線部に対し自身の線部間の間隙が重なり得るように形成された回折格子状の位置合わせ用マークを少なくとも1個有することを特徴とする。
【0028】
請求項6記載の発明は、有機エレクトロルミネッセンス素子を製造する蒸着工程で用いられるメタルマスクであって、成膜対象の透明な基板に形成された回折格子状の位置合わせ用マークに対応する位置に、この基板の位置合わせ用マークの線部に対し自身の線部間の間隙が重なり得るように形成された回折格子状の位置合わせ用マークを少なくとも1個有することを特徴とする。
【0029】
メタルマスクと基板の一方に1個のマークを形成し、他方に3個のマークを並列に形成しておけば、画素を構成する3色のパターンを各色ごとに成膜する際に、1種類のメタルマスクを準備するだけで、換言すると、各色に対応する位置にマークを付した3種類のメタルマスクを準備することなく、メタルマスクと基板とを位置合わせできる。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基いて説明する。
(実施の形態1)
図1は本発明の実施の形態1におけるエレクトロルミネッセンス素子の製造方法の蒸着工程で使用する基板およびメタルマスクの位置合わせ用マークを示す。この蒸着工程を実施する蒸着装置の構成、および基板,メタルマスクの配置は先に図4を用いて説明した従来のものと同様なので、図4を援用して詳しい説明を省略する。
【0031】
図1において、1は成膜対象の基板40に形成された位置合わせ用の回折格子状のマークである。2は基板40に密着配置されるメタルマスク42に形成された位置合わせ用の回折格子状のマークである。基板40は透明なガラス基板であり、メタルマスク42は、金属箔(SUS430など)を材料として、基板40とほぼ同じ大きさに形成されており、発光層のパターンを形成するための微小穴よりなるパターンを有している(図6参照)。
【0032】
基板40の位置合わせ用マーク1(以下、基板マーク1という)は、同一形状(ほぼ長方形)かつ一定間隔をなす線部を2本1組として、中央部を空けて十字形に配したものであり、その結果、上下方向の線部1aが2本ずつ互いに上下段に並び、また横方向の線部1bが2本ずつ互いに左右に並んでいる。
【0033】
メタルマスク42の位置合わせ用マーク2(以下、マスクマーク2という)は、3個のマーク2A,2B,2Cを並列に配したものである。これら3個のマーク2A,2B,2Cは、1つの画素を構成する発色層の3色のパターンの並び方向およびピッチに対応している。各マーク2A,2B,2Cは、基板マーク1の線部1a,1bと同一形状(ほぼ長方形)かつ同一間隔をなす線部を3本1組として、中央部を空けて十字形に配したものであり、その結果、上下方向の線部2aが3本ずつ互いに上下段に並び、また横方向の線部2bが3本ずつ互いに左右に並んでいる。ただしここでは、隣接するマーク2A,2Bどうし、またマーク2B,2Cどうし、横方向の線部2bを共有している。3色のパターンのピッチによっては線部2bを共有することなくそれぞれに形成することになる。
【0034】
このような位置合わせ用の基板マーク1,マスクマーク2をそれぞれ有した基板40とメタルマスク42とを用いて成膜する蒸着工程、すなわち上述した発光層を成膜する蒸着工程では、従来と同様に、真空引きされた成膜室31内で、微調機構に保持された基板40をメタルマスク42の上方約0.1mmの位置に配置する。
【0035】
次いで、基板40の上方に設置した光学式検出手段44の内の1つであるCCDカメラにより、基板マーク1,マスクマーク2の両方を同一視野内に見る。そして、CCDカメラがとらえた画像を目視しながら、基板マーク1と、マスクマーク2Aとがほぼ重なるように、つまり、基板マーク1の線部1a,1bがマスクマーク2の線部2a,2b間の間隙に重なるように、基板40(あるいはメタルマスク42)の位置を粗調整する。
【0036】
次いで、基板マーク1,マスクマーク2の部分に、光学式検出手段44の内の1つであるレーザ装置よりレーザ光を照射して両マーク1,2からの戻り光量を測定し、戻り光量が最低になるように基板40(あるいはメタルマスク42)の位置微調整する。
【0037】
その後に、基板40を降下させてメタルマスク42の上に載せ、マグネットなどを用いて適正に密着させる。この状態で、上述した下方からの蒸着物質39をメタルマスク42の微小穴を通じて基板40の表面に堆積させて成膜する。成膜終了後にメタルマスク42と基板40とを離間させる。
【0038】
更に、同じ成膜室31の内部で、上記したのと同様の蒸着工程を蒸着物質39を換えて繰り返すことで、発光層のRGBを塗り分けする。その際には、上記したようにメタルマスク42に3個のマーク2A,2B,2Cが形成されているので、順次にマーク2B,2Cを用いて基板40を位置合わせできる。
【0039】
成膜終了後に、メタルマスク42と基板40とを離間させ、成膜室31から取り出す。
RGBの成膜を終了した後に、基板40の成膜部分の位置精度を顕微鏡を用いて測定したところ、3μmのずれがあることが分かった。しかし、このようなずれがある成膜を用いて有機EL素子を作製し評価した時には、発色部に色の滲みや混色は観測されなかった。
(実施の形態2)
図1は本発明の実施の形態1におけるエレクトロルミネッセンス素子の製造方法の蒸着工程で使用する基板およびメタルマスクの位置合わせ用マークを示す。
【0040】
基板40の位置合わせ用マーク3(以下、基板マーク3という)は、四角枠状の線部3aを同心状かつ同一方向を向けて、また一定幅かつ一定間隔で配したものである。
【0041】
