[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004079439A - Transmission cable and manufacturing method therefor - Google Patents

Transmission cable and manufacturing method therefor Download PDF

Info

Publication number
JP2004079439A
JP2004079439A JP2002241086A JP2002241086A JP2004079439A JP 2004079439 A JP2004079439 A JP 2004079439A JP 2002241086 A JP2002241086 A JP 2002241086A JP 2002241086 A JP2002241086 A JP 2002241086A JP 2004079439 A JP2004079439 A JP 2004079439A
Authority
JP
Japan
Prior art keywords
pair
insulating layer
transmission cable
insulating
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241086A
Other languages
Japanese (ja)
Inventor
Takashi Ogasawara
小笠原 孝
Hideo Yamamoto
山本 秀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002241086A priority Critical patent/JP2004079439A/en
Publication of JP2004079439A publication Critical patent/JP2004079439A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate a variation of internal skews generated when an insulating layer is crushed due to a stress between a drain wire and an insulating wire, that are spirally wound by a conductive tape material. <P>SOLUTION: A transmission cable 1 includes a signal wire pair made of a pair of insulating wires 7 each obtained by covering a signal wire 3 with an insulating layer 5, and a drain wire 9, which are wound around the conductive tape material 11. The drain wire 9 has a non-circular cross section. Even when the conductive tape material 11 wounds in one direction when manufacturing the transmission table 1, the non-circular cross section of the drain wire 9 disperses the stress between the insulating layer 5 of the insulating wire 7 and the drain wire 9. Therefore, the insulating layer 5 is prevented from crushing. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、Infini Band等の通信規格に用いられる高速データ伝送用の例えばメタルケーブルの構造からなる伝送ケーブル及びその製造方法に関する。
【0002】
【従来の技術】
図4を参照するに、従来の高速データ伝送用の伝送ケーブル101は、一対の信号線103(導体)がそれぞれ別々に例えば発泡樹脂(PE)などの絶縁材料からなる発泡絶縁層105でシースされて押出されて絶縁線107が構成される。これらの2本の絶縁線107のペア線としての信号線対には、1本もしくは2本のほぼ断面円形状のドレイン線109が添えられて例えばアルミマイラテープ(Al−PETテープ)などの導電テープ材111で横巻きされ被覆されている。
【0003】
この一対の2芯の信号線103に+と−の電位が印加されることにより差動電圧の信号が送られる。つまり、低電圧差動伝送(LVDS)が行われる。この低電圧差動伝送はコモンモードノイズに対して強く、印加電圧も小さくすることが可能である。低電圧差動伝送が行われる際には、両信号線103の伝送特性が等しくされることが重要となるのである。
【0004】
【発明が解決しようとする課題】
ところで、従来の伝送ケーブル103においては、伝送ケーブル103を製造する際に導電テープ材111により一対の絶縁線107とドレイン線109とを横巻きでテープ巻きされるときにかかる圧力により、ドレイン線109を介して絶縁線107の発泡絶縁層105が潰されるために誘電率の増大が起こる。したがって、発泡絶縁層105のつぶれ状態が両絶縁線107によって異なる場合、各信号線103を信号が通過するのに要する時間(伝搬遅延時間)に差ができ、所謂対内スキューが生じるという問題点があった。この対内スキューの増大により、受信信号の劣化が生じるのである。
【0005】
より詳しくは、従来の伝送ケーブル101においては、導電テープ材111によって一方向の横巻きで巻き付けられるので、その巻き方向により発泡絶縁層105に対する応力のかかり方が異なるために、ペア線の片方の絶縁線107の発泡絶縁層105とドレイン線109との間の応力が強くなる。その結果、例えば矢印で示したごとく、片方の絶縁線107の発泡絶縁層105がつぶれてしまい、誘電率が増大するために対内スキューが増大するという問題点があった。
【0006】
この発明は上述の課題を解決するためになされたもので、その目的は、導電テープ材によって巻き付けられるときに起こるドレイン線と絶縁線との間の応力により絶縁層が潰れることから生じる対内スキューのバラツキを少なくするようにした伝送ケーブル及びその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために請求項1によるこの発明の伝送ケーブルは、信号線を絶縁層で被覆した一対の絶縁線からなる信号線対と、ドレイン線との外周に導電テープ材を巻き付けた伝送ケーブルにおいて、前記ドレイン線の断面が非円形形状であることを特徴とするものである。
【0008】
