【0001】
【発明の属する技術分野】
この発明は、硫黄を正極活物質とし、各種の硫化物を電極触媒とする正極合剤を用いたリチウム二次電池および全固体リチウム電池に関するものである。
【0002】
【従来の技術】
従来、リチウム二次電池やリチウムイオン電池の正極材料として、LiCoO2、LiNiO2、LiMn2O4などのリチウム含有遷移金属酸化物が検討され、実用化が試みられてきた。これらの遷移金属酸化物では、モル当たりの重量が大きいため、正極材料としての単位重量当たりの電気化学容量が150mAhg−1程度に制限されている。硫黄は理論容量として1675mAg−1の大きな値を持つことから、古くから正極材料として注目されてきた。しかし、正極反応で生成する硫化物が固体状態ではイオンや電子を通さないため、連続的な電気化学反応に寄与することができず、また、十分な電流を取り出すことができなかった。このため、硫黄が熔融する高温(300〜350℃)まで、電池の動作温度を上げることや、硫黄単体を二硫化炭素、N−メチル−ピロリドン、有機ジスルフィド類、ポリアニリン類、ジメチルホルムアミドなどの有機溶媒に部分的に溶解させて用いることなどが提案されているが、いずれの場合も、室温で安全に動作させることが困難であった。
【0003】
【発明が解決しようとする課題】
従来、つぎのような欠点があった。
(イ)硫黄を正極活物質として用いるために、電池動作温度を硫黄および反応生成物の融点以上の高温に設定する必要があった。
(ロ)硫黄を正極活物質として用いるために、硫黄を有機溶媒に部分的に溶解させる必要があった。
【0004】
【課題を解決するための手段】
本発明は、硫黄を室温で正極活物質として機能させるために、金属銅、硫化銅などの電極触媒および炭素系導電材を添加し、さらにこの混合物をボールミル処理し、機械的加工力により化学反応を起こさせしめ、複合化させた正極合剤を用いたリチウム二次電池および全固体リチウム電池である。
【0005】
【発明の実施形態】
硫黄と金属銅および炭素系導電剤としてアセチレンブラックをボールミル処理した正極合剤のX線回折図を図1に示す。図には処理前の硫黄、金属銅のX線回折図も併せて示している。この図より明らかなように、ボールミル処理を施した正極合剤のX線回折図では、処理前の硫黄、金属銅、アセチレンブラックによる回折線の強度が小さくなり、ボールミル処理により生成した硫化銅に帰属できる回折線が現れていることがわかる。このことはボールミル処理により硫黄が金属銅と反応することにより、触媒として作用する硫化銅が硫黄表面上に生成していることを示している。
このように複合化された正極合剤を用いた全固体リチウム電池の構成図を図2に示す。正極には先に示した正極合剤を、固体電解質として60Li2S・40SiS2(mol%)の非晶質体を用い、負極にはLi−Si系準安定相合金を用いている。
これらの材料を加圧成型し、三層ペレットにすることで、全固体リチウム電池を構築している。この例は一軸プレスにより全固体型電池を一体成型した例であるが、この他に静水圧プレスやホットプレスを用いた場合においても、同様に全固体型リチウム二次電池を構成することができる。
このようにして構成された全固体リチウム電池の充放電曲線を図3に示す。図の縦軸は電池電圧であり、図の横軸は正極合材中に含まれる硫黄1gあたりの電気化学容量である。本実施例による全固体電池では、1000 mAhg−1以上の放電容量が得られており、充放電繰り返し特性も良好であることがわかる。
金属銅を添加せず、硫黄とアセチレンブラックのみをボールミル混合した正極合剤を用いた全固体リチウム電池を比較のために作製し、その充放電特性を検討した。その結果、金属銅を添加していない正極合剤を用いた全固体リチウム電池ではほとんど放電が進行せず、硫黄が正極活物質として機能していないことが明らかになった。
また、本実施例では、Li2S−SiS2系固体電解質およびLi−Si合金系負極材料を用いた例を示したが、通常の化学的および固体電気化学的知識に照らし合わせれば、固体電解質としてLi2S−SiS2系以外にLi2S−P2S5系、Li2S−GeS2系などのリチウムイオン伝導性非晶質体、および、負極としてLi−Si系以外にLi−Ge系合金、Li−Sn系合金およびこれらの複合合金を用いることができることは自明である。
【0006】
【発明の効果】
以上のようにこの発明は、硫黄のもつ電気化学容量を損なうことなく、リチウム二次電池および全固体リチウム電池の正極活物質として、硫黄を室温で機能させることを目的するものである。電極触媒として、金属銅、金属鉄、硫化銅、硫化鉄、または硫化セリウムよりなる群から選ばれる少なくとも一種を添加し、さらに導電剤としてアセチレンブラックを加えた混合物をボールミル処理することにより、化学反応を起こさせしめ、複合化させた正極合剤とする。この正極合剤を用いることにより、硫黄が、リチウム二次電池および全固体リチウム電池の正極活物質として、室温で機能させることを可能とした。
【図面の簡単な説明】
【図1】硫黄、金属銅、および硫黄、金属銅、アセチレンブラックの混合物をボールミル処理した正極合剤のX線回折図
【図2】全固体リチウム電池の構成図
【図3】全固体リチウム電池の充放電特性
【符号の説明】
1. 硫黄
2. 金属銅
3. 硫黄、金属銅、アセチレンブラックをボールミル処理した正極合剤
4. Li−Si系合金からなる負極
5. リチウムイオン伝導性60Li2S・40SiS2(mol%)非晶質体からなる固体電解質
6. 硫黄、金属銅、アセチレンブラックをボールミル処理した正極合剤
7. 負極リード板
8. 正極リード板
9. 筒状の絶縁体からなる容器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium secondary battery and an all-solid lithium battery using a positive electrode mixture using sulfur as a positive electrode active material and various sulfides as an electrode catalyst.
[0002]
[Prior art]
