JP2003308866A - Gas leakage detecting method and device for fuel cell system - Google Patents
Gas leakage detecting method and device for fuel cell systemInfo
- Publication number
- JP2003308866A JP2003308866A JP2002113564A JP2002113564A JP2003308866A JP 2003308866 A JP2003308866 A JP 2003308866A JP 2002113564 A JP2002113564 A JP 2002113564A JP 2002113564 A JP2002113564 A JP 2002113564A JP 2003308866 A JP2003308866 A JP 2003308866A
- Authority
- JP
- Japan
- Prior art keywords
- fuel gas
- fuel cell
- fuel
- pressure
- output current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃料電池システム
のガス漏れ検知方法及び装置に関し、詳しくは、燃料ガ
スの漏れを燃料電池システム内部で検知する方法及び装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas leak detection method and apparatus for a fuel cell system, and more particularly to a method and apparatus for detecting a fuel gas leak inside a fuel cell system.
【0002】[0002]
【従来の技術】従来、燃料電池システムにおいて、水素
含有燃料ガスの漏れを検知する方法として、特開平11
−224681号公報や特開平8−329965号公報
に開示される方法があった。前記特開平11−2246
81号公報に開示される方法は、燃料電池の出力電流値
に基づいて、燃料電池における燃料ガスの使用量を算出
し、この燃料ガス使用量から燃料ガスボンベ内の燃料ガ
ス圧力を算出して、この算出圧力と実際に圧力センサで
検出した圧力値とを比較することにより、燃料ガスの漏
洩を判断するものである。2. Description of the Related Art Conventionally, as a method for detecting a leak of hydrogen-containing fuel gas in a fuel cell system, Japanese Patent Application Laid-Open No. HEI11-1999 has been proposed.
There is a method disclosed in Japanese Patent Laid-Open No. 2246811 and Japanese Patent Laid-Open No. 8-329965. JP-A-11-2246
The method disclosed in Japanese Patent No. 81 calculates the amount of fuel gas used in the fuel cell based on the output current value of the fuel cell, and calculates the fuel gas pressure in the fuel gas cylinder from the amount of fuel gas used. By comparing the calculated pressure with the pressure value actually detected by the pressure sensor, the leakage of the fuel gas is judged.
【0003】また、特開平8−329965号公報に開
示される方法は、燃料電池の上流部と下流部に各々弁を
設けて、発電運転前に前記弁を閉じることで燃料ガスを
封入し、その圧力変化を圧力検知手段で検知して、封入
圧力の低下に基づいて燃料ガスの漏洩を検知するように
している。Further, the method disclosed in Japanese Unexamined Patent Publication No. 8-329965 has a valve provided at each of an upstream portion and a downstream portion of a fuel cell, and the fuel gas is sealed by closing the valve before a power generation operation, The pressure change is detected by the pressure detecting means, and the leakage of the fuel gas is detected based on the decrease in the enclosed pressure.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、特開平
11−224681号公報に開示される方法では、パー
ジ制御による燃料ガスの消費を、漏れとして誤検出する
可能性があるという問題があった。燃料電池システムで
は、燃料電池に供給される加湿水素含有燃料ガスに含ま
れる水蒸気が燃料極の周りで水となり、水が排出経路に
充満するほどになると燃料電池の出力低下に至るフラッ
ディング現象が生じる。However, the method disclosed in Japanese Patent Laid-Open No. 11-224681 has a problem that the consumption of the fuel gas by the purge control may be erroneously detected as a leak. In the fuel cell system, the water vapor contained in the humidified hydrogen-containing fuel gas supplied to the fuel cell becomes water around the fuel electrode, and when the exhaust path is filled with water, a flooding phenomenon that causes a decrease in the output of the fuel cell occurs. .
【0005】上記フラッディング現象の対策として、例
えば燃料電池の出力低下に基づいて水の充満を判断する
と、燃料ガスを用いて水をパージさせるようにしてい
る。ここで、パージのために使われた燃料ガスは燃料電
池の出力にはほとんど寄与しないので、パージのために
使われた燃料ガスが漏れ分として算出されることにな
り、漏れを高精度に検出させようとすると、パージ実行
時に漏れの発生が誤検出されるという問題が生じること
になる。As a countermeasure against the above-mentioned flooding phenomenon, for example, when the filling of water is judged based on the output reduction of the fuel cell, the water is purged using the fuel gas. Here, the fuel gas used for purging hardly contributes to the output of the fuel cell, so the fuel gas used for purging is calculated as the leak amount, and the leak is detected with high accuracy. If this is attempted, a problem will occur in which the occurrence of leakage is erroneously detected when the purge is executed.
【0006】また、特開平8−329965号公報に開
示される方法は、圧力計の値を監視することで燃料ガス
漏れの有無を判断できるため低廉な検知方法ではある
が、始動前に漏れを検出する方法であるため、運転開始
後の漏れ発生は、再度始動されるまでの間検出されない
という欠点があった。特に車両用の燃料電池システムで
は、走行に伴って生じる機械的な振動や衝撃の入力、更
には、熱的な変化を大きく受けて熱変形するなど、漏れ
が生じる可能性は圧倒的に走行中に多い。Further, the method disclosed in Japanese Patent Application Laid-Open No. 8-329965 is an inexpensive detection method because it is possible to determine the presence or absence of fuel gas leakage by monitoring the value of a pressure gauge, but leakage is detected before starting. Since this is a method of detecting, there is a drawback that the occurrence of leakage after the start of operation is not detected until it is restarted. In particular, in fuel cell systems for vehicles, the possibility of leakage, such as mechanical vibrations and shocks input during driving, thermal deformation due to large thermal changes, etc. There are many.
【0007】従って、従来例のように始動前でしか検出
できない漏れ検出方法では、車両用の燃料電池システム
に対して必要な検出性能を確保できないという問題が生
じることになる。本発明は上記問題点に鑑みなされたも
のであり、燃料ガスの漏れを運転中でも検出でき、然も
低廉な、燃料電池システムのガス漏れ検知方法及び装置
を提供することにある。Therefore, the leak detection method that can detect only before starting as in the conventional example has a problem that the detection performance required for the fuel cell system for a vehicle cannot be secured. The present invention has been made in view of the above problems, and an object of the present invention is to provide a gas leak detection method and device for a fuel cell system, which can detect a fuel gas leak even during operation and which is inexpensive.
【0008】[0008]
【課題を解決するための手段】そのため、請求項1,4
記載の発明に係る検知方法及び装置では、燃料電池の電
気負荷が閾値よりも小さいときに燃料電池の出力電流を
遮断し、このときの燃料電池を含む燃料ガス循環供給系
の閉空間における圧力状態に基づいて、前記閉空間にお
ける燃料ガス漏れを検知する構成とした。Therefore, the first and fourth aspects are as follows.
In the detection method and apparatus according to the described invention, the output current of the fuel cell is interrupted when the electric load of the fuel cell is smaller than a threshold value, and the pressure state in the closed space of the fuel gas circulation supply system including the fuel cell at this time The fuel gas leakage in the closed space is detected based on the above.