メタルマスク42の位置合わせ用マーク4(以下、マスクマーク4という)は、3個のマーク4A,4B,4Cを並列に配したものである。これら3個のマーク4A,4B,4Cは、1つの画素を構成する発色層の3色のパターンの並び方向およびピッチに対応している。各マーク4A,4B,4Cは、基板マーク3の最内周の線部3aの内側と同じ大きさの四角部4aを配し、この四角部4aの周りに、四角枠状の線部4bを同心状かつ同一方向を向けて、また基板マーク3の線部3aと同一の幅および間隔で配したものである。
【0042】
このような基板40、メタルマスク42を用いて成膜する際も、上記した実施の形態1と同様にして、基板マーク3と、たとえばマスクマーク4Aとがほぼ重なるように、つまり、基板マーク3の線部3aがマスクマーク4Aの線部4a間の間隙に重なるように、基板40(あるいはメタルマスク42)の位置を粗調整する。
【0043】
次いで、基板マーク3,マスクマーク4の部分に、光学式検出手段44の内の1つであるレーザ発振器よりレーザ光を照射して両マーク3,4からの戻り光量を測定し、戻り光量が最低になるように基板40(あるいはメタルマスク42)の位置を微調整する。
【0044】
その後に、基板40を降下させてメタルマスク42の上に載せ、マグネットなどを用いて適正に密着させる。この状態で、上述した下方からの蒸着物質39をメタルマスク42の微小穴を通じて基板40の表面に堆積させて成膜する。成膜終了後にメタルマスク42と基板40とを離間させる。
【0045】
更にその後に、上記したのと同様の蒸着工程を、マスクマーク4Aに変えてマスクマーク4B,4Cを用いて繰り返すことで、発光層のRGBを塗り分けする。
【0046】
成膜終了後に、メタルマスク42と基板40とを離間させ、成膜室31から取り出す。
RGBの成膜を終了した後に、基板40の成膜部分の位置精度を顕微鏡を用いて測定したところ、3μmのずれがあることが分かった。しかし、このようなずれがある成膜を用いて有機EL素子を作製し評価した時には、発色部に色の滲みや混色は観測されなかった。
【0047】
比較のために、図9に示したような従来の位置合わせ用マーク40M,42Mを用いたこと以外は上記した実施の形態1,2と同様にして、発光層を成膜し、基板40の成膜部分の位置精度を顕微鏡を用いて測定したところ、15μmのずれがあることが分かった。このようなずれがある成膜を用いて有機EL素子を作製し評価した時には、発色部に色の滲みや混色が観測された。
【0048】
【発明の効果】
以上の発明によれば、基板とメタルマスクとに回折格子状の位置合わせ用マークを設けるようにしたため、メタルマスクの位置合わせ精度が向上し、メタルマスクのパターンを基板に正確に転写できるようになり、混色や滲みのない有機EL素子の製造が可能となった。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるエレクトロルミネッセンス素子の製造方法の蒸着工程で使用する基板およびメタルマスク上の位置合わせ用マークの平面図
【図2】本発明の実施の形態2におけるエレクトロルミネッセンス素子の製造方法の蒸着工程で使用する基板およびメタルマスク上の位置合わせ用マークの平面図
【図3】従来の一般的な有機EL素子の構成を示す断面図
【図4】従来より用いられている蒸着装置の構成を示す断面図
【図5】開口部が大きな従来のメタルマスク
【図6】微小穴よりなるパターンが形成された従来のメタルマスクの(a) 平面図および(b) 一部拡大図
【図7】従来より行なわれている基板とメタルマスクとの位置合わせを説明する斜視図
【図8】従来より行なわれている発光層の塗り分けを説明する工程断面図
【図9】従来より行なわれているマークによる位置合わせの説明図
【図10】本発明による位置合わせの原理を説明するための基板およびメタルマスク上の回折格子状のマーク位置合わせ用マークの平面図
【図11】メタルマスクに対して基板を移動させた時の上記マークの重なり状態の変化を示す模式図
【図12】図11の基板位置とその時のマークの重なり状態で画像データあるいはレーザ照射により計測される戻り光量との関係を示すグラフ
【符号の説明】
1・・基板の位置合わせ用マーク
1a,1b・・線部
2A,2B,2C・・メタルマスクの位置合わせ用マーク
2a,2b・・線部
3・・基板の位置合わせ用マーク
3a・・線部
4A,4B,4C・・メタルマスクの位置合わせ用マーク
4b・・線部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a display device, and more particularly to a method of manufacturing a self-luminous full-color organic electroluminescence device.
[0002]
[Prior art]