したがって、伝送ケーブルが製造される際に、信号線対とドレイン線とが導電テープ材で一方向に巻かれるとしても、ドレイン線の断面が非円形形状であるので、絶縁線の絶縁層とドレイン線との間にかかる応力が分散され緩和され、絶縁層のつぶれが抑制される。その結果、誘電率の増大が軽減されるので対内スキューのバラツキが少なくなる。
【0009】
請求項2によるこの発明の伝送ケーブルは、請求項1記載の伝送ケーブルにおいて、前記非円形形状が、矩形部とこの矩形部の左右両側に設けた円弧部が一体化された構造であることを特徴とするものである。
【0010】
したがって、非円形形状が、矩形部とこの矩形部の左右両側に設けた円弧部が一体化された構造所謂平型形状であるので、このドレイン線を介して絶縁層にかかる応力が確実に分散され、絶縁層のつぶれがより一層抑制される。
【0011】
請求項3によるこの発明の伝送ケーブルは、請求項2記載の伝送ケーブルにおいて、前記両側の円弧部間の長さが一対の信号線の円周部間の距離とほぼ同じであると共に、前記両側の円弧部が一対の絶縁線の絶縁層の円周部に接触していることを特徴とするものである。
【0012】
したがって、信号線対とドレイン線とが導電テープ材で一方向に巻かれるときに、ドレイン線を介して絶縁層にかかる応力は信号線の中心に向けた方向ではなく、外側へずれた方向とするので、応力を分散するという点で効果的である。
【0013】
請求項4によるこの発明の伝送ケーブルは、信号線を絶縁層で被覆した一対の絶縁線からなる信号線対と、ドレイン線との外周に導電テープ材を巻き付けた伝送ケーブルにおいて、前記ドレイン線が、扁平の導電シートであることを特徴とするものである。
【0014】
したがって、伝送ケーブルが製造される際に、信号線対とドレイン線とが導電テープ材で一方向に巻かれるとしても、ドレイン線が扁平の導電シートであるので、このドレイン線を介して絶縁線の絶縁層にかかる応力は小さくなり、絶縁層のつぶれが殆どなくなる。その結果、誘電率の増大が軽減されるので対内スキューのバラツキが少なくなる。
【0015】
請求項5によるこの発明の伝送ケーブルは、請求項4記載の伝送ケーブルにおいて、前記導電シートが、一対の絶縁線の絶縁層の円周部を結ぶほぼ接線上に位置していると共に、導電シートの両端が絶縁層の円周部に接触していることを特徴とするものである。
【0016】
したがって、一対の絶縁線の絶縁層の円周部を結ぶほぼ接線上に位置しているので、導電シートの位置は安定すると共に絶縁層のつぶれが殆どなくなる。
【0017】
請求項6によるこの発明の伝送ケーブルの製造方法は、信号線を絶縁層で被覆した一対の絶縁線からなる信号線対に、断面が非円形形状のドレイン線を添えて配置し、これらの信号線対とドレイン線の外周に導電テープ材を巻きつけることを特徴とするものである。
【0018】
したがって、請求項1記載の作用とほぼ同様であり、伝送ケーブルが製造される際に、信号線対とドレイン線とが導電テープ材で一方向に巻かれるとしても、ドレイン線の断面が非円形形状であるので、絶縁線の絶縁層とドレイン線との間にかかる応力が分散され緩和され、絶縁層のつぶれが抑制される。その結果、誘電率の増大が軽減されるので対内スキューのバラツキが少なくなる。
【0019】
請求項7によるこの発明の伝送ケーブルの製造方法は、信号線を絶縁層で被覆した一対の絶縁線からなる信号線対に、扁平の導電シートのドレイン線を添えて配置し、これらの信号線対とドレイン線の外周に導電テープ材を巻きつけることを特徴とするものである。
【0020】
したがって、請求項4記載の作用とほぼ同様であり、伝送ケーブルが製造される際に、信号線対とドレイン線とが導電テープ材で一方向に巻かれるとしても、ドレイン線が扁平の導電シートであるので、このドレイン線を介して絶縁線の絶縁層にかかる応力は小さくなり、絶縁層のつぶれが殆どなくなる。その結果、誘電率の増大が軽減されるので対内スキューのバラツキが少なくなる。
【0021】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して説明する。
【0022】
図1を参照するに、第1の実施の形態に係わる高速データ伝送用の伝送ケーブル1は、一対の信号線3(導体)がそれぞれ別々に例えば発泡樹脂(PE)などの絶縁材料からなる絶縁層5でシースされて押出されて絶縁線7が構成される。これらの2本の絶縁線7のペア線としての信号線対には、断面が非円形形状のドレイン線9が添えられて例えばアルミマイラテープ(Al−PETテープ)などの導電テープ材11によって例えば横巻きでテープ巻きされ被覆されている。
【0023】
また、ドレイン線9は、非円形形状の幅方向の両側縁が2本の絶縁線7の絶縁層5の円周部にほぼ均等に掛かるように、2本の絶縁線7のペア線の間に位置していることが望ましい。いずれにしても、ドレイン線9ができるだけ絶縁線7の絶縁層5を潰さないような位置に設けられることが望ましい。
【0024】
なお、ドレイン線9の非円形形状としては、第1の実施の形態では矩形部9Aとこの矩形部9Aの左右両側に設けた円弧部9Bが一体化された構造で、所謂、長手方向の左右両側に円弧部9Bを有する平型形状である。さらに、一対の信号線3の円周部間を距離Lとし、ドレイン線9の左右両側の円弧部間を幅Lとすると、距離Lと幅Lがほぼ同じである。しかも、上記の左右両側の円弧部9Bが一対の絶縁線7の絶縁層5の円周部に接触している。
【0025】
上記のドレイン線9としては、例えば断面円形形状の軟鋼線がローラにより上下から圧延されて引き出されることにより、容易に非円形形状に潰すことができる。このときの加圧力により、上記のいわゆる平型形状の厚さや幅を簡単に変えることができる。
【0026】
次に、この発明の第1の実施の形態の伝送ケーブル1の製造方法について説明する。
【0027】
図3を併せて参照するに、上述したように予め信号線3を発泡樹脂の絶縁層5で被覆した一対の絶縁線7からなる信号線対と、予め断面が非円形形状に成形されたドレイン線9が、図1に示されているようにほぼ平行に添えるように配置され、これらの一対の絶縁線7とドレイン線9の外周は例えばテープ巻き装置13により上述したように例えばアルミマイラテープ(Al−PETテープ)などの導電テープ材11によって横巻きでテープ巻きされて被覆され、伝送ケーブル1が製造される。
【0028】
上記構成により、伝送ケーブル1が製造される際に、導電テープ材11によって一対の絶縁線7とドレイン線9が一方向の横巻きでテープ巻きされるとしても、ドレイン線9の断面が非円形形状であることにより、テープ巻きされるときに起こる絶縁線7の樹脂の絶縁層5とドレイン線9との間にかかる応力が確実に分散され、緩和されるので、絶縁層5のつぶれが抑制されることとなる。したがって、発泡樹脂の絶縁層5が潰されることから生じる誘電率の増大が軽減されるので、対内スキューのバラツキを少なくすることができる。
【0029】
特に、非円形形状が図1に示されているようないわゆる平型形状で、しかも距離Lと幅Lがほぼ同じで、ドレイン線9が一対の絶縁層5の円周部を結ぶ接線上に近い位置にある場合は、ドレイン線9の位置が安定し且つドレイン線9を介して絶縁層5にかかる応力は信号線3の中心に向かう方向ではなく、確実に外側へずれた方向となるので応力を分散するという点で効果的である。
