JP6958823B2 - Electrodes and magnesium secondary batteries with an alloy layer of magnesium and bismuth - Google Patents
Electrodes and magnesium secondary batteries with an alloy layer of magnesium and bismuth Download PDFInfo
- Publication number
- JP6958823B2 JP6958823B2 JP2019506260A JP2019506260A JP6958823B2 JP 6958823 B2 JP6958823 B2 JP 6958823B2 JP 2019506260 A JP2019506260 A JP 2019506260A JP 2019506260 A JP2019506260 A JP 2019506260A JP 6958823 B2 JP6958823 B2 JP 6958823B2
- Authority
- JP
- Japan
- Prior art keywords
- magnesium
- bismuth
- electrode
- alloy
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011777 magnesium Substances 0.000 title claims description 128
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims description 80
- 229910052749 magnesium Inorganic materials 0.000 title claims description 80
- 229910052797 bismuth Inorganic materials 0.000 title claims description 44
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 title claims description 43
- 229910045601 alloy Inorganic materials 0.000 title claims description 16
- 239000000956 alloy Substances 0.000 title claims description 16
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 27
- 239000006104 solid solution Substances 0.000 claims description 24
- 229910000765 intermetallic Inorganic materials 0.000 claims description 16
- 239000003792 electrolyte Substances 0.000 claims description 9
- 229910001152 Bi alloy Inorganic materials 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 10
- -1 for example Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- SKKNACBBJGLYJD-UHFFFAOYSA-N bismuth magnesium Chemical compound [Mg].[Bi] SKKNACBBJGLYJD-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 238000002484 cyclic voltammetry Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 239000012752 auxiliary agent Substances 0.000 description 6
- 230000005496 eutectics Effects 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000033116 oxidation-reduction process Effects 0.000 description 3
- YPUWDDMFYRNEFX-UHFFFAOYSA-N 1-methoxy-2-[2-(2-methoxyethoxy)ethoxy]ethane Chemical compound COCCOCCOCCOC.COCCOCCOCCOC YPUWDDMFYRNEFX-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- DMFBPGIDUUNBRU-UHFFFAOYSA-N magnesium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Mg+2].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F DMFBPGIDUUNBRU-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- MPCRDALPQLDDFX-UHFFFAOYSA-L Magnesium perchlorate Chemical compound [Mg+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O MPCRDALPQLDDFX-UHFFFAOYSA-L 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 229910020003 Mg1.03Mn0.97SiO4 Inorganic materials 0.000 description 1
- 229910017267 Mo 6 S 8 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- FRIJBUGBVQZNTB-UHFFFAOYSA-M magnesium;ethane;bromide Chemical compound [Mg+2].[Br-].[CH2-]C FRIJBUGBVQZNTB-UHFFFAOYSA-M 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- SMDQFHZIWNYSMR-UHFFFAOYSA-N sulfanylidenemagnesium Chemical compound S=[Mg] SMDQFHZIWNYSMR-UHFFFAOYSA-N 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C12/00—Alloys based on antimony or bismuth
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、マグネシウムとビスマスの合金層を備える電極、及び前記電極を備えるマグネシウム二次電池に関する。 The present invention relates to an electrode provided with an alloy layer of magnesium and bismuth, and a magnesium secondary battery provided with the electrode.
近年、二次電池としてリチウムイオン二次電池が実用化され、電子デバイス等の様々な用途に使用されている。しかしながら、今後の車載用途や大型用途に対しては、リチウムイオン二次電池では対応することが難しく、他の二次電池の開発が行われている。そこで、体積当たりの電気容量でリチウムイオン二次電池を凌ぐ特性を有するマグネシウム二次電池の開発が盛んに行われている。マグネシウムは、体積当たりの電気容量がリチウムの約2倍であるだけでなく、融点がリチウムの186℃に比べて650℃と高い。リチウムイオン二次電池は、電池内部での短絡等により加熱、発火するとの問題が指摘されているが、この原因の一つとしてリチウムの融点の低さが挙げられている。この点、マグネシウムはリチウムに比べて融点が高いため、安全性が高い。また、マグネシウムは、希少金属であるリチウムに比べて地球上に多く存在し、資源的にも豊富である。しかし、従来のマグネシウム負極は、その表面に絶縁層である酸化皮膜が形成されるため、電気が流れにくく過電圧が大きくなり、本来の電池容量特性が発揮できないとの問題があった。 In recent years, lithium ion secondary batteries have been put into practical use as secondary batteries and are used in various applications such as electronic devices. However, it is difficult for lithium-ion secondary batteries to cope with future in-vehicle applications and large-scale applications, and other secondary batteries are being developed. Therefore, a magnesium secondary battery having a characteristic that surpasses that of a lithium ion secondary battery in terms of electric capacity per volume has been actively developed. Magnesium not only has about twice the capacitance per volume of lithium, but also has a melting point of 650 ° C, which is higher than that of lithium at 186 ° C. It has been pointed out that lithium-ion secondary batteries are heated and ignited due to a short circuit inside the battery, and one of the causes is the low melting point of lithium. In this respect, magnesium has a higher melting point than lithium, so it is highly safe. Magnesium is more abundant on the earth than lithium, which is a rare metal, and is also abundant in resources. However, the conventional magnesium negative electrode has a problem that since an oxide film which is an insulating layer is formed on the surface thereof, it is difficult for electricity to flow and the overvoltage becomes large, so that the original battery capacity characteristics cannot be exhibited.