In recent years, with the progress of the information-oriented society, the need for display elements for displaying information has been increasing. There are CRTs (Cathode Ray Tubes), LCDs (Liquid Crystal Displays), PDPs (Plasma Display Panels), and the like that have been put to practical use so far. However, CRTs have drawbacks such as large size and power consumption, LCDs are difficult to increase in screen size and expensive, and PDPs are difficult to thin and expensive. Overcoming these drawbacks, an organic electroluminescence (hereinafter, referred to as an organic EL) display has been regarded as the leading role of the next-generation display device in recent years. The features of the organic EL display are low manufacturing cost, easy enlargement of the screen, low power consumption, high operation speed of the element, and the like.
[0003]
The organic EL element emits light when a current flows in a minute region made of an organic material. FIG. 3 shows a configuration of a general organic EL element. A transparent electrode 22 such as an ITO film is formed on a glass substrate 21, and a light emitting layer 24 that emits light by recombination of positive charges and electrons is disposed between the transparent electrode 22 and the cathode 23. Between the transparent electrode 22 and the light emitting layer 24, a hole injection layer 25 for facilitating the entry of positive charges from the transparent electrode 22, and the injected positive charges are carried to the light emitting layer 24 in order from the transparent electrode 22 side. A hole transport layer 26 is formed between the light emitting layer 24 and the cathode 23. An electron injection layer 27 for facilitating the entry of electrons from the cathode 23 in order from the cathode 23 side. An electron transport layer 28 for transporting to 24 is formed.
[0004]
Among these layers, the hole injection layer 25, the hole transport layer 26, the electron transport layer 28, the electron injection layer 27, and the cathode 23 are common, that is, a single film can be used. On the other hand, the transparent electrode 22 and the light emitting layer 24 need to be formed separately for each emission color. That is, one pixel needs to emit light of three colors of R (Red), G (Green), and B (Blue), but the transparent electrode 22 and the light emitting layer 24 are formed separately for each pixel and for each light emitting color. There is a need to. The transparent electrode 22 is individually formed for each color at the same time when a TFT (Thin Film Transistor) for driving the organic EL element is formed on the substrate 21, and the light emitting layer 24 is individually formed for each color in a unique process. Is formed.
