JP2004043786A - Rubber composition - Google Patents
Rubber composition Download PDFInfo
- Publication number
- JP2004043786A JP2004043786A JP2003131763A JP2003131763A JP2004043786A JP 2004043786 A JP2004043786 A JP 2004043786A JP 2003131763 A JP2003131763 A JP 2003131763A JP 2003131763 A JP2003131763 A JP 2003131763A JP 2004043786 A JP2004043786 A JP 2004043786A
- Authority
- JP
- Japan
- Prior art keywords
- rubber composition
- carbon fiber
- rubber
- vapor
- grown carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明はゴム組成物(以下、単に「組成物」とも称する)に関し、詳しくは、力学特性等が良好で、かつ、熱伝導性、電気伝導性に優れたゴム組成物に関する。
【0002】
【従来の技術】
電気電子部品、タイヤ、ベルト等の各種製品には、その特性に応じて、種々の天然ゴムや各種合成ゴムを基材としたゴム組成物が使用されている。かかる製品の性能や機能は、基材としてのゴム材料と同様に、種々配合されている充填材等の副資材や加硫条件などによっても大きく影響を受ける。
例えば、天然ゴムの補強効果を得るための充填材としてはカーボンブラックやシリカが広く知られており、熱伝導性を高めるためにはアルミナや窒化ホウ素等を、また、電気伝導性を付与するためには銅やニッケルのような金属粉や導電性カーボン、カーボンファイバー(以下「CF」と省略することがある)などの高電気伝導性の繊維状充填材を、夫々配合する等の手法が取られている。
【0003】
しかしながら、従来知られている充填材において、高い効果を得るためには配合量を増大するしかなく、結果として、充填材の均一な分散を得ることができず性能にバラツキが出たり、粘度の上昇や物性の低下が大きくなって成型性が悪化する、得られたゴム物品の力学特性が低下して実用に供し得なくなるなどの欠点をも伴うものであった。
これらの課題を解決する方法として、本発明者らの研究グループは比較的少量の添加によっても高い効果を発現し、かつ、力学特性などの他の性能に悪影響を及ぼさない充填材として気相成長炭素繊維を見出し、基材であるゴム材料に、これらの充填材を配合したゴム組成物を開発した。
【0004】
【発明が解決しようとする課題】
本発明の目的は、上記気相成長炭素繊維を配合したゴム組成物において、さらにその力学特性を改良し、具体的には幅広い温度領域での動的粘弾性、モジュラス、及び熱伝導率などを改良し、低ロス性を維持しつつ、80℃以上での破壊特性を改良し、前記気相成長炭素繊維を配合したゴム組成物を多くの用途に使用可能とするものである。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討した結果、ゴム組成物に使用する気相成長炭素繊維を酸化処理することによって、熱伝導性や電気伝導性の向上効果を損なうことなく、力学特性を改良し得ることを見出し、本発明を完成したものである。
【0006】
【発明の実施の形態】
本発明のゴム組成物は、ゴム材料を基材とし、酸化処理した気相成長炭素繊維を配合することを特徴とする。
ゴム材料としては、天然ゴム、汎用合成ゴム、例えば、乳化重合スチレン−ブタジエンゴム、溶液重合スチレン−ブタジエンゴム、高シス−1,4ポリブタジエンゴム、低シス−1,4ポリブタジエンゴム、高シス−1,4ポリイソプレンゴム等、ジエン系特殊ゴム、例えば、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム等、オレフィン系特殊ゴム、例えば、エチレン−プロピレンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリルゴム、クロロスルホン化ポリエチレン等、その他特殊ゴム、例えば、ヒドリンゴム、フッ素ゴム、多硫化ゴム、ウレタンゴム等を挙げることができる。コストと性能とのバランスから、好ましくは、天然ゴムまたは汎用合成ゴムである。