そこで、上記問題を解決するためにいくつかの提案がなされている。例えば、電解質を改良することにより酸化皮膜の形成を抑制する方法として、EtMgBr/THFを電解液として用いてマグネシウム負極表面の酸化皮膜を除去する方法が提案されている(非特許文献1)。しかし、この方法では、酸化側の電位に対して耐性がなく、電解液の分解が生じるため長期での充放電が行えないとの問題がある。また、使用できる正極材料が限られており、電圧1V程度の低電位の電池しか報告されていない。負極を改良する方法としては、負極にマグネシウムの金属間化合物を使用する方法が提案され、マグネシウムとビスマスのモル比が3:2に調製された金属間化合物を用いることが提案されている(特許文献1、非特許文献2)。しかしこの方法の場合、マグネシウム−ビスマス金属間化合物は、マグネシウムの含有量が16質量%程度であるため使用できるマグネシウムの量が少ない。また、金属間化合物は脆いため、そのまま電極として用いると耐久性に問題がある。耐久性を高めるために、バインダーを用いると導電助剤を添加する必要があり、バインダーや導電助剤の重量も加味すると、マグネシウムの含有量は13%程度と更に少なくなる。そのため、電池あたりにおけるマグネシウムの電気化学的エネルギーへの寄与が小さいとの問題があった。
Therefore, some proposals have been made to solve the above problem. For example, as a method of suppressing the formation of an oxide film by improving the electrolyte, a method of removing the oxide film on the surface of the magnesium negative electrode by using EtMgBr / THF as an electrolytic solution has been proposed (Non-Patent Document 1). However, this method has a problem that it cannot be charged and discharged for a long period of time because it is not resistant to the potential on the oxidation side and the electrolytic solution is decomposed. Further, the positive electrode materials that can be used are limited, and only low-potential batteries having a voltage of about 1 V have been reported. As a method for improving the negative electrode, a method of using an intermetallic compound of magnesium for the negative electrode has been proposed, and it has been proposed to use an intermetallic compound prepared with a molar ratio of magnesium to bismuth of 3: 2 (Patented).
本発明の課題は、上記問題を解決し、酸化皮膜の形成が抑制され、高電位かつ高容量なマグネシウム二次電池を作製できる電極、及び酸化皮膜形成が抑制された高電位かつ高容量なマグネシウム二次電池を提供することにある。 The subject of the present invention is to solve the above-mentioned problems, an electrode capable of producing a high-potential and high-capacity magnesium secondary battery in which the formation of an oxide film is suppressed, and a high-potential and high-capacity magnesium in which the formation of an oxide film is suppressed. The purpose is to provide secondary batteries.
本発明者らは、マグネシウム二次電池における電極上の酸化皮膜の形成を抑制する方法を検討するなかで、マグネシウム二次電池を構成する要素のうちからマグネシウム電極自体に着目し、開発に着手した。マグネシウムを任意の割合でビスマスと合金化し、マグネシウム二次電池の負極としてその電気化学特性を評価したところ、これまでの金属間化合物(Mg3Bi2)とは異なり、より少ないビスマス量の合金にて酸化皮膜の形成が抑制され、高電位かつ高容量なマグネシウム二次電池用の電極として使用できることを見いだした。また、これまで報告されているマグネシウム−ビスマス合金電極は、脆い金属間化合物(Mg3Bi2)であり電極の成形加工特性に乏しく、電極にするためには導電性カーボン及び結着剤(バインダー)などを用いる必要があり、電極として機能させるためには高容量であるマグネシウムの含有量は著しく減少する(Mg含有量13質量%以下)。本発明者らは、合金中の組成をMg−Bi固溶体又はMg−Mg3Bi2共晶の多い状態にすることで、成形加工特性に優れた電極材料となることを見いだした。While investigating a method for suppressing the formation of an oxide film on an electrode in a magnesium secondary battery, the present inventors focused on the magnesium electrode itself from among the elements constituting the magnesium secondary battery and started development. .. When magnesium was alloyed with bismuth at an arbitrary ratio and its electrochemical characteristics were evaluated as the negative electrode of a magnesium secondary battery, unlike the conventional intermetallic compound (Mg 3 Bi 2 ), an alloy with a smaller amount of bismuth was obtained. It was found that the formation of an oxide film is suppressed and that it can be used as an electrode for a magnesium secondary battery with high potential and high capacity. Further, the magnesium-bismuth alloy electrodes reported so far are brittle intermetallic compounds (Mg 3 Bi 2 ) and have poor electrode molding processing characteristics, and conductive carbon and a binder (binder) can be used to make the electrodes. ) Etc., and the content of magnesium, which has a high capacity, is significantly reduced in order to function as an electrode (Mg content of 13% by mass or less). The present inventors have found that the composition in the alloy in high state of Mg-Bi solid solution or Mg-Mg 3 Bi 2 eutectic found that an excellent electrode material molding characteristics.