【0009】上記構成によると、燃料電池の電気負荷が
閾値よりも小さく、燃料電池の発電を止めることができ
る状態になると、燃料電池の出力電流を遮断することで
燃料電池の発電を止める。発電を止めると、燃料電池で
燃料ガスが消費されない状態になり、燃料電池を含む燃
料ガス循環供給系の閉空間における圧力状態が、漏れの
みに影響されるようになるから、圧力状態から燃料ガス
漏れの有無を検知する。According to the above construction, when the electric load of the fuel cell is smaller than the threshold and the power generation of the fuel cell can be stopped, the output current of the fuel cell is cut off to stop the power generation of the fuel cell. When the power generation is stopped, the fuel gas is not consumed in the fuel cell, and the pressure condition in the closed space of the fuel gas circulation supply system including the fuel cell is affected only by the leakage. Detects the presence of leaks.
【0010】請求項2,5記載の発明に係る検知方法及
び装置では、燃料電池の電気負荷が閾値よりも小さいと
きに燃料電池の出力電流を遮断すると共に、前記閉空間
への燃料供給源からの燃料ガスの供給を強制的に遮断
し、このときの閉空間における圧力降下速度に基づいて
燃料ガス漏れを検知する構成とした。上記構成による
と、燃料供給源からの燃料ガスの供給が遮断される閉空
間では、漏れによって燃料ガスが外部に流出すると、閉
空間内の圧力が、漏れがないときに比べて急激に低下す
ることになるから、圧力降下速度が漏れの発生を示す程
度に大きいか否かに基づいて漏れの発生を検知する。In the detection method and apparatus according to the second and fifth aspects of the invention, when the electric load of the fuel cell is smaller than a threshold value, the output current of the fuel cell is cut off, and the fuel supply source to the closed space is operated. The fuel gas supply is forcibly cut off and the fuel gas leakage is detected based on the pressure drop rate in the closed space at this time. According to the above configuration, in the closed space where the supply of the fuel gas from the fuel supply source is cut off, when the fuel gas flows out due to the leakage, the pressure in the closed space is drastically reduced as compared with when there is no leakage. Therefore, the occurrence of leakage is detected based on whether the pressure drop rate is large enough to indicate the occurrence of leakage.
【0011】請求項3,9記載の発明に係る検知方法及
び装置では、前記閉空間内の圧力損失部の前後差圧を検
出し、この前後差圧に基づいて燃料ガス漏れを検知する
構成とした。上記構成によると、閉空間からの漏れが発
生すると、閉空間内に燃料ガスの流れが発生し、該流れ
によって圧力損失部の前後に差圧が生じることになるの
で、圧力損失部の前後差圧に基づいて燃料ガスの流れの
発生を検知し、以って、燃料ガス漏れの有無を検知す
る。In the detection method and apparatus according to the third and ninth aspects of the present invention, the differential pressure across the pressure loss portion in the closed space is detected, and fuel gas leakage is detected based on this differential pressure. did. According to the above configuration, when leakage occurs from the closed space, a flow of fuel gas is generated in the closed space, and the flow causes a differential pressure before and after the pressure loss portion. The occurrence of the flow of fuel gas is detected based on the pressure, and thus the presence or absence of fuel gas leakage is detected.
【0012】請求項6記載の発明に係る検知装置では、
前記閉空間内の圧力降下速度に基づいて燃料ガス漏れを
検知する構成において、出力電流の遮断によって漏れの
検知を行わせるときに、燃料電池を含む燃料ガス循環供
給系の閉空間を複数の閉空間に遮断し、かつ、該複数の
閉空間それぞれの圧力を検出するよう構成し、前記複数
の閉空間毎の圧力降下速度に基づいて、燃料ガス漏れの
有無及び燃料ガス漏れの発生箇所を判断する構成とし
た。In the detection device according to the invention of claim 6,
In the configuration for detecting a fuel gas leak based on the pressure drop rate in the closed space, when the leak is detected by shutting off the output current, the closed space of the fuel gas circulation supply system including the fuel cell is closed by a plurality of closed spaces. It is configured to shut off the space and detect the pressure of each of the plurality of closed spaces, and determine the presence or absence of fuel gas leakage and the location of fuel gas leakage based on the pressure drop rate of each of the plurality of closed spaces. It was configured to do.
【0013】上記構成によると、燃料供給源からの燃料
ガスの供給が遮断される閉空間を、複数に遮断し、該複
数の閉空間毎に圧力を検出させることで、燃料ガス漏れ
の発生箇所を、前記複数の閉空間のいずれかに特定す
る。請求項7記載の発明に係る検知装置では、前記閉空
間内の圧力降下速度に基づいて燃料ガス漏れを検知する
構成において、前記閉空間内の圧力損失部の間における
圧力を複数箇所でそれぞれに検出し、それぞれの検出部
位における圧力降下速度に基づいて、燃料ガス漏れの有
無及び燃料ガス漏れの発生箇所を判断する構成とした。According to the above structure, the closed space in which the supply of the fuel gas from the fuel supply source is cut off is cut into a plurality of spaces, and the pressure is detected in each of the closed spaces, whereby the location where the fuel gas leaks occurs. Is specified as one of the plurality of closed spaces. In the detection device according to the invention of claim 7, in the configuration for detecting the fuel gas leakage based on the pressure drop rate in the closed space, the pressure between the pressure loss parts in the closed space is set at a plurality of points respectively. The configuration is such that the presence or absence of fuel gas leakage and the location where fuel gas leakage has occurred are detected based on the pressure drop rate at each detection site.
【0014】上記構成によると、圧力損失部を境界とす
る擬似的な閉空間を複数設定し、該擬似閉空間毎の圧力
降下速度から、燃料ガス漏れの発生箇所を、前記擬似閉
空間のいずれかに特定する。請求項8記載の発明に係る
検知装置では、請求項7の構成において、それぞれの検
出部位における圧力降下速度のうちの最も大きな圧力降
下速度が閾値よりも大きいときに、最も大きな降下速度
を示した検出部位での燃料ガス漏れの発生を判断する構
成とした。According to the above structure, a plurality of pseudo closed spaces having the pressure loss portion as a boundary are set, and the location of the fuel gas leakage is determined by the pressure drop rate for each pseudo closed space. Specify the crab. In the detection device according to the invention described in claim 8, in the configuration of claim 7, when the largest pressure drop rate of the pressure drop rates at the respective detection sites is larger than the threshold value, the largest drop rate is exhibited. The configuration is such that the occurrence of fuel gas leakage at the detection site is determined.
