【0001】
【発明の属する技術分野】
本発明は、産業廃棄物であるウレタンマット等を再利用して吸音率の大きなかつ軽量で一定の強度を有するセメント製品の成形体とその製造方法に関する。
【0002】
【従来の技術】
従来から吸音板には材料を金属、木質、陶質、ガラス繊維、軽量モルタル又はこれらの組合せとするものが多かった。
また、軽量モルタル板は軽量骨材や発泡剤の使用の組合せによって作られているものが一般的であった。
本発明は産業廃棄物たる発泡ウレタンチップを骨材として再利用する吸音効果のあるセメント製品に係るもので従来市場に余り見られないものであった。
【0003】
【発明が解決しようとする課題】
従来のコンクリート製品は骨材を無機質のものでバインダーとしてセメントや樹脂を使用したものが主流だった。
有機質の骨材は耐火性や強度、取扱い等で無機質の代表たる天然川砂利や砂、砕石等より難しい問題が多かった。
本発明は発泡ウレタンチップにセメントをバインダーとするモルタルが混練りの過程で空気を巻き込み連続した空気層を作ることに着目し、発泡ウレタンチップモルタルのワーカビリティを改良して製品の実用化を目指した。
しかし、発泡ウレタンチップ中の空気量の増大を計ることは吸音率の向上に連なるが反比例して強度が弱くなる欠点はあり、また腰のない発泡ウレタンチップモルタル中の空気層をモルタルが硬化するまで保持することは困難であった。
そこで、気泡の混入にはオムニミキサーを使用し気泡の増大と、保持にメトローズやラテックスを使用し、空気泡を多く含むモルタルの改善を計った。
また強さの補強のため化学繊維を使用し強さを補強させることとした。
これらの改善により吸音率の高い難燃性があり一定の強度を持ち、かつ安価な吸音材料を市場に提供しようとするものである。
【0004】
【課題を解決するための手段】
目的を達成するための本発明の標準的な示方配合を下記に示した。
【表1】
材料のセメントは普通ポルトラントセメントを使用した。
骨材は発泡ウレタン製品の廃棄物を粉砕機にかけて篩い分けを行い1m/m〜10m/mのフルイ目を通過したものを使用した。
発泡ウレタンチップの品質や大きさは空隙率や製品の比重に影響するので仕様に合せて篩目の大きさを決定した。
混和剤の種類と量は気泡の大きさや製品比重に影響し正反比例して吸音率に影響を与えた。
上記の配合の決定は製品比重1.0以下の確保に必要な数値として決定した。混和剤のメトローズはモルタル粘度を増し気泡発生に役立つ、またラテックスは気泡の発生とその気泡を保持する役割で採用した。
しかし、モルタル温度や外気温との関係もあるので、目標比重を0.4〜1.0に押えその量を決めるようにした。
材料の混練りはパンミキサーやオムニミキサーが適している。
強制攪拌や重力式ミキサーは比重の軽い発泡ウレタンチップを使用するので適さない。
本発明では最適なミキサーをオムニミキサーとし次いでパンミキサーの順であることを確認した。
次いで投入順と混練時間であるが、発泡ウレタンチップとセメントをオムニミキサーに投入して空練りを30〜60秒間行い、続いて混練水と混和剤のラテックス、メトローズを投入し30秒〜1分間混練りする。
その後、化学繊維を加え更に5分間混練りする。
ここでオムニミキサーを止め材料のかさ比重を測定し、所定量の数値に不足した場合は更に30分間まで混練りを順次時間延長し、所定量の数値まで続ける。所定比重数値が得られたらミキサーから排出し型枠に成型投入し、前置1時間、蒸気養生3時間を経た後に脱型するサイクルを行って1工程を終了させた。
【0005】
【発明の実施の形態】
本発明に用いられた骨材はセキスイウレタン加工(株)製の発泡ウレタン製品を再利用したもので、発泡ウレタンマット、断熱材、梱包材、及び隙間材等の廃棄物からチップ化したものを使用した。
フルイ目は1m/m〜10m/mの範囲から良好な空隙率を得た。
ラッテクスは、(株)ゼオン製のSBR系のスチレンブタジエン、ラバーを採用し、重量配合比4〜10%を混入した。
メトローズは信越化学製の市販品を用い、0.1〜0.3の重量比の量を混入した。
混練りについてはオムニミキサーを使用し、材料投入順序を普通ポルトランドセメントと発泡ウレタンチップを続けて投入してから30秒〜1分間空練りをし、次いで水とラテックスとメトローズを投入して30秒〜1分間混練りを行い、更に化学繊維を投入してから更に混練りを5分間続け所定の空隙率をチェックしてからミキサーから排出した。
排出したモルタルは型枠に投入する。
通常のモルタルと異なり振動成型は不可能なモルタル形態をしているので型枠内に一定量投入した後上蓋を押し付けたまま硬化させた。
その後、型枠上にビニールシートを被い蒸気養生をした。
蒸気養生は前置き1時間の後蒸気雰囲気温度を上限40℃で3時間養生した。この養生によりモルタル内空気圧が膨張し6面体の型枠内で隙間無しの成型品を得ることができた。
上述した軽量吸音セメント製品のミキシングから脱型までの一連の工程を図1に示す。
【0006】
【実施例】
ミキサーはオムニミキサー0.5m3を使用した。
配合は以下の通りで比重が小さいと吸音率が周波数(Hz)が小さい個所で小さくなり、比重が大きいと吸音率が周波数の大きい個所で大きくなった。
本実施例はそれらの数値を補正した上で、1000Hzで最大値となる比重を0.6と把握し実施した。
混練時間と比重との関係は次の通りだった。
【表2】
また実施した配合代表例は以下の通りで下表は配合と強さとの関係を示したものである。
【表3】
強度試験はJISA 1108・JISA 1106による方法によった。
圧縮供試体は100φ×200を用い圧縮試験はアムスラー圧縮試験機によって行った。
曲げ強度は3等分点荷重載荷試験によって測定した。
次に実施した配合No.7の供試体による吸音率とHzとの関係は図2に示す通りとなった。
吸音率の測定方法はJISA 1405により、定在波による垂直入射吸音率をブロックダイヤグラム測定装置を使用して定在波管の一端に厚さ40m/m直径100m/mの供試体を取付け他端のスピーカーから正強波を管内に出して定在波を作り指示計器に導き音圧を測定した。
測定した周波数と吸音率との関係は次の通りだった。
【表4】
【0007】
【発明の効果】
本発明にかかる軽量セメント製品は安価で吸音率が1000Hzで98%程度あり比重が0.6程度でかつ曲げ強度が1.5N/m/m2の特徴を有するものである。
しかもセメント無機製品であり難燃性から地下鉄構内は及ばず道路、トンネル等の床、壁材としての使用が期待されるものである。
更に本発明の材料の主体は産業廃棄物でありその面の有効活用としての効果とを備えるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態による軽量吸音セメント製品のミキシングから脱型までの一連の工程を示す図である。
【図2】配合No.7の供試体による吸音率とHzとの関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a molded article of a cement product having a large sound absorption coefficient, a light weight and a certain strength by reusing an industrial waste such as a urethane mat, and a method for producing the same.