【0030】
なお、ドレイン線9の非円形形状としては、楕円などの形状であっても、絶縁層5とドレイン線9との間にかかる応力を分散可能な楕円形状であれば、有効である。
【0031】
図2を参照するに、第2の実施の形態に係わる高速データ伝送用の伝送ケーブル15は、第1の実施の形態の伝送ケーブル1とほぼ同様であり、同様の部材は同符号にて説明する。
【0032】
伝送ケーブル15としては、絶縁線7の構成が第1の実施の形態と同様に信号線3を発泡樹脂の絶縁層5で被覆したものである。ドレイン線9の構成が扁平の導電シート17となっている。これらの2本の絶縁線7のペア線としての信号線対と、導電シート17がほぼ平行に添えられて例えばアルミマイラテープ(Al−PETテープ)などの導電テープ材11によって横巻きに巻き付けられて被覆されている。
【0033】
より詳しく説明すると、上記の導電シート17は、第2の実施の形態では一対の絶縁線7の絶縁層5の円周部を結ぶほぼ接線上に位置しており、しかも導電シート17の両端が絶縁層5の円周部に接触している。
【0034】
なお、この発明の第2の実施の形態の伝送ケーブル15の製造方法は、前述した第1の伝送ケーブル1の製造方法と同様であるので、説明は省略する。
【0035】
上記の構成により、この伝送ケーブル15が製造される際に、一対の絶縁線7と導電シート17とが導電テープ材11によって一方向に横巻きされるとしても、ドレイン線9が扁平の導電シート17であるので、この導電シート17を介して絶縁線7の絶縁層5にかかる応力は図1で示される厚肉の非円形形状に比較してより一層小さくなり、絶縁層5のつぶれが小さくなる。したがって、誘電率の増大が軽減されるので、第1の実施の形態の伝送ケーブル1より対内スキューのバラツキを一層少なくすることができる。
【0036】
特に、図2に示されているように導電シート17が一対の絶縁層5の円周部を結ぶほぼ接線上に位置し、且つ導電シート17の両端が絶縁層5の円周部に接触している場合は、導電シート17が安定した状態に位置決めされると共に絶縁層5のつぶれが殆どなくなるので、より一層対内スキューのバラツキを少なくすることができる。
【0037】
なお、この発明は前述した実施の形態に限定されることなく、適宜な変更を行うことによりその他の態様で実施し得るものである。本実施の形態では絶縁層5として発泡樹脂を用いた例で説明したが、単なる樹脂であっても構わない。また、導電テープ材11によって横巻きにて巻付ける例で説明したが、横巻きでなくても構わない。
【0038】
【発明の効果】
以上のごとき発明の実施の形態の説明から理解されるように、請求項1の発明によれば、伝送ケーブルが製造される際に、信号線対とドレイン線とを導電テープ材で一方向に巻かれるとしても、ドレイン線を非円形形状とすることにより、絶縁線の絶縁層とドレイン線との間にかかる応力が分散され緩和できるので、絶縁層のつぶれを抑制できる。したがって、誘電率の増大を軽減できるので対内スキューのバラツキを少なくできる。
【0039】
請求項2の発明によれば、非円形形状が、矩形部とこの矩形部の両側に設けた円弧部が一体化された構造所謂平型形状であるので、このドレイン線を介して絶縁層にかかる応力を確実に分散でき、絶縁層のつぶれを抑制できる。
【0040】
請求項3の発明によれば、信号線対とドレイン線とが導電テープ材で一方向に巻かれるときに、ドレイン線を介して絶縁層にかかる応力を、信号線の中心に向けた方向ではなく外側へずれた方向にできるので、前記応力をより一層分散できる効果がある。
【0041】
請求項4の発明によれば、伝送ケーブルが製造される際に、信号線対とドレイン線とが導電テープ材で一方向に巻かれるとしても、ドレイン線を扁平の導電シートとすることにより、この導電シートを介して絶縁線の絶縁層にかかる応力を小さくでき、絶縁層のつぶれを殆どなくすことができる。したがって、誘電率の増大を軽減できるので対内スキューのバラツキを少なくできる。
【0042】
請求項5の発明によれば、一対の絶縁線の絶縁層の円周部を結ぶほぼ接線上に位置しているので、導電シートを安定した状態に位置決めでき、しかも絶縁層のつぶれを殆どなくすことができる。
【0043】
請求項6の発明によれば、請求項1記載の効果とほぼ同様であり、伝送ケーブルが製造される際に、信号線対とドレイン線とを導電テープ材で一方向に巻かれるとしても、ドレイン線を非円形形状とすることにより、絶縁線の絶縁層とドレイン線との間にかかる応力が分散され緩和できるので、絶縁層のつぶれを抑制できる。したがって、誘電率の増大を軽減できるので対内スキューのバラツキを少なくできる。
【0044】
請求項7の発明によれば、請求項4記載の効果とほぼ同様であり、伝送ケーブルが製造される際に、信号線対とドレイン線とが導電テープ材で一方向に巻かれるとしても、ドレイン線を扁平の導電シートとすることにより、この導電シートを介して絶縁線の絶縁層にかかる応力を小さくでき、絶縁層のつぶれを殆どなくすことができる。したがって、誘電率の増大を軽減できるので対内スキューのバラツキを少なくできる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態の伝送ケーブルの構造を示す断面図である。
【図2】この発明の第2の実施の形態の伝送ケーブルの構造を示す断面図である。
【図3】この発明の第1,第2の実施の形態の伝送ケーブルの製造方法を示す概略説明図である。
【図4】従来の伝送ケーブルの構造を示す断面図である。
【符号の説明】
1 伝送ケーブル(第1の実施の形態の)
3 信号線(導体)
5 絶縁層
7 絶縁線
9 ドレイン線
9A 矩形部
9B 円弧部
11 導電テープ材
13 テープ巻き装置
15 伝送ケーブル(第2の実施の形態の)
17 導電シート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transmission cable having a structure of, for example, a metal cable for high-speed data transmission used in a communication standard such as Infini Band and a method of manufacturing the same.
[0002]
[Prior art]