【0015】上記構成によると、一箇所での燃料ガス漏
れが圧力損失部を介して他の検出圧力に影響を与えるこ
とになるが、燃料ガス漏れの発生箇所での圧力降下が最
も大きくなるから、最も大きな降下速度を示した検出部
位を燃料ガス漏れの発生箇所として特定する。請求項1
0記載の発明に係る検知装置では、前記閉空間内の圧力
損失部の前後差圧に基づいて燃料ガス漏れを検知する構
成において、前記閉空間内における複数の圧力損失部の
前後差圧をそれぞれに検出し、前記前後差圧が閾値より
も大きいときに燃料ガス漏れの発生を判断すると共に、
隣接する検出部それぞれでの差圧の方向に基づいて燃料
ガス漏れの発生箇所を判断する構成とした。According to the above structure, the fuel gas leakage at one location affects the other detected pressure via the pressure loss portion, but the pressure drop at the location where the fuel gas leakage occurs becomes the largest. , The detection site that shows the largest descent rate is identified as the location of the fuel gas leakage. Claim 1
In the detection device according to the invention described in 0, in the configuration for detecting the fuel gas leakage based on the differential pressure across the pressure loss portion in the closed space, the differential pressures across the plurality of pressure loss portions in the closed space are respectively detected. To detect the occurrence of fuel gas leakage when the differential pressure across the front is greater than a threshold value,
The configuration is such that the location where the fuel gas leak has occurred is determined based on the direction of the differential pressure between the adjacent detection units.
【0016】上記構成によると、圧力損失部の前後差圧
の方向から、燃料ガスの流れ方向を特定でき、これに基
づいて燃料ガス漏れの発生箇所を特定する。請求項11
記載の発明に係る検知装置では、燃料ガス漏れの有無を
判断させるときに、パージ手段による循環系からのパー
ジを強制的に遮断して前記閉空間を形成させる構成とし
た。According to the above construction, the flow direction of the fuel gas can be identified from the direction of the differential pressure across the pressure loss portion, and the location of the fuel gas leakage is identified based on this. Claim 11
In the detector according to the invention described above, when the presence or absence of the fuel gas leakage is judged, the purge from the circulation system by the purge means is forcibly interrupted to form the closed space.
【0017】上記構成によると、燃料ガス循環供給系を
閉空間として漏れ検出を行わせることができるように、
パージを強制的に遮断する。According to the above arrangement, the fuel gas circulation supply system can be used as a closed space for leak detection.
Forcibly shut off the purge.
【0018】[0018]
【発明の効果】請求項1,4記載の発明によると、燃料
電池の電気負荷が閾値よりも小さいときに燃料電池の出
力電流を遮断して、燃料ガスが消費されない閉空間を形
成させるから、例えば、車両用燃料電池システムでは、
減速エネルギーの回生が行われるときなど、燃料電池の
出力電流が小さい、或いは、出力電流の必要がないとき
に、燃料漏れの検知を行わせることができ、運転途中に
比較的低廉な圧力計によって燃料ガス漏れの検知が行え
るという効果がある。According to the present invention, the output current of the fuel cell is interrupted when the electric load of the fuel cell is smaller than the threshold value to form a closed space in which fuel gas is not consumed. For example, in a vehicle fuel cell system,
Fuel leakage can be detected when the output current of the fuel cell is small or when the output current is not needed, such as when the deceleration energy is regenerated, and a relatively inexpensive pressure gauge is used during operation. There is an effect that the fuel gas leakage can be detected.
【0019】請求項2,5記載の発明によると、燃料供
給源からの燃料ガスの供給が遮断される閉空間内の圧力
降下に基づいて漏れの検知を行わせるから、簡便な構成
で運転途中に燃料ガス漏れの検知が行えるという効果が
ある。請求項3,9記載の発明によると、閉空間内の圧
力損失部の前後差圧に基づいて、燃料ガス漏れによって
生じる燃料ガスの流れを検出させるので、閉空間内の絶
対圧に影響されることなく、然も、高精度に燃料ガス漏
れの発生を検知することができるという効果がある。According to the second and fifth aspects of the present invention, the leakage is detected based on the pressure drop in the closed space where the supply of the fuel gas from the fuel supply source is cut off. Moreover, there is an effect that the fuel gas leakage can be detected. According to the third and ninth aspects of the invention, the flow of the fuel gas caused by the fuel gas leakage is detected based on the differential pressure across the pressure loss portion in the closed space, so that it is affected by the absolute pressure in the closed space. There is an effect that the occurrence of the fuel gas leakage can be detected with high accuracy.
【0020】請求項6記載の発明によると、複数に遮断
される閉空間毎の圧力降下に基づいて、燃料ガス漏れの
発生箇所を、精度良く特定することができるという効果
がある。請求項7記載の発明によると、燃料ガス循環供
給系を、弁などを用いて複数に区分することなしに、燃
料ガス漏れの発生箇所を特定することができ、漏れ箇所
の特定を簡便な構成で行わせることができるという効果
がある。According to the sixth aspect of the invention, there is an effect that the location where the fuel gas leak has occurred can be accurately specified based on the pressure drop in each of the closed spaces that are blocked. According to the invention described in claim 7, it is possible to specify the location of the fuel gas leakage without dividing the fuel gas circulation supply system into a plurality of areas using a valve or the like, and to easily identify the location of the leakage. There is an effect that it can be done in.
【0021】請求項8記載の発明によると、燃料ガス漏
れの影響が、圧力損失部を介して他の圧力検出部位に影
響を与えても、燃料ガス漏れの発生箇所を圧力降下速度
から精度良く特定することができるという効果がある。
請求項10記載の発明によると、圧力損失部の前後差圧
から、燃料ガス漏れに伴う燃料ガスの流れ方向を特定し
て、燃料ガス漏れの発生箇所を精度良く特定することが
できるという効果がある。According to the eighth aspect of the present invention, even if the influence of the fuel gas leakage affects other pressure detection portions via the pressure loss portion, the location of the fuel gas leakage can be accurately determined from the pressure drop rate. The effect is that it can be specified.
According to the invention of claim 10, there is an effect that the generation direction of the fuel gas leakage can be accurately specified by specifying the flow direction of the fuel gas accompanying the fuel gas leakage from the differential pressure across the pressure loss portion. is there.
【0022】請求項11記載の発明によると、燃料ガス
漏れの検出に必要な閉空間を、確実に形成させて、燃料
電池の電気負荷が閾値よりも小さいときに確実に燃料ガ
ス漏れの検知を行わせることができるという効果があ
る。According to the eleventh aspect of the present invention, the closed space required for detecting the fuel gas leakage is surely formed, and the fuel gas leakage can be detected surely when the electric load of the fuel cell is smaller than the threshold value. The effect is that it can be done.
