[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004075503A - Magnetic body ceramic for high frequency and high frequency circuit component - Google Patents

Magnetic body ceramic for high frequency and high frequency circuit component Download PDF

Info

Publication number
JP2004075503A
JP2004075503A JP2002242046A JP2002242046A JP2004075503A JP 2004075503 A JP2004075503 A JP 2004075503A JP 2002242046 A JP2002242046 A JP 2002242046A JP 2002242046 A JP2002242046 A JP 2002242046A JP 2004075503 A JP2004075503 A JP 2004075503A
Authority
JP
Japan
Prior art keywords
high frequency
frequency
porcelain
frequency magnetic
circuit component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002242046A
Other languages
Japanese (ja)
Inventor
Terunobu Ishikawa
石川 輝伸
Chiharu Kato
加藤 千晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002242046A priority Critical patent/JP2004075503A/en
Publication of JP2004075503A publication Critical patent/JP2004075503A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic body ceramic for high frequency in which the increase of frequency, the lowering of loss and the stabilization of temperature are attained and a high frequency circuit component. <P>SOLUTION: The magnetic body ceramic for high frequency consists essentially of garnet-type ferrite expressed by a general formula, (Y<SB>z-a-b</SB>Ca<SB>a</SB>Gd<SB>b</SB>)(Fe<SB>8-z-c-d</SB>In<SB>c</SB>V<SB>d</SB>)O<SB>12</SB>and satisfies 3.00<z≤3.09, 2.00<a/d≤2.40, 0≤b≤2.00, 0<c<1.00 and 0<d≤1.50. The high frequency circuit component is designed using the magnetic body ceramic for high frequency. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高周波用磁性体磁器、特にサーキュレータ、アイソレータなどの非可逆回路素子を構成するのに適した高周波用磁性体磁器、およびこの高周波用磁性体磁器を用いて構成する高周波回路部品に関するものである。
【0002】
【従来の技術】
近年、通信機器の分野においては、機器の小型化、使用周波数の高周波数化が進んでおり、この分野において使用される高周波回路部品に対して、小型化、広帯域化、低損失化などの要求が高まっている。
【0003】
上記高周波回路部品の代表的なものとしては、たとえば、主として200MHz以上で使用されるサーキュレータ、アイソレータ、ジャイレータなどの非可逆回路素子がある。これらを構成する高周波用磁性体磁器に一般的に要求される特性としては、強磁性体であり、強磁性共鳴半値幅ΔHが4.00kA/m以下と小さく、使用周波数に適した飽和磁化Msおよび飽和磁化温度係数α(Ms)を持ち、キュリー温度Tcが使用温度(−40〜100℃)より高く、誘電損失tanδが小さいこと(tanδ≦0.002)などがあげられる。
【0004】
これらの条件をある程度満たすものとして、Y−Fe系ガーネット型磁性体(以下YIGと称す)が知られている。また、(Ca、Y)(Fe、V)12の化学式で表される、YIGとCa−V系ガーネット型磁性体(以下CVGと称す)との固溶体も、Carl E. Patton ”Effective Linewidth due to Porosity and Anisotropy in Polycrystalline Yttrium Iron Garnet and Ca−V−Substituted Yttrium Iron Garnet at 10GHz” Phys. Rev., vol. 179, No. 2 (1969) などの文献によって広く知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記YIGやYIG−CVG固溶体など、従来の高周波用磁性体磁器では、ΔHを改善するためにFeをInで置換すると、α(Ms)が大幅に低下してしまうという問題があった。また、ΔHを悪化させることなしに、使用する周波数に応じて飽和磁化を任意に調整することは困難であった。よって、上記高周波用磁性体磁器を用いた高周波回路部品の特性についても満足できないという問題を生じている。