Referring to FIG. 4, in a conventional transmission cable 101 for high-speed data transmission, a pair of signal lines 103 (conductors) are separately sheathed with a foam insulating layer 105 made of an insulating material such as foam resin (PE). And is extruded to form an insulated wire 107. A signal line pair as a pair of these two insulated wires 107 is provided with one or two drain wires 109 having a substantially circular cross section, and is made of a conductive material such as an aluminum mylar tape (Al-PET tape). It is horizontally wound and covered with a tape material 111.
[0003]
A differential voltage signal is transmitted by applying a positive and a negative potential to the pair of two-core signal lines 103. That is, low-voltage differential transmission (LVDS) is performed. This low-voltage differential transmission is strong against common mode noise, and the applied voltage can be reduced. When low-voltage differential transmission is performed, it is important that the transmission characteristics of both signal lines 103 be equalized.
[0004]
[Problems to be solved by the invention]
By the way, in the conventional transmission cable 103, when the transmission cable 103 is manufactured, a pressure is applied when the pair of insulating wires 107 and the drain wire 109 are horizontally wound around the tape by the conductive tape material 111. The dielectric constant increases because the foamed insulating layer 105 of the insulating wire 107 is crushed through the wire. Therefore, when the collapsed state of the foamed insulating layer 105 is different between the two insulating lines 107, there is a difference in the time required for a signal to pass through each signal line 103 (propagation delay time), and so-called inward skew occurs. there were. The increase in the in-pair skew causes the deterioration of the received signal.
[0005]
More specifically, in the conventional transmission cable 101, since the winding is wound in one direction by the conductive tape material 111, the manner in which stress is applied to the foamed insulating layer 105 differs depending on the winding direction. The stress between the foamed insulating layer 105 of the insulating wire 107 and the drain wire 109 increases. As a result, as shown by an arrow, for example, there is a problem that the foamed insulating layer 105 of one of the insulating wires 107 is crushed, and the dielectric constant is increased, so that the inward skew is increased.
[0006]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has an object to reduce the inward skew caused by the collapse of the insulating layer due to the stress between the drain line and the insulating line that occurs when the conductive layer is wound by the conductive tape material. It is an object of the present invention to provide a transmission cable and a method for manufacturing the transmission cable, which reduce variations.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a transmission cable according to the present invention according to claim 1 is a transmission cable in which a conductive tape material is wrapped around the outer periphery of a pair of signal lines composed of a pair of insulated wires in which a signal line is covered with an insulating layer. In a cable, a cross section of the drain wire is non-circular.