すなわち、本発明は以下に示す事項により特定されるものである。
(1)マグネシウム(Mg)とビスマス(Bi)との合金層を備える電極であって、前記合金層が、マグネシウム(Mg)とビスマス(Bi)との固溶体(Mg1−xBix;ただし、xは0.001〜0.0112)を含む、又はマグネシウム(Mg)とビスマス(Bi)との固溶体(Mg1−xBix;ただし、xは0.001〜0.0112)とマグネシウム(Mg)とビスマス(Bi)との金属間化合物(Mg3Bi2)を含むことを特徴とする電極。
(2)マグネシウム(Mg)とビスマス(Bi)との合金中のビスマスの含有量が、前記合金全体に対して1〜58.9質量%であることを特徴とする上記(1)記載の電極。
(3)負極として上記(1)又は(2)記載の電極を備え、さらに電解質層及び正極を備えることを特徴とするマグネシウム二次電池。That is, the present invention is specified by the following matters.
(1) An electrode including an alloy layer of magnesium (Mg) and bismuth (Bi), wherein the alloy layer is a solid solution of magnesium (Mg) and bismuth (Bi) (Mg 1-x Bi x ; x contains 0.001 to 0.0112) or a solid solution of magnesium (Mg) and bismuth (Bi) (Mg 1-x Bi x ; where x is 0.001 to 0.0112) and magnesium (Mg). ) And bismuth (Bi) containing an intermetallic compound (Mg 3 Bi 2 ).
(2) The electrode according to (1) above, wherein the content of bismuth in the alloy of magnesium (Mg) and bismuth (Bi) is 1 to 58.9% by mass with respect to the entire alloy. ..
(3) A magnesium secondary battery comprising the electrode according to (1) or (2) above as a negative electrode, and further including an electrolyte layer and a positive electrode.
本発明の電極は、酸化皮膜の形成を抑制しつつ、マグネシウムの含有量を多くできる。また、バインダーや導電助剤を必要とせずに電極として使用できる形態に加工できる。本発明のマグネシウム二次電池は、酸化皮膜の形成を抑制できるため、過電圧を抑制し、高電位かつ高容量な二次電池を得ることができる。 The electrode of the present invention can increase the magnesium content while suppressing the formation of an oxide film. In addition, it can be processed into a form that can be used as an electrode without the need for a binder or a conductive auxiliary agent. Since the magnesium secondary battery of the present invention can suppress the formation of an oxide film, it is possible to suppress an overvoltage and obtain a secondary battery having a high potential and a high capacity.
本発明の電極は、マグネシウムとビスマスの合金層を備える電極であって、前記合金が、マグネシウムとビスマスの固溶体を含む、又はマグネシウムとビスマスの固溶体とマグネシウムとビスマスの金属間化合物を含むことを特徴とする。また、本発明においてマグネシウムとビスマスの固溶体とマグネシウムとビスマスの金属間化合物を含むとは、マグネシウムとビスマスの固溶体と金属間化合物とが共晶の組織形態で合金中に存在する場合も含む。マグネシウム(Mg)とビスマス(Bi)の二元系合金は、その状態図から合金におけるBi含有量が固溶限である8.87質量%(1.12at%)までは金属Mg及びMg−Bi固溶体を形成し、8.87質量%(1.12at%)から共晶点である58.9質量%(14.3at%)まではMg−Bi固溶体とMg−Mg3Bi2共晶を形成し、58.9質量%(14.3at%)から82.2質量%(35at%)まではMg−Mg3Bi2共晶とMg3Bi2金属間化合物を形成し、82.2質量%(35at%)以上ではMg3Bi2金属間化合物とBi−Mg固溶体及び金属Biを形成することが知られており、製造条件によって組織の形態が異なる。本発明におけるマグネシウムとビスマスの合金(以下、「本発明におけるマグネシウム合金」ともいう。)は、マグネシウムとビスマスの固溶体、又はマグネシウムとビスマスの固溶体とマグネシウムとビスマスの金属間化合物を含む。すなわち、本発明におけるマグネシウム合金の組成は、金属Mg及びMg−Bi固溶体が共存する形態、Mg−Bi固溶体とMg−Mg3Bi2共晶が共存する形態、及びMg−Mg3Bi2共晶とMg3Bi2金属間化合物が共存する形態を含む。本発明におけるマグネシウム合金のビスマスの含有量は、電池反応が金属Mg及びMg−Bi固溶体の溶解−析出を伴うため、その体積当たりの電気容量を大きくする観点から、合金中に固溶体が形成されなくなるマグネシウム合金全体に対して58.9質量%以下が好ましく、50質量%以下がより好ましい。本発明におけるマグネシウム合金のビスマスの含有量は、マグネシウム合金の加工成形性の観点から、マグネシウム合金全体に対して1〜50質量%であることが好ましい。また、本発明におけるマグネシウム合金のビスマスの含有量は、酸化皮膜形成の抑制効果の観点から、マグネシウム合金全体に対して1〜58.9質量%であることが好ましく、1〜50質量%であることがより好ましく、30〜50質量%であることがさらに好ましい。本発明におけるマグネシウムとビスマスの固溶体(Mg1−xBix)では、xは固溶体として実質的に存在できる下限である0.001以上、固溶限である0.0112以下の範囲が好ましい。本発明の電極における合金層は、マグネシウム(Mg)とビスマス(Bi)との固溶体(Mg1−xBix;ただし、xは0.001〜0.0112)を含む、又はマグネシウム(Mg)とビスマス(Bi)との固溶体(Mg1−xBix;ただし、xは0.001〜0.0112)とマグネシウム(Mg)とビスマス(Bi)との金属間化合物(Mg3Bi2)を含む。The electrode of the present invention is an electrode provided with an alloy layer of magnesium and bismuth, wherein the alloy contains a solid solution of magnesium and bismuth, or a solid solution of magnesium and bismuth and an intermetallic compound of magnesium and bismuth. And. Further, in the present invention, the inclusion of the solid solution of magnesium and bismuth and the intermetallic compound of magnesium and bismuth also includes the case where the solid solution of magnesium and bismuth and the intermetallic compound are present in the alloy in a symcyclic structure. From the state diagram of the binary alloy of magnesium (Mg) and bismuth (Bi), the Bi content in the alloy is up to 8.87 mass% (1.12 at%), which is the solid solution limit, as metal Mg and Mg-Bi. A solid solution is formed, and an Mg-Bi solid solution and an Mg-Mg 3 Bi 2 eutectic are formed from 8.87% by mass (1.12 at%) to 58.9% by mass (14.3 at%), which is the eutectic point. Then, from 58.9 mass% (14.3 at%) to 82.2 mass% (35 at%), Mg-Mg 3 Bi 2 eutectic and Mg 3 Bi 2 intermetallic compound are formed, and 82.2 mass%. It is known that an Mg 3 Bi 2 metal-to-metal compound forms a Bi-Mg solid solution and a metal Bi at (35 