[0005]
A method for manufacturing an organic EL device will be specifically described. The hole injection layer 25, the hole transport layer 26, the light emitting layer 24, the electron transport layer 28, the electron injection layer 27, and the cathode 23 are formed by a thin film forming method called a vacuum evaporation method. FIG. 4 shows a general vacuum evaporation apparatus, which includes a film forming chamber 31, a vacuum pump 32, an evaporation source 33, and a shutter 34 made of a metal plate. The vacuum pump 32 includes a rotary pump 35, a turbo molecular pump 36, and the like. The evaporation source 33 includes a crucible 38 around which a heater 37 is wound, and holds an evaporation material 39.
[0006]
In such a vacuum evaporation apparatus, the substrate 40 is placed above the evaporation source 33 in the film formation chamber 31 with the film formation surface facing down, and then the film formation chamber 31 is airtightly operated to operate the rotary pump 35 to exhaust air. Since the degree of vacuum of about 0.1 Pa, which is reached by this, is insufficient, the turbo molecular pump 36 is further operated to evacuate to 10 −3 Pa, and then the evaporation source 33 is heated by the evaporation source 33.
[0007]
In such a substantially vacuum state, the evaporation material 39 evaporates easily and deposits on the substrate 40 having a lower temperature than the evaporation source 33 to form a film. By opening the shutter 34 for a necessary period of time, the film thickness of the deposition material 39 is controlled. Further, since a film is uniformly formed on the entire surface of the substrate 40 in such an evaporation method, a portion where the film is not to be adhered is shielded by a mask.
[0008]
In the hole injection layer 25, the hole transport layer 26, the electron transport layer 28, the electron injection layer 27, and the cathode 23, a portion where a film is formed and a portion where a film is not formed may be largely divided. A mask 41, that is, a metal plate (thickness: 0.2 to 0.5 mm) having a large opening portion 41a formed therein and a surrounding portion serving as a shielding portion 41b is used.
[0009]
On the other hand, in order to form a fine pattern with a size of several tens to several hundreds μm required for the RGB coating of the light emitting layer 24, a large number of fine patterns as shown in FIGS. It is necessary to use a metal mask 42 in which the holes 42a are formed with a periodicity, and to precisely adjust all the micro holes 42a to the film formation position. For this purpose, for example, as shown in FIG. 7, the substrate 40 is placed on a substrate holder 43 that can be moved in the X, Y, Z, and θ directions, and the position of the substrate 40 with respect to the metal mask 42 can be adjusted.
[0010]
The procedure for separately applying RGB will be described with reference to FIG. 8. First, as shown in FIG. 8A, the holes 42 a of the metal mask 42 correspond exactly to the R film formation positions on the substrate 40, and The light emitting material of R, which is the deposition material 39, is attached to form the light emitting layer 24R. At this time, since the GB portion is closed by the shielding portion 42b of the metal mask 42, the R light emitting material does not adhere. Next, as shown in FIG. 8B, the holes 42a of the metal mask 42 are made to correspond to the positions where the G film is formed, and the G light emitting material is attached to form the light emitting layer 24G. At this time, since the RB portion is closed by the shielding portion 42b of the metal mask 42, the G light emitting material does not adhere. Further, as shown in FIG. 8C, the holes 42a of the metal mask 42 are made to correspond to the film formation positions of B, and the light emitting material of B is attached to form the light emitting layer 24B.
[0011]
At this time, in order to accurately align all the holes 42a with the film forming position, usually, alignment marks 40M and 42M as shown in FIG. 9A are cut on the substrate 40 and the metal mask 42, respectively. I have. These marks 40M and 42M are engraved at positions corresponding to the outer peripheral side of the pattern of the metal mask 42. In the above-described metal mask 42 of FIG. In general, the mark 40M on the substrate 40 has a cross shape, and the mark 42M on the metal mask 42 has a shape in which a plurality of cross shapes that are slightly larger than the mark 40M on the substrate 40 are arranged. It is a shape that is arranged one after another.