[0002]
[Prior art]
Conventionally, many sound absorbing plates are made of metal, wood, porcelain, glass fiber, lightweight mortar, or a combination thereof.
Light mortar boards are generally made of a combination of lightweight aggregates and foaming agents.
The present invention relates to a cement product having a sound absorbing effect of reusing industrial waste urethane foam chips as aggregate, which has not been seen in the conventional market.
[0003]
[Problems to be solved by the invention]
Conventional concrete products are mainly made of inorganic aggregates and using cement or resin as a binder.
Organic aggregates had many more difficult problems in terms of fire resistance, strength, handling, etc. than natural river gravel, sand, crushed stone, etc., which are representative of inorganic materials.
The present invention focuses on creating a continuous air layer by mixing air with urethane foam mortar using cement as a binder during the kneading process, aiming to improve the workability of urethane foam mortar and commercialize the product. Was.
However, measuring the increase in the amount of air in the urethane foam chips leads to the improvement of the sound absorption coefficient, but has a disadvantage that the strength is weakened in inverse proportion, and the mortar hardens the air layer in the urethane foam mortar without stiffness. It was difficult to keep until.
Therefore, an omni-mixer was used to mix the air bubbles, and the increase in the air bubbles and the improvement of the mortar containing a large amount of air bubbles were measured by using Metrolase and latex for the retention.
Also, it was decided to use chemical fibers to reinforce the strength.
These improvements are intended to provide an inexpensive sound-absorbing material having high flame absorption, high flame absorption, and a certain strength.
[0004]
[Means for Solving the Problems]
The following is a standard composition of the present invention for achieving the object.
[Table 1]
Portland cement was usually used as the material cement.
The aggregate used was urethane foam product waste that had been sieved through a crusher and passed through a sieve of 1 m / m to 10 m / m.
Since the quality and size of the urethane foam chips affect the porosity and the specific gravity of the product, the size of the sieve was determined according to the specifications.
The type and amount of the admixture affected the size of the bubbles and the specific gravity of the product, and the sound absorption coefficient was inversely proportionally affected.
The above composition was determined as a numerical value necessary for securing a specific gravity of the product of 1.0 or less. The admixture Metrose increased the mortar viscosity and helped to generate air bubbles, and the latex was employed to generate and retain air bubbles.
However, since there is a relationship between the mortar temperature and the outside air temperature, the target specific gravity is kept at 0.4 to 1.0 to determine the amount.