at%) or more, and the structure morphology differs depending on the production conditions. The magnesium-bismuth alloy in the present invention (hereinafter, also referred to as “magnesium alloy in the present invention”) includes a solid solution of magnesium and bismuth, or a solid solution of magnesium and bismuth and an intermetallic compound of magnesium and bismuth. That is, the composition of the magnesium alloy in the present invention includes a form in which the metal Mg and the Mg-Bi solid solution coexist, a form in which the Mg-Bi solid solution and the Mg-Mg 3 Bi 2 eutectic coexist, and an Mg-Mg 3 Bi 2 eutectic. Includes a form in which and Mg 3 Bi 2 intermetallic compound coexist. Regarding the bismuth content of the magnesium alloy in the present invention, since the battery reaction involves dissolution-precipitation of the metal Mg and Mg-Bi solid solution, the solid solution is not formed in the alloy from the viewpoint of increasing the electric capacity per volume. It is preferably 58.9% by mass or less, more preferably 50% by mass or less, based on the entire magnesium alloy. The content of bismuth in the magnesium alloy in the present invention is preferably 1 to 50% by mass with respect to the entire magnesium alloy from the viewpoint of processability of the magnesium alloy. The bismuth content of the magnesium alloy in the present invention is preferably 1 to 58.9% by mass, preferably 1 to 50% by mass, based on the entire magnesium alloy, from the viewpoint of the effect of suppressing the formation of an oxide film. More preferably, it is more preferably 30 to 50% by mass. In the solid solution of magnesium and bismuth (Mg 1-x Bi x ) in the present invention, x is preferably in the range of 0.001 or more, which is the lower limit that can substantially exist as a solid solution, and 0.0112 or less, which is the solid solution limit. The alloy layer in the electrode of the present invention contains a solid solution of magnesium (Mg) and bismuth (Bi) (Mg 1-x Bi x ; where x is 0.001 to 0.0112), or with magnesium (Mg). Contains a solid solution with bismuth (Bi) (Mg 1-x Bi x ; where x is 0.001 to 0.0112) and an intermetallic compound of magnesium (Mg) and bismuth (Bi) (Mg 3 Bi 2 ). ..
本発明におけるマグネシウム合金は、充分な強度を有し、板状、柱状等の形態に容易に加工できるため、加工した形態のマグネシウム合金そのものを電極として使用する、あるいは集電体に取り付けて電極として使用することができる。そのため、粒状の電極材料を使用する場合のように、バインダーや導電助剤を必要とすることなく電極を作製できるので、電極におけるマグネシウムの含有量を減少させずに電極を作製できる。また、マグネシウム合金を鱗片形状、偏平形状、紡錘形状、球状等の粒状に加工し、バインダーと混合して集電体上に固定する等の方法により電極を作製してもよい。本発明における「マグネシウム合金層」とは、本発明におけるマグネシウム合金を含む層の意味であり、本発明におけるマグネシウム合金が、板状、柱状等の形態に加工されマグネシウム合金そのものがマグネシウム合金層を形成している場合、及びマグネシウム合金の粒子がバインダー等で固定されマグネシウム合金層を形成している場合を含む。本発明における「マグネシウム合金層を備える電極」とは、電極が上記マグネシウム合金層を有していればよく、マグネシウム合金層のみで電極を構成している場合、マグネシウム合金層と集電体等の他の構成部品と共に電極が構成されている場合を含む。 Since the magnesium alloy in the present invention has sufficient strength and can be easily processed into a plate-like or columnar shape, the processed magnesium alloy itself can be used as an electrode or attached to a current collector as an electrode. Can be used. Therefore, unlike the case of using a granular electrode material, the electrode can be manufactured without the need for a binder or a conductive auxiliary agent, so that the electrode can be manufactured without reducing the magnesium content in the electrode. Further, the electrode may be produced by processing a magnesium alloy into particles having a scale shape, a flat shape, a spindle shape, a spherical shape, or the like, mixing the magnesium alloy with a binder, and fixing the electrode on the current collector. The "magnesium alloy layer" in the present invention means a layer containing a magnesium alloy in the present invention, and the magnesium alloy in the present invention is processed into a plate shape, a columnar shape, or the like, and the magnesium alloy itself forms a magnesium alloy layer. This includes the case where the magnesium alloy particles are fixed with a binder or the like to form a magnesium alloy layer. The "electrode having a magnesium alloy layer" in the present invention means that the electrode may have the magnesium alloy layer, and when the electrode is composed of only the magnesium alloy layer, the magnesium alloy layer and the current collector or the like may be used. This includes the case where the electrode is configured together with other components.