Conventionally, lithium-containing transition metal oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 have been studied as positive electrode materials for lithium secondary batteries and lithium ion batteries, and commercialization has been attempted. Since these transition metal oxides have a large weight per mole, the electrochemical capacity per unit weight as a positive electrode material is limited to about 150 mAhg -1 . Since sulfur has a large theoretical capacity of 1675 mAg -1 , sulfur has been attracting attention as a positive electrode material for a long time. However, since the sulfide generated by the positive electrode reaction does not pass ions and electrons in a solid state, it cannot contribute to a continuous electrochemical reaction, and a sufficient current cannot be taken out. For this reason, it is necessary to raise the operating temperature of the battery to a high temperature (300 to 350 ° C.) at which the sulfur is melted, or to convert the elemental sulfur into an organic substance such as carbon disulfide, N-methyl-pyrrolidone, organic disulfides, polyanilines, and dimethylformamide. It has been proposed to use a solvent partially dissolved in a solvent, but in any case, it has been difficult to operate safely at room temperature.
[0003]
[Problems to be solved by the invention]
Heretofore, there have been the following disadvantages.
(A) In order to use sulfur as the positive electrode active material, it was necessary to set the battery operating temperature to a high temperature equal to or higher than the melting points of sulfur and the reaction product.
(B) In order to use sulfur as a positive electrode active material, it was necessary to partially dissolve sulfur in an organic solvent.
[0004]
[Means for Solving the Problems]
According to the present invention, in order to make sulfur function as a positive electrode active material at room temperature, an electrode catalyst such as metallic copper and copper sulfide and a carbon-based conductive material are added, and the mixture is further ball-milled, and a chemical reaction is performed by mechanical working force. And a lithium secondary battery and an all-solid lithium battery using a composite positive electrode mixture.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an X-ray diffraction diagram of a positive electrode mixture obtained by ball milling acetylene black as sulfur, metallic copper, and a carbon-based conductive agent. The figure also shows the X-ray diffraction diagrams of sulfur and metallic copper before the treatment. As is clear from this figure, in the X-ray diffraction diagram of the positive electrode mixture subjected to the ball mill treatment, the intensity of the diffraction lines due to sulfur, metallic copper, and acetylene black before the treatment became small, and the copper sulfide generated by the ball mill treatment was reduced in intensity. It can be seen that the diffraction lines that can be assigned appear. This indicates that the reaction of sulfur with metallic copper by the ball mill treatment resulted in the formation of copper sulfide acting as a catalyst on the sulfur surface.