A bread mixer or omni mixer is suitable for kneading the materials.
Forced stirring or gravity mixers are not suitable because they use urethane foam chips with a low specific gravity.
In the present invention, it was confirmed that the most suitable mixer was the omni mixer and then the bread mixer.
Next, the order of addition and the kneading time are as follows: the urethane foam chips and cement are put into an omni mixer to perform kneading for 30 to 60 seconds, and then kneading water, a latex of an admixture, and metroze are charged for 30 seconds to 1 minute. Knead.
Thereafter, chemical fibers are added and kneaded for another 5 minutes.
Here, the omni mixer is stopped, and the bulk specific gravity of the material is measured. If the specific gravity is insufficient, the kneading is further extended for another 30 minutes, and is continued until the predetermined numerical value is reached. When a predetermined specific gravity value was obtained, the mixture was discharged from the mixer, molded into a mold, and subjected to a cycle of removing the mold after 1 hour from the front and 3 hours after steam curing, thereby completing one process.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The aggregate used in the present invention is obtained by reusing a urethane foam product manufactured by Sekisui Urethane Processing Co., Ltd., and is obtained by forming chips from waste materials such as a urethane foam mat, a heat insulating material, a packing material, and a gap material. used.
For the sieve, a good porosity was obtained from the range of 1 m / m to 10 m / m.
For latex, SBR styrene butadiene and rubber manufactured by Zeon Co., Ltd. were used, and a weight ratio of 4 to 10% was mixed.
Metrouse used a commercial product manufactured by Shin-Etsu Chemical, and was mixed in an amount of 0.1 to 0.3 by weight.
For kneading, use an omni-mixer, and in the order of adding materials, continuously add ordinary Portland cement and urethane foam chips, then knead for 30 seconds to 1 minute, and then add water, latex and metroze for 30 seconds. Kneading was performed for 1 minute, and after further adding chemical fibers, kneading was further continued for 5 minutes to check a predetermined porosity and then discharged from the mixer.
The discharged mortar is put into a mold.
Unlike a normal mortar, the mortar is in a mortar form that cannot be vibrated. Therefore, after a certain amount was put into a mold, it was cured while pressing the upper lid.
Thereafter, a vinyl sheet was covered on the formwork and steam cured.
The steam curing was performed for 3 hours at an upper temperature of 40 ° C. after 1 hour in the precedent. Due to this curing, the air pressure in the mortar was expanded, and a molded product having no gap in a hexahedral mold could be obtained.
FIG. 1 shows a series of steps from mixing of the lightweight sound-absorbing cement product to demolding.
[0006]
【Example】
The mixer used was an omni mixer 0.5 m 3 .
The compounding was as follows. When the specific gravity was small, the sound absorption coefficient was small at the portion where the frequency (Hz) was small, and when the specific gravity was large, the sound absorption coefficient was large at the portion where the frequency was large.
In the present embodiment, after correcting those values, the specific gravity at which the maximum value is obtained at 1000 Hz is determined to be 0.6, and the present embodiment is performed.
The relationship between the kneading time and the specific gravity was as follows.
[Table 2]
In addition, typical examples of the blending performed are as follows, and the following table shows the relationship between the blending and the strength.
[Table 3]
The strength test was performed according to the method according to JISA 1108 and JISA 1106.
The compression test was performed using 100φ × 200, and the compression test was performed using an Amsler compression tester.
Flexural strength was measured by a trisection load test.
Next, the formulation No. The relationship between the sound absorption coefficient and the Hz by the specimen No. 7 was as shown in FIG.
According to JISA 1405, the sound absorption coefficient is measured according to JISA 1405 by using a block diagram measuring device to measure the vertical incidence sound absorption coefficient of a standing wave tube at one end of a standing wave tube with a thickness of 40 m / m and a diameter of 100 m / m. A strong wave was emitted from the speaker of the No.1 tube into the tube to form a standing wave, which was guided to an indicating instrument to measure the sound pressure.
The relationship between the measured frequency and the sound absorption was as follows.
[Table 4]
[0007]
【The invention's effect】
The lightweight cement product according to the present invention is inexpensive, has a sound absorption coefficient of about 98% at 1000 Hz, a specific gravity of about 0.6, and a bending strength of 1.5 N / m / m 2 .
Moreover, since it is a cement inorganic product, it is expected to be used as floor and wall materials for roads, tunnels, etc., because it is flame retardant and does not reach the subway premises.
Further, the main component of the material of the present invention is industrial waste, which has the effect of effectively utilizing the surface.
[Brief description of the drawings]
FIG. 1 is a diagram showing a series of steps from mixing to demolding of a lightweight sound-absorbing cement product according to an embodiment of the present invention.
FIG. FIG. 7 is a diagram illustrating a relationship between a sound absorption coefficient and Hz by a specimen of No. 7;