本発明の電池は、本発明の電極を負極として備え、さらに電解質層及び正極を備えることを特徴とする。本発明の電池における正極、電解質、及び必要に応じて他の構成要素は、従来のマグネシウム二次電池に使用されているものを使用することができる。例えば、正極としては、正極活物質がバインダーにより集電体上に固定されたものを挙げることができ、必要に応じて導電助剤を含んでもよい。正極活物質としては、例えば、硫黄又は硫黄化合物、V2O5、硫黄ドープV2O5等のV2O5系、MnO2系、MnO3、MgMnO3等のMnO3系などの酸化物系の正極、Mo6S8系等の硫化物系の正極、Mg1.03Mn0.97SiO4、MgCoSiO4、MgFeSiO4、MgMnSiO4、Mo9Se11、FePO4などを挙げることができる。バインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素含有樹脂、スチレンブタジエンゴム、カルボキシメチルセルロース等の樹脂材料などを挙げることができる。また、導電助剤としては、例えば、無定型炭素、天然黒鉛、人造黒鉛等の黒鉛、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、カーボンナノチューブ等の炭素質物質などを挙げることができる。The battery of the present invention is characterized by including the electrode of the present invention as a negative electrode, and further including an electrolyte layer and a positive electrode. As the positive electrode, the electrolyte, and optionally other components in the battery of the present invention, those used in conventional magnesium secondary batteries can be used. For example, as the positive electrode, a positive electrode active material may be fixed on the current collector by a binder, and a conductive auxiliary agent may be contained if necessary. As the positive electrode active material, for example, sulfur or sulfur compounds, V 2 O 5, sulfur-doped V 2 O 5 or the like V 2 O 5 system, MnO 2 system, MnO 3, MgMnO oxides such as MnO 3 system, such as 3 may be mentioned a system of positive, sulfide-based positive electrode of Mo 6 S 8 type and the like, Mg 1.03 Mn 0.97 SiO 4,
電解質としては、例えば、過塩素酸マグネシウム(Mg(ClO4)2)、グリニャール試薬(RMgX(Rは有機基、Xはハロゲンである。))、臭化マグネシウム(MgBr2)等のハロゲン化マグネシウム、硝酸マグネシウム(Mg(NO3)2)、マグネシウムビストリフルオロメタンスルホンイミド(Mg(TFSI)2)、Mg(SO2CF3)2、ホウフッ化マグネシウム(Mg(BF4)2)、トリフルオロメチルスルホン酸マグネシウム(Mg(CF3SO3)2)、ヘキサフルオロ燐酸マグネシウム(Mg(PF6)2)などを挙げることができる。電解質溶媒としては、公知の非水電解質溶媒を用いることができ、例えば、アセトニトリル(AN)、ジエトキエタン、ジエチレングリコールジメチルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラグライムジメチルエーテル(テトラグライム)、テトラヒドロフラン(THF)、プロピレンカーボネート(PC)、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ−ブチルラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、プロピオン酸メチル、酪酸メチル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等を挙げることができる。Examples of the electrolyte include magnesium halide such as magnesium perchlorate (Mg (ClO 4 ) 2 ), Grinard reagent (RMgX (R is an organic group, X is a halogen)), magnesium bromide (MgBr 2 ), and the like. , Magnesium Nitrate (Mg (NO 3 ) 2 ), Magnesium Bistrifluoromethanesulfonimide (Mg (TFSI) 2 ), Mg (SO 2 CF 3 ) 2 , Magnesium Booxide (Mg (BF 4 ) 2 ), Trifluoromethyl Examples thereof include magnesium sulfonate (Mg (CF 3 SO 3 ) 2 ) and magnesium hexafluorophosphate (Mg (PF 6 ) 2). As the electrolyte solvent, a known non-aqueous electrolyte solvent can be used, and for example, acetonitrile (AN), dietkietan, diethylene glycol dimethyl ether (diglime), triethylene glycol dimethyl ether (triglime), tetraglyme dimethyl ether (tetraglime), tetrahydrofuran ( THF), propylene carbonate (PC), ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyllactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 2-methyltetrahydrofuran, 3-methyl-1 , 3-Dioxolane, methyl propionate, methyl butyrate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and the like.