【0007】
本発明に係るゴム材料は加硫して使用することが好ましく、架橋方法としては、イオウ、過酸化物、金属酸化物等を添加して加熱により架橋させる方法や、光重合開始剤を添加して光照射により架橋させる方法、電子線や放射線を照射して架橋させる方法等が挙げられる。
【0008】
本発明に係る気相成長炭素繊維は通常のカーボンファイバー(CF)(平均直径5μm〜、長さ100μm程度)の10−2〜10−1倍程度のオーダーの微細な繊維状構造体であるため、カーボンファイバーを添加する場合よりも分散性等の問題を生じにくく、かつ、同様の性能向上効果を得ることができる利点がある。本発明においては、この気相成長炭素繊維をゴム組成物の充填材として用いたことにより、少量の添加で優れた諸特性向上効果を得ることができる。
【0009】
本発明において、気相成長炭素繊維としては、特に制限されず、適宜必要性能に応じた繊維径、繊維長、アスペクト比のものを用いることができるが、好適には、平均直径が0.04〜0.4μm、特には0.07〜0.3μmの範囲であり、平均長さが0.5〜30μm、特には1.5〜25μmの範囲であるものを用いる。また、比表面積が5〜50m2/g、特には8〜30m2/gの範囲であるものを用いることが好ましい。具体的には、市販品として、例えば、昭和電工(株)製の気相法炭素繊維VGCF(登録商標)を用いることができる。
【0010】
気相成長炭素繊維の配合量は、ゴム組成物全量に対して0.1〜20体積%の範囲がこのましい。配合量がこの範囲内であると、所期の性能を十分に得ることができるとともに、混合や成型等における作業性が良好となるからである。また、同様の観点からさらに0.2〜15体積%の範囲とすることが好ましい。
【0011】
本発明のゴム組成物は、ヤング率が0.5〜10MPaの範囲であることが好ましい。ヤング率がこの範囲であるとクリープ性や強度といったゴム物性が良好であり、またゴム弾性の面からも好ましいからである。また、JIS A硬度は好ましくは30〜90の範囲である。
【0012】
また、本発明における気相成長炭素繊維は酸化処理することを必須とする。酸化処理の方法としては、本発明の目的を達成し得る方法であれば特に限定されず、化学的処理であっても物理的処理であってもよい。
化学的処理としては、硝酸、硫酸、過塩素酸又はこれらの酸の混合物で処理する方法が簡便に行えるとの観点から好ましい。これらの酸処理の条件としては、酸の種類等に応じて適宜選択できるが、効果的に処理し得るとの観点から、処理温度は20〜80℃程度、pHは0〜2程度が好ましい。
また、酸化性気体で処理することも好適に行い得る。ここで酸化性気体とは、気相成長炭素繊維を酸化する能力を有する気体であればよく、具体的にはオゾン、硝酸ガス、亜硝酸ガス、硫酸ガス、亜硫酸ガスなどをいう。これらの酸化性気体は単独でまたは2種以上を混合して、使用することができる。
酸化性気体としてオゾンを使用する場合、そのオゾン濃度は市販のオゾン発生器を使用して発生する濃度で十分である。また、硝酸ガス、硫酸ガスなどを使用する場合は、市販されるNOxやSOxなどの標準ガスボンベから供給されるガスを用いることができ、処理温度は室温〜2500℃程度の範囲で行い得る。
【0013】
物理的処理としては、コロナ放電処理、プラズマ処理等が挙げられ、それぞれの条件は、適宜選択できるが、いずれの場合も反応成分を気相成長炭素繊維の表面と効果的に接触させるために、気相成長炭素繊維を静置する条件では厚くしすぎないように、あるいは放電発生場所、プラズマ発生場所に気相成長炭素繊維を導入して反応させる場合には電流などを多く流し過ぎないように留意する。
【0014】
また、本発明における気相成長炭素繊維は上記酸化処理に加えて、カップリング剤で処理することができる。カップリング剤としては、チタネート系、アルミニウム系、シラン系のカップリング剤が例示され、該カップリング剤を溶剤に溶解し、気相成長炭素繊維に含浸する等の方法で処理することができる。
【0015】
本発明の組成物においては、気相成長炭素繊維以外の各種充填材を配合することができ、その配合量はゴム組成物全量に対して、1〜60体積%、特には1〜40体積%の範囲が好ましい。充填材としては、必要に応じて種々のものを選択できるが、カーボンブラック及び/又はシリカを含有することが好ましい。組成物中にカーボンブラック及び/又はシリカが適量含有されていると、気相成長炭素繊維のみを添加した場合に比してより高い補強効果が得られる。カーボンブラックとしては、HAF級のものなど公知のものを使用することができる。尚、ゴム組成物の混合、成型などの手法としては、通常のゴムの混合、成型に使用される公知の手法を用いることができ、特に制限はない。