[0012]
Describing the alignment procedure, first, the substrate 40 is arranged at a position 0.1 to 0.5 mm above the metal mask 42. This position is sufficient for a CCD camera which is an example of the optical detection means 44 installed above the substrate 40 to observe the alignment so that the mark 40M of the substrate 40 and the mark 42M of the metal mask 42 have the same field of view. This is the position where the focus is achieved. At this time, in the image captured by the CCD camera at this time, the positions of the marks 40M and 42M are shifted from each other as shown in FIG. 9B. An adjustment is made using a fine adjustment mechanism of X, Y and θ so as to eliminate this deviation, and the positions of the marks 40M and 42M are adjusted as shown in FIG. 9C. Thereafter, the substrate 40 is lowered and placed on the metal mask 42. Since only a slight distance is linearly lowered, the positional relationship with the metal mask 42 does not shift due to the movement of the substrate 40. In this state, a film is formed by depositing the above-described evaporation material 39 from below (for example, see Patent Document 1).
[0013]
[Patent Document 1]
JP 2000-36384 A
[Problems to be solved by the invention]
However, it is difficult to obtain sufficient alignment accuracy with the conventional marks as described above. That is, conventionally, the cross shape of the mark 40M of the substrate 40 closer to the CCD camera is cut smaller than the cross shape of the mark 42M of the metal mask 42, so that the difference in brightness between the two marks 40M and 42M is captured, Although the pass / fail of the alignment is determined, in consideration of the visual determination and the blur on the image, as shown in FIG. 9, the line width d1 of the mark 40M on the substrate 40 is a metal mask. The maximum limit is 2/3 times the line width d2 of the 42 mark 42M. In this maximum case (d1 = d2 × 2/3), it is possible to align the marks 40M and 42M with a positional accuracy of ± 1/6 times d2, and the normal d2 is 100 to 60 μm. Therefore, the alignment accuracy of the marks 40M and 42M (therefore, the substrate 40 and the metal mask 42) is 10 to 16 μm. With this alignment accuracy, it is difficult to achieve an alignment accuracy of 1 to 5 μm, which will be required in the future.
[0015]
The present invention solves the above problems, and provides a method for manufacturing an organic electroluminescent device that can position a metal mask and a substrate with high precision and thereby can accurately transfer a pattern of a metal mask. With the goal.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, high-precision alignment is realized by providing a diffraction grating alignment mark on a substrate and a metal mask.
[0017]
Here, the term "diffraction grating shape" means that the line portions of each mark are arranged at a constant pitch along a predetermined direction, and the line portions of one mark are arranged so as to overlap the gap between the line portions of the other mark. Say the state. The diffraction grating is formed by cutting or painting in a groove shape (concave shape) so that the step width (line width and gap width) is 10 μm or less.
[0018]
By forming such diffraction grating marks at positions corresponding to each other, by optically observing the two marks, it is possible to determine how many lines overlap and how much the overlap is. Can be captured as an image or return light quantity. Therefore, while referring to the image and the amount of return light, the metal mask and the substrate are accurately aligned by adjusting the position so that the line of one mark completely overlaps the gap between the lines of the other mark. can do.
[0019]
This principle will be described with reference to the drawings. In FIG. 10, a diffraction grating mark 51 of a metal mask is formed by arranging five line portions 51 a to 51 e of the same shape (substantially rectangular) in parallel and at the same pitch. Mark 52 is formed by arranging four line portions 52a to 52d in parallel with the same shape and the same pitch as the line portions 51a to 51e of the metal mask.
[0020]
FIGS. 11 (a) to 11 (e) show the overlapping states of the marks 51 and 52 when the substrate is moved to the positions A to E (the symbols (A) to (E) attached to the marks 52 indicate the positions of the substrate, respectively). , Which is observed on an image taken by, for example, a CCD camera. FIG. 12 shows the change in the overlapping state of the marks 51 and 52 when the substrate is moved from position A to position E as in FIG. Show.
[0021]
As can be seen from FIGS. 11 and 12, the displacement of the two marks 51 and 52 is large at the positions A and E, so that the amount of return light is large. At the positions B and D, the two marks 51 and 52 are almost aligned. There is a deviation equal to or less than the step size of the lattice. At the position C, the two marks are almost completely aligned, and the line portion of one mark 52 completely overlaps the gap between the line portions of the other mark 51. Therefore, the amount of return light is minimized.