【0006】
本発明は上記問題点を解決するものであり、ΔHの低減を維持しながら、Msの設定範囲を広げ、α(Ms)を最適化することが可能な高周波用磁性体磁器、およびこの高周波用磁性体磁器を用いて、高周波数化、低損失化、温度安定化を実現したアイソレータ、サーキュレータ等の高周波回路部品を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の高周波用磁性体磁器は、上記目的を達成するために、
一般式(Yz−a−bCaGd)(Fe8−z−c−dIn)O12で表されるガーネット型フェライトを主成分とする高周波用磁性体磁器であって、前記一般式において、
3.00<z≦3.09、
2.00<a/d≦2.40、
0≦b≦2.00、
0<c<1.00、
0<d≦1.50
を満たすことを特徴としている。
【0008】
上記構成によれば、ΔHを小さい値に維持しながら所望のMs、α(Ms)の値を得ることができるので、上記構成による高周波用磁性体磁器を用いて、高周波回路部品の高周波数化および低損失化が可能となる。
【0009】
【発明の実施の形態】
以下、本発明の高周波用磁性体磁器における実施の形態を、各実施例に基づいて説明する。
【0010】
(実施例1)
出発原料として、純度99%以上のY、CaCO、Gd、Fe、In、Vのそれぞれの粉末を用意した。これらの原料粉末を一般式(Yz−a−bCaGd)(Fe8−z−c−dIn)O12の組成式となるように、a、b、c、d、zを表1の値にしてそれぞれ配合した。このとき、原料中から、Cl、Mn、Siなどの不可避不純物が、磁器中に換算して0.5wt%未満、Al、Gdを除く稀土類元素(Ce、Nd、Pr、Sm等)やBi、Cr、Mg、P、S、Srなどの不可避不純物が、磁器中に換算して0.05wt%未満、混入しても良い。
【0011】
これら調合された原料粉末を、ジルコニアが主成分である玉石を用いたボールミル法によって湿式混合した後、900〜1200℃の温度で仮焼を行った。このとき、ジルコニアを主成分とする玉石より、磁器中に換算して0.3wt%未満のZrが混入しても良い。
【0012】
その後、上記仮焼粉末を粉砕し、バインダーを加えて乾燥、造粒し、プレス成型で直径8mm、厚さ1mmの円板に成型した。この円板を200〜500℃で脱脂した後、1000〜1400℃の温度で1〜30時間焼成し、高周波用磁性体磁器を得た。最適な焼成条件は、組成により大きく異なったので、焼結密度やΔHをもとに最適化させた。
【0013】
ΔHやtanδの測定はJIS−C2565に従って行った。また、Msおよびα(Ms)は振動試料磁力計で測定した。表中の低温とは−40〜30℃、高温とは30〜100℃を示す。なお、試料NOに*印を付したものは本発明の範囲外であることを示す。
【0014】
【表1】

Figure 2004075503
【0015】
表1の各試料NO3〜11から明らかなように、zを3.00<z≦3.09の範囲に設定することにより、ΔHをz=3.00のときに比べて小さく出来ることが分かった。
【0016】
試料NO1、2から明らかなように、zが3.00以下の場合(z≦3.00)、z=3.01〜3.09のときに比べてΔHやtanδが大きくなり、好ましくない。これは、異相が析出するためである。また、試料NO12のように、zが3.09より大きい場合(z>3.09)も同様に異相が析出し、z=3.01〜3.09のときに比べてΔHやtanδが大きくなり、好ましくない。この結果から、zを3.00<z≦3.09の範囲内に限定する。また、より好ましくは3.04≦z≦3.06の範囲内であることが分かる。
【0017】
(実施例2)
次に、(Yz−a−bCaGd)(Fe8−z−c−dIn)O12の組成式で表される高周波用磁性体磁器において、Ca/V比であるa/dを種々変化させた各試料を実施例1と同様に作製した。そして、作製した各試料について実施例1と同様に測定した。測定結果を表2に示す。
【0018】
【表2】
Figure 2004075503
【0019】
YIG−CVG固溶体において、Caは2価の陽イオン、Vは5価の陽イオンである。これらの元素でYやFeといった3価の陽イオンを置換するため、従来は電荷補償のためにa/d=2.00でなければならないとされていた。しかし、表2の各試料NO14〜23から明らかなように、a/dを2.00<a/d≦2.40の範囲に設定することにより、ΔHをa/d=2.00のときに比べて小さくできることが分かった。
【0020】
試料NO13から明らかなように、Ca/V比が2.00の場合(a/d=2.00)、a/d=2.01〜2.40のときに比べてΔHが大きくなり、好ましくない。また、試料NO24のように、a/dが2.40より大きい場合(a/d>2.40)、過剰なCaによる異相が生成するため、a/d=2.01〜2.40のときに比べてΔHが大きくなり、好ましくない。この結果から、a/dを2.00<a/d≦2.40の範囲内に限定する。また、より好ましくは2.01≦a/d≦2.20の範囲内であることが分かる。
【0021】
(実施例3)
次に、(Yz−a−bCaGd)(Fe8−z−c−dIn)O12の組成式で表される高周波用磁性体磁器において、Gd量であるbとIn量であるcを同時に種々変化させた各試料を実施例1と同様に作製した。そして、作製した各試料について実施例1と同様に測定した。測定結果を表3に示す。
【0022】
【表3】
Figure 2004075503
【0023】
表3の各試料NO25〜54から明らかなように、ΔHはc(In量)=0.00(試料NO25〜30)のときを除いて4.00kA/m以下が得られた。Msはb(Gd量)増加により減少した。また、Msはc≦0.50の範囲ではc(In量)の増加により増加し、c>0.50の範囲ではcの増加により減少した。α(Ms)は、bを2.00より大きく(試料NO36、42、48、54)すると低温時のα(Ms)が−0.15%/℃以上となってしまい、フェライト磁石と温度係数の差が大きすぎるため、回路部品の温度安定性が悪化し問題となる。cを1.00以上(試料NO49〜54)にすると、キュリー温度が100℃以下となってしまい、高温で使用できなくなるという問題が生じる。以上によりbを0≦b≦2.00、cを0<c<1.00である範囲に限定する。