【0023】[0023]
【発明の実施の形態】以下に本発明の実施の形態を図に
基づいて説明する。図1は、第1の実施形態における車
両用燃料電池システムを示す図である。この図1におい
て、水素ガス供給源1(燃料供給源)からの燃料ガス
は、燃料ガス供給ライン2,減圧調整弁3,燃料ガス供
給ライン4,エジェクタ5,燃料ガス供給ライン6を介
して、燃料電池10の燃料極(図示省略)に導入され、
燃料電池10にて消費されなかった燃料ガスは、燃料ガ
ス排出ライン11及び燃料ガス循環ライン12を介し、
前記エジェクタ5によって燃料ガス供給ライン6に還流
される。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a vehicle fuel cell system according to a first embodiment. In FIG. 1, the fuel gas from the hydrogen gas supply source 1 (fuel supply source) is passed through a fuel gas supply line 2, a pressure reducing control valve 3, a fuel gas supply line 4, an ejector 5, and a fuel gas supply line 6. Introduced into the fuel electrode (not shown) of the fuel cell 10,
The fuel gas not consumed in the fuel cell 10 passes through the fuel gas discharge line 11 and the fuel gas circulation line 12,
The fuel gas is recirculated to the fuel gas supply line 6 by the ejector 5.
【0024】上記燃料ガス供給ライン2,減圧調整弁3
(供給源遮断手段),燃料ガス供給ライン4,エジェク
タ5,燃料ガス供給ライン6,燃料ガス排出ライン11
及び燃料ガス循環ライン12によって、燃料ガス循環供
給系が構成される。前記燃料ガス排出ライン11には、
パージ弁13が介装されるパージライン14が接続され
ている。The fuel gas supply line 2 and the pressure reducing control valve 3
(Supply source cutoff means), fuel gas supply line 4, ejector 5, fuel gas supply line 6, fuel gas discharge line 11
The fuel gas circulation line 12 constitutes a fuel gas circulation supply system. In the fuel gas discharge line 11,
A purge line 14 in which a purge valve 13 is interposed is connected.
【0025】上記パージ弁13及びパージライン14に
よってパージ手段が構成される。前記パージ弁13は、
燃料ガス排出ライン11に溜まった水を燃料ガスと共に
排出させるときに開制御される。一方、燃料電池10の
空気極(図示省略)には、酸化ガス供給源20からの酸
化ガス(空気)がガス供給ライン21を介して供給さ
れ、燃料電池10にて消費されなかった酸化ガスは、排
出ライン22を介して排出される。The purge valve 13 and the purge line 14 constitute a purge means. The purge valve 13 is
The opening control is performed when the water accumulated in the fuel gas discharge line 11 is discharged together with the fuel gas. On the other hand, the air electrode (not shown) of the fuel cell 10 is supplied with the oxidizing gas (air) from the oxidizing gas supply source 20 through the gas supply line 21, and the oxidizing gas not consumed in the fuel cell 10 is , Is discharged through the discharge line 22.
【0026】また、前記燃料電池10の出力電流iを出
力する出力配線32には、出力電流iを検出する電流計
31、及び、前記出力電流iを遮断する出力電流遮断器
30(出力電流遮断手段)が介装される。更に、前記燃
料ガス供給ライン6内の圧力を検出する圧力計7(圧力
状態検出手段,圧力検出手段)が設けられている。The output wiring 32 for outputting the output current i of the fuel cell 10 has an ammeter 31 for detecting the output current i, and an output current breaker 30 for interrupting the output current i (output current cutoff). Means). Further, a pressure gauge 7 (pressure state detecting means, pressure detecting means) for detecting the pressure in the fuel gas supply line 6 is provided.
【0027】前記電流計31及び圧力計7の検出出力が
入力される信号処理装置40は、前記パージ弁13及び
出力電流遮断器30の開閉動作を制御すると共に、減圧
調整弁3を強制的に遮断させる機能を有している。上記
構成において、水素ガス供給源1から燃料ガス流量Q0
が供給され、エジェクタ5で還流ガス流量Q2を加えた
流量Q1(=Q0+Q2)が燃料電池10の燃料極に導
かれる。The signal processing device 40 to which the detection outputs of the ammeter 31 and the pressure gauge 7 are input controls the opening / closing operations of the purge valve 13 and the output current circuit breaker 30, and forcibly operates the pressure reducing adjustment valve 3. It has the function of shutting off. In the above structure, the fuel gas flow rate Q0 from the hydrogen gas supply source 1
Is supplied, and the flow rate Q1 (= Q0 + Q2) obtained by adding the reflux gas flow rate Q2 is guided to the fuel electrode of the fuel cell 10 by the ejector 5.
【0028】燃料電池10では、出力電流iに見合った
ΔQの流量が消費され、残った燃料ガスQ2が循環し、
燃料ガス供給ライン6に還流されるようになっている。
即ち、燃料電池10の燃料極に供給される燃料ガス流量
は、ΔQ=Q1−Q2=Q0の関係があり、前記減圧調
整弁3は、燃料電池10における消費燃料量(燃料ガス
循環供給ラインの圧力低下)に見合った燃料ガスを供給
する。In the fuel cell 10, a flow rate of ΔQ commensurate with the output current i is consumed, and the remaining fuel gas Q2 circulates,
The fuel gas is fed back to the fuel gas supply line 6.
That is, the flow rate of the fuel gas supplied to the fuel electrode of the fuel cell 10 has a relationship of ΔQ = Q1-Q2 = Q0, and the pressure reducing control valve 3 causes the fuel consumption amount of the fuel cell 10 (fuel gas circulation supply line Supply the fuel gas commensurate with the pressure drop).
【0029】ここで、車両で要求される電気負荷、即
ち、出力電流iは、非常に大きく変動し得る値であり、
例えば車両制動時(減速時)に、車両慣性エネルギーを
電気エネルギーに変換する回生制動装置を備える場合に
は、電気エネルギーが回生制動によって供給され得るた
めに、燃料電池10からの出力電流iが不要、或いは、
極めて小さな値になり、このとき減圧調整弁3は燃料ガ
スの流れを遮断するか供給量Q0を微小に絞ることにな
る。Here, the electric load required for the vehicle, that is, the output current i is a value that can fluctuate significantly,
For example, when the vehicle is equipped with a regenerative braking device that converts the inertial energy of the vehicle into electric energy during braking (at the time of deceleration), electric energy can be supplied by regenerative braking, and thus the output current i from the fuel cell 10 is unnecessary. Or
It becomes an extremely small value, and at this time, the pressure reducing control valve 3 shuts off the flow of the fuel gas or minutely reduces the supply amount Q0.
【0030】そして、回生制動が終了すれば出力電流を
ゼロ(又は微小値)にする条件が解除されるため、車両
電気負荷に対応する要求電流iに見合った燃料ガス消費
流量が再現されて、燃料供給流量Q0も流れ出すように
なる。このように、車両用の燃料電池システムにおいて
は、常時燃料電池10の発電が要求されるものではな
く、燃料電池10の発電を停止させることができる状態
が運転中に発生する。When the regenerative braking is completed, the condition for making the output current zero (or a small value) is released, so that the fuel gas consumption flow rate corresponding to the required current i corresponding to the electric load of the vehicle is reproduced, The fuel supply flow rate Q0 also starts to flow. As described above, in the fuel cell system for a vehicle, the power generation of the fuel cell 10 is not always required, and a state in which the power generation of the fuel cell 10 can be stopped occurs during operation.