[0022]
As described above, when a diffraction grating mark is used, a correlation formula is established between the amount of return light and the positional deviation, and thus the amount of positional deviation of the mark can be quantitatively measured from the amount of return light. According to this principle, there is no limit in the measurement of the amount of displacement in theory, and a positioning accuracy of 1 to 5 μm, which was conventionally impossible, is possible.
[0023]
According to the first aspect of the present invention, a metal mask made of a metal foil on which a pattern of minute holes is formed is disposed between an evaporation source and a substrate, and the metal mask and the substrate are formed on respective positions for alignment. After being aligned and brought into close contact with the mark, a deposition material such as a light-emitting organic material held by the deposition source is deposited on the substrate surface through the fine holes of the metal mask, and a pattern of the deposition material corresponding to the fine holes is formed. In the method for manufacturing an organic electroluminescence element to be formed, the metal mask and the transparent alignment mark of the substrate are each formed in a diffraction grating shape by a plurality of lines, and the metal mask and the substrate are separated from each other. At the time of approaching and aligning, the mark is detected from the back side of the substrate opposite to the metal mask, and the line portion of one mark is changed to the other mark. So as to overlap the gaps between the lines unit, and adjusting the position of the metal mask or the substrate.
[0024]
The invention according to claim 2 is characterized in that the metal mask and the substrate are aligned using the diffraction grating mark each time a pattern of three colors constituting a pixel is formed for each color.
[0025]
According to a third aspect of the present invention, the mark on the metal mask and the substrate is captured by a CCD camera, and the overlap between the line portion of one mark and the gap between the line portions of the other mark is recognized on the captured image. And
[0026]
The invention according to claim 4 is characterized in that the mark portion of the metal mask and the substrate is irradiated with laser light, and the overlap between the line portion of one mark and the gap between the line portions of the other mark is recognized by the amount of return light. And
[0027]
According to a fifth aspect of the present invention, there is provided a transparent substrate used for manufacturing an organic electroluminescence element, the position corresponding to a diffraction grating alignment mark formed on a metal mask which is closely attached at the time of vapor deposition. In addition, the metal mask has at least one alignment mark in the form of a diffraction grating formed so that a gap between the line portions of the metal mask can overlap the line portion of the alignment mark.
[0028]
The invention according to claim 6 is a metal mask used in a vapor deposition step of manufacturing an organic electroluminescence element, wherein the metal mask is provided at a position corresponding to a diffraction grating alignment mark formed on a transparent substrate on which a film is to be formed. It is characterized in that the substrate has at least one alignment mark in the form of a diffraction grating formed so that the gap between the line portions of the alignment mark can overlap the line portion of the alignment mark on the substrate.
[0029]
If one mark is formed on one side of the metal mask and the substrate, and three marks are formed in parallel on the other side, when forming a pattern of three colors constituting a pixel for each color, one type is formed. In other words, the metal mask and the substrate can be aligned without preparing three types of metal masks having marks at positions corresponding to the respective colors.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 shows alignment marks for a substrate and a metal mask used in a vapor deposition step of a method for manufacturing an electroluminescence element according to Embodiment 1 of the present invention. Since the configuration of the vapor deposition apparatus for performing this vapor deposition step and the arrangement of the substrate and the metal mask are the same as those of the conventional apparatus described above with reference to FIG. 4, detailed description will be omitted with reference to FIG.
[0031]
In FIG. 1, reference numeral 1 denotes a diffraction grating mark for alignment formed on a substrate 40 on which a film is to be formed. Numeral 2 denotes a diffraction grating mark for alignment formed on a metal mask 42 which is arranged in close contact with the substrate 40. The substrate 40 is a transparent glass substrate, and the metal mask 42 is formed using a metal foil (such as SUS430) as a material and has substantially the same size as the substrate 40. (See FIG. 6).