[0008]
Therefore, when the transmission cable is manufactured, even if the signal wire pair and the drain wire are wound in one direction with a conductive tape material, the cross section of the drain wire is non-circular, so the insulating layer of the insulating wire and the drain The stress applied to the wire is dispersed and relaxed, and the collapse of the insulating layer is suppressed. As a result, the increase in the dielectric constant is reduced, and the variation in the inward skew is reduced.
[0009]
According to a second aspect of the present invention, in the transmission cable according to the first aspect, the non-circular shape has a structure in which a rectangular portion and arc portions provided on both left and right sides of the rectangular portion are integrated. It is a feature.
[0010]
Therefore, since the non-circular shape is a so-called flat shape in which the rectangular portion and the arc portions provided on both the left and right sides of the rectangular portion are integrated, the stress applied to the insulating layer via the drain line is reliably dispersed. As a result, the collapse of the insulating layer is further suppressed.
[0011]
According to a third aspect of the present invention, in the transmission cable according to the second aspect, the length between the arc portions on both sides is substantially the same as the distance between the circumferential portions of the pair of signal lines, and Is in contact with the circumference of the insulating layer of the pair of insulating wires.
[0012]
Therefore, when the signal line pair and the drain line are wound in one direction with the conductive tape material, the stress applied to the insulating layer via the drain line is not directed toward the center of the signal line, but in a direction shifted outward. Therefore, it is effective in dispersing stress.
[0013]
According to a fourth aspect of the present invention, there is provided a transmission cable in which a conductive tape material is wound around an outer periphery of a signal line pair composed of a pair of insulated wires in which a signal line is covered with an insulating layer, wherein the drain wire is , A flat conductive sheet.
[0014]
Therefore, when the transmission cable is manufactured, even if the signal line pair and the drain line are wound in one direction by the conductive tape material, the drain line is a flat conductive sheet, and the insulating line is inserted through the drain line. The stress applied to the insulating layer is reduced, and the collapse of the insulating layer is almost eliminated. As a result, the increase in the dielectric constant is reduced, and the variation in the inward skew is reduced.
[0015]
According to a fifth aspect of the present invention, there is provided the transmission cable according to the fourth aspect, wherein the conductive sheet is located substantially on a tangent connecting circumferential portions of the insulating layers of the pair of insulating wires, and the conductive sheet. Are in contact with the circumference of the insulating layer.
[0016]
Therefore, since the pair of insulating wires are located substantially on a tangent connecting the circumferential portions of the insulating layers, the position of the conductive sheet is stabilized and the insulating layers are hardly crushed.
[0017]
According to a sixth aspect of the present invention, there is provided a transmission cable manufacturing method comprising: arranging a pair of insulated wires in which signal lines are covered with an insulating layer with a drain line having a non-circular cross section; A conductive tape material is wound around the outer circumference of the wire pair and the drain wire.
[0018]
Therefore, the operation is substantially the same as that of the first aspect, and even if the signal line pair and the drain line are wound in one direction by the conductive tape material when the transmission cable is manufactured, the cross section of the drain line is non-circular. Due to the shape, the stress applied between the insulating layer of the insulating wire and the drain line is dispersed and reduced, and the collapse of the insulating layer is suppressed. As a result, the increase in the dielectric constant is reduced, and the variation in the inward skew is reduced.
[0019]
According to a seventh aspect of the present invention, there is provided a transmission cable manufacturing method comprising: arranging a pair of insulated wires in which signal lines are covered with an insulating layer, with a flat conductive sheet drain line attached thereto; The invention is characterized in that a conductive tape material is wrapped around the pair and the drain wire.
[0020]
Therefore, the operation is substantially the same as that of the fourth aspect, and when the transmission cable is manufactured, even if the signal line pair and the drain line are wound in one direction by the conductive tape material, the drain line is a flat conductive sheet. Therefore, the stress applied to the insulating layer of the insulating line via the drain line is reduced, and the insulating layer is hardly collapsed. As a result, the increase in the dielectric constant is reduced, and the variation in the inward skew is reduced.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
Referring to FIG. 1, in a transmission cable 1 for high-speed data transmission according to a first embodiment, a pair of signal lines 3 (conductors) are separately formed of an insulating material such as a foamed resin (PE). The insulating wire 7 is formed by being sheathed and extruded by the layer 5. A signal line pair as a pair of these two insulated wires 7 is accompanied by a drain line 9 having a non-circular cross section, for example, by a conductive tape material 11 such as an aluminum mylar tape (Al-PET tape). The tape is wound and covered by a horizontal winding.
[0023]
In addition, the drain wire 9 is provided between the paired wires of the two insulating wires 7 such that both side edges in the width direction of the non-circular shape are substantially evenly applied to the circumferential portion of the insulating layer 5 of the two insulating wires 7. It is desirable to be located in. In any case, it is desirable that the drain wire 9 is provided at a position where the insulating layer 5 of the insulating wire 7 is not crushed as much as possible.
[0024]
In the first embodiment, the non-circular shape of the drain line 9 is a structure in which a rectangular portion 9A and arc portions 9B provided on both left and right sides of the rectangular portion 9A are integrated, so-called left and right in the longitudinal direction. It has a flat shape with arc portions 9B on both sides. Furthermore, between the circumferential portions of the pair of signal lines 3 and the distance L 1, when between the arc portions of the left and right sides of the drain line 9 and the width L 2, the distance L 1 and the width L 2 is approximately the same. Moreover, the above-mentioned left and right circular arc portions 9 </ b> B are in contact with the circumferential portions of the insulating layer 5 of the pair of insulating wires 7.