[実施例1]
(電極の前処理)
ビスマス(Bi)の含有量が2質量%、30質量%、50質量%である本発明におけるマグネシウム−ビスマス合金(Mg−Bi合金)を、直径7mm、厚さ2mmの円柱状に切り出し、それぞれの金属片の両面をエメリーペーパー♯220、600、2000の順番で研磨して、試験片とした。[Example 1]
(Pretreatment of electrodes)
The magnesium-bismuth alloy (Mg-Bi alloy) in the present invention having a bismuth (Bi) content of 2% by mass, 30% by mass, and 50% by mass was cut into a cylinder having a diameter of 7 mm and a thickness of 2 mm, and each of them was cut out. Both sides of the metal piece were polished in the order of
(サイクリックボルタンメトリー)
各試験片を試験極とし、参照極をAg線(株式会社ニコラ製、純度99.99%)、対極をマグネシウムリボン(株式会社ニコラ製、純度99.99%)として、三極式ビーカーセルを用いて、サイクリックボルタンメトリーを行った。電解液は、0.5M マグネシウムビストリフルオロメタンスルホンイミド[Mg(TFSA)2]/トリグライムを用いた。走査範囲は、−3.5〜1.0Vとし、走査速度は10mV/sに統一して、5サイクルを行った。ビスマスの含有量がそれぞれ2質量%、30質量%、50質量%であるMg−Bi合金の結果を図1〜図3に示す。図中、点線1は1サイクル目の結果であり、破線5は5サイクル目の結果である。(Cyclic voltammetry)
A tripolar beaker cell with each test piece as a test electrode, a reference electrode as an Ag wire (manufactured by Nikola Co., Ltd., purity 99.99%), and a counter electrode as a magnesium ribbon (manufactured by Nikola Co., Ltd., purity 99.99%). Cyclic voltammetry was performed using this. As the electrolytic solution, 0.5 M magnesium bistrifluoromethanesulfonimide [Mg (TFSA) 2 ] / triglime was used. The scanning range was −3.5 to 1.0 V, the scanning speed was unified to 10 mV / s, and 5 cycles were performed. The results of the Mg-Bi alloy in which the bismuth contents are 2% by mass, 30% by mass, and 50% by mass, respectively, are shown in FIGS. 1 to 3. In the figure, the dotted
[比較例1]
ビスマスを含有しないマグネシウム金属を、直径7mm、厚さ2mmの円柱状に切り出し、実施例と同様に金属片を作成、処理して試験片を作製した。作製した試験片を用いて実施例と同様にサイクリックボルタンメトリーを行った。結果を図4に示す。[Comparative Example 1]
A magnesium metal containing no bismuth was cut into a cylinder having a diameter of 7 mm and a thickness of 2 mm, and a metal piece was prepared and processed in the same manner as in the examples to prepare a test piece. Cyclic voltammetry was performed using the prepared test pieces in the same manner as in Examples. The results are shown in FIG.
図4に示されるように、比較例のマグネシウム試験片を用いた場合、マグネシウムの溶解−析出に起因する酸化−還元応答の立ち上がりの電位差は2V以上ある。これはマグネシウム電極表面に形成される酸化皮膜による影響である。一方、実施例のMg−Bi合金を試験片に用いた場合、図1〜3に示されるように、酸化−還元応答の立ち上がりの電位差は小さく、特にBi含有量が30質量%以上になると電位差なく酸化−還元応答が観察されている。このように、実施例のMg−Bi合金では、酸化皮膜の形成が抑制されたことがわかる。これにより、より高い電位からの充放電が可能となり、高容量なマグネシウム二次電池の提供が可能となる。また、実施例のMg−Bi合金のマグネシウム含有量は、98〜50質量%であり、例えば、Mg3Bi2金属間化合物におけるマグネシウム含有量の16質量%に比べて、極めて多い。As shown in FIG. 4, when the magnesium test piece of the comparative example is used, the potential difference at the rise of the oxidation-reduction response due to the dissolution-precipitation of magnesium is 2 V or more. This is due to the oxide film formed on the surface of the magnesium electrode. On the other hand, when the Mg-Bi alloy of the example was used for the test piece, as shown in FIGS. 1 to 3, the potential difference at the rising edge of the oxidation-reduction response was small, and the potential difference was particularly high when the Bi content was 30% by mass or more. No oxidation-reduction response has been observed. As described above, it can be seen that the Mg-Bi alloy of the example suppressed the formation of the oxide film. As a result, charging / discharging from a higher potential becomes possible, and a magnesium secondary battery having a high capacity can be provided. The magnesium content of the Mg-Bi alloy of the examples is 98 to 50% by mass, which is much higher than, for example, 16% by mass of the magnesium content in the Mg 3 Bi 2 intermetallic compound.