【0024】
(実施例4)
次に、(Yz−a−bCaGd)(Fe8−z−c−dIn)O12の組成式で表される高周波用磁性体磁器において、Ca量aとV量dを同時に種々変化させた各試料を実施例1と同様に作製した。そして、作製した各試料について実施例1と同様に測定した。測定結果を表4に示す。
【0025】
【表4】
Figure 2004075503
【0026】
表4の各試料NO55〜65から明らかなように、Msは、d(V量)を増加させることにより自由に調整できることが分かった。ちなみに、d≦0.8ではMsが減少し、d≧1.0ではMsが増加に転じることが判明した。また、試料NO55から、d=0の場合、ΔHが悪化することが判明した。試料NO65からは、dが1.50より大きい場合(d>1.50)、ΔHとtanδが悪化することが判明した。これは、V酸化物が結晶から析出して異相を形成するためである。α(Ms)は、aやdの影響を受けなかった。以上により、dを0<d≦1.50である範囲に限定する。
【0027】
次に、本発明の高周波用磁性体磁器を用いた非可逆回路素子について説明する。本発明の高周波回路部品である非可逆回路素子は、図1に示すように、磁器素子2a、2bと、中心導体3a、3b、3cと、絶縁膜4a、4bとからなる本体1を有し、本体1の上部および下部には、その軸方向に直流磁界Hを印加するように永久磁石(図示せず、磁界発生部)を備えている。
【0028】
磁器素子2a、2bは、本発明に係る高周波用磁性体磁器を用いた円板形状であり、本体1内の電界分布を制御する働きがある。その直径および厚さは、使用する周波数や入力インピーダンスに応じてそれぞれ設定されている。
【0029】
磁器素子2a上には、帯状の金属箔、たとえばCu箔よりなる中心導体3a、3b、3cが配置されている。中心導体3a、3b、3cは、磁器素子2aの上表面(軸方向−端面)の中心を通り径方向に延びて横断し、さらに磁器素子2aの側面に至る形状とされており、互いに所定の角度を有して交叉するように配置されている。各中心導体3a、3b、3cが互いに交叉する角度は等角度が、後述するサーキュレータやアイソレータの機能を発揮するのに好都合であり好ましい。
【0030】
中心導体3aと3b、3bと3cの間には、磁器素子2aより小径な電気絶縁材料よりなる、短絡防止用の絶縁膜4a、4bが、磁器素子2aと同軸上に配置されている。さらに中心導体3c上には磁器素子2bが、磁器素子2aに対し同軸上に積層し固定されている。
【0031】
上記非可逆回路素子においては、直流磁界Hの大きさを調整することにより、投入された高周波電力の電界分布を本体内にて移動させることができる。たとえば、中心導体3aにおける磁器素子2aの側面部に延びた部分を端子5aとして、その端子5aに投入した高周波電力を中心導体3bの端子5bに出力することができ、サーキュレータとしての機能を発揮できる。
【0032】
また、このような非可逆回路素子は、たとえば、中心導体3cの端子5cに無反射終端を接続すれば、中心導体3bの端子5bから投入される高周波電力が端子5cから出力されて無反射終端により全て吸収されるので、アイソレータ(順方向の高周波は導通するが、逆方向の高周波は非導通となる)として機能できるものとなる。
【0033】
本発明の高周波用磁性体磁器を用いた、上記非可逆回路素子では、ΔHを小さく維持しながらMsを任意に設定できるので、高周波数化、低損失化が可能となる。なお、上記非可逆回路素子の各磁器素子2a、2bの一部にて各絶縁体を形成する一体型の非可逆回路素子でも同様の効果を奏する。
【0034】
【発明の効果】
以上のように、本発明の高周波用磁性体磁器は、一般式(Yz−a−bCaGd)(Fe8−z−c−dIn)O12で表されるガーネット型フェライトを主成分とする高周波用磁性体磁器であって、前記一般式において、
3.00<z≦3.09
2.00<a/d≦2.40
0≦b≦2.00
0<c<1.00
0<d≦1.50
を満たすことを特徴とする。
【0035】
本発明においては、上記式のa、b、c、dの置換量を変化させることで、ΔHを小さく維持しながら、Msの設定範囲を広げ、α(Ms)を最適化することが可能である。その結果、本発明の高周波用磁性体磁器を用いたアイソレータ、サーキュレータ等の高周波回路部品では、高周波数化、低損失化、温度安定化が実現できる。
【図面の簡単な説明】
【図1】本発明の高周波用磁性体磁器を用いた高周波回路部品の分解斜視図である。
【符号の説明】
1        本体
2a、2b    磁器素子
3a、3b、3c 中心導体
4a、4b    絶縁膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency magnetic ceramic, particularly a high-frequency magnetic ceramic suitable for forming a non-reciprocal circuit element such as a circulator and an isolator, and a high-frequency circuit component configured using the high-frequency magnetic ceramic. It is.
[0002]
[Prior art]
In recent years, in the field of telecommunications equipment, the miniaturization of equipment and the use of higher frequencies have been progressing, and high-frequency circuit components used in this field have been required to have smaller size, wider bandwidth, lower loss, etc. Is growing.