[0025]
The above-mentioned drain wire 9 can be easily crushed into a non-circular shape by, for example, rolling a mild steel wire having a circular cross section from above and below with a roller and pulling it out. The thickness and width of the so-called flat shape can be easily changed by the pressing force at this time.
[0026]
Next, a method for manufacturing the transmission cable 1 according to the first embodiment of the present invention will be described.
[0027]
Referring also to FIG. 3, as described above, a signal line pair including a pair of insulating wires 7 in which the signal lines 3 are previously covered with the insulating layer 5 of the foamed resin, and a drain having a non-circular cross section in advance. The wires 9 are arranged so as to be substantially parallel to each other as shown in FIG. 1, and the outer circumferences of the pair of insulated wires 7 and the drain wires 9 are, for example, aluminum mylar tape as described above by the tape winding device 13. The transmission cable 1 is manufactured by being horizontally wound and covered with a conductive tape material 11 such as (Al-PET tape).
[0028]
With the above configuration, when the transmission cable 1 is manufactured, even if the pair of insulated wires 7 and the drain wires 9 are tape-wound in one direction by the conductive tape material 11, the cross section of the drain wires 9 is non-circular. With the shape, the stress applied between the resin insulating layer 5 of the insulating wire 7 and the drain wire 9 generated when the tape is wound around the tape is reliably dispersed and alleviated, so that the collapse of the insulating layer 5 is suppressed. Will be done. Therefore, the increase in the dielectric constant caused by the crushing of the insulating layer 5 of the foamed resin is reduced, and the variation of the inward skew can be reduced.
[0029]
In particular, the non-circular shape is a so-called flat shape as shown in FIG. 1, and the distance L 1 and the width L 2 are substantially the same, and the drain line 9 connects the circumferential portions of the pair of insulating layers 5. When the position is close to the line, the position of the drain line 9 is stable, and the stress applied to the insulating layer 5 via the drain line 9 is not in the direction toward the center of the signal line 3 but in the direction shifted to the outside without fail. Therefore, it is effective in dispersing stress.
[0030]
Note that the non-circular shape of the drain line 9 is effective as long as the shape of the drain line 9 can disperse the stress applied between the insulating layer 5 and the drain line 9 even if the shape is an ellipse or the like.
[0031]
Referring to FIG. 2, the transmission cable 15 for high-speed data transmission according to the second embodiment is almost the same as the transmission cable 1 of the first embodiment, and the same members are denoted by the same reference numerals. I do.
[0032]
The transmission cable 15 is a cable in which the configuration of the insulation wire 7 is the same as that of the first embodiment, and the signal wire 3 is covered with the insulation layer 5 of the foamed resin. The configuration of the drain line 9 is a flat conductive sheet 17. A signal line pair as a pair of these two insulated wires 7 and a conductive sheet 17 are attached substantially in parallel and wound horizontally by a conductive tape material 11 such as an aluminum mylar tape (Al-PET tape). Covered.
[0033]
More specifically, in the second embodiment, the conductive sheet 17 is located substantially on a tangent connecting the circumferential portions of the insulating layers 5 of the pair of insulating wires 7, and both ends of the conductive sheet 17 are opposite to each other. It is in contact with the circumference of the insulating layer 5.
[0034]
Note that a method of manufacturing the transmission cable 15 according to the second embodiment of the present invention is the same as the method of manufacturing the first transmission cable 1 described above, and a description thereof will be omitted.
[0035]
With the above configuration, when the transmission cable 15 is manufactured, even if the pair of insulated wires 7 and the conductive sheet 17 are horizontally wound in one direction by the conductive tape material 11, the drain wire 9 is flat. 17, the stress applied to the insulating layer 5 of the insulating wire 7 via the conductive sheet 17 is further reduced as compared with the thick non-circular shape shown in FIG. 1, and the collapse of the insulating layer 5 is reduced. Become. Accordingly, the increase in the dielectric constant is reduced, and the variation in the inward skew can be further reduced as compared with the transmission cable 1 of the first embodiment.
[0036]
In particular, as shown in FIG. 2, the conductive sheet 17 is located substantially on a tangent connecting the circumferential portions of the pair of insulating layers 5, and both ends of the conductive sheet 17 are in contact with the circumferential portions of the insulating layer 5. In this case, since the conductive sheet 17 is positioned in a stable state and the insulating layer 5 is hardly collapsed, the variation of the inward skew can be further reduced.
[0037]
The present invention is not limited to the above-described embodiment, but can be embodied in other modes by making appropriate changes. In the present embodiment, an example in which a foamed resin is used as the insulating layer 5 has been described, but a simple resin may be used. Further, although the example has been described in which the conductive tape material 11 is used to wind the sheet horizontally, the sheet may not be wound horizontally.
[0038]
【The invention's effect】
As can be understood from the above description of the embodiments of the invention, according to the invention of claim 1, when the transmission cable is manufactured, the signal line pair and the drain line are unidirectionally formed by the conductive tape material. Even if it is wound, by forming the drain line in a non-circular shape, the stress applied between the insulating layer of the insulating line and the drain line can be dispersed and reduced, so that the collapse of the insulating layer can be suppressed. Therefore, the increase in the dielectric constant can be reduced, and the variation in the inward skew can be reduced.