[実施例2]
(正極活物質の合成)
硫黄(S8)と式(I)で表されるクラウンエーテル化合物とのモル比が1:0.5となるように、硫黄(S8)(0.5g、1.95mmol)を反応容器に入れ、155℃で10分間攪拌した。硫黄が溶解した後に、前記クラウンエーテル化合物(0.820g、0.98mmol)を加え、160〜165℃に加熱し攪拌した。当初、液状の反応混合物は、20分程度で固まるが、そのまま反応を続け、60分間、約160℃で加熱反応を行う。さらに、170℃に加熱し撹拌することで、黄褐色ゴム状の含硫黄ポリマーを定量的に得た。
(Synthesis of positive electrode active material)
The molar ratio of the crown ether compound represented by the sulfur (S 8) and formula (I) is 1: to 0.5, sulfur (S 8) (0.5g, 1.95mmol ) in a reaction vessel And stirred at 155 ° C. for 10 minutes. After the sulfur was dissolved, the crown ether compound (0.820 g, 0.98 mmol) was added, and the mixture was heated to 160 to 165 ° C. and stirred. Initially, the liquid reaction mixture solidifies in about 20 minutes, but the reaction is continued as it is, and a heating reaction is carried out at about 160 ° C. for 60 minutes. Further, by heating to 170 ° C. and stirring, a yellowish brown rubber-like sulfur-containing polymer was quantitatively obtained.
(正極の作製)
合成した含硫黄ポリマーとケッチェンブラックとポリテトラフッ化エチレンを重量比3:6:1の割合で乾式法により混合し、その混合物を集電体(SUS)に圧着させることにより正極を作製した。(Preparation of positive electrode)
The synthesized sulfur-containing polymer, Ketjen black, and polytetrafluoroethylene were mixed by a dry method at a weight ratio of 3: 6: 1, and the mixture was pressure-bonded to a current collector (SUS) to prepare a positive electrode.
(マグネシウム二次電池の作成及び評価)
上記で作製した正極、電解質としてMg(TFSA)2/トリエチレングリコールジメチルエーテル(Triglyme)を含侵させたセパレータ、及び負極に本発明におけるマグネシウム-ビスマス合金(ビスマス50wt%含有)板を用いて、図5に示されるように配置してマグネシウム二次電池を作製し、室温にて充放電測定を行った。充放電測定の結果を図6に示す。(Creation and evaluation of magnesium secondary battery)
The positive electrode prepared above, a separator impregnated with Mg (TFSA) 2 / triethylene glycol dimethyl ether (Triglyme) as an electrolyte, and a magnesium-bismuth alloy (containing 50 wt% bismuth) plate of the present invention as a negative electrode are used in the figure. A magnesium secondary battery was prepared by arranging it as shown in No. 5, and charge / discharge measurement was performed at room temperature. The result of charge / discharge measurement is shown in FIG.
[比較例2]
上記で作製した正極、電解質としてMg(TFSA)2/トリエチレングリコールジメチルエーテル(Triglyme)を含侵させたセパレータ、及び負極にマグネシウム板を用いて、図5に示されるように配置してマグネシウム二次電池を作製し、室温にて充放電測定を行った。充放電測定の結果を図7に示す。[Comparative Example 2]
Using the positive electrode prepared above, a separator impregnated with Mg (TFSA) 2 / triethylene glycol dimethyl ether (Triglyme) as an electrolyte, and a magnesium plate for the negative electrode, the magnesium secondary is arranged as shown in FIG. A battery was prepared and charge / discharge measurement was performed at room temperature. The result of charge / discharge measurement is shown in FIG.
本発明におけるMg−Bi合金を負極として用いて、マグネシウム−硫黄電池の充放電測定を行った結果、通常の純マグネシウム金属の負極と比較して、高電位の放電挙動が得られたことより、負極でのマグネシウムの酸化被膜の抑制効果が確認された。それに伴い、放電容量もほぼ硫黄の理論容量に達した。 As a result of charge / discharge measurement of the magnesium-sulfur battery using the Mg-Bi alloy of the present invention as the negative electrode, a high potential discharge behavior was obtained as compared with the normal negative electrode of pure magnesium metal. The effect of suppressing the oxide film of magnesium on the negative electrode was confirmed. Along with this, the discharge capacity has almost reached the theoretical capacity of sulfur.
本発明の電極は、電極表面への酸化皮膜の形成が抑制され、マグネシウムの含有量が多いので、マグネシウム二次電池に好適に用いることができ、過電圧を抑制し、高電位かつ高容量な二次電池を得ることができる。また、本発明の電極は、マグネシウム合金を電極材料として使用しているため、電極として充分な強度と耐久性を有する。本発明のマグネシウム二次電池は、電極上への酸化皮膜の形成が抑制されるので、マグネシウムが有する電気特性を充分に発揮することができ、高電位かつ高容量な二次電池を得ることができる。そのため、本発明のマグネシウム二次電池は、車載用途や大型用途に対して好適である。 Since the electrode of the present invention suppresses the formation of an oxide film on the electrode surface and has a high magnesium content, it can be suitably used for a magnesium secondary battery, suppresses overvoltage, and has a high potential and a high capacity. The next battery can be obtained. Further, since the electrode of the present invention uses a magnesium alloy as an electrode material, it has sufficient strength and durability as an electrode. Since the magnesium secondary battery of the present invention suppresses the formation of an oxide film on the electrodes, it is possible to sufficiently exhibit the electrical characteristics of magnesium and obtain a secondary battery having a high potential and a high capacity. can. Therefore, the magnesium secondary battery of the present invention is suitable for in-vehicle use and large-scale use.