【0031】燃料電池10の発電が停止される状態で
は、燃料ガスが燃料電池10で消費されないから、パー
ジ弁13が閉じていて閉空間を形成する状態であれば、
燃料ガスが閉空間内に閉じ込められることになって大き
な圧力変化は発生しない。ここで、水素ガス供給源1か
らの燃料ガスの供給が遮断されていれば、閉空間からの
燃料ガスの漏れが発生したときに、前記閉空間の圧力が
降下することになり、係る圧力降下に基づいて燃料ガス
漏れの発生を推定することができる。When the power generation of the fuel cell 10 is stopped, the fuel gas is not consumed in the fuel cell 10. Therefore, if the purge valve 13 is closed and a closed space is formed,
Since the fuel gas is confined in the closed space, a large pressure change does not occur. Here, if the supply of the fuel gas from the hydrogen gas supply source 1 is cut off, when the fuel gas leaks from the closed space, the pressure in the closed space will drop. The occurrence of fuel gas leakage can be estimated based on
【0032】そこで、前記信号処理装置40は、図2の
フローチャートに示すような手順によって燃料ガス漏れ
の有無を検知する。尚、前記信号処理装置40は、図2
のフローチャートに示すように、電気負荷判別手段,遮
断制御手段,燃料ガス漏れ判断手段,パージ遮断手段と
しての機能を備えている。Therefore, the signal processing device 40 detects the presence / absence of fuel gas leakage according to the procedure shown in the flowchart of FIG. The signal processing device 40 is shown in FIG.
As shown in the flow chart of FIG. 3, it has functions as an electric load discriminating means, a shutoff control means, a fuel gas leak determining means, and a purge shutoff means.
【0033】まず、ステップS1では、出力電流i(電
気負荷)が閾値i0よりも小さいか否かを判別する。そ
して、出力電流i(電気負荷)が閾値i0よりも小さい
ときには、ステップS2へ進み、パージ弁13を強制的
に閉状態に保持し、次のステップS3では、減圧調整弁
3を強制的に閉状態に保持させるようにする。First, in step S1, it is determined whether or not the output current i (electrical load) is smaller than the threshold value i0. When the output current i (electrical load) is smaller than the threshold value i0, the process proceeds to step S2, the purge valve 13 is forcibly held in the closed state, and the pressure reducing adjustment valve 3 is forcibly closed in the next step S3. Keep it in the state.
【0034】尚、減圧調整弁3の上流側又は下流側に遮
断弁を設けて、水素ガス供給源1からの燃料ガスの供給
を強制的に遮断させる構成としても良い。更に、ステッ
プS4では、前記出力電流遮断器30によって出力電流
iの出力を遮断し、燃料電池10の発電(燃料ガスの消
費)を止める。上記処理によって、水素ガス供給源1か
らの燃料ガスの供給が遮断される燃料電池10を含む閉
空間が機械的に形成される一方、燃料電池10における
燃料ガスの消費が0になり、前記閉空間からの燃料ガス
の漏れがない場合には、前記圧力計7で検出される圧力
が大きな変化を示すことはない。A shutoff valve may be provided on the upstream side or the downstream side of the decompression adjustment valve 3 to forcibly shut off the supply of fuel gas from the hydrogen gas supply source 1. Further, in step S4, the output of the output current i is cut off by the output current breaker 30 to stop the power generation (fuel gas consumption) of the fuel cell 10. By the above process, the closed space including the fuel cell 10 in which the supply of the fuel gas from the hydrogen gas supply source 1 is cut off is mechanically formed, while the consumption of the fuel gas in the fuel cell 10 becomes 0, and If there is no fuel gas leakage from the space, the pressure detected by the pressure gauge 7 does not show a large change.
【0035】ステップS5では、前記閉空間内における
圧力降下速度を示す、前記圧力計7による検出圧力Pの
単位時間Δt当たりの変化量ΔP/Δtを演算する。
尚、前記変化量ΔP/Δtは、圧力Pの減少変化に対し
てプラスの値に算出されるものとする。そして、ステッ
プS6では、前記変化量ΔP/Δtが閾値Aよりも大き
いか否かを判別する。In step S5, a change amount ΔP / Δt per unit time Δt of the pressure P detected by the pressure gauge 7, which indicates a pressure drop rate in the closed space, is calculated.
The change amount ΔP / Δt is calculated as a positive value with respect to the decrease change of the pressure P. Then, in step S6, it is determined whether or not the change amount ΔP / Δt is larger than the threshold value A.
【0036】前記変化量ΔP/Δtが閾値Aを超え、圧
力Pの減少速度が基準値を超えていると判断されるとき
には、閉空間からの燃料ガスの漏れによって所定以上の
速度で圧力降下しているものと判断し、ステップS7へ
進んで、漏れ検知信号の出力及び漏れ検知表示出力を行
う。前記漏れ検知表示出力は、例えば車両の運転席付近
に設けた警告灯の点灯などを行う制御信号である。When it is determined that the amount of change ΔP / Δt exceeds the threshold value A and the rate of decrease of the pressure P exceeds the reference value, the fuel gas leaks from the closed space and the pressure drops at a rate higher than a predetermined rate. If so, the process proceeds to step S7 to output a leak detection signal and output a leak detection display. The leak detection display output is, for example, a control signal for lighting a warning light provided near the driver's seat of the vehicle.
【0037】上記実施形態による燃料ガス漏れ検知で
は、運転中に出力電流i(電気負荷)が閾値i0よりも
小さくなる毎(例えば減速運転毎)に、燃料ガス漏れの
有無を判断させることができるため、燃料ガス漏れの発
生を応答良く検知できると共に、比較的低廉な圧力計7
を用いるため、低コストで漏れ検知装置を構成できる。
ところで、上記実施形態では、減圧調整弁3,燃料ガス
供給ライン4,エジェクタ5,燃料ガス供給ライン6,
燃料電池10,燃料ガス排出ライン11及び燃料ガス循
環ライン12を含んでなる燃料ガス循環供給系の閉空間
に対して、1つの圧力計7を設ける構成であるため、閉
空間のいずれかで燃料ガス漏れが発生していることを検
知できるものの、漏れ発生箇所を限定することができな
い。In the fuel gas leak detection according to the above-described embodiment, it is possible to judge the presence or absence of fuel gas leak every time the output current i (electrical load) becomes smaller than the threshold value i0 during operation (for example, every deceleration operation). Therefore, the occurrence of fuel gas leakage can be detected with good response, and the pressure gauge 7 is relatively inexpensive.
Therefore, the leak detection device can be configured at low cost.
By the way, in the above-described embodiment, the pressure reducing valve 3, the fuel gas supply line 4, the ejector 5, the fuel gas supply line 6,
Since one pressure gauge 7 is provided in the closed space of the fuel gas circulation supply system including the fuel cell 10, the fuel gas discharge line 11 and the fuel gas circulation line 12, the fuel is not provided in any of the closed spaces. Although it is possible to detect the occurrence of gas leakage, it is not possible to limit the location of leakage.