[0039]
According to the second aspect of the present invention, the non-circular shape is a so-called flat shape in which a rectangular portion and arc portions provided on both sides of the rectangular portion are integrated. Such stress can be reliably dispersed, and the collapse of the insulating layer can be suppressed.
[0040]
According to the third aspect of the present invention, when the signal line pair and the drain line are wound in one direction with the conductive tape material, the stress applied to the insulating layer via the drain line is reduced in the direction toward the center of the signal line. Therefore, the stress can be displaced outward, so that the stress can be further dispersed.
[0041]
According to the invention of claim 4, when the transmission cable is manufactured, even if the signal line pair and the drain line are wound in one direction by the conductive tape material, by forming the drain line into a flat conductive sheet, The stress applied to the insulation layer of the insulation wire via the conductive sheet can be reduced, and the collapse of the insulation layer can be almost eliminated. Therefore, the increase in the dielectric constant can be reduced, and the variation in the inward skew can be reduced.
[0042]
According to the fifth aspect of the present invention, since the pair of insulating wires are located on substantially the tangent connecting the circumferential portions of the insulating layers, the conductive sheet can be positioned in a stable state, and the crushing of the insulating layers is almost eliminated. be able to.
[0043]
According to the sixth aspect of the present invention, the effect is substantially the same as that of the first aspect, and when the transmission cable is manufactured, even if the signal line pair and the drain line are wound in one direction by the conductive tape material, By forming the drain line in a non-circular shape, stress applied between the insulating layer of the insulating line and the drain line can be dispersed and reduced, and thus the collapse of the insulating layer can be suppressed. Therefore, the increase in the dielectric constant can be reduced, and the variation in the inward skew can be reduced.
[0044]
According to the seventh aspect of the invention, the effect is substantially the same as that of the fourth aspect, and even when the signal line pair and the drain line are wound in one direction by the conductive tape material when the transmission cable is manufactured, By making the drain wire a flat conductive sheet, the stress applied to the insulating layer of the insulating wire via the conductive sheet can be reduced, and the collapse of the insulating layer can be almost eliminated. Therefore, the increase in the dielectric constant can be reduced, and the variation in the inward skew can be reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a structure of a transmission cable according to a first embodiment of the present invention.
FIG. 2 is a sectional view showing a structure of a transmission cable according to a second embodiment of the present invention.
FIG. 3 is a schematic explanatory view showing a method of manufacturing the transmission cable according to the first and second embodiments of the present invention.
FIG. 4 is a cross-sectional view showing a structure of a conventional transmission cable.
[Explanation of symbols]
1 Transmission cable (of the first embodiment)
3 signal lines (conductors)
Reference Signs List 5 Insulating layer 7 Insulating wire 9 Drain wire 9A Rectangular portion 9B Arc portion 11 Conductive tape material 13 Tape winding device 15 Transmission cable (of the second embodiment)
17 Conductive sheet

Claims (7)

信号線を絶縁層で被覆した一対の絶縁線からなる信号線対と、ドレイン線との外周に導電テープ材を巻き付けた伝送ケーブルにおいて、
前記ドレイン線の断面が非円形形状であることを特徴とする伝送ケーブル。
In a signal cable pair consisting of a pair of insulated wires in which the signal wire is covered with an insulating layer, and a transmission cable in which a conductive tape material is wound around the outer periphery of the drain wire,
A transmission cable, wherein the cross section of the drain wire has a non-circular shape.
前記非円形形状が、矩形部とこの矩形部の左右両側に設けた円弧部が一体化された構造であることを特徴とする請求項1記載の伝送ケーブル。2. The transmission cable according to claim 1, wherein the non-circular shape has a structure in which a rectangular portion and arc portions provided on both left and right sides of the rectangular portion are integrated. 前記両側の円弧部間の長さが一対の信号線の円周部間の距離とほぼ同じであると共に、前記両側の円弧部が一対の絶縁線の絶縁層の円周部に接触していることを特徴とする請求項2記載の伝送ケーブル。The length between the arc portions on both sides is substantially the same as the distance between the circumferential portions of the pair of signal lines, and the arc portions on both sides are in contact with the circumferential portion of the insulating layer of the pair of insulating wires. 3. The transmission cable according to claim 2, wherein: 信号線を絶縁層で被覆した一対の絶縁線からなる信号線対と、ドレイン線との外周に導電テープ材を巻き付けた伝送ケーブルにおいて、
前記ドレイン線が、扁平の導電シートであることを特徴とする伝送ケーブル。
In a signal cable pair consisting of a pair of insulated wires in which the signal wire is covered with an insulating layer, and a transmission cable in which a conductive tape material is wound around the outer periphery of the drain wire,
The transmission cable, wherein the drain wire is a flat conductive sheet.