[0003]
Typical examples of the high-frequency circuit components include non-reciprocal circuit devices such as circulators, isolators, and gyrators mainly used at 200 MHz or higher. The characteristics generally required of the high-frequency magnetic porcelain constituting these are a ferromagnetic material, a ferromagnetic resonance half width ΔH as small as 4.00 kA / m or less, and a saturation magnetization Ms suitable for the frequency used. And the saturation magnetization temperature coefficient α (Ms), the Curie temperature Tc is higher than the operating temperature (−40 to 100 ° C.), and the dielectric loss tan δ is small (tan δ ≦ 0.002).
[0004]
As a material satisfying these conditions to some extent, a Y-Fe-based garnet-type magnetic material (hereinafter referred to as YIG) has been known. Further, a solid solution of YIG and a Ca-V-based garnet-type magnetic material (hereinafter referred to as CVG) represented by a chemical formula of (Ca, Y) 3 (Fe, V) 5 O 12 is also described in Carl E. Patton "Effective Linewidth due to Positiveness and Anisotropy in Polycrystalline Line Yttrium Iron Gartnet and Ca-V-SubstitutedGearnGear. Rev .. , Vol. 179, no. 2 (1969).
[0005]
[Problems to be solved by the invention]
However, in the conventional high frequency magnetic ceramics such as the YIG and the YIG-CVG solid solution, when Fe is replaced with In to improve ΔH, α (Ms) is greatly reduced. Further, it has been difficult to arbitrarily adjust the saturation magnetization according to the frequency used without deteriorating ΔH. Therefore, there is a problem that the characteristics of the high-frequency circuit component using the high-frequency magnetic ceramic cannot be satisfied.
[0006]
The present invention solves the above-mentioned problems, and a high-frequency magnetic porcelain capable of expanding a setting range of Ms and optimizing α (Ms) while maintaining a reduction in ΔH. It is an object of the present invention to provide a high-frequency circuit component such as an isolator and a circulator that realizes high frequency, low loss, and temperature stability by using a magnetic ceramic.
[0007]
[Means for Solving the Problems]
The high-frequency magnetic porcelain of the present invention, in order to achieve the above object,
A general formula (Y z-a-b Ca a Gd b) (Fe 8-z-c-d In c V d) high frequency magnetic ceramic mainly composed of garnet-type ferrite represented by O 12 , In the general formula:
3.00 <z ≦ 3.09,
2.00 <a / d ≦ 2.40,
0 ≦ b ≦ 2.00,
0 <c <1.00,
0 <d ≦ 1.50
It is characterized by satisfying.
[0008]
According to the above configuration, desired values of Ms and α (Ms) can be obtained while maintaining ΔH at a small value. Therefore, by using the high-frequency magnetic ceramic according to the above configuration, the frequency of the high-frequency circuit component can be increased. And low loss can be achieved.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the high-frequency magnetic porcelain of the present invention will be described based on examples.
[0010]
(Example 1)
As starting materials, powders of Y 2 O 3 , CaCO 3 , Gd 2 O 3 , Fe 2 O 3 , In 2 O 3 , and V 2 O 5 having a purity of 99% or more were prepared. These raw material powders general formula (Y z-a-b Ca a Gd b) (Fe 8-z-c-d In c V d) so that the composition formula of O 12, a, b, c , d , And z were set to the values shown in Table 1 and blended. At this time, unavoidable impurities such as Cl, Mn, and Si are less than 0.5 wt% in the porcelain, rare earth elements other than Al and Gd (such as Ce, Nd, Pr, and Sm) and Bi from the raw material. , Cr, Mg, P, S, Sr, etc., may be mixed in the porcelain in an amount of less than 0.05 wt%.
[0011]
These prepared raw material powders were wet-mixed by a ball mill method using a cobblestone containing zirconia as a main component, and then calcined at a temperature of 900 to 1200 ° C. At this time, less than 0.3 wt% of Zr may be mixed in the porcelain from a cobblestone mainly composed of zirconia.
[0012]
Thereafter, the calcined powder was pulverized, dried by adding a binder, granulated, and formed into a disk having a diameter of 8 mm and a thickness of 1 mm by press molding. After the disc was degreased at 200 to 500 ° C., it was fired at a temperature of 1000 to 1400 ° C. for 1 to 30 hours to obtain a high-frequency magnetic porcelain. Since the optimum firing conditions greatly differed depending on the composition, the firing conditions were optimized based on the sintering density and ΔH.
[0013]
The measurement of ΔH and tan δ was performed according to JIS-C2565. Ms and α (Ms) were measured with a vibrating sample magnetometer. The low temperature in the table indicates -40 to 30C, and the high temperature indicates 30 to 100C. Note that a sample marked with an asterisk (*) is outside the scope of the present invention.
[0014]
[Table 1]
Figure 2004075503
[0015]
As is clear from the samples Nos. 3 to 11 in Table 1, ΔH can be reduced by setting z in the range of 3.00 <z ≦ 3.09 as compared with the case where z = 3.00. Was.
[0016]
As is clear from Samples Nos. 1 and 2, when z is 3.00 or less (z ≦ 3.00), ΔH and tan δ are unfavorably increased as compared with z = 3.01 to 3.09. This is because a different phase is precipitated. Further, when z is larger than 3.09 (z> 3.09) as in sample NO12, a different phase is similarly precipitated, and ΔH and tan δ are larger than when z = 3.01 to 3.09. Is not preferred. From this result, z is limited to the range of 3.00 <z ≦ 3.09. In addition, it is found that more preferably 3.04 ≦ z ≦ 3.06.
[0017]
(Example 2)
Next, in (Y z-a-b Ca a Gd b) (Fe 8-z-c-d In c V d) high frequency magnetic ceramic represented by the composition formula of O 12, with Ca / V ratio Each sample having various a / d values was prepared in the same manner as in Example 1. Then, measurement was performed on each of the manufactured samples in the same manner as in Example 1. Table 2 shows the measurement results.
[0018]
[Table 2]
Figure 2004075503
[0019]
In the YIG-CVG solid solution, Ca is a divalent cation and V is a pentavalent cation. In order to replace trivalent cations such as Y and Fe with these elements, it has been conventionally assumed that a / d = 2.00 for charge compensation. However, as is clear from each sample Nos. 14 to 23 in Table 2, by setting a / d in the range of 2.00 <a / d ≦ 2.40, ΔH can be set when a / d = 2.00. It turned out that it can be made smaller than.
[0020]
As is clear from sample NO13, when the Ca / V ratio is 2.00 (a / d = 2.00), ΔH is larger than when a / d = 2.01-2.40, which is preferable. Absent. When a / d is larger than 2.40 (a / d> 2.40) as in sample NO24, a hetero phase due to excess Ca is generated, so that a / d = 2.01 to 2.40. ΔH becomes larger than usual, which is not preferable. From this result, a / d is limited to the range of 2.00 <a / d ≦ 2.40. Further, it is found that the value is more preferably in the range of 2.01 ≦ a / d ≦ 2.20.
[0021]
(Example 3)
Next, in (Y z-a-b Ca a Gd b) (Fe 8-z-c-d In c V d) high frequency magnetic ceramic represented by the composition formula of O 12, a Gd content b Each sample in which c and In amount were variously changed at the same time was produced in the same manner as in Example 1. Then, measurement was performed on each of the manufactured samples in the same manner as in Example 1. Table 3 shows the measurement results.
[0022]
[Table 3]
Figure 2004075503
[0023]
As is clear from the samples Nos. 25 to 54 in Table 3, ΔH was 4.00 kA / m or less except when c (In amount) was 0.00 (samples Nos. 25 to 30). Ms decreased with an increase in b (Gd amount). Ms increased with an increase in c (In amount) in the range of c ≦ 0.50, and decreased with an increase in c in the range of c> 0.50. α (Ms) is larger than 2.00 (samples NO 36, 42, 48, 54), α (Ms) at low temperature becomes −0.15% / ° C. or more, and ferrite magnet and temperature coefficient Is too large, the temperature stability of circuit components deteriorates, which is a problem. If c is 1.00 or more (samples NO 49 to 54), the Curie temperature becomes 100 ° C. or less, which causes a problem that it cannot be used at a high temperature. As described above, b is limited to a range of 0 ≦ b ≦ 2.00, and c is limited to a range of 0 <c <1.00.
[0024]
(Example 4)
Next, (Y z-a-b Ca a Gd b) (Fe 8-z-c-d In c V d) in the high frequency magnetic ceramic represented by the composition formula of O 12, Ca amount a and V Each sample in which the amount d was simultaneously variously changed was produced in the same manner as in Example 1. Then, measurement was performed on each of the manufactured samples in the same manner as in Example 1. Table 4 shows the measurement results.
[0025]
[Table 4]
Figure 2004075503
[0026]
As is clear from each sample No. 55 to 65 in Table 4, it was found that Ms can be freely adjusted by increasing d (V amount). Incidentally, it was found that when d ≦ 0.8, Ms decreased, and when d ≧ 1.0, Ms turned to increase. Also, from sample NO55, it was found that ΔH deteriorated when d = 0. From sample NO65, it was found that when d was greater than 1.50 (d> 1.50), ΔH and tan δ deteriorated. This is because the V oxide precipitates from the crystal to form a different phase. α (Ms) was not affected by a or d. As described above, d is limited to the range of 0 <d ≦ 1.50.
[0027]
Next, a non-reciprocal circuit device using the high-frequency magnetic porcelain of the present invention will be described. As shown in FIG. 1, the non-reciprocal circuit device which is a high-frequency circuit component of the present invention has a main body 1 composed of porcelain elements 2a, 2b, central conductors 3a, 3b, 3c, and insulating films 4a, 4b. The upper and lower parts of the main body 1 are provided with permanent magnets (not shown, a magnetic field generator) so as to apply a DC magnetic field H in the axial direction.
[0028]
Each of the porcelain elements 2a and 2b has a disk shape using the high-frequency magnetic porcelain according to the present invention, and has a function of controlling the electric field distribution in the main body 1. The diameter and thickness are set according to the frequency and input impedance to be used.
[0029]
Center conductors 3a, 3b, 3c made of a band-shaped metal foil, for example, a Cu foil, are arranged on the porcelain element 2a. The center conductors 3a, 3b, 3c extend radially through the center of the upper surface (axial direction-end surface) of the porcelain element 2a, cross and extend to the side surface of the porcelain element 2a. They are arranged to cross at an angle. The angles at which the center conductors 3a, 3b, 3c cross each other are preferably equal angles, which are convenient and advantageous for exhibiting the function of a circulator and an isolator described later.
[0030]
Between the center conductors 3a and 3b, 3b and 3c, insulating films 4a and 4b for preventing short-circuit, which are made of an electrically insulating material smaller in diameter than the ceramic element 2a, are arranged coaxially with the ceramic element 2a. Further, a porcelain element 2b is laminated and fixed on the center conductor 3c coaxially with the porcelain element 2a.
[0031]
In the non-reciprocal circuit device, by adjusting the magnitude of the DC magnetic field H, the electric field distribution of the supplied high-frequency power can be moved in the main body. For example, a portion of the center conductor 3a extending to the side surface of the porcelain element 2a can be used as a terminal 5a, and the high-frequency power applied to the terminal 5a can be output to the terminal 5b of the center conductor 3b, thereby exhibiting a function as a circulator. .