【0038】そこで、図3に示す第2の実施形態に示す
ように、燃料ガス循環供給系の閉空間を、更に2つの閉
空間に分割遮断する遮断弁8,15(閉空間分割手段)
を設けると共に、該遮断弁8,15で遮断される閉空間
毎に圧力計7,9を設けるようにして、いずれの圧力検
出値が、所定以上の圧力降下速度を示すかによって、燃
料ガス漏れの箇所を前記2つの閉空間のいずれかに特定
することができる。Therefore, as shown in the second embodiment shown in FIG. 3, shut-off valves 8 and 15 (closed space dividing means) for further dividing and shutting off the closed space of the fuel gas circulation supply system into two closed spaces.
And the pressure gauges 7 and 9 are provided for each closed space that is shut off by the shutoff valves 8 and 15, depending on which pressure detection value indicates a pressure drop rate higher than a predetermined value, fuel gas leakage Can be specified as one of the two closed spaces.
【0039】具体的には、燃料ガス供給ライン6の途中
に第1遮断弁8を介装し、かつ、燃料ガス排出ライン1
1の途中に第2遮断弁15を介装する一方、第1遮断弁
8とエジェクタ5との間の燃料ガス供給ライン6内の圧
力を検出するように圧力計7を設け、第2遮断弁15と
燃料電池10との間の燃料ガス排出ライン11内の圧力
を検出するように圧力計9を設けてある。Specifically, the first cutoff valve 8 is provided in the middle of the fuel gas supply line 6 and the fuel gas discharge line 1 is provided.
The second shutoff valve 15 is provided in the middle of 1, while the pressure gauge 7 is provided to detect the pressure in the fuel gas supply line 6 between the first shutoff valve 8 and the ejector 5, and the second shutoff valve 15 is provided. A pressure gauge 9 is provided to detect the pressure in the fuel gas discharge line 11 between the fuel cell 15 and the fuel cell 10.
【0040】そして、第2の実施形態では、図4のフロ
ーチャートに示すようにして漏れ検知を行う。図4のフ
ローチャートにおいて、ステップS11〜ステップS1
3では、前記ステップS1〜ステップS3と同様に、燃
料電池10の出力電流iが閾値i0よりも小さいことを
条件に、パージ弁13及び減圧調整弁3を強制的に閉状
態に保持する処理を行う。In the second embodiment, leak detection is performed as shown in the flowchart of FIG. In the flowchart of FIG. 4, step S11 to step S1
In 3, similar to steps S1 to S3, the process of forcibly holding the purge valve 13 and the pressure reducing adjustment valve 3 in the closed state is performed on condition that the output current i of the fuel cell 10 is smaller than the threshold value i0. To do.
【0041】更に、次のステップS14で前記遮断弁
8,15を閉じることで、燃料ガス循環供給系の閉空間
を2つに分割遮断する。そして、ステップS15では、
前記出力電流遮断器30によって出力電流iの出力を遮
断し、燃料電池10の発電(燃料ガスの消費)を止め
る。上記処理により、燃料ガスの漏れがない場合には圧
力が急激な低下を示すことのない2つの閉空間が形成さ
れる。Further, by closing the shutoff valves 8 and 15 in the next step S14, the closed space of the fuel gas circulation supply system is divided and shut into two. Then, in step S15,
The output current breaker 30 shuts off the output of the output current i, and stops the power generation (fuel gas consumption) of the fuel cell 10. By the above process, two closed spaces are formed in which the pressure does not suddenly decrease when the fuel gas does not leak.
【0042】ステップS16では、圧力計7の検出圧力
P1に基づいて、変化量ΔP1/Δt(圧力低下速度)
を演算し、ステップS17では、圧力計9の検出圧力P
2に基づいて、変化量ΔP2/Δt(圧力低下速度)を
演算する。ステップS18では、ステップS16,17
で算出した変化量ΔP1/Δt,ΔP2/Δtのうちの
大きい方(降下速度が速い方)を選択し、ステップS1
9では、ステップS18で選択した変化量ΔP/Δtが
閾値Aよりも大きいか否かを判別する。In step S16, the amount of change ΔP1 / Δt (pressure decrease rate) is determined based on the pressure P1 detected by the pressure gauge 7.
Is calculated, and in step S17, the detected pressure P of the pressure gauge 9 is calculated.
Based on 2, the change amount ΔP2 / Δt (pressure decrease rate) is calculated. In step S18, steps S16 and S17
The larger one (the one with the faster descending speed) of the changes ΔP1 / Δt and ΔP2 / Δt calculated in step S1 is selected, and step S1
In 9, it is determined whether or not the change amount ΔP / Δt selected in step S18 is larger than the threshold value A.
【0043】そして、変化量ΔP/Δtが閾値Aよりも
大きいときには、ステップS20へ進み、漏れ検知信号
の出力及び漏れ検知表示出力を行うと共に、ステップS
21へ進んで、例えば漏れ発生を検知した圧力計7,9
を記憶することで、燃料ガス漏れ発生部位を記憶させ
る。漏れ発生箇所を記憶することで、例えば漏れが一時
的に発生し、その後漏れ部が塞がって警報が出力されな
くなっても、漏れの履歴及び漏れ発生箇所を後から知る
ことができる。When the change amount ΔP / Δt is larger than the threshold value A, the routine proceeds to step S20, where the leak detection signal is output and the leak detection display is output, and at the same time, step S
Proceed to step 21 and, for example, pressure gauges 7 and 9 that have detected the occurrence of leakage.
Is stored, the fuel gas leakage occurrence site is stored. By storing the leak occurrence location, for example, even if the leak occurs temporarily and then the leak section is closed and the alarm is not output, the history of the leak and the leak occurrence location can be known later.
【0044】尚、漏れ発生箇所の記憶は、前記信号処理
装置40内のメモリ等を用いても良いし、個別に設けた
記憶装置に記憶させても良い。本実施形態では、閉空間
を遮断弁8,15によって2つに分割遮断したから、例
えば、圧力計7の検出圧力の降下速度が他方よりも大き
く、かつ、閾値Aを超える値を示した場合には、遮断弁
15から燃料ガス循環ライン12,エジェクタ5を経由
して遮断弁8に至る閉空間のいずれかで燃料ガス漏れが
発生していることになり、逆に、圧力計9の検出圧力の
降下速度が他方よりも大きく、かつ、閾値Aを超える値
を示した場合には、遮断弁8から燃料電池10,燃料ガ
ス排出ライン11を経由して遮断弁15に至る閉空間の
いずれかで燃料ガス漏れが発生していることになる。The location of the leak may be stored in the memory or the like in the signal processing device 40 or may be stored in a storage device provided separately. In the present embodiment, the closed space is divided into two by the shutoff valves 8 and 15, and therefore, for example, in the case where the rate of decrease in the pressure detected by the pressure gauge 7 is larger than the other and the value exceeds the threshold A. Means that fuel gas leakage has occurred in any of the closed spaces from the shutoff valve 15 to the shutoff valve 8 via the fuel gas circulation line 12 and the ejector 5, and conversely, the detection by the pressure gauge 9 is detected. When the rate of pressure drop is higher than the other and exceeds the threshold value A, any of the closed spaces from the shutoff valve 8 to the shutoff valve 15 via the fuel cell 10 and the fuel gas discharge line 11 This means that a fuel gas leak has occurred.