FIG. 2 shows a configuration diagram of an all-solid lithium battery using the positive electrode mixture thus composited. The positive electrode mixture indicated above in the positive electrode, an amorphous body of 60Li 2 S · 40SiS 2 (mol %) as a solid electrolyte, a negative electrode is used Li-Si-based metastable phase alloy.
All-solid-state lithium batteries are constructed by press-molding these materials into three-layer pellets. Although this example is an example in which an all-solid-state battery is integrally formed by a uniaxial press, an all-solid-state lithium secondary battery can be similarly configured even when an isostatic press or a hot press is used. .
FIG. 3 shows a charge / discharge curve of the all-solid lithium battery configured as described above. The vertical axis in the figure is the battery voltage, and the horizontal axis in the figure is the electrochemical capacity per 1 g of sulfur contained in the positive electrode mixture. In the all-solid-state battery according to the present example, a discharge capacity of 1000 mAhg −1 or more was obtained, and it can be seen that the charge-discharge repetition characteristics were good.
An all-solid-state lithium battery using a positive electrode mixture in which only sulfur and acetylene black were mixed in a ball mill without adding metallic copper was fabricated for comparison, and its charge / discharge characteristics were examined. As a result, it was clarified that in the all-solid lithium battery using the positive electrode mixture to which metallic copper was not added, the discharge hardly proceeded, and that sulfur did not function as the positive electrode active material.
Further, in the present embodiment, an example using the Li 2 S—SiS 2 -based solid electrolyte and the Li—Si alloy-based negative electrode material has been described. However, in light of ordinary chemical and solid electrochemical knowledge, the solid electrolyte is used. as Li 2 S-SiS Li 2 other than 2 based S-P 2 S 5 -based, lithium ion conductive amorphous material such as Li 2 S-GeS 2 system, and, in addition to Li-Si-based as the negative electrode Li- It is obvious that Ge-based alloys, Li-Sn-based alloys and composite alloys thereof can be used.
[0006]
【The invention's effect】
As described above, an object of the present invention is to make sulfur function at room temperature as a positive electrode active material of a lithium secondary battery and an all-solid lithium battery without impairing the electrochemical capacity of sulfur. As an electrode catalyst, at least one selected from the group consisting of metallic copper, metallic iron, copper sulfide, iron sulfide, or cerium sulfide is added, and a mixture obtained by further adding acetylene black as a conductive agent is subjected to a ball mill treatment. To form a composite positive electrode mixture. By using this positive electrode mixture, it became possible for sulfur to function at room temperature as a positive electrode active material for lithium secondary batteries and all-solid lithium batteries.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction diagram of a positive electrode mixture obtained by ball milling sulfur, metallic copper, and a mixture of sulfur, metallic copper, and acetylene black. FIG. 2 is a configuration diagram of an all solid lithium battery. FIG. 3 is an all solid lithium battery. Charge / discharge characteristics [Description of symbols]
1. Sulfur 2. Metallic copper 3. 3. A positive electrode mixture obtained by ball milling sulfur, metallic copper, and acetylene black. 4. Negative electrode made of Li-Si alloy 5. Solid electrolyte made of lithium ion conductive 60Li 2 S.40SiS 2 (mol%) amorphous material 6. Positive electrode mixture obtained by ball milling sulfur, metallic copper, and acetylene black Negative electrode lead plate8. Positive electrode lead plate 9. Container made of cylindrical insulator