【0016】
本発明のゴム組成物は、気相成長炭素繊維を少量配合することによって、他の物性を大きく変化することなく、また、成型加工性も損なうことなく、熱伝導性、電気伝導性などの特性の大幅な向上が可能となるために、電気電子部品、タイヤ、ベルト、その他各種製品に幅広く使用することが可能である。尚、本発明のゴム組成物には、ゴム業界で一般に使用されている添加剤、例えば、加硫剤、加硫促進剤、補強材、老化防止剤、軟化剤等、通常のゴム用添加剤を適宜使用することが可能である。
【0017】
【実施例】
次に、本発明を実施例によりさらに詳しく説明するが、本発明はこれらの例によってなんら限定されるものではない。
(物性評価法)
実施例1〜3及び比較例1,2で得られるゴムシートについて、以下の物性で評価した。
(1)動的粘弾性
粘弾性試験機(東洋精機(株)製レオログラフソリッドL−1R型)を用いてゴムシートの60℃におけるヒステリシスロス(tanδ)を測定した。
(2)熱伝導性
京都電子(株)製、迅速熱伝導率計QTM−500を用いて測定した熱伝導率で熱伝導性を評価した。
(3)力学物性
JIS K6253−1993に準拠して100℃での引っ張り時のモジュラスを測定し、300%引っ張り時の値で評価した。
【0018】
実施例1
2Lのビーカーに気相法炭素繊維(昭和電工(株)製「VGCF」(登録商標))40gを入れ、そこに濃硝酸500ccを静かに注ぎ入れ、均一に混合するようにゆっくりと攪拌した。時々攪拌しながら、5日間放置後、水で余分な硝酸を洗浄除去した。洗浄方法としては、水のpHが6になるまでデカンテーションし、吸引ろ過した。その後エタノール100ccで吸引洗浄した。得られたVGCFケーキを60℃の真空乾燥機にて重量が一定になるまで乾燥し、酸処理VGCFを得た。
該酸処理VGCF及び各種添加剤を第1表に示す配合内容にて、ゴム材料としての天然ゴム(NR)に配合し、以下に示す混練り条件およびシート作製条件に従い加硫ゴム組成物のシートを作製した。尚、第1表中の配合量は全て重量部を表す。各種物性評価結果を第1表に示す。
【0019】
混練り条件
ラボプラストミル(東洋精機(株)製)を用いて、NRを70℃にて50rpmで3分間素練りした後、第1表に示す加硫促進剤および硫黄を除く各添加剤を投入して、70℃にて30rpmで更に混合した(ノンプロ配合)。得られた混合物を取り出して、冷却、秤量した後、残りの加硫促進剤および硫黄を投入し、プラベンダーを用いて、50℃にて30rpmで再度混合した(プロ配合)。
シート作製条件
混練りした混合物を高温プレスを用いて150℃×15分にて加硫して、1mm厚の加硫ゴムシートを作製した。
【0020】
実施例2
気相成長炭素繊維を硝酸処理するのに代えて、コロナ処理をしたこと以外は実施例1と同様に加硫ゴムシートを作製した。コロナ処理は以下のようにして行った。気相成長炭素繊維10gを、ガラス性シャーレに入れ、ガラス製の低圧プラズマ発生装置チャンバー内に置いた。チャンバー内をアルゴンに置換後、酸素を1torrの濃度で導入し、静電源100Wで操作して、プラズマを発生させ、気相成長炭素繊維表面を改質した。処理時間は15分とした。評価結果を第1表に示す。
【0021】
実施例3
気相成長炭素繊維を硝酸処理するのに代えて、オゾン処理をしたこと以外は実施例1と同様に加硫ゴムシートを作製した。オゾン処理は以下のように行った。気相成長炭素繊維をほうろう処理したトレイに、厚みが2cm程度になるように入れ、トレイをガラス製デシケータに入れた。オゾン発生器(東急車輌製SO−03UN型)の最大能力(オゾン発生量0.7g/時間)で発生させたオゾンをデシケータ内に導入し、室温で24時間処理した。評価結果を第1表に示す。
【0022】
比較例1
気相成長炭素繊維を酸化処理せずに使用したこと以外は実施例1と同様に加硫ゴムシートを作製した。評価結果を第1表に示す。
比較例2
気相成長炭素繊維を使用せず、第1表に示す配合内容にて、ゴム材料としての天然ゴム(NR)と、各種添加剤とを混合し、実施例1と同様に加硫ゴム組成物のシートを作製した。評価結果を第1表に示す。
【0023】
【表1】
【0024】
1)昭和電工(株)製、気相法炭素繊維(VGCF(登録商標))(繊維径0.15μm、繊維長10〜20μm)
2)HAF級カーボンブラック