【0045】尚、上記実施形態では、閉空間を2つに分
割遮断してそれぞれに圧力計を設けることで、2つの閉
空間のいずれか一方に漏れ発生箇所を特定できる構成と
したが、分割遮断する閉空間の数を3つ以上とし、それ
ぞれに圧力計を備えるようにすれば、より細かく燃料ガ
ス漏れ箇所を特定することができる。但し、実用上は燃
料ガス供給システムの規模や配管構造等により必要数を
決定すれば良い。In the above embodiment, the closed space is divided into two blocks, and a pressure gauge is provided for each block, so that the leak occurrence point can be specified in one of the two closed spaces. If the number of closed spaces to be shut off is three or more and each is equipped with a pressure gauge, it is possible to specify the fuel gas leak location more finely. However, in practice, the required number may be determined according to the scale of the fuel gas supply system, the piping structure, and the like.
【0046】また、上記第2実施形態では、遮断弁8,
15によって閉空間を機械的に遮断し、相互に独立した
2つの閉空間を形成する構成としたが、燃料ガス循環供
給ラインに介装されるエジェクタ5,燃料電池10は圧
力損失部を構成し、燃料漏れの箇所での圧力降下が閉空
間の全てに影響するものの、その影響度合いは、前記圧
力損失部により制限される。In the second embodiment, the shutoff valve 8,
Although the closed space is mechanically cut off by 15 to form two closed spaces independent of each other, the ejector 5 and the fuel cell 10 which are interposed in the fuel gas circulation supply line form a pressure loss portion. Although the pressure drop at the location of fuel leakage affects the entire closed space, the degree of the influence is limited by the pressure loss portion.
【0047】即ち、燃料ガス供給ライン6での圧力降下
速度と、燃料ガス排出ライン11及び燃料ガス循環ライ
ン12での圧力降下速度とは、燃料漏れが発生している
方の圧力降下速度がより大きくなる。従って、遮断弁
8,15を設けることなく、燃料ガス漏れの発生箇所を
特定することが可能であり、係る構成とした第3の実施
形態を以下に示す。In other words, the pressure drop rate in the fuel gas supply line 6 and the pressure drop rate in the fuel gas discharge line 11 and the fuel gas circulation line 12 are such that the pressure drop rate at which fuel leakage is occurring is greater. growing. Therefore, it is possible to identify the location where the fuel gas leak has occurred without providing the shutoff valves 8 and 15. A third embodiment having such a configuration will be described below.
【0048】図5は第3の実施形態の燃料電池システム
を示すものであり、第1の実施形態を示す図1のシステ
ム構成図に対して、燃料ガス排出ライン11に圧力計9
を追加して、該圧力計9と燃料ガス供給ライン6に設け
られる圧力計7とによって、それぞれに圧力を検出す
る。そして、前記圧力計7,9を用いた燃料ガス漏れの
検知は、図6のフローチャートに示す手順で行われる。FIG. 5 shows a fuel cell system according to the third embodiment. In contrast to the system configuration diagram of FIG. 1 showing the first embodiment, a pressure gauge 9 is provided in a fuel gas discharge line 11.
In addition, the pressure is detected by the pressure gauge 9 and the pressure gauge 7 provided in the fuel gas supply line 6, respectively. The fuel gas leak detection using the pressure gauges 7 and 9 is performed according to the procedure shown in the flowchart of FIG.
【0049】図6のフローチャートにおいて、ステップ
S31〜ステップS33では、前記ステップS1〜ステ
ップS3と同様に、燃料電池10の出力電流iが閾値i
0よりも小さいことを条件に、パージ弁13及び減圧調
整弁3を強制的に閉状態に保持する処理を行う。ここ
で、燃料ガス循環供給系の閉空間に介装されるエジェク
タ5,燃料電池10が圧力損失部となるため、擬似的
に、燃料ガス供給ライン6と、燃料ガス排出ライン11
及び燃料ガス循環ライン12との2つの閉空間に分けら
れることになる。In step S31 to step S33 in the flow chart of FIG. 6, the output current i of the fuel cell 10 is equal to the threshold value i as in step S1 to step S3.
On condition that the value is smaller than 0, the purge valve 13 and the pressure reducing adjustment valve 3 are forcibly held in the closed state. Here, since the ejector 5 and the fuel cell 10 provided in the closed space of the fuel gas circulation supply system serve as a pressure loss portion, the fuel gas supply line 6 and the fuel gas discharge line 11 are simulated.
And the fuel gas circulation line 12 are divided into two closed spaces.
【0050】ステップS34では、前記出力電流遮断器
30によって出力電流iの出力を遮断し、燃料電池10
の発電(燃料ガスの消費)を止める。上記処理により、
燃料ガスの漏れがない場合には圧力が急激な低下を示す
ことのない2つの閉空間が擬似的に形成される。ステッ
プS35では、圧力計7の検出圧力P1に基づいて、変
化量ΔP1/Δt(圧力低下速度)を演算し、ステップ
S36では、圧力計9の検出圧力P2に基づいて、変化
量ΔP2/Δt(圧力低下速度)を演算する。In step S34, the output of the output current i is cut off by the output current breaker 30, and the fuel cell 10
Stop power generation (fuel gas consumption). By the above processing,
If there is no fuel gas leakage, two closed spaces that do not show a sudden drop in pressure are pseudo-formed. In step S35, the amount of change ΔP1 / Δt (pressure decrease rate) is calculated based on the pressure P1 detected by the pressure gauge 7, and in step S36, the amount of change ΔP2 / Δt (based on the pressure P2 detected by the pressure gauge 9 is calculated. Calculate the pressure drop rate).
【0051】ステップS37では、ステップS35,3
6で算出した変化量ΔP1/Δt,ΔP2/Δtのうち
の大きい方(降下速度が速い方)を選択し、ステップS
38では、ステップS37で選択した変化量ΔP/Δt
が閾値Aよりも大きいか否かを判別する。そして、変化
量ΔP/Δtが閾値Aよりも大きいときには、ステップ
S39へ進み、漏れ検知信号の出力及び漏れ検知表示出
力を行うと共に、ステップS40へ進んで、例えば漏れ
発生を検知した圧力計7,9を記憶することで、燃料ガ
ス漏れ発生部位を記憶させる。In step S37, steps S35, 3
The larger one of the change amounts ΔP1 / Δt and ΔP2 / Δt calculated in step 6 (the one with the faster descending speed) is selected, and step S
At 38, the change amount ΔP / Δt selected at step S37.