[0032]
The alignment mark 1 of the substrate 40 (hereinafter referred to as the substrate mark 1) is a pair of two line portions having the same shape (substantially rectangular) and having a constant interval and arranged in a cross shape with a center portion left. As a result, as a result, two vertical line portions 1a are arranged on the upper and lower stages of each other, and two horizontal line portions 1b are arranged on the left and right of each other.
[0033]
The alignment mark 2 (hereinafter, referred to as a mask mark 2) of the metal mask 42 has three marks 2A, 2B, and 2C arranged in parallel. These three marks 2A, 2B, 2C correspond to the arrangement direction and pitch of the three color patterns of the color forming layer constituting one pixel. Each of the marks 2A, 2B, 2C is a set of three line portions having the same shape (substantially rectangular) and the same interval as the line portions 1a, 1b of the substrate mark 1, and arranged in a cross shape with a center part left. As a result, three vertical line portions 2a are arranged vertically three by three, and three horizontal line portions 2b are arranged left and right. Here, however, the adjacent marks 2A and 2B and the marks 2B and 2C share the horizontal line portion 2b. Depending on the pitch of the three color patterns, the line portions 2b are formed without sharing the line portions 2b.
[0034]
In the vapor deposition step of forming a film using the substrate 40 having the substrate mark 1 and the mask mark 2 for such alignment and the metal mask 42, that is, in the vapor deposition step of forming the light emitting layer described above, Then, the substrate 40 held by the fine adjustment mechanism is disposed at a position of about 0.1 mm above the metal mask 42 in the vacuum-formed film forming chamber 31.
[0035]
Next, both the substrate mark 1 and the mask mark 2 are viewed in the same field of view by a CCD camera, which is one of the optical detection means 44 installed above the substrate 40. Then, while visually observing the image captured by the CCD camera, the substrate mark 1 and the mask mark 2A are substantially overlapped, that is, the line portions 1a and 1b of the substrate mark 1 are located between the line portions 2a and 2b of the mask mark 2. The position of the substrate 40 (or the metal mask 42) is roughly adjusted so as to overlap with the gap.
[0036]
Next, the substrate mark 1 and the mask mark 2 are irradiated with laser light from a laser device, which is one of the optical detection means 44, to measure the amount of return light from both marks 1 and 2. The position of the substrate 40 (or the metal mask 42) is finely adjusted to be the lowest.
[0037]
Thereafter, the substrate 40 is lowered and placed on the metal mask 42, and is appropriately adhered using a magnet or the like. In this state, the above-described deposition material 39 from below is deposited on the surface of the substrate 40 through the fine holes of the metal mask 42 to form a film. After the film formation is completed, the metal mask 42 and the substrate 40 are separated.
[0038]
Further, the same vapor deposition process as described above is repeated in the same film forming chamber 31 by changing the vapor deposition substance 39, so that the RGB of the light emitting layer is separately applied. At this time, since the three marks 2A, 2B, and 2C are formed on the metal mask 42 as described above, the substrate 40 can be sequentially positioned using the marks 2B and 2C.
[0039]
After the film formation, the metal mask 42 and the substrate 40 are separated from each other and taken out of the film formation chamber 31.
After the completion of the RGB film formation, the position accuracy of the film formation portion of the substrate 40 was measured using a microscope, and it was found that there was a deviation of 3 μm. However, when an organic EL device was manufactured using the film having such a shift and evaluated, no color bleeding or color mixture was observed in the color-developed portion.
(Embodiment 2)
FIG. 1 shows alignment marks for a substrate and a metal mask used in a vapor deposition step of a method for manufacturing an electroluminescence element according to Embodiment 1 of the present invention.
[0040]
The alignment mark 3 (hereinafter referred to as the substrate mark 3) of the substrate 40 is formed by arranging square frame-shaped line portions 3a concentrically and in the same direction and at a constant width and a constant interval.
[0041]
The alignment mark 4 (hereinafter, referred to as a mask mark 4) of the metal mask 42 has three marks 4A, 4B, and 4C arranged in parallel. These three marks 4A, 4B, 4C correspond to the arrangement direction and the pitch of the three-color patterns of the color-forming layer constituting one pixel. Each of the marks 4A, 4B, 4C has a square portion 4a having the same size as the inside of the innermost line portion 3a of the substrate mark 3, and a square frame-shaped line portion 4b is formed around the square portion 4a. They are arranged concentrically, in the same direction, and at the same width and spacing as the line portions 3a of the substrate mark 3.