3)N−(1,3−ジメチルブチル)−N’−フェニル−P−フェニレンジアミン
4)N−シクロヘキシル−2−ベンゾチアジル・スルフェンアミド
【0025】
【発明の効果】
本発明のゴム組成物によれば、少量の添加であっても、他の諸物性を大きく変化させることなく、また、成型加工性を損なうこともなく、熱伝導性や電気伝導性などの特性の大幅な向上効果を得ることができ、特に高い熱伝導率及び高温領域での高いモジュラスを保持したままでtanδ値が低減される。従って、本発明の加硫ゴム組成物は、電気電子部品、タイヤ、ベルト、その他各種製品に幅広く使用することが可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rubber composition (hereinafter, also simply referred to as “composition”), and more particularly, to a rubber composition having good mechanical properties and the like, and having excellent thermal conductivity and electrical conductivity.
[0002]
[Prior art]
For various products such as electric and electronic parts, tires and belts, rubber compositions based on various natural rubbers and various synthetic rubbers are used according to their characteristics. Like the rubber material as the base material, the performance and function of such a product are greatly affected by various additives such as fillers and vulcanization conditions.
For example, carbon black and silica are widely known as fillers for obtaining the reinforcing effect of natural rubber, and alumina and boron nitride for enhancing thermal conductivity, and for imparting electrical conductivity. For this purpose, a technique such as mixing a metal powder such as copper or nickel, a fibrous filler having high electrical conductivity such as conductive carbon, and carbon fiber (hereinafter sometimes abbreviated as “CF”) is adopted. Have been.
[0003]
However, in the conventionally known fillers, the only way to obtain a high effect is to increase the compounding amount. As a result, uniform dispersion of the fillers cannot be obtained, resulting in variations in performance or viscosity. There are also drawbacks such as an increase in the rise and a decrease in the physical properties, resulting in deterioration of the moldability, and a decrease in the mechanical properties of the obtained rubber article so that it cannot be put to practical use.
As a method for solving these problems, the present inventors' research group has developed a vapor-phase-growing material that exhibits a high effect even with a relatively small amount of addition and does not adversely affect other performances such as mechanical properties. A carbon fiber was found, and a rubber composition in which these fillers were mixed with a rubber material as a base material was developed.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to further improve the mechanical properties of a rubber composition containing the vapor-grown carbon fiber, specifically, to improve dynamic viscoelasticity, modulus, and thermal conductivity in a wide temperature range. It is intended to improve the breaking characteristics at 80 ° C. or higher while maintaining the low loss property, and to make the rubber composition containing the vapor-grown carbon fiber usable for many purposes.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by oxidizing the vapor-grown carbon fiber used for the rubber composition, without impairing the effect of improving thermal conductivity and electric conductivity. It has been found that the mechanical properties can be improved, and the present invention has been completed.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The rubber composition of the present invention is characterized in that a rubber material is used as a base material, and an oxidized vapor-grown carbon fiber is blended.
Examples of the rubber material include natural rubber and general-purpose synthetic rubber such as emulsion-polymerized styrene-butadiene rubber, solution-polymerized styrene-butadiene rubber, high cis-1,4 polybutadiene rubber, low cis-1,4 polybutadiene rubber, and high cis-1. , 4 polyisoprene rubber, etc., diene-based special rubbers, for example, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, etc., olefin-based special rubbers, for example, ethylene-propylene rubber, butyl rubber, halogenated butyl rubber, acrylic rubber, chlorosulfonated Other special rubbers such as polyethylene, for example, hydrin rubber, fluorine rubber, polysulfide rubber, urethane rubber, and the like can be given. From the balance between cost and performance, natural rubber or general-purpose synthetic rubber is preferred.
[0007]
The rubber material according to the present invention is preferably used after vulcanization, and as a crosslinking method, a method of adding sulfur, a peroxide, a metal oxide and the like to perform crosslinking by heating or adding a photopolymerization initiator is used. For example, a method of cross-linking by light irradiation, a method of cross-linking by irradiation with an electron beam or radiation, and the like.
[0008]
The vapor-grown carbon fiber according to the present invention is a fine fibrous structure on the order of 10 −2 to 10 −1 times that of ordinary carbon fiber (CF) (average diameter 5 μm to length 100 μm). There is an advantage that problems such as dispersibility are less likely to occur than in the case where carbon fiber is added, and a similar effect of improving performance can be obtained. In the present invention, by using the vapor-grown carbon fiber as a filler for the rubber composition, an excellent effect of improving various properties can be obtained with a small amount of addition.
[0009]
In the present invention, the vapor grown carbon fiber is not particularly limited, and a fiber having a fiber diameter, a fiber length, and an aspect ratio according to necessary performance can be appropriately used. To 0.4 μm, particularly 0.07 to 0.3 μm, and those having an average length of 0.5 to 30 μm, particularly 1.5 to 25 μm. Further, it is preferable to use one having a specific surface area of 5 to 50 m 2 / g, particularly preferably 8 to 30 m 2 / g. Specifically, as a commercially available product, for example, vapor grown carbon fiber VGCF (registered trademark) manufactured by Showa Denko KK can be used.
[0010]
The compounding amount of the vapor grown carbon fiber is preferably in the range of 0.1 to 20% by volume based on the total amount of the rubber composition. When the amount is within this range, the desired performance can be sufficiently obtained, and the workability in mixing, molding, and the like is improved. In addition, from the same viewpoint, it is more preferable to be in the range of 0.2 to 15% by volume.
[0011]
The rubber composition of the present invention preferably has a Young's modulus in a range of 0.5 to 10 MPa. When the Young's modulus is in this range, rubber properties such as creep property and strength are good, and the rubber elasticity is preferable. The JIS A hardness is preferably in the range of 30 to 90.
[0012]
In addition, the vapor growth carbon fiber in the present invention must be oxidized. The method of the oxidation treatment is not particularly limited as long as the object of the present invention can be achieved, and may be a chemical treatment or a physical treatment.
As the chemical treatment, a method of treating with nitric acid, sulfuric acid, perchloric acid or a mixture of these acids is preferable from the viewpoint that it can be easily performed. The conditions of these acid treatments can be appropriately selected according to the kind of the acid and the like, but from the viewpoint of effective treatment, the treatment temperature is preferably about 20 to 80 ° C., and the pH is preferably about 0 to 2.
Also, treatment with an oxidizing gas can be suitably performed. Here, the oxidizing gas may be any gas having an ability to oxidize the vapor grown carbon fiber, and specifically refers to ozone, nitric acid gas, nitrous acid gas, sulfuric acid gas, sulfuric acid gas, and the like. These oxidizing gases can be used alone or in combination of two or more.
When using ozone as the oxidizing gas, the concentration of ozone generated by using a commercially available ozone generator is sufficient. When nitric acid gas, sulfuric acid gas, or the like is used, commercially available gas supplied from a standard gas cylinder such as NOx or SOx can be used, and the treatment can be performed at room temperature to about 2500 ° C.
[0013]
Examples of the physical treatment include a corona discharge treatment and a plasma treatment.Each condition can be appropriately selected, but in any case, in order to effectively contact the reaction components with the surface of the vapor-grown carbon fiber, Do not allow the vapor-grown carbon fiber to be too thick under standing conditions, or do not allow too much current to flow when introducing and reacting with the vapor-grown carbon fiber in the place where discharge or plasma is generated. pay attention to.
[0014]
Further, the vapor grown carbon fiber in the present invention can be treated with a coupling agent in addition to the above-mentioned oxidation treatment. Examples of the coupling agent include titanate-based, aluminum-based, and silane-based coupling agents. The coupling agent can be treated by dissolving the coupling agent in a solvent and impregnating the vapor-grown carbon fiber.
[0015]
In the composition of the present invention, various fillers other than the vapor-grown carbon fiber can be compounded, and the compounding amount is 1 to 60% by volume, particularly 1 to 40% by volume based on the total amount of the rubber composition. Is preferable. Various fillers can be selected as necessary, but it is preferable that the filler contains carbon black and / or silica. When a proper amount of carbon black and / or silica is contained in the composition, a higher reinforcing effect can be obtained as compared with a case where only the vapor-grown carbon fiber is added. Known carbon blacks such as those of HAF grade can be used as the carbon black. In addition, as a method of mixing and molding the rubber composition, a known method used for ordinary mixing and molding of rubber can be used, and there is no particular limitation.
[0016]
The rubber composition of the present invention, by blending a small amount of vapor-grown carbon fiber, does not significantly change other physical properties, and does not impair molding processability, and has properties such as heat conductivity and electric conductivity. Since it is possible to greatly improve the performance, it can be widely used for electric and electronic parts, tires, belts, and other various products. In addition, the rubber composition of the present invention includes additives generally used in the rubber industry, for example, ordinary rubber additives such as vulcanizing agents, vulcanization accelerators, reinforcing materials, antioxidants, and softening agents. Can be used as appropriate.
[0017]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(Physical property evaluation method)
The rubber sheets obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were evaluated by the following physical properties.
(1) Dynamic viscoelasticity A hysteresis loss (tan δ) at 60 ° C. of the rubber sheet was measured using a viscoelasticity tester (Rheorograph Solid L-1R type manufactured by Toyo Seiki Co., Ltd.).
(2) Thermal Conductivity The thermal conductivity was evaluated by the thermal conductivity measured using a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Co., Ltd.
(3) Mechanical properties The modulus at the time of pulling at 100 ° C. was measured in accordance with JIS K6253-1993, and evaluated by the value at the time of pulling at 300%.
[0018]
Example 1
Into a 2 L beaker, 40 g of vapor grown carbon fiber ("VGCF" (registered trademark) manufactured by Showa Denko KK) was added, and 500 cc of concentrated nitric acid was gently poured into the beaker and stirred slowly to uniformly mix. After standing for 5 days with occasional stirring, excess nitric acid was washed off with water. As a washing method, decantation was performed until the pH of water reached 6, and suction filtration was performed. Thereafter, suction washing was performed with 100 cc of ethanol. The obtained VGCF cake was dried using a vacuum dryer at 60 ° C. until the weight became constant, to obtain an acid-treated VGCF.