Claims (3)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017051226 | 2017-03-16 | ||
JP2017051226 | 2017-03-16 | ||
PCT/JP2018/010207 WO2018168995A1 (en) | 2017-03-16 | 2018-03-15 | Electrode provided with alloy layer of magnesium and bismuth, and magnesium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018168995A1 JPWO2018168995A1 (en) | 2020-01-23 |
JP6958823B2 true JP6958823B2 (en) | 2021-11-02 |
Family
ID=63523500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019506260A Active JP6958823B2 (en) | 2017-03-16 | 2018-03-15 | Electrodes and magnesium secondary batteries with an alloy layer of magnesium and bismuth |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6958823B2 (en) |
WO (1) | WO2018168995A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110499440B (en) * | 2019-09-20 | 2021-11-30 | 江西理工大学 | Modification method for enhancing coarse magnesium three-bismuth two-phase morphology in magnesium-bismuth alloy |
JP7384346B2 (en) * | 2019-11-05 | 2023-11-21 | 国立大学法人山口大学 | Insulation suppression electrolyte and insulation suppression method for magnesium secondary batteries |
WO2021166655A1 (en) * | 2020-02-21 | 2021-08-26 | 国立研究開発法人物質・材料研究機構 | Mg-BASED ALLOY NEGATIVE ELECTRODE MATERIAL, PRODUCTION METHOD THEREFOR, AND Mg SECONDARY BATTERY USING SAME |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05159786A (en) * | 1991-12-09 | 1993-06-25 | Toshiba Battery Co Ltd | Manganese dry battery |
US8685564B2 (en) * | 2011-06-22 | 2014-04-01 | Toyota Motor Engineering & Manufacturing North America, Inc. | Active material for rechargeable battery |
JP5830419B2 (en) * | 2012-03-21 | 2015-12-09 | 古河電気工業株式会社 | Porous silicon particles, porous silicon composite particles, and production methods thereof |
US8647770B2 (en) * | 2012-05-30 | 2014-02-11 | Toyota Motor Engineering & Manufacturing North America, Inc. | Bismuth-tin binary anodes for rechargeable magnesium-ion batteries |
US20140302354A1 (en) * | 2013-04-08 | 2014-10-09 | Battelle Memorial Institute | Electrodes for Magnesium Energy Storage Devices |
US9444094B2 (en) * | 2013-04-25 | 2016-09-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Preparation of high energy-density electrode materials for rechargeable magnesium batteries |
JP6374390B2 (en) * | 2013-08-27 | 2018-08-15 | パナソニック株式会社 | Electrochemical energy storage device |
US9819021B2 (en) * | 2014-10-16 | 2017-11-14 | Toyota Motor Engineering & Manufacturing North America, Inc. | Metastable vanadium oxide cathode materials for rechargeable magnesium battery |
-
2018
- 2018-03-15 JP JP2019506260A patent/JP6958823B2/en active Active
- 2018-03-15 WO PCT/JP2018/010207 patent/WO2018168995A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JPWO2018168995A1 (en) | 2020-01-23 |
WO2018168995A1 (en) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106025270B (en) | Electrochemical energy storage device | |
CN105024092B (en) | Fluoride ion battery electrolyte and fluoride ion battery | |
JP2011142066A (en) | Lithium secondary battery | |
CN109792086A (en) | Nonaqueous electrolytic solution for lithium secondary battery and the lithium secondary battery comprising the nonaqueous electrolytic solution | |
JP6600631B2 (en) | Non-aqueous electrolyte containing monofluorophosphate ester salt and non-aqueous electrolyte battery using the same | |
JPWO2003054986A1 (en) | Non-aqueous electrolyte secondary battery | |
JP6135219B2 (en) | Electrolytic solution and lithium ion secondary battery provided with the same | |
JP6958823B2 (en) | Electrodes and magnesium secondary batteries with an alloy layer of magnesium and bismuth | |
US9742027B2 (en) | Anode for sodium-ion and potassium-ion batteries | |
WO2014170979A1 (en) | Negative electrode active material for sodium secondary battery using molten salt electrolyte solution, negative electrode, and sodium secondary battery using molten salt electrolyte solution | |
JP4433021B2 (en) | Non-aqueous electrolyte battery | |
JP2014216299A (en) | Sodium ion secondary battery | |
CN111244530A (en) | Electrolyte for alloy negative electrode material lithium battery and application thereof | |
US9716292B2 (en) | Electrochemical energy storage device | |
JP4880930B2 (en) | Non-aqueous electrolyte and lithium secondary battery | |
JP2016100263A (en) | Positive electrode material for polyvalent cation battery, and polyvalent cation battery | |
JP4901089B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5742876B2 (en) | Non-aqueous solvent for electricity storage device, electrolyte for electricity storage device, and electricity storage device | |
JP2015191808A (en) | Additive for nonaqueous electrolyte, nonaqueous electrolyte and power storage device | |
JP2021077459A (en) | Insulation suppression electrolyte and insulation suppression method for magnesium secondary battery | |
CN104157908A (en) | Lithium salt electrolyte, preparation method and application thereof | |
JP2006040557A (en) | Organic electrolyte secondary battery | |
US20250070255A1 (en) | Lithium secondary battery | |
WO2023100767A1 (en) | Lithium secondary battery | |
JP5877110B2 (en) | Phosphorus-containing sulfonic acid amide compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190726 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210921 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210927 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6958823 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |