JP2011073937A - Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same - Google Patents
Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same Download PDFInfo
- Publication number
- JP2011073937A JP2011073937A JP2009228398A JP2009228398A JP2011073937A JP 2011073937 A JP2011073937 A JP 2011073937A JP 2009228398 A JP2009228398 A JP 2009228398A JP 2009228398 A JP2009228398 A JP 2009228398A JP 2011073937 A JP2011073937 A JP 2011073937A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- polycrystalline
- microwave
- magnetic ceramic
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
- Non-Reversible Transmitting Devices (AREA)
Abstract
Description
本発明は、電極材との同時焼成が可能で高周波回路用電子部品に使用し得る多結晶磁性セラミック、かかる多結晶磁性セラミックを用いたマイクロ波磁性体、及びかかるマイクロ波磁性体を具備する非可逆回路素子に関する。 The present invention relates to a polycrystalline magnetic ceramic that can be simultaneously fired with an electrode material and can be used in an electronic component for a high-frequency circuit, a microwave magnetic body using such a polycrystalline magnetic ceramic, and a non-magnetic body including such a microwave magnetic body. The present invention relates to a reversible circuit element.
近年、携帯電話、衛星放送等、マイクロ波領域の電磁波を利用する通信技術の進展とともに、機器の小型化が要求されている。このためには、機器を構成する個々の部品の小型化及び低背化が必要である。通信機器に用いられる代表的な高周波回路用電子部品には、サーキュレータ、アイソレータ等のマイクロ波非可逆回路素子がある。信号の伝送方向にほとんど減衰がないが逆方向に減衰が大きいアイソレータは、例えばマイクロ波帯及びUHF帯で使用される携帯電話等の移動体通信器の送受信回路に用いられている。 In recent years, with the progress of communication technology using electromagnetic waves in the microwave region, such as mobile phones and satellite broadcasting, miniaturization of devices is required. For this purpose, it is necessary to reduce the size and height of the individual parts constituting the device. Typical electronic components for high-frequency circuits used in communication equipment include microwave nonreciprocal circuit elements such as circulators and isolators. Isolators with little attenuation in the signal transmission direction but large attenuation in the reverse direction are used in transmission / reception circuits of mobile communication devices such as mobile phones used in the microwave band and UHF band, for example.
非可逆回路素子は、互いに絶縁された状態で配置された複数の導電体ラインを有する中心導体にマイクロ波用磁性体が密接に配置された中心導体組立体と、中心導体組立体に直流磁界を印可する永久磁石とを備えている。中心導体は、マイクロ波用磁性体に巻付けた銅箔、又はマイクロ波用磁性体に印刷した銀ペーストからなる。 The nonreciprocal circuit device includes a central conductor assembly in which a microwave magnetic body is closely arranged on a central conductor having a plurality of conductor lines arranged in an insulated state, and a DC magnetic field applied to the central conductor assembly. And a permanent magnet to be applied. The central conductor is made of a copper foil wound around a microwave magnetic body or a silver paste printed on the microwave magnetic body.
マイクロ波用磁性体を形成するY-Fe系ガーネットフェライトの組成がY3Fe5O12の化学量論組成からずれた場合、Y2O3が少ないとガーネット相以外にFe2O3の異相が生成し、Y2O3が多いとYFeO3の異相が生成し、いずれも強磁性共鳴半値幅ΔHが大きくなることが知られている。このような異相の生成を抑制するために種々の提案がされている。 When the composition of the Y-Fe garnet ferrite that forms the magnetic material for microwaves deviates from the stoichiometric composition of Y 3 Fe 5 O 12 , if the amount of Y 2 O 3 is small, a different phase of Fe 2 O 3 in addition to the garnet phase It is known that when a large amount of Y 2 O 3 is generated, a heterogeneous phase of YFeO 3 is generated, and the ferromagnetic resonance half-width ΔH increases in any case. Various proposals have been made to suppress the generation of such heterogeneous phases.
特開昭53-115098号(特許文献1)は、YAFe8-AO12 (3.09≦A≦3.16)の組成のときに異相がなく、化学量論組成よりΔHが小さいY-Fe系ガーネットフェライトが得られることを開示している。 JP -A- 53-115098 (Patent Document 1) discloses a Y-Fe system having no heterogeneous phase when Y A Fe 8-A O 12 (3.09 ≦ A ≦ 3.16) and having a smaller ΔH than the stoichiometric composition. It discloses that garnet ferrite can be obtained.
特開平6-61708号(特許文献2)は、パラジウム又は白金を含有する導電ペーストからなる中心導体を、マイクロ波用磁性体とともに1300〜1600℃で一体焼成することを開示している。これ等の導体の融点は1300℃以上と高く、ほとんどのマイクロ波用磁性体との一体焼成が容易であり、例えば特許文献1に開示のY-Fe系ガーネットフェライトとともに用いることができる。しかし、パラジウム又は白金は比抵抗が高いため、アイソレータに使用した場合に挿入損失が大きいという欠点を有している。 Japanese Patent Laid-Open No. 6-61708 (Patent Document 2) discloses that a central conductor made of a conductive paste containing palladium or platinum is integrally fired at 1300 to 1600 ° C. together with a microwave magnetic material. These conductors have a high melting point of 1300 ° C. or higher, and can be easily fired integrally with most microwave magnetic materials. For example, they can be used together with the Y—Fe-based garnet ferrite disclosed in Patent Document 1. However, since palladium or platinum has a high specific resistance, it has a drawback of large insertion loss when used in an isolator.
特開平8-288116号(特許文献3)は、800〜1000℃で焼結する非可逆回路素子用の多結晶セラミックス磁性材であって、イットリウム及び希土類元素の少なくとも1種と、ビスマスと、鉄と、酸素とを含有し、ガーネット型構造を有する主相を有する多結晶セラミックス磁性材を開示している。この磁性材の最終組成は、(Y2O3+Bi2O3):Fe2O3=3:5(モル比)という化学量論組成の条件を満たす。この多結晶セラミック磁性体はYの一部がBiで置換されているので、Ag、Cu等の低抵抗導体の融点以下で焼成可能である。しかし、Biの酸化物は他の構成元素の酸化物より低融点であるので、Biの置換量が多くなると化学量論組成でも結晶格子内に取り込まれないBiが異相(Bi又はBi化合物)として粒界に析出し、ΔHの増大を招くことがある。 JP-A-8-288116 (Patent Document 3) is a polycrystalline ceramic magnetic material for non-reciprocal circuit elements that is sintered at 800 to 1000 ° C., and includes at least one of yttrium and rare earth elements, bismuth, and iron. And a polycrystalline ceramic magnetic material containing oxygen and having a main phase having a garnet structure. The final composition of this magnetic material satisfies the condition of the stoichiometric composition of (Y 2 O 3 + Bi 2 O 3 ): Fe 2 O 3 = 3: 5 (molar ratio). This polycrystalline ceramic magnetic body can be fired below the melting point of a low-resistance conductor such as Ag or Cu because part of Y is substituted with Bi. However, since the Bi oxide has a lower melting point than the oxides of the other constituent elements, if the substitution amount of Bi increases, Bi that is not incorporated in the crystal lattice even in the stoichiometric composition becomes a different phase (Bi or Bi compound). It may precipitate at the grain boundary and cause an increase in ΔH.
一般にガーネットのように単相領域が狭いマイクロ波用磁性体では、異相の生成や空孔量の増加が発生しやすい。異相が生成すると、強磁性共鳴半値幅ΔH及び誘電損失tanδが増大するとともに、ガーネットの外観が劣化する。これらに対するBiの影響は顕著であるが、特許文献3では何等認識されていない。 In general, a microwave magnetic material having a narrow single-phase region such as garnet is likely to generate a different phase and increase the amount of holes. When the heterogeneous phase is generated, the ferromagnetic resonance half width ΔH and the dielectric loss tan δ increase, and the appearance of the garnet deteriorates. Although the influence of Bi on these is remarkable, Patent Document 3 does not recognize anything.
また非可逆回路素子内でマイクロ波用磁性体は永久磁石と組み合わせるため、マイクロ波用磁性体の飽和磁化4πMsの温度特性が永久磁石の温度特性を補償するのが理想である。そのため、強磁性共鳴半値幅ΔHが小さく、使用周波数に適した飽和磁化4πMs及び飽和磁化温度係数αmを有し、誘電損失tanδが小さいことが要求される。 Also, since the microwave magnetic body is combined with the permanent magnet in the nonreciprocal circuit element, it is ideal that the temperature characteristic of the saturation magnetization 4πMs of the microwave magnetic body compensates the temperature characteristic of the permanent magnet. Therefore, it is required that the ferromagnetic resonance half width ΔH is small, the saturation magnetization 4πMs and the saturation magnetization temperature coefficient αm suitable for the operating frequency, and the dielectric loss tanδ be small.
従って本発明の第一の目的は、Yの一部をBiで置換してなるY-Fe系ガーネットフェライトからなり、860℃以上950℃未満の低温で焼成でき、異相の生成が抑制され、強磁性共鳴半値幅ΔH及び誘電損失tanδが小さく、飽和磁化4πMsに関して永久磁石の温度特性を補償する温度係数αmを有する多結晶磁性セラミックを提供することである。 Accordingly, the first object of the present invention is a Y-Fe garnet ferrite obtained by substituting a part of Y with Bi, and can be fired at a low temperature of 860 ° C. or higher and lower than 950 ° C. To provide a polycrystalline magnetic ceramic that has a small magnetic resonance half width ΔH and a dielectric loss tan δ, and has a temperature coefficient αm that compensates for the temperature characteristics of a permanent magnet with respect to a saturation magnetization of 4πMs.
本発明の第二の目的は、かかる多結晶磁性セラミックを用いたマイクロ波磁性体を提供することである。 A second object of the present invention is to provide a microwave magnetic body using such polycrystalline magnetic ceramic.
本発明の第三の目的は、かかるマイクロ波磁性体を具備する非可逆回路素子を提供することである。 The third object of the present invention is to provide a non-reciprocal circuit device comprising such a microwave magnetic material.
本発明の多結晶磁性セラミックは、Yの一部をBiで置換してなるY-Fe系ガーネットフェライトからなり、下記一般式:
(Ya-bM1b)(Fe8-a-cM2c)O12(原子比)
(ただし、M1はBi及びCaであり、M2はIn,V,Cu及びZrであり、2.94≦a<3.0、1.00≦b≦1.70、及び0.365≦c≦0.95である。)で表される組成を有することを特徴とする。
The polycrystalline magnetic ceramic of the present invention comprises a Y-Fe garnet ferrite obtained by substituting a part of Y with Bi, and has the following general formula:
(Y ab M1 b ) (Fe 8-ac M2 c ) O 12 (atomic ratio)
(Where M1 is Bi and Ca, M2 is In, V, Cu and Zr, and 2.94 ≦ a <3.0, 1.00 ≦ b ≦ 1.70, and 0.365 ≦ c ≦ 0.95). It is characterized by having.
上記多結晶磁性セラミックの好ましい組成は、下記一般式:
(Ya-x-y-zBixCayGdz)(Fe8-a-α-β-γ-δ-εInαAlβVγCuδZrε)O12(原子比)
(ただし、2.94≦a<3.0、0.50≦x≦0.80、0.50≦y≦0.90、0≦z≦0.40、0.10≦α≦0.40、0≦β≦0.45、0.25≦γ≦0.45、0.01≦δ≦0.05、及び0.005≦ε≦0.05である。)で表される。
A preferred composition of the polycrystalline magnetic ceramic is the following general formula:
(Y axyz Bi x Ca y Gd z ) (Fe 8-a-α-β-γ-δ-ε In α Al β V γ Cu δ Zr ε ) O 12 (atomic ratio)
(However, 2.94 ≦ a <3.0, 0.50 ≦ x ≦ 0.80, 0.50 ≦ y ≦ 0.90, 0 ≦ z ≦ 0.40, 0.10 ≦ α ≦ 0.40, 0 ≦ β ≦ 0.45, 0.25 ≦ γ ≦ 0.45, 0.01 ≦ δ ≦ 0.05 And 0.005 ≦ ε ≦ 0.05.
上記組成を有する多結晶磁性セラミック焼結体を製造する本発明の方法は、Yサイトの各元素及びFeサイトの各元素(ただし、Cu及びZrを除く。)の酸化物を混合及び仮焼し、得られた仮焼粉にFe,Cu及びZrの酸化物を添加し、得られた混合物を成形した後、860℃以上950℃未満の温度で焼結することを特徴とする。 The method of the present invention for producing a polycrystalline magnetic ceramic sintered body having the above composition includes mixing and calcining oxides of each element of the Y site and each element of the Fe site (excluding Cu and Zr). Further, Fe, Cu and Zr oxides are added to the obtained calcined powder, and the obtained mixture is molded, and then sintered at a temperature of 860 ° C. or higher and lower than 950 ° C.
本発明のマイクロ波磁性体は、上記多結晶磁性セラミックと、Ag又はCuを含む導体ペーストとを一体焼結してなり、その内部及び/又は表面に前記導体ペーストで形成された電極パターンを備えたことを特徴とする。 The microwave magnetic body of the present invention is formed by integrally sintering the polycrystalline magnetic ceramic and a conductor paste containing Ag or Cu, and includes an electrode pattern formed with the conductor paste inside and / or on the surface thereof. It is characterized by that.
本発明の非可逆回路素子は、上記マイクロ波磁性体に形成された電極パターンを中心導体とし、前記中心導体に接続するコンデンサと、前記マイクロ波磁性体に直流磁界を与えるフェライト磁石とを備えたことを特徴とする。 The non-reciprocal circuit device of the present invention includes a capacitor connected to the center conductor using the electrode pattern formed on the microwave magnetic body as a central conductor, and a ferrite magnet that applies a DC magnetic field to the microwave magnetic body. It is characterized by that.
本発明によれば、860℃以上950℃未満の低温で焼成することができ、銀や銅といった低抵抗の金属材料との同時焼成が可能で、Bi置換型においても異相の生成がなく、強磁性共鳴半値幅ΔH及び誘電損失tanδが小さい多結晶磁性セラミックと、マイクロ波磁性体及びこれを用いた非可逆回路素子を提供することができる。 According to the present invention, it can be fired at a low temperature of 860 ° C. or more and less than 950 ° C., and can be co-fired with a low-resistance metal material such as silver or copper. A polycrystalline magnetic ceramic having a small magnetic resonance half width ΔH and a dielectric loss tan δ, a microwave magnetic material, and a nonreciprocal circuit device using the same can be provided.
従って、磁性体材料の有する高いQ値と、内部電極の電気抵抗による損失を抑え、極めて損失の小さいマイクロ波磁性体を構成することができる。これにより、アイソレータ、サーキュレータ等のマイクロ波非可逆回路素子に応用して、優れたマイクロ波特性と低損失を実現することができる。 Therefore, the loss due to the high Q value of the magnetic material and the electric resistance of the internal electrode can be suppressed, and a microwave magnetic body with extremely small loss can be configured. Thereby, it can apply to microwave nonreciprocal circuit elements, such as an isolator and a circulator, and can implement | achieve the outstanding microwave characteristic and low loss.
[1] 多結晶磁性セラミック
Yの一部をBiで置換してなるY-Fe系ガーネットフェライトからなる本発明の多結晶磁性セラミックは、下記一般式:
(Ya-bM1b)(Fe8-a-cM2c)O12(原子比)
(ただし、M1はBi及びCaであり、M2はIn,V,Cu及びZrであり、2.94≦a<3.0、1.00≦b≦1.70、及び0.365≦c≦0.95である。)で表される組成を有する。Yの一部をBiで置換してなるY-Fe系ガーネットフェライトにおいて、Yサイトの割合を化学量論組成比より少なくすると、ΔHの増大を招くことなくBiによる異相の生成を低減できることが分かった。本発明の多結晶磁性セラミックはM2としてAlを含有しても良い。
[1] polycrystalline magnetic ceramic
The polycrystalline magnetic ceramic of the present invention comprising a Y-Fe garnet ferrite obtained by substituting a part of Y with Bi has the following general formula:
(Y ab M1 b ) (Fe 8-ac M2 c ) O 12 (atomic ratio)
(Where M1 is Bi and Ca, M2 is In, V, Cu and Zr, and 2.94 ≦ a <3.0, 1.00 ≦ b ≦ 1.70, and 0.365 ≦ c ≦ 0.95). Have In Y-Fe-based garnet ferrite in which a part of Y is substituted with Bi, it is found that if the Y site ratio is less than the stoichiometric composition ratio, the generation of heterogeneous phase due to Bi can be reduced without increasing ΔH. It was. The polycrystalline magnetic ceramic of the present invention may contain Al as M2.
多結晶磁性セラミックの好ましい組成は、下記一般式:
(Ya-x-y-zBixCayGdz)(Fe8-a-α-β-γ-δ-εInαAlβVγCuδZrε)O12(原子比)
(ただし、2.94≦a<3.0、0.50≦x≦0.80、0.50≦y≦0.90、0≦z≦0.40、0.10≦α≦0.40、0≦β≦0.45、0.25≦γ≦0.45、0.01≦δ≦0.05、及び0.005≦ε≦0.05である。)で表される。
A preferred composition of the polycrystalline magnetic ceramic has the general formula:
(Y axyz Bi x Ca y Gd z ) (Fe 8-a-α-β-γ-δ-ε In α Al β V γ Cu δ Zr ε ) O 12 (atomic ratio)
(However, 2.94 ≦ a <3.0, 0.50 ≦ x ≦ 0.80, 0.50 ≦ y ≦ 0.90, 0 ≦ z ≦ 0.40, 0.10 ≦ α ≦ 0.40, 0 ≦ β ≦ 0.45, 0.25 ≦ γ ≦ 0.45, 0.01 ≦ δ ≦ 0.05 And 0.005 ≦ ε ≦ 0.05.
(1) Bi
Biは多結晶磁性セラミックの低温焼結化に寄与する。Yサイトの一部を置換するBiの含有量xは原子比で0.50≦x≦0.80であるのが好ましい。x<0.50であると、Biに由来する異相の生成は抑制されるものの950℃未満での焼結が困難になる。またx>0.80であると、焼結体に生成される異相が多くなり、誘電損失tanδ及び強磁性共鳴半値幅ΔHが著しく大きくなる。xのより好ましい範囲は0.60≦x≦0.70である。
(1) Bi
Bi contributes to low-temperature sintering of polycrystalline magnetic ceramics. The content x of Bi substituting part of the Y site is preferably 0.50 ≦ x ≦ 0.80 in atomic ratio. When x <0.50, the generation of a heterogeneous phase derived from Bi is suppressed, but sintering below 950 ° C. becomes difficult. If x> 0.80, more heterogeneous phases are generated in the sintered body, and the dielectric loss tan δ and the ferromagnetic resonance half width ΔH are significantly increased. A more preferable range of x is 0.60 ≦ x ≦ 0.70.
(2) Ca
CaはVとともに加えられると、焼結時に低融点のVの蒸散を防ぐ。このため、Caの含有量yは原子比で0.50≦y≦0.90であるのが好ましい。yのより好ましい範囲は0.60≦y<0.85である。
(2) Ca
When Ca is added with V, it prevents the low melting point V from transpiration during sintering. Therefore, the Ca content y is preferably 0.50 ≦ y ≦ 0.90 in atomic ratio. A more preferable range of y is 0.60 ≦ y <0.85.
(3) Gd
飽和磁化4πMsの温度係数αmを調整する作用を有するGdの含有量zは原子比で0≦z≦0.40であるのが好ましい。z>0.40であると、飽和磁化4πMsの温度係数αm(−20℃〜+60℃の範囲内)が0.21%/℃未満となることがあり、永久磁石との温度特性差を低減できないだけでなく、誘電損失tanδ及び強磁性共鳴半値幅ΔHが著しく大きくなる。zのより好ましい範囲は0.10≦z≦0.25である。
(3) Gd
The content z of Gd having an effect of adjusting the temperature coefficient αm of the saturation magnetization 4πMs is preferably 0 ≦ z ≦ 0.40 in atomic ratio. If z> 0.40, the temperature coefficient αm of saturation magnetization 4πMs (within the range of -20 ° C to + 60 ° C) may be less than 0.21% / ° C, not only reducing the temperature characteristic difference from the permanent magnet. Further, the dielectric loss tan δ and the ferromagnetic resonance half width ΔH are remarkably increased. A more preferable range of z is 0.10 ≦ z ≦ 0.25.
(4) M2
M2元素のうち、In,Al及びVは飽和磁化4πMsの温度係数αmを調整するとともに、低温焼結化に寄与する。In,Al及びVの含有量α、β及びγは原子比でそれぞれ0.10≦α≦0.40、0≦β≦0.45、及び0.25≦γ≦0.45であるのが好ましい。In及びVの各含有量が上記範囲の各下限より少ないと、950℃未満での焼結が困難になるだけでなく、飽和磁化4πMsが大きくなる。非可逆回路素子において好適な飽和磁化4πMsは永久磁石より与えられる動作磁界によるが、非可逆回路素子の外形寸法が例えば3.0 mm×3.0 mm×1.0 mmより小さくなると、飽和磁化4πMsが140 mTを超えるときに非可逆回路素子として動作させるに永久磁石の磁力が不足することがある。またIn及びVの各含有量が少なすぎると、誘電損失tanδ及び強磁性共鳴半値幅ΔHが大きくなる。一方、In,Al及びVの各含有量が上記範囲の各上限より多いと、飽和磁化4πMsが70 mT未満となり、多結晶磁性セラミックの温度特性が永久磁石の温度特性を補償できなくなる。より好ましいα、β及びγの範囲は、0.10≦α≦0.30、0≦β≦0.30、及び0.30≦γ≦0.45である。
(4) M2
Of the M2 elements, In, Al, and V adjust the temperature coefficient αm of the saturation magnetization 4πMs and contribute to low-temperature sintering. The contents α, β, and γ of In, Al, and V are preferably 0.10 ≦ α ≦ 0.40, 0 ≦ β ≦ 0.45, and 0.25 ≦ γ ≦ 0.45 in atomic ratios, respectively. If the contents of In and V are less than the respective lower limits of the above range, not only sintering at less than 950 ° C. becomes difficult, but also the saturation magnetization 4πMs increases. The saturation magnetization 4πMs that is suitable for non-reciprocal circuit elements depends on the operating magnetic field given by the permanent magnet. However, if the external dimensions of the non-reciprocal circuit element are smaller than 3.0 mm x 3.0 mm x 1.0 mm, the saturation magnetization 4πMs exceeds 140 mT. Sometimes the permanent magnet has insufficient magnetic force to operate as a non-reciprocal circuit element. On the other hand, if the respective contents of In and V are too small, the dielectric loss tan δ and the ferromagnetic resonance half width ΔH increase. On the other hand, if the contents of In, Al, and V are larger than the respective upper limits of the above range, the saturation magnetization 4πMs becomes less than 70 mT, and the temperature characteristics of the polycrystalline magnetic ceramic cannot compensate the temperature characteristics of the permanent magnet. More preferable ranges of α, β, and γ are 0.10 ≦ α ≦ 0.30, 0 ≦ β ≦ 0.30, and 0.30 ≦ γ ≦ 0.45.
(5) Cu
M2元素のうち、Cuは低温焼結化に寄与するが、Cuの含有量δがδ>0.05であると、誘電損失tanδ及び強磁性共鳴半値幅ΔHが大きくなる。一方、δ<0.01であると、Biをx>0.70としなければ950℃未満での焼結が困難になる。このため、Cuの含有量δは0.01≦δ≦0.05の条件を満たすのが好ましい。δのより好ましい範囲は
0.01≦δ≦0.03である。
(5) Cu
Of the M2 elements, Cu contributes to low-temperature sintering, but when the Cu content δ is δ> 0.05, the dielectric loss tan δ and the ferromagnetic resonance half width ΔH increase. On the other hand, if δ <0.01, sintering below 950 ° C. becomes difficult unless Bi is set to x> 0.70. For this reason, the Cu content δ preferably satisfies the condition of 0.01 ≦ δ ≦ 0.05. A more preferable range of δ is
0.01 ≦ δ ≦ 0.03.
(6) Zr
M2元素のうち、Zrは強磁性共鳴半値幅ΔHの低減に寄与するが、Zrの含有量εがε>0.05であると、焼結体にZrに由来する異相を生じやすく、強磁性共鳴半値幅ΔHが大きくなる。一方、ε<0.005であると強磁性共鳴半値幅ΔHの低減の効果が薄い。このため、Zrの含有量εは0.005≦ε≦0.05の条件を満たすのが好ましい。εのより好ましい範囲は0.005≦ε≦0.02である。
(6) Zr
Among the M2 elements, Zr contributes to the reduction of the ferromagnetic resonance half-width ΔH, but if the Zr content ε is ε> 0.05, a heterogeneous phase derived from Zr is likely to occur in the sintered body, and the ferromagnetic resonance half-value is reduced. The value width ΔH increases. On the other hand, when ε <0.005, the effect of reducing the ferromagnetic resonance half width ΔH is small. For this reason, the Zr content ε preferably satisfies the condition of 0.005 ≦ ε ≦ 0.05. A more preferable range of ε is 0.005 ≦ ε ≦ 0.02.
なおいずれの元素でも所望の割合より多くすると、その元素に由来する異相やFe2O3等の第二相が生じ易くなる。 If any of the elements is larger than the desired ratio, a heterogeneous phase derived from the element or a second phase such as Fe 2 O 3 tends to occur.
(7) 磁気特性
上記組成により、本発明の多結晶磁性セラミックは860℃以上950℃未満の低温で焼結することができ、飽和磁化4πMsは70〜130 mTであり、その温度係数αmは−0.35%/℃〜−0.21%/℃であり、強磁性共鳴半値幅ΔHは8000 A/m以下である。
(7) Magnetic properties With the above composition, the polycrystalline magnetic ceramic of the present invention can be sintered at a low temperature of 860 ° C. or more and less than 950 ° C., the saturation magnetization 4πMs is 70 to 130 mT, and the temperature coefficient αm is − It is 0.35% / ° C. to −0.21% / ° C., and the ferromagnetic resonance half width ΔH is 8000 A / m or less.
[2] 多結晶磁性セラミック焼結体の製造方法
本発明の多結晶磁性セラミック焼結体は、まずY-Fe系ガーネットフェライトの主成分からなる仮焼粉を作製し、それに副成分を追加することにより作製することができる。好ましい主成分はY2O3、Bi2O3、CaCO3、Fe2O3、In2O3及びV2O5であり、好ましい副成分はCuO、ZrO2及びFe2O3である。副成分を仮焼後に添加すると最終組成の調整が比較的容易であるが、勿論全ての成分を含む仮焼粉を作製しても本発明の多結晶磁性セラミック焼結体を得ることができる。
[2] Manufacturing method of polycrystalline magnetic ceramic sintered body In the polycrystalline magnetic ceramic sintered body of the present invention, first, calcined powder composed of the main component of Y-Fe garnet ferrite is prepared, and subcomponents are added thereto. Can be produced. Preferred main components are Y 2 O 3 , Bi 2 O 3 , CaCO 3 , Fe 2 O 3 , In 2 O 3 and V 2 O 5 , and preferred subcomponents are CuO, ZrO 2 and Fe 2 O 3 . When the subcomponents are added after calcining, the final composition can be adjusted relatively easily. Of course, even if calcined powder containing all the components is produced, the polycrystalline magnetic ceramic sintered body of the present invention can be obtained.
多結晶磁性セラミック焼結体の製造方法の一例を以下に示すが、本発明は勿論これに限定される訳ではない。まずY2O3粉、Bi2O3粉、CaCO3粉、Fe2O3粉、In2O3粉、Al2O3粉、V2O5粉、CuO粉及びZrO2粉を、最終組成が、一般式:(Y1.575Bi0.644Ca0.753)(Fe4.101In0.228Al0.297V0.376Cu0.020Zr0.006)O12となるように秤量し、その内、Y2O3粉、Bi2O3粉、CaCO3粉、Fe2O3粉、In2O3粉、Al2O3粉、V2O5粉をボールミルで湿式混合し、得られたスラリーを乾燥する。仮焼は焼結温度より40〜70℃低い温度(例えば800〜875℃)で1.5〜2時間行うのが好ましい。仮焼温度の一例は850℃である。 An example of a method for producing a polycrystalline magnetic ceramic sintered body is shown below, but the present invention is not of course limited to this. First, Y 2 O 3 powder, Bi 2 O 3 powder, CaCO 3 powder, Fe 2 O 3 powder, In 2 O 3 powder, Al 2 O 3 powder, V 2 O 5 powder, CuO powder and ZrO 2 powder The composition is weighed so that the general formula is: (Y 1.575 Bi 0.644 Ca 0.753 ) (Fe 4.101 In 0.228 Al 0.297 V 0.376 Cu 0.020 Zr 0.006 ) O 12 , of which Y 2 O 3 powder, Bi 2 O 3 Powder, CaCO 3 powder, Fe 2 O 3 powder, In 2 O 3 powder, Al 2 O 3 powder, and V 2 O 5 powder are wet mixed in a ball mill, and the resulting slurry is dried. The calcination is preferably performed at a temperature 40 to 70 ° C. lower than the sintering temperature (for example, 800 to 875 ° C.) for 1.5 to 2 hours. An example of the calcination temperature is 850 ° C.
得られた仮焼粉をボールミルで湿式粉砕し、これに残りの原料粉を配合し、スラリー濃度が40質量%となるようにイオン交換水を加え、ボールミルで25時間湿式粉砕した後乾燥することにより、多結晶磁性セラミック粉末を得る。多結晶磁性セラミック粉末の平均粒径は、焼成時の反応性に影響するので、0.25〜1.5μm(例えば、1.0μm)に調整するのが好ましい。 The obtained calcined powder is wet pulverized with a ball mill, the remaining raw material powder is added thereto, ion-exchanged water is added so that the slurry concentration becomes 40% by mass, wet pulverized with a ball mill for 25 hours and then dried. Thus, a polycrystalline magnetic ceramic powder is obtained. Since the average particle size of the polycrystalline magnetic ceramic powder affects the reactivity during firing, it is preferably adjusted to 0.25 to 1.5 μm (for example, 1.0 μm).
[3] マイクロ波磁性体
本発明のマイクロ波磁性体は、上記多結晶磁性セラミックからなるグリーンシートに、Ag又はCuを含む導電体ペーストで電極パターンを形成してなる。図1(a) は本発明のマイクロ波磁性体(中心導体組立体)の一例の第一の主面側の外観を示し、図1(b) はこの中心導体組立体の第二の主面側の外観を示し、図2はこの中心導体組立体の内部構造を示す。
[3] Microwave magnetic body The microwave magnetic body of the present invention is formed by forming an electrode pattern on a green sheet made of the above-mentioned polycrystalline magnetic ceramic with a conductive paste containing Ag or Cu. FIG. 1 (a) shows the appearance of the first main surface side of an example of the microwave magnetic body (center conductor assembly) of the present invention, and FIG. 1 (b) shows the second main surface of the center conductor assembly. FIG. 2 shows the internal structure of this central conductor assembly.
中心導体組立体4は、相対向する第一及び第二の主面43a、43fと両主面を連結する側面を備えた矩形状のマイクロ波磁性体内に、中心導体44a〜44cを有する多結晶磁性セラミック層43b〜43eを積層したものである。中心導体組立体4は以下の方法により製造することができる。まず多結晶磁性セラミック粉末を有機バインダー、可塑剤及び有機溶剤とボールミルで混合し、粘度を調整した後、ドクターブレード法で40〜150μmの厚さのグリーンシートを作製する。各セラミックグリーンシートに、直径0.1〜0.4 mmのビアホール(図中、黒丸で表示)をレーザにより形成した後、中心導体となる導電体(例えばAg)ペーストを印刷する。印刷済みグリーンシートを重ねて、例えば80℃の温度及び12 MPaの圧力で熱圧着し、積層体とする。積層体を所定のサイズに切断した後、例えば920℃で8時間焼成する。このようにして、中心導体44a〜44cが互いに絶縁を保って等角度で交差し、第二の主面43fにグランド電極GNDと入出力電極In、Out及び負荷電極LoadをLGA(Land Grid Array)として備える中心導体組立体4を得る。 The center conductor assembly 4 is a polycrystal having center conductors 44a to 44c in a rectangular microwave magnetic body having first and second main surfaces 43a and 43f facing each other and side surfaces connecting both main surfaces. Magnetic ceramic layers 43b to 43e are laminated. The center conductor assembly 4 can be manufactured by the following method. First, a polycrystalline magnetic ceramic powder is mixed with an organic binder, a plasticizer and an organic solvent by a ball mill to adjust the viscosity, and then a green sheet having a thickness of 40 to 150 μm is prepared by a doctor blade method. Via holes (indicated by black circles in the figure) having a diameter of 0.1 to 0.4 mm are formed on each ceramic green sheet by a laser, and then a conductor (for example, Ag) paste serving as a central conductor is printed. The printed green sheets are stacked and thermocompression bonded at a temperature of 80 ° C. and a pressure of 12 MPa, for example, to obtain a laminate. After the laminate is cut into a predetermined size, it is fired at, for example, 920 ° C. for 8 hours. In this way, the central conductors 44a to 44c cross each other at an equal angle while maintaining insulation from each other, and the ground electrode GND, the input / output electrodes In and Out, and the load electrode Load are connected to the second main surface 43f by an LGA (Land Grid Array). A central conductor assembly 4 is obtained.
[4] 非可逆回路素子
図3はこの中心導体組立体を具備する本発明の非可逆回路素子の内部構造の一例を示す。この非可逆回路素子は、中心導体組立体4と、中心導体組立体4に直流磁界を印加する永久磁石3と、中央孔部に中心導体組立体4を組み込むコンデンサ積層体5と、コンデンサ積層体5に搭載するチップ又は抵抗膜で形成した抵抗体90と、中心導体組立体4とコンデンサ積層体5を接続する電極を備えているとともに、実装基板との接続端子を備えた樹脂ベース6と、これらの部品を挟む磁性ヨークを兼ねた金属製上下ケース1,2とを具備する。
[4] Non-reciprocal circuit device FIG. 3 shows an example of the internal structure of the non-reciprocal circuit device of the present invention comprising this central conductor assembly. This non-reciprocal circuit element includes a center conductor assembly 4, a permanent magnet 3 that applies a DC magnetic field to the center conductor assembly 4, a capacitor laminate 5 that incorporates the center conductor assembly 4 in the center hole, and a capacitor laminate. Resistor 90 formed of a chip or resistor film mounted on 5, and an electrode for connecting the central conductor assembly 4 and the capacitor laminate 5, and a resin base 6 having a connection terminal to the mounting board, Metal upper and lower cases 1 and 2 that also serve as magnetic yokes sandwiching these components are provided.
コンデンサ積層体5の上面及び内部には、整合容量を形成するための入力容量電極C1、出力容量電極C2、ロード容量電極C3、及び終端抵抗90が配置されるグランド電極Gndが形成されている。またコンデンサ積層体5の裏面には樹脂ベース6の電極に接続するための入出力電極In、Out、負荷電極Load、及びグランド電極Gndが設けられている。 Formed on the upper surface and inside of the capacitor multilayer body 5 are an input capacitance electrode C1, an output capacitance electrode C2, a load capacitance electrode C3, and a ground electrode Gnd on which a termination resistor 90 is disposed for forming a matching capacitance. On the back surface of the capacitor laminate 5, input / output electrodes In, Out, load electrodes Load, and ground electrodes Gnd for connection to the electrodes of the resin base 6 are provided.
樹脂ベース6は、例えば0.1 mmの厚さの銅板と射出成形により一体成形した液晶ポリマーからなる。樹脂ベース6の上面(コンデンサ積層体5との接続面)に、電極In、Out、Load、GNDを形成するように銅板が露出している。電極In、Out、Load、GNDは樹脂部分と同一平面上にあるように形成されている。 The resin base 6 is made of, for example, a liquid crystal polymer integrally formed by injection molding with a copper plate having a thickness of 0.1 mm. A copper plate is exposed on the upper surface of the resin base 6 (connection surface with the capacitor laminate 5) so as to form electrodes In, Out, Load, and GND. The electrodes In, Out, Load, and GND are formed so as to be on the same plane as the resin portion.
永久磁石3は、420 mT以上の残留磁束密度Brを有し、その温度係数が−0.1%/℃〜−0.25%/℃であるフェライト磁石からなるのが好ましい。より好ましくは、日立金属株式会社製のLa-Co置換フェライト磁石YBM-9BEからなり、430〜450 mTの残留磁束密度を有し、その温度係数は−0.20%/℃〜−0.18%/℃である。永久磁石3は正方形状であるが、円板状、六角形状等でも良い。これは中心導体組立体4の形状についても同様である。 The permanent magnet 3 is preferably made of a ferrite magnet having a residual magnetic flux density Br of 420 mT or more and a temperature coefficient of −0.1% / ° C. to −0.25% / ° C. More preferably, it consists of a La-Co substituted ferrite magnet YBM-9BE made by Hitachi Metals, Ltd., and has a residual magnetic flux density of 430 to 450 mT, and its temperature coefficient is -0.20% / ° C to -0.18% / ° C. is there. The permanent magnet 3 has a square shape, but may have a disk shape, a hexagonal shape, or the like. The same applies to the shape of the center conductor assembly 4.
中心導体組立体4をコンデンサ積層体5の中央孔部内に配置した後、樹脂ベース6の接続電極に接続し、中心導体組立体4の上に永久磁石3を配置し、これらの部品を上下ケース1,2で覆う。本発明の非可逆回路素子は、挿入損失が最小となる周波数の温度に応じた変動が小さく、優れた温度特性を有する。 After the central conductor assembly 4 is placed in the central hole of the capacitor multilayer body 5, it is connected to the connection electrode of the resin base 6, the permanent magnet 3 is placed on the central conductor assembly 4, and these parts are placed in the upper and lower cases. Cover with 1 and 2. The non-reciprocal circuit device of the present invention has excellent temperature characteristics with little variation according to the temperature of the frequency at which insertion loss is minimized.
本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
いずれも純度99.0%以上の酸化イットリウム(Y2O3)粉、酸化ビスマス(Bi2O3)粉、炭酸カルシウム(CaCO3)粉、酸化ガドリニウム(Gd2O3)粉、酸化鉄(Fe2O3)粉、酸化インジウム(In2O3)粉、酸化アルミニウム(Al2O3)粉、酸化バナジウム(V2O5)粉、酸化銅(CuO)粉及び酸化ジルコニウム(ZrO2)粉を、表1に示す最終組成となるように配合し、スラリー濃度40質量%となるようにイオン交換水を加え、ボールミルで25〜45時間均一に湿式粉砕した後、乾燥した。得られた乾燥粉末を850℃で2時間仮焼した。得られた各仮焼粉にスラリー濃度が40質量部となるようにイオン交換水を加え、ボールミルで20〜30時間湿式粉砕した後乾燥した。得られた粉末の平均粒径は約1.0μmであった。 All of them are yttrium oxide (Y 2 O 3 ) powder with a purity of 99.0% or more, bismuth oxide (Bi 2 O 3 ) powder, calcium carbonate (CaCO 3 ) powder, gadolinium oxide (Gd 2 O 3 ) powder, iron oxide (Fe 2) O 3 ) powder, indium oxide (In 2 O 3 ) powder, aluminum oxide (Al 2 O 3 ) powder, vanadium oxide (V 2 O 5 ) powder, copper oxide (CuO) powder and zirconium oxide (ZrO 2 ) powder The mixture was blended so as to have the final composition shown in Table 1, ion-exchanged water was added so that the slurry concentration was 40% by mass, and the mixture was uniformly wet crushed by a ball mill for 25 to 45 hours and then dried. The obtained dry powder was calcined at 850 ° C. for 2 hours. Ion exchange water was added to each of the obtained calcined powders so that the slurry concentration was 40 parts by mass, wet pulverized with a ball mill for 20 to 30 hours, and then dried. The average particle size of the obtained powder was about 1.0 μm.
得られた各組成物にバインダー水溶液を添加混錬することにより得た造粒粉を、2 ton/cm2の圧力でプレスし、直径14 mm×長さ7 mmの円柱状成形体を得た。これらを大気中で表2に示す焼成温度で5時間焼結した。得られた焼結体の組成(原子比)を表1に示す。焼成温度は焼結体の密度が焼成温度に対して実質的に変化を示さなくなった温度である。 The granulated powder obtained by adding and kneading an aqueous binder solution to each composition obtained was pressed at a pressure of 2 ton / cm 2 to obtain a cylindrical molded body having a diameter of 14 mm and a length of 7 mm. . These were sintered in the atmosphere at the firing temperature shown in Table 2 for 5 hours. Table 1 shows the composition (atomic ratio) of the obtained sintered body. The firing temperature is a temperature at which the density of the sintered body does not substantially change with respect to the firing temperature.
各焼結体を用いて誘電体円柱共振器を作製し、ハッキ・コールマン法により誘電損失tanδを測定した。また各焼結体試料の飽和磁化Msを振動型磁力計を用いて測定した。さらに各焼結体を厚さ0.15 mmの円板状に加工し、短絡同軸線路法により強磁性共鳴半値幅ΔHを測定した。各試料における異相はSEM(Scanning Electron Microscope)及びTEM(Electron Microscope)を用いて観察した。結果を表3に示す。「異相の有無」の欄において、「無」とは実質的にガーネット単相であることを示し、「有(Bi)」及び「有(Fe)」はそれぞれの元素に由来する異相が生成されたことを示す。 Dielectric cylindrical resonators were fabricated using each sintered body, and dielectric loss tanδ was measured by the Hack-Coleman method. Further, the saturation magnetization Ms of each sintered body sample was measured using a vibration type magnetometer. Further, each sintered body was processed into a disk shape having a thickness of 0.15 mm, and the ferromagnetic resonance half width ΔH was measured by a short-circuited coaxial line method. The different phase in each sample was observed using SEM (Scanning Electron Microscope) and TEM (Electron Microscope). The results are shown in Table 3. In the “Existence of heterogeneous” column, “No” means that it is substantially a garnet single phase, and “Yes (Bi)” and “Yes (Fe)” indicate that different phases derived from the respective elements are generated. It shows that.
表1及び表3から、Yの一部をBiで置換した実施例の多結晶磁性セラミックは、Yサイトの原子比が化学量論組成より少なくても、強磁性共鳴半値幅ΔHの増加がほとんどなく、Biに由来する異相の生成が抑制されていることが分かる。図4は従来の多結晶磁性セラミック(試料2)に生じたBiの異相を示す元素マッピング(SEM写真)である。このように従来の多結晶磁性セラミックでは、Biの偏析(白色で示された部分)が見られるが、本発明の結晶磁性セラミックでは、Biはもとより他の元素の偏析もなく、異相の生成が抑制されている。 From Tables 1 and 3, the polycrystalline magnetic ceramic of the example in which a part of Y is substituted with Bi has almost no increase in the ferromagnetic resonance half width ΔH even if the atomic ratio of the Y site is less than the stoichiometric composition. It can be seen that the generation of a heterogeneous phase derived from Bi is suppressed. FIG. 4 is an element mapping (SEM photograph) showing a Bi heterogeneous phase generated in a conventional polycrystalline magnetic ceramic (sample 2). Thus, in the conventional polycrystalline magnetic ceramic, Bi segregation (the portion shown in white) is observed, but in the crystalline magnetic ceramic of the present invention, there is no segregation of Bi and other elements, and the generation of a different phase is not caused. It is suppressed.
表1〜表3に示す通り、化学量論的最終組成を有する試料1は異相を有さないが、Biが少ないために950℃未満の焼成温度では緻密化しなかった。化学量論的最終組成を有するとともにCu及びZrを含まず、Biが多い試料2は4πMs及びΔHが劣り、Biに由来する異相も生じていた。化学量論的最終組成を有するとともにCuを含まない試料3は950℃未満での焼成温度では緻密化せず、Biに由来する異相が生じていた。化学量論的最終組成を有するとともにZrを含まない試料4はtanδ及びΔHに劣り、Biに由来する異相が生じていた。化学量論的最終組成を有するとともにCu及びZrを含む試料14はΔHに劣り、Biに由来する異相が生じていた。このように、YサイトとFeサイトとのモル比が3:5であると、Bi由来の異相が生成し、ΔHに劣る多結晶磁性セラミックしか得られなかった。 As shown in Tables 1 to 3, Sample 1 having a stoichiometric final composition does not have a heterogeneous phase, but due to a small amount of Bi, it was not densified at a firing temperature of less than 950 ° C. Sample 2 having a stoichiometric final composition, containing no Cu and Zr, and containing a large amount of Bi was inferior in 4πMs and ΔH, and had a heterogeneous phase derived from Bi. Sample 3 having a stoichiometric final composition and containing no Cu was not densified at a firing temperature below 950 ° C., and a heterogeneous phase derived from Bi was generated. Sample 4 having a stoichiometric final composition and not containing Zr was inferior to tan δ and ΔH, and had a heterogeneous phase derived from Bi. Sample 14 having a stoichiometric final composition and containing Cu and Zr was inferior to ΔH, and a heterogeneous phase derived from Bi was generated. Thus, when the molar ratio of Y site to Fe site was 3: 5, a Bi-derived heterogeneous phase was generated, and only a polycrystalline magnetic ceramic inferior to ΔH was obtained.
試料9はFeサイトの最終組成が本発明の範囲を超えて化学量論組成より大きいので、ΔHに劣り、Feに由来する異相が生じていた。 In Sample 9, the final composition of the Fe site exceeded the range of the present invention and was larger than the stoichiometric composition, so that it was inferior to ΔH, and a heterogeneous phase derived from Fe was generated.
試料21はYサイトの最終組成が本発明の範囲を超えて化学量論組成より大きいので、ΔHに劣り、Biに由来する異相が生じていた。なお、Yサイト又はFeサイトが化学量論組成より少ない場合にも、Biに由来する異相が生じることも確認した。 In sample 21, the final composition of the Y site exceeded the range of the present invention and was larger than the stoichiometric composition, so that it was inferior to ΔH and had a heterogeneous phase derived from Bi. It was also confirmed that a heterogeneous phase derived from Bi was produced even when the Y site or Fe site was less than the stoichiometric composition.
いずれの実施例でも、860℃以上950℃未満の焼成温度で緻密化され、YサイトのBiによる異相の生成が抑制され、誘電損失tanδが10×10-4以下であり、強磁性共鳴半値幅ΔHが8000 A/m未満であった。また−20℃〜+60℃における飽和磁化4πMsの温度係数αmは−0.35%/℃〜−0.21%/℃であった。これにより、飽和磁化4πMsに関して永久磁石との温度特性差を補償することができる。 In any of the examples, densification was performed at a firing temperature of 860 ° C. or more and less than 950 ° C., generation of a heterogeneous phase due to Y-site Bi was suppressed, dielectric loss tan δ was 10 × 10 −4 or less, and ferromagnetic resonance half width ΔH was less than 8000 A / m. The temperature coefficient αm of the saturation magnetization 4πMs at −20 ° C. to + 60 ° C. was −0.35% / ° C. to −0.21% / ° C. Thereby, a temperature characteristic difference with respect to the permanent magnet can be compensated for the saturation magnetization 4πMs.
1・・・上ケース
2・・・下ケース
3・・・永久磁石
4・・・中心導体組立体
5・・・コンデンサ積層体
43a・・・第一の主面
43b〜43e・・・多結晶磁性セラミック層
43f・・・第二の主面
44a〜44c・・・中心導体
1 Upper case
2 ... Lower case
3 ... Permanent magnet
4 ... Center conductor assembly
5 ... Capacitor laminate
43a ・ ・ ・ First surface
43b ~ 43e ・ ・ ・ Polycrystalline magnetic ceramic layer
43f ・ ・ ・ Second main surface
44a ~ 44c ・ ・ ・ Center conductor
Claims (6)
(Ya-bM1b)(Fe8-a-cM2c)O12(原子比)
(ただし、M1はBi及びCaであり、M2はIn,V,Cu及びZrであり、2.94≦a<3.0、1.00≦b≦1.70、及び0.365≦c≦0.95である。)で表される組成を有することを特徴とする多結晶磁性セラミック。 A polycrystalline magnetic ceramic made of Y-Fe-based garnet ferrite in which a part of Y is replaced by Bi, and has the following general formula:
(Y ab M1 b ) (Fe 8-ac M2 c ) O 12 (atomic ratio)
(Where M1 is Bi and Ca, M2 is In, V, Cu and Zr, and 2.94 ≦ a <3.0, 1.00 ≦ b ≦ 1.70, and 0.365 ≦ c ≦ 0.95). A polycrystalline magnetic ceramic comprising:
(Ya-x-y-zBixCayGdz)(Fe8-a-α-β-γ-δ-εInαAlβVγCuδZrε)O12(原子比)
(ただし、2.94≦a<3.0、0.50≦x≦0.80、0.50≦y≦0.90、0≦z≦0.40、0.10≦α≦0.40、0≦β≦0.45、0.25≦γ≦0.45、0.01≦δ≦0.05、及び0.005≦ε≦0.05である。)で表される組成を有することを特徴とする多結晶磁性セラミック。 The polycrystalline magnetic ceramic according to claim 1 or 2, wherein the following general formula:
(Y axyz Bi x Ca y Gd z ) (Fe 8-a-α-β-γ-δ-ε In α Al β V γ Cu δ Zr ε ) O 12 (atomic ratio)
(However, 2.94 ≦ a <3.0, 0.50 ≦ x ≦ 0.80, 0.50 ≦ y ≦ 0.90, 0 ≦ z ≦ 0.40, 0.10 ≦ α ≦ 0.40, 0 ≦ β ≦ 0.45, 0.25 ≦ γ ≦ 0.45, 0.01 ≦ δ ≦ 0.05 And 0.005 ≦ ε ≦ 0.05.) A polycrystalline magnetic ceramic having a composition represented by:
(Ya-x-y-zBixCayGdz)(Fe8-a-α-β-γ-δ-εInαAlβVγCuδZrε)O12(原子比)
(ただし、2.94≦a<3.0、0.50≦x≦0.80、0.50≦y≦0.90、0≦z≦0.40、0.10≦α≦0.40、0≦β≦0.45、0.25≦γ≦0.45、0.01≦δ≦0.05、及び0.005≦ε≦0.05である。)で表される組成を有する多結晶磁性セラミック焼結体を製造する方法であって、Yサイトの各元素及びFeサイトの各元素(ただし、Cu及びZrを除く。)の酸化物を混合及び仮焼し、得られた仮焼粉にFe,Cu及びZrの酸化物を添加し、得られた混合物を成形した後、860℃以上950℃未満の温度で焼結することを特徴とする方法。 The following general formula:
(Y axyz Bi x Ca y Gd z ) (Fe 8-a-α-β-γ-δ-ε In α Al β V γ Cu δ Zr ε ) O 12 (atomic ratio)
(However, 2.94 ≦ a <3.0, 0.50 ≦ x ≦ 0.80, 0.50 ≦ y ≦ 0.90, 0 ≦ z ≦ 0.40, 0.10 ≦ α ≦ 0.40, 0 ≦ β ≦ 0.45, 0.25 ≦ γ ≦ 0.45, 0.01 ≦ δ ≦ 0.05 , And 0.005 ≦ ε ≦ 0.05.) A method of manufacturing a polycrystalline magnetic ceramic sintered body having a composition represented by: Y element and Fe site element (where Cu and Zr) After mixing and calcining the oxide, and adding the oxides of Fe, Cu and Zr to the obtained calcined powder, and molding the resulting mixture, the temperature is 860 ° C. or higher and lower than 950 ° C. A method characterized by sintering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009228398A JP2011073937A (en) | 2009-09-30 | 2009-09-30 | Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009228398A JP2011073937A (en) | 2009-09-30 | 2009-09-30 | Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011073937A true JP2011073937A (en) | 2011-04-14 |
Family
ID=44018316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009228398A Pending JP2011073937A (en) | 2009-09-30 | 2009-09-30 | Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011073937A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2851354A1 (en) * | 2013-09-20 | 2015-03-25 | Skyworks Solutions, Inc. | Materials, devices and methods related to below-resonance radio-frequency circulators and isolators |
CN110105063A (en) * | 2019-05-22 | 2019-08-09 | 成都顺康三森电子有限责任公司 | A kind of 5G communication spin Ferrite Material and preparation method thereof |
CN111285673A (en) * | 2020-02-13 | 2020-06-16 | 深圳顺络电子股份有限公司 | High-dielectric-constant microwave ferrite material, preparation method and microwave communication device |
CN111584177A (en) * | 2020-05-11 | 2020-08-25 | 中国人民银行印制科学技术研究所 | Magnetic material, preparation method of magnetic material and printing ink |
CN112456998A (en) * | 2020-10-28 | 2021-03-09 | 北京无线电测量研究所 | Garnet ferrite material with high dielectric constant and preparation method thereof |
CN112745122A (en) * | 2020-11-12 | 2021-05-04 | 绵阳市维奇电子技术有限公司 | Preparation method of high-power high-dielectric-constant garnet and garnet |
CN113402268A (en) * | 2021-07-26 | 2021-09-17 | 苏州工业园区凯艺精密科技有限公司 | Microwave ferrite material and preparation method and application thereof |
US11629099B2 (en) | 2019-11-05 | 2023-04-18 | Seiko Epson Corporation | Solid composition and production method for functional ceramic |
US11767266B2 (en) | 2020-03-30 | 2023-09-26 | Seiko Epson Corporation | Method for producing solid composition and method for producing functional ceramic |
CN116813321A (en) * | 2023-06-25 | 2023-09-29 | 西南应用磁学研究所(中国电子科技集团公司第九研究所) | High-performance high-dielectric-constant gyromagnetic ferrite material and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4972697A (en) * | 1972-11-15 | 1974-07-13 | ||
JPS5031400A (en) * | 1973-07-25 | 1975-03-27 | ||
JPH10233308A (en) * | 1997-02-19 | 1998-09-02 | Matsushita Electric Ind Co Ltd | Polycrystalline magnetic ceramic material preparation thereof, and nonrevesible circuit element using the same |
WO2007052809A1 (en) * | 2005-11-07 | 2007-05-10 | Hitachi Metals, Ltd. | Polycrystalline ceramic magnetic material, microwave magnetic components, and irreversible circuit devices made by using the same |
JP2007145705A (en) * | 2005-11-07 | 2007-06-14 | Hitachi Metals Ltd | Polycrystalline ceramic magnetic material, microwave magnetic substance, and non-reciprocal circuit component using the same |
-
2009
- 2009-09-30 JP JP2009228398A patent/JP2011073937A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4972697A (en) * | 1972-11-15 | 1974-07-13 | ||
JPS5031400A (en) * | 1973-07-25 | 1975-03-27 | ||
JPH10233308A (en) * | 1997-02-19 | 1998-09-02 | Matsushita Electric Ind Co Ltd | Polycrystalline magnetic ceramic material preparation thereof, and nonrevesible circuit element using the same |
WO2007052809A1 (en) * | 2005-11-07 | 2007-05-10 | Hitachi Metals, Ltd. | Polycrystalline ceramic magnetic material, microwave magnetic components, and irreversible circuit devices made by using the same |
JP2007145705A (en) * | 2005-11-07 | 2007-06-14 | Hitachi Metals Ltd | Polycrystalline ceramic magnetic material, microwave magnetic substance, and non-reciprocal circuit component using the same |
Non-Patent Citations (1)
Title |
---|
JPN6014025678; HUDSON,Andrew S.: 'Substitution of Gadolinium, Aluminum, and Indium in Yttrium Calcium Vanadium Garnets' IEEE Transactions on Magnetics Vol.Mga-5, No.3, pp.610-613, 196909, Institute of Electrical and Electronics Engineers; * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104446429A (en) * | 2013-09-20 | 2015-03-25 | 天工方案公司 | Materials, devices and methods related to below-resonance radio-frequency circulators and isolators |
US9552917B2 (en) | 2013-09-20 | 2017-01-24 | Skyworks Solutions, Inc. | Materials, devices and methods related to below-resonance radio-frequency circulators and isolators |
CN104446429B (en) * | 2013-09-20 | 2019-04-12 | 天工方案公司 | Material relevant to lower resonant radio frequency circulator and isolator, device and method |
JP2020011896A (en) * | 2013-09-20 | 2020-01-23 | スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. | Material, device and method related to under-resonance radio frequency circulator and isolator |
EP2851354A1 (en) * | 2013-09-20 | 2015-03-25 | Skyworks Solutions, Inc. | Materials, devices and methods related to below-resonance radio-frequency circulators and isolators |
CN110105063A (en) * | 2019-05-22 | 2019-08-09 | 成都顺康三森电子有限责任公司 | A kind of 5G communication spin Ferrite Material and preparation method thereof |
US11629099B2 (en) | 2019-11-05 | 2023-04-18 | Seiko Epson Corporation | Solid composition and production method for functional ceramic |
CN111285673A (en) * | 2020-02-13 | 2020-06-16 | 深圳顺络电子股份有限公司 | High-dielectric-constant microwave ferrite material, preparation method and microwave communication device |
US11767266B2 (en) | 2020-03-30 | 2023-09-26 | Seiko Epson Corporation | Method for producing solid composition and method for producing functional ceramic |
CN111584177A (en) * | 2020-05-11 | 2020-08-25 | 中国人民银行印制科学技术研究所 | Magnetic material, preparation method of magnetic material and printing ink |
CN112456998A (en) * | 2020-10-28 | 2021-03-09 | 北京无线电测量研究所 | Garnet ferrite material with high dielectric constant and preparation method thereof |
CN112745122A (en) * | 2020-11-12 | 2021-05-04 | 绵阳市维奇电子技术有限公司 | Preparation method of high-power high-dielectric-constant garnet and garnet |
CN112745122B (en) * | 2020-11-12 | 2022-11-04 | 绵阳市维奇电子技术有限公司 | Preparation method of high-power high-dielectric-constant garnet and garnet |
CN113402268A (en) * | 2021-07-26 | 2021-09-17 | 苏州工业园区凯艺精密科技有限公司 | Microwave ferrite material and preparation method and application thereof |
CN116813321A (en) * | 2023-06-25 | 2023-09-29 | 西南应用磁学研究所(中国电子科技集团公司第九研究所) | High-performance high-dielectric-constant gyromagnetic ferrite material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5092750B2 (en) | Polycrystalline ceramic magnetic material, microwave magnetic component, and nonreciprocal circuit device using the same | |
JP2011073937A (en) | Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same | |
JPH09167703A (en) | Magnetic material for microwave and high frequency circuit parts using the material | |
JP5365967B2 (en) | Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same | |
JP2009001476A (en) | Ferrite sintered magnet, method for producing the same and magnet roll and non-reciprocal circuit element using the same | |
JP5488954B2 (en) | Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same | |
JP5078340B2 (en) | Coil built-in board | |
US6624713B2 (en) | Magnetic material for high frequencies and high-frequency circuit component | |
JP5126616B2 (en) | Magnetic ceramic, ceramic electronic component, and method of manufacturing ceramic electronic component | |
US8384490B2 (en) | Non-reciprocal circuit and non-reciprocal circuit device, and central conductor assembly used therein | |
JP4803415B2 (en) | Ferrite porcelain composition for nonreciprocal circuit element, nonreciprocal circuit element, and wireless device | |
JP3405030B2 (en) | Method for producing magnetic material for microwave and high frequency circuit component using the same | |
JP3523363B2 (en) | Manufacturing method of magnetic sintered body of polycrystalline ceramics and high frequency circuit component using magnetic body obtained by the method | |
JP3405013B2 (en) | Method for producing magnetic material and high-frequency circuit component using the same | |
JP3627329B2 (en) | Method for producing polycrystalline ceramic magnetic material and high-frequency nonreciprocal circuit device | |
JP2004143042A (en) | Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts | |
Liu et al. | Low‐Temperature Co‐Fired Magnetoceramics for RF Applications | |
JP4081734B2 (en) | High frequency circuit components | |
JP5556102B2 (en) | Magnetic material for high frequency, non-reciprocal circuit element component, and non-reciprocal circuit element | |
JP4305787B2 (en) | Magnet and manufacturing method thereof | |
JP3412607B2 (en) | Method of manufacturing magnetic material for high frequency and high frequency circuit component | |
JP3598596B2 (en) | Method of manufacturing magnetic material for microwave, and high-frequency circuit component using magnetic material obtained by the method | |
JP2008084921A (en) | Substrate with built-in coil | |
JP2002255638A (en) | Magnetic ceramic for high frequency and component for high frequency circuit | |
JP2007037087A (en) | Non-reciprocal circuit element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120522 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130806 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140304 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140507 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140624 |