The acid-treated VGCF and various additives were blended into natural rubber (NR) as a rubber material in the blending contents shown in Table 1, and the vulcanized rubber composition sheet was prepared according to the following kneading conditions and sheet preparation conditions. Was prepared. In addition, all the compounding amounts in Table 1 represent parts by weight. Table 1 shows the results of the evaluation of various physical properties.
[0019]
Kneading conditions Using a Labo Plastomill (manufactured by Toyo Seiki Co., Ltd.), NR is kneaded at 70 ° C. at 50 rpm for 3 minutes, and then the vulcanization accelerator and sulfur shown in Table 1 are removed. Each additive was added, and further mixed at 70 ° C. at 30 rpm (non-pro blend). The obtained mixture was taken out, cooled and weighed, then the remaining vulcanization accelerator and sulfur were added, and the mixture was again mixed at 50 ° C. and 30 rpm using a pravender (professional blending).
Sheet preparation conditions The kneaded mixture was vulcanized at 150 ° C. for 15 minutes using a high-temperature press to prepare a 1 mm thick vulcanized rubber sheet.
[0020]
Example 2
A vulcanized rubber sheet was produced in the same manner as in Example 1, except that corona treatment was performed instead of nitric acid treatment on the vapor grown carbon fiber. The corona treatment was performed as follows. 10 g of the vapor grown carbon fiber was placed in a glass petri dish and placed in a glass low-pressure plasma generator chamber. After the inside of the chamber was replaced with argon, oxygen was introduced at a concentration of 1 torr, plasma was generated by operating with an electrostatic power source of 100 W, and the surface of the vapor grown carbon fiber was modified. The processing time was 15 minutes. Table 1 shows the evaluation results.
[0021]
Example 3
A vulcanized rubber sheet was produced in the same manner as in Example 1, except that the vapor-grown carbon fiber was treated with ozone instead of nitric acid. The ozone treatment was performed as follows. The vapor-grown carbon fiber was placed in a tray treated with enamel so as to have a thickness of about 2 cm, and the tray was placed in a glass desiccator. Ozone generated at the maximum capacity (ozone generation amount: 0.7 g / hour) of an ozone generator (SO-03UN manufactured by Tokyu Corporation) was introduced into the desiccator and treated at room temperature for 24 hours. Table 1 shows the evaluation results.
[0022]
Comparative Example 1
A vulcanized rubber sheet was produced in the same manner as in Example 1 except that the vapor-grown carbon fiber was used without being subjected to oxidation treatment. Table 1 shows the evaluation results.
Comparative Example 2
A natural rubber (NR) as a rubber material and various additives were mixed with the content shown in Table 1 without using the vapor grown carbon fiber, and the vulcanized rubber composition was mixed in the same manner as in Example 1. Was prepared. Table 1 shows the evaluation results.