[0032]
Further, in such a non-reciprocal circuit device, for example, if a non-reflection terminal is connected to the terminal 5c of the center conductor 3c, the high-frequency power supplied from the terminal 5b of the center conductor 3b is output from the terminal 5c and , And can function as an isolator (high-frequency in the forward direction conducts, but high-frequency in the reverse direction does not conduct).
[0033]
In the non-reciprocal circuit device using the high-frequency magnetic ceramic of the present invention, Ms can be arbitrarily set while ΔH is kept small, so that high frequency and low loss can be achieved. The same effect can be obtained by an integrated non-reciprocal circuit device in which each of the porcelain elements 2a and 2b of the non-reciprocal circuit device forms an insulator.
[0034]
【The invention's effect】
As described above, high frequency magnetic ceramic of the present invention have the general formula (Y z-a-b Ca a Gd b) (Fe 8-z-c-d In c V d) garnet represented by O 12 A high frequency magnetic porcelain mainly comprising a mold ferrite, wherein in the general formula:
3.00 <z ≦ 3.09
2.00 <a / d ≦ 2.40
0 ≦ b ≦ 2.00
0 <c <1.00
0 <d ≦ 1.50
Is satisfied.
[0035]
In the present invention, by changing the substitution amounts of a, b, c, and d in the above equation, it is possible to widen the setting range of Ms and optimize α (Ms) while keeping ΔH small. is there. As a result, in a high-frequency circuit component such as an isolator and a circulator using the high-frequency magnetic porcelain of the present invention, high frequency, low loss, and temperature stabilization can be realized.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a high-frequency circuit component using a high-frequency magnetic porcelain of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main body 2a, 2b Porcelain element 3a, 3b, 3c Center conductor 4a, 4b Insulating film

Claims (2)

一般式(Yz−a−bCaGd)(Fe8−z−c−dIn)O12で表されるガーネット型フェライトを主成分とする高周波用磁性体磁器であって、前記一般式において、
3.00<z≦3.09
2.00<a/d≦2.40
0≦b≦2.00
0<c<1.00
0<d≦1.50
を満たすことを特徴とする高周波用磁性体磁器。
A general formula (Y z-a-b Ca a Gd b) (Fe 8-z-c-d In c V d) high frequency magnetic ceramic mainly composed of garnet-type ferrite represented by O 12 , In the general formula:
3.00 <z ≦ 3.09
2.00 <a / d ≦ 2.40
0 ≦ b ≦ 2.00
0 <c <1.00
0 <d ≦ 1.50
A high-frequency magnetic porcelain characterized by satisfying the following.
請求項1記載の高周波用磁性体磁器と、前記高周波用磁性体磁器に絶縁状態で交叉上に配置された複数の中心導体と、前記高周波用磁性体磁器および各中心導体に直流磁界を印加する磁界発生部とを備えることを特徴とする、高周波回路部品。2. A high-frequency magnetic porcelain according to claim 1, a plurality of central conductors arranged on the high-frequency magnetic porcelain in an insulated state, and a DC magnetic field is applied to the high-frequency magnetic porcelain and each central conductor. A high-frequency circuit component comprising: a magnetic field generator.
JP2002242046A 2002-08-22 2002-08-22 Magnetic body ceramic for high frequency and high frequency circuit component Pending JP2004075503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242046A JP2004075503A (en) 2002-08-22 2002-08-22 Magnetic body ceramic for high frequency and high frequency circuit component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242046A JP2004075503A (en) 2002-08-22 2002-08-22 Magnetic body ceramic for high frequency and high frequency circuit component

Publications (1)

Publication Number Publication Date
JP2004075503A true JP2004075503A (en) 2004-03-11

Family

ID=32024350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242046A Pending JP2004075503A (en) 2002-08-22 2002-08-22 Magnetic body ceramic for high frequency and high frequency circuit component

Country Status (1)

Country Link
JP (1) JP2004075503A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044964A (en) * 2004-07-30 2006-02-16 Murata Mfg Co Ltd Ferrite material, non-reciprocal circuit element and radio equipment
JP2007036108A (en) * 2005-07-29 2007-02-08 Tdk Corp Ceramic material for non reciprocal circuit element of, and its manufacturing method
WO2007052809A1 (en) * 2005-11-07 2007-05-10 Hitachi Metals, Ltd. Polycrystalline ceramic magnetic material, microwave magnetic components, and irreversible circuit devices made by using the same
US7286025B2 (en) 2004-07-06 2007-10-23 Tdk Corporation Circulator element
WO2008126600A1 (en) * 2007-03-14 2008-10-23 Murata Manufacturing Co., Ltd. Magnetic material for high-frequency application, and circuit component for high-frequency application