[0042]
When forming a film using such a substrate 40 and a metal mask 42, similarly to the first embodiment, the substrate mark 3 and the mask mark 4A are substantially overlapped, that is, the substrate mark 3 The position of the substrate 40 (or the metal mask 42) is roughly adjusted so that the line portions 3a overlap with the gaps between the line portions 4a of the mask mark 4A.
[0043]
Next, the substrate mark 3 and the mask mark 4 are irradiated with laser light from a laser oscillator, which is one of the optical detection means 44, and the amount of return light from both marks 3, 4 is measured. The position of the substrate 40 (or the metal mask 42) is finely adjusted to a minimum.
[0044]
Thereafter, the substrate 40 is lowered and placed on the metal mask 42, and is appropriately adhered using a magnet or the like. In this state, the above-described deposition material 39 from below is deposited on the surface of the substrate 40 through the fine holes of the metal mask 42 to form a film. After the film formation is completed, the metal mask 42 and the substrate 40 are separated.
[0045]
Further, thereafter, the same vapor deposition process as described above is repeated using the mask marks 4B and 4C instead of the mask marks 4A, so that the RGB of the light emitting layer is separately applied.
[0046]
After the film formation, the metal mask 42 and the substrate 40 are separated from each other and taken out of the film formation chamber 31.
After the completion of the RGB film formation, the position accuracy of the film formation portion of the substrate 40 was measured using a microscope, and it was found that there was a deviation of 3 μm. However, when an organic EL device was manufactured using the film having such a shift and evaluated, no color bleeding or color mixture was observed in the color-developed portion.
[0047]
For comparison, a light emitting layer is formed in the same manner as in the first and second embodiments except that the conventional alignment marks 40M and 42M as shown in FIG. When the positional accuracy of the film-forming portion was measured using a microscope, it was found that there was a deviation of 15 μm. When an organic EL device was manufactured using a film having such a shift and evaluated, color bleeding and color mixing were observed in the color-developed portion.
[0048]
【The invention's effect】
According to the above invention, since the alignment mark in the form of a diffraction grating is provided on the substrate and the metal mask, the alignment accuracy of the metal mask is improved, and the metal mask pattern can be accurately transferred to the substrate. As a result, it became possible to manufacture an organic EL device free from color mixing and bleeding.
[Brief description of the drawings]
FIG. 1 is a plan view of a positioning mark on a substrate and a metal mask used in a vapor deposition step of a method for manufacturing an electroluminescent element according to a first embodiment of the present invention. FIG. FIG. 3 is a plan view of an alignment mark on a substrate and a metal mask used in a vapor deposition step of a method of manufacturing a luminescence element. FIG. 3 is a cross-sectional view showing a configuration of a conventional general organic EL element. FIG. FIG. 5 is a conventional metal mask having a large opening. FIG. 6 is a (a) plan view and (b) of a conventional metal mask having a pattern formed of minute holes. FIG. 7 is a perspective view illustrating a conventional alignment between a substrate and a metal mask. FIG. 8 illustrates a conventional method of separately applying a light emitting layer. FIG. 9 is an explanatory view of a conventional alignment using a mark. FIG. 10 is an alignment of a diffraction grating mark on a substrate and a metal mask for explaining the principle of alignment according to the present invention. FIG. 11 is a schematic view showing a change in the overlapping state of the marks when the substrate is moved with respect to the metal mask. FIG. 12 is an image showing the substrate position in FIG. 11 and the overlapping state of the marks at that time. Graph showing the relationship with data or the amount of return light measured by laser irradiation [Explanation of symbols]
1. Marks 1a, 1b for aligning the substrate. Line portions 2A, 2B, 2C. Marks 2a, 2b for aligning the metal mask. Line portion 3. Marks 3a for aligning the substrate. Parts 4A, 4B, 4C-mark 4b for metal mask alignment-line part