前記導電シートが、一対の絶縁線の絶縁層の円周部を結ぶほぼ接線上に位置していると共に、導電シートの両端が絶縁層の円周部に接触していることを特徴とする請求項4記載の伝送ケーブル。The conductive sheet is located substantially on a tangent connecting the circumferential portions of the insulating layer of the pair of insulating wires, and both ends of the conductive sheet are in contact with the circumferential portion of the insulating layer. Item 4. The transmission cable according to item 4. 信号線を絶縁層で被覆した一対の絶縁線からなる信号線対に、断面が非円形形状のドレイン線を添えて配置し、これらの信号線対とドレイン線の外周に導電テープ材を巻きつけることを特徴とする伝送ケーブルの製造方法。A signal line pair consisting of a pair of insulating lines in which signal lines are covered with an insulating layer is provided with a drain line having a non-circular cross section, and a conductive tape material is wound around the outer periphery of the signal line pair and the drain line. A method for manufacturing a transmission cable, comprising: 信号線を絶縁層で被覆した一対の絶縁線からなる信号線対に、扁平の導電シートのドレイン線を添えて配置し、これらの信号線対とドレイン線の外周に導電テープ材を巻きつけることを特徴とする伝送ケーブルの製造方法。Placing a drain line of a flat conductive sheet on a signal line pair consisting of a pair of insulating lines in which signal lines are covered with an insulating layer, and wrapping a conductive tape material around the outer periphery of the signal line pair and the drain line A method for manufacturing a transmission cable, comprising:
JP2002241086A 2002-08-21 2002-08-21 Transmission cable and manufacturing method therefor Pending JP2004079439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241086A JP2004079439A (en) 2002-08-21 2002-08-21 Transmission cable and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241086A JP2004079439A (en) 2002-08-21 2002-08-21 Transmission cable and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2004079439A true JP2004079439A (en) 2004-03-11

Family

ID=32023687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241086A Pending JP2004079439A (en) 2002-08-21 2002-08-21 Transmission cable and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2004079439A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056080A (en) * 2008-07-31 2010-03-11 Sumitomo Electric Ind Ltd Differential transmission cable, and composite cable containing the same
JP2010277967A (en) * 2009-06-01 2010-12-09 Totoku Electric Co Ltd Differential signal transmission cable
CN102054544A (en) * 2009-10-30 2011-05-11 日立电线株式会社 Differential signal transmission cable
JP2012243502A (en) * 2011-05-18 2012-12-10 Hitachi Cable Fine Tech Ltd Cable for differential signal transmission and harness using the same
WO2014105692A1 (en) * 2012-12-31 2014-07-03 Fci Asia Pte. Ltd Electrical cable assembly
WO2014105461A1 (en) * 2012-12-31 2014-07-03 Fci Asia Pte. Ltd Electrical cable assembly

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056080A (en) * 2008-07-31 2010-03-11 Sumitomo Electric Ind Ltd Differential transmission cable, and composite cable containing the same
JP2010277967A (en) * 2009-06-01 2010-12-09 Totoku Electric Co Ltd Differential signal transmission cable
CN102054544A (en) * 2009-10-30 2011-05-11 日立电线株式会社 Differential signal transmission cable
US8440910B2 (en) 2009-10-30 2013-05-14 Hitachi Cable, Ltd. Differential signal transmission cable
JP2012243502A (en) * 2011-05-18 2012-12-10 Hitachi Cable Fine Tech Ltd Cable for differential signal transmission and harness using the same
WO2014105692A1 (en) * 2012-12-31 2014-07-03 Fci Asia Pte. Ltd Electrical cable assembly
WO2014105461A1 (en) * 2012-12-31 2014-07-03 Fci Asia Pte. Ltd Electrical cable assembly
US9741465B2 (en) 2012-12-31 2017-08-22 Fci Americas Technology Llc Electrical cable assembly
US9966165B2 (en) 2012-12-31 2018-05-08 Fci Americas Technology Llc Electrical cable assembly

Similar Documents

Publication Publication Date Title
US20160300642A1 (en) Differential signal transmission cable and multi-core differential signal transmission cable
US9484127B2 (en) Differential signal transmission cable
CN103578645B (en) Differential signal transmission cable, multicore differential signal transmission cable and manufacturing method and apparatus
JP5346913B2 (en) Differential signal cable
US9214260B2 (en) Differential signal transmission cable and multi-core differential signal transmission cable
JP2012526361A5 (en)
JP5742789B2 (en) Differential signal transmission cable
CA2545161A1 (en) Data cable with cross-twist cabled core profile
JP5999062B2 (en) Differential signal transmission cable
JP2007258169A (en) Web for separating conductors in communication cable
CN207966502U (en) Biaxial cable with enhancing coupling
JP2006286480A (en) Transmission cable for differential signal
US20070277996A1 (en) Conductor with non-circular cross-section
JP2016027550A (en) Multipair cable
TWM612002U (en) Cable
TWI827683B (en) Cable
JP2004079439A (en) Transmission cable and manufacturing method therefor
JP2002216550A (en) Broadband composite shield cable
JP2010277967A (en) Differential signal transmission cable
JP2004071287A (en) Transmission cable and its manufacturing method
CN108091429B (en) Differential signal cable
JP2004087189A (en) Transmission cable and manufacturing method of the same
CN207895884U (en) Differential signal cable
JP2004087198A (en) Transmission cable and manufacturing method of the same
TW201931387A (en) Two-core parallel cable