JP2011063483A (en) * 2009-09-18 2011-03-31 Murata Mfg Co Ltd High frequency magnetic material, part for irreversible circuit element and irreversible circuit element
CN104909740A (en) * 2015-06-11 2015-09-16 成都八九九科技有限公司 High second harmonic suppression gyromagnetic material and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286025B2 (en) 2004-07-06 2007-10-23 Tdk Corporation Circulator element
JP2006044964A (en) * 2004-07-30 2006-02-16 Murata Mfg Co Ltd Ferrite material, non-reciprocal circuit element and radio equipment
JP2007036108A (en) * 2005-07-29 2007-02-08 Tdk Corp Ceramic material for non reciprocal circuit element of, and its manufacturing method
WO2007052809A1 (en) * 2005-11-07 2007-05-10 Hitachi Metals, Ltd. Polycrystalline ceramic magnetic material, microwave magnetic components, and irreversible circuit devices made by using the same
JP5092750B2 (en) * 2005-11-07 2012-12-05 日立金属株式会社 Polycrystalline ceramic magnetic material, microwave magnetic component, and nonreciprocal circuit device using the same
WO2008126600A1 (en) * 2007-03-14 2008-10-23 Murata Manufacturing Co., Ltd. Magnetic material for high-frequency application, and circuit component for high-frequency application
JP2011063483A (en) * 2009-09-18 2011-03-31 Murata Mfg Co Ltd High frequency magnetic material, part for irreversible circuit element and irreversible circuit element
CN104909740A (en) * 2015-06-11 2015-09-16 成都八九九科技有限公司 High second harmonic suppression gyromagnetic material and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101904269B1 (en) Effective substitutions for rare earth metals in compositions and materials for electronic applications
TW201821386A (en) Temperature insensitive dielectric constant garnets
JP2009001476A (en) Ferrite sintered magnet, method for producing the same and magnet roll and non-reciprocal circuit element using the same
Liao et al. Microstructure and enhanced magnetic properties of low-temperature sintered LiZnTiMn ferrite ceramics with Bi2O3-Al2O3 additive
JP2011073937A (en) Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same
JP4432482B2 (en) High frequency magnetic material and high frequency circuit components
Wang et al. Crystallographically textured Zn2W-type barium hexaferrite for microwave and millimeter wave applications
JP2007145705A (en) Polycrystalline ceramic magnetic material, microwave magnetic substance, and non-reciprocal circuit component using the same
JP2004075503A (en) Magnetic body ceramic for high frequency and high frequency circuit component
JP2010083689A (en) Polycrystalline ceramic magnetic material, microwave magnetic substance, and non-reversible circuit component using the same
JP2005184088A (en) Non-reciprocative circuit element and communication equipment
JP4803415B2 (en) Ferrite porcelain composition for nonreciprocal circuit element, nonreciprocal circuit element, and wireless device
JP3523363B2 (en) Manufacturing method of magnetic sintered body of polycrystalline ceramics and high frequency circuit component using magnetic body obtained by the method
JP4183190B2 (en) Non-reciprocal circuit element
JP3405030B2 (en) Method for producing magnetic material for microwave and high frequency circuit component using the same
EP1269488B1 (en) High-frequency magnetic ceramic and high-frequency circuit component
JPH10233308A (en) Polycrystalline magnetic ceramic material preparation thereof, and nonrevesible circuit element using the same
JP3627329B2 (en) Method for producing polycrystalline ceramic magnetic material and high-frequency nonreciprocal circuit device
JP3405013B2 (en) Method for producing magnetic material and high-frequency circuit component using the same
JP2000191368A (en) Magnetic material for high-frequency and high-frequency irreversible circuit element using the same
KR100521305B1 (en) Magnetoplumbite type ferrite particle, anisotropic sintered magnet, and producing method of the same
Liu et al. Enhanced Magnetic Properties of Sr0. 7ce0. 3fe11. 7zn0. 3o19 by Adjusting the Pre-Sintered Temperatures
JPH02285616A (en) Dielectric porcelain composition for electronic device
JP3731545B2 (en) Ferrite-based permanent magnet, method for manufacturing the permanent magnet, non-reciprocal circuit element, and communication device
JP3257536B2 (en) Composite ferrite magnet material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729