[0023]
[Table 1]
[0024]
1) Vapor-grown carbon fiber (VGCF (registered trademark)) manufactured by Showa Denko KK (fiber diameter 0.15 μm, fiber length 10 to 20 μm)
2) HAF grade carbon black 3) N- (1,3-dimethylbutyl) -N'-phenyl-P-phenylenediamine 4) N-cyclohexyl-2-benzothiazyl sulfenamide
【The invention's effect】
According to the rubber composition of the present invention, even if it is added in a small amount, it does not significantly change other physical properties, and does not impair molding processability, and has properties such as heat conductivity and electric conductivity. The tan δ value is reduced while maintaining particularly high thermal conductivity and high modulus in a high temperature region. Therefore, the vulcanized rubber composition of the present invention can be widely used for electric and electronic parts, tires, belts, and other various products.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003131763A JP4090385B2 (en) | 2002-05-16 | 2003-05-09 | Rubber composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002141919 | 2002-05-16 | ||
JP2003131763A JP4090385B2 (en) | 2002-05-16 | 2003-05-09 | Rubber composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004043786A true JP2004043786A (en) | 2004-02-12 |
JP4090385B2 JP4090385B2 (en) | 2008-05-28 |
Family
ID=31719433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003131763A Expired - Fee Related JP4090385B2 (en) | 2002-05-16 | 2003-05-09 | Rubber composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4090385B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010018743A (en) * | 2008-07-11 | 2010-01-28 | Nissin Kogyo Co Ltd | Sealing member for piping material having excellent chlorine resistance, method for producing the same, and piping material |
JP2010143420A (en) * | 2008-12-19 | 2010-07-01 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
JP2013095385A (en) * | 2011-11-04 | 2013-05-20 | Bridgestone Corp | Pneumatic tire |
WO2015146862A1 (en) * | 2014-03-28 | 2015-10-01 | Nok株式会社 | Hnbr composition and hnbr crosslinked body |
CN115627018A (en) * | 2022-10-26 | 2023-01-20 | 江苏创合橡塑有限公司 | Preparation method of ageing-resistant high-elasticity rubber compound |
-
2003
- 2003-05-09 JP JP2003131763A patent/JP4090385B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010018743A (en) * | 2008-07-11 | 2010-01-28 | Nissin Kogyo Co Ltd | Sealing member for piping material having excellent chlorine resistance, method for producing the same, and piping material |
JP2010143420A (en) * | 2008-12-19 | 2010-07-01 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
JP2013095385A (en) * | 2011-11-04 | 2013-05-20 | Bridgestone Corp | Pneumatic tire |
WO2015146862A1 (en) * | 2014-03-28 | 2015-10-01 | Nok株式会社 | Hnbr composition and hnbr crosslinked body |
JP5904314B2 (en) * | 2014-03-28 | 2016-04-13 | Nok株式会社 | HNBR composition and cross-linked HNBR |
CN115627018A (en) * | 2022-10-26 | 2023-01-20 | 江苏创合橡塑有限公司 | Preparation method of ageing-resistant high-elasticity rubber compound |
Also Published As
Publication number | Publication date |
---|---|
JP4090385B2 (en) | 2008-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6650476B2 (en) | Rubber composition for tire | |
JP4420096B2 (en) | Method for producing silica-containing natural rubber composition and silica-containing natural rubber composition obtained thereby | |
JP6623033B2 (en) | Carbon fiber composite material and method for producing carbon fiber composite material | |
JP4090385B2 (en) | Rubber composition | |
JP2008222845A (en) | Rubber composition for tire | |
JP4090268B2 (en) | Rubber composition | |
JP7339535B2 (en) | Rubber composition for tire | |
JP5495413B2 (en) | tire | |
JP2004059599A (en) | Rubber composition | |
JP2003327753A (en) | Rubber composition | |
JP7215672B2 (en) | Rubber masterbatch and manufacturing method thereof | |
JP2008007770A (en) | Vibration absorbing rubber composition having low dynamic multiplication and vibration absorbing member using the same | |
EP0882769A1 (en) | Process for the production of surface-treated carbon black for the reinforcement of rubbers | |
JP2012117000A (en) | Method of manufacturing modified carbon black | |
WO2003097736A1 (en) | Rubber composition | |
JP2009102630A (en) | Rubber composition | |
JP3363300B2 (en) | Rubber composition | |
JP2011006552A (en) | Rubber composition, reinforcing agent for rubber, and manufacturing method therefor | |
JPH10338771A (en) | Rubber composition | |
JP2005325307A (en) | Rubber composition | |
JP2008201829A (en) | Rubber composition | |
JP2007031587A (en) | Rubber composition for tire | |
JP7261420B2 (en) | Rubber composition for tire | |
JP5495301B2 (en) | Side-reinforced run-flat tire | |
JP2009102614A (en) | Rubber composition for tire, and pneumatic tire using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20060327 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070731 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071001 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071106 |
|
A521 | Written amendment |
Effective date: 20071226 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20080219 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080226 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20110307 |
|
LAPS | Cancellation because of no payment of annual fees |