Is larger than the threshold value A. Then, when the change amount ΔP / Δt is larger than the threshold value A, the process proceeds to step S39, where the leak detection signal is output and the leak detection display is output, and the process proceeds to step S40 where, for example, the pressure gauge 7, which has detected the leak occurrence, By storing 9, the fuel gas leakage occurrence site is stored.
【0052】上記第1〜第3実施形態では、燃料ガスの
供給が遮断され、かつ、発電が止められた燃料電池10
を含む燃料ガス循環供給系の閉空間における圧力降下に
基づいて、燃料ガスの漏れを検知する構成としたが、燃
料ガスの漏れが発生すると、燃料電池10での燃料の消
費がないにも関わらずに、閉空間内に燃料ガスの流れが
発生し、エジェクタ5,燃料電池10,減圧調整弁3な
どの圧力損失部に前後差圧を生じることになる。In the above first to third embodiments, the fuel cell 10 in which the supply of fuel gas is shut off and the power generation is stopped
Although the fuel gas leakage is detected based on the pressure drop in the closed space of the fuel gas circulation supply system including the above, when the fuel gas leakage occurs, the fuel cell 10 consumes no fuel. Instead, a flow of fuel gas is generated in the closed space, which causes a differential pressure across the pressure loss parts such as the ejector 5, the fuel cell 10, and the pressure reducing valve 3.
【0053】そこで、以下に示す第4の実施形態では、
前記前後差圧に基づいて燃料ガス漏れの検知を行う。図
7は第4の実施形態の燃料電池システムを示すものであ
り、減圧調整弁3前後の燃料ガス供給ライン2と燃料ガ
ス供給ライン4との差圧を検出する第1差圧計16、エ
ジェクタ5前後の燃料ガス供給ライン4と燃料ガス供給
ライン6との差圧を検出する第2差圧計17、エジェク
タ5前後の燃料ガス循環ライン12と燃料ガス供給ライ
ン6との差圧を検出する第3差圧計18、燃料電池10
前後の燃料ガス供給ライン6と燃料ガス排出ライン11
との差圧を検出する第4差圧計19が設けられている。Therefore, in the fourth embodiment described below,
Fuel gas leakage is detected based on the differential pressure across the fuel cell. FIG. 7 shows a fuel cell system according to a fourth embodiment, in which a first differential pressure gauge 16 for detecting a differential pressure between a fuel gas supply line 2 and a fuel gas supply line 4 before and after a pressure reducing valve 3, an ejector 5 is shown. A second differential pressure gauge 17 for detecting the differential pressure between the front and rear fuel gas supply lines 4 and 6, and a third differential pressure gauge 17 for detecting the differential pressure between the fuel gas circulation line 12 before and after the ejector 5 and the fuel gas supply line 6. Differential pressure gauge 18, fuel cell 10
Front and rear fuel gas supply line 6 and fuel gas discharge line 11
A fourth differential pressure gauge 19 for detecting the differential pressure with respect to is provided.
【0054】ここで、各差圧計16〜19(圧力状態検
出手段,差圧検出手段)の差圧出力値を、ΔP1,ΔP
2,ΔP3,ΔP4とし、かつ、各差圧計16〜19の
感圧極性は、図7にプラス記号で示す側の圧力が相対的
に高いときに、前記差圧出力値ΔP1,ΔP2,ΔP
3,ΔP4としてプラスの値が出力されるものとする。
そして、前記差圧計16〜19を用いた燃料ガス漏れの
検知は、図8のフローチャートに示す手順で行われる。Here, the differential pressure output values of the differential pressure gauges 16 to 19 (pressure state detecting means, differential pressure detecting means) are represented by ΔP1 and ΔP.
2, ΔP3, ΔP4, and the pressure sensing polarities of the differential pressure gauges 16 to 19 are the differential pressure output values ΔP1, ΔP2, ΔP when the pressure on the side indicated by the plus sign in FIG. 7 is relatively high.
It is assumed that a positive value is output as 3, ΔP4.
Then, the detection of the fuel gas leak using the differential pressure gauges 16 to 19 is performed by the procedure shown in the flowchart of FIG.
【0055】まず、ステップS51では、出力電流i
(電気負荷)が閾値i0よりも小さいか否かを判別す
る。そして、出力電流i(電気負荷)が閾値i0よりも
小さいときには、ステップS52へ進み、パージ弁13
を強制的に閉状態に保持し、次のステップS53では、
前記出力電流遮断器30によって出力電流iの出力を遮
断し、燃料電池10の発電(燃料ガスの消費)を止め
る。First, in step S51, the output current i
It is determined whether (electrical load) is smaller than the threshold i0. When the output current i (electrical load) is smaller than the threshold value i0, the process proceeds to step S52 and the purge valve 13
Is forcibly held in the closed state, and in the next step S53,
The output current breaker 30 shuts off the output of the output current i, and stops the power generation (fuel gas consumption) of the fuel cell 10.
【0056】ステップS54では、各差圧計16〜19
の出力値ΔP1,ΔP2,ΔP3,ΔP4を読み込む。
ステップS55では、読み込んだ出力値ΔP1,ΔP
2,ΔP3,ΔP4が、電気信号ノイズ、又は、燃料電
池システムの設計値以内の微小圧力変動値より大きいか
否かを、各出力値ΔP1,ΔP2,ΔP3,ΔP4の絶
対値と予め定めた閾値Aとを比較して判定する。At step S54, each differential pressure gauge 16-19
The output values ΔP1, ΔP2, ΔP3 and ΔP4 of are read.
In step S55, the read output values ΔP1, ΔP
2, ΔP3, ΔP4 is an electric signal noise, or whether or not it is larger than a minute pressure fluctuation value within the design value of the fuel cell system, the absolute value of each output value ΔP1, ΔP2, ΔP3, ΔP4 and a predetermined threshold value. It judges by comparing with A.
【0057】ここで、全ての出力値ΔP1,ΔP2,Δ
P3,ΔP4が閾値A以下であるときには、ステップS
56へ進み、全ての差圧計16〜19の検出差圧を0と
見なし、次のステップS57では、燃料ガス漏れなしの
判定を下す。全ての検出差圧が0の場合は、燃料ガス循
環供給ライン4,6,11,12における燃料ガスの流
れが止まっていることを示し、これは、燃料電池10の
発電を止めたために燃料ガスが消費されないで配管内に
留まっている状態と合致することから、燃料ガス漏れは
発生していないと判断される。Here, all output values ΔP1, ΔP2, Δ
When P3 and ΔP4 are equal to or less than the threshold value A, step S
Proceeding to 56, the detected differential pressures of all the differential pressure gauges 16 to 19 are regarded as 0, and in the next step S57, it is determined that there is no fuel gas leakage. When all the detected differential pressures are 0, it means that the flow of the fuel gas in the fuel gas circulation supply lines 4, 6, 11 and 12 is stopped, which means that the fuel gas is stopped because the power generation of the fuel cell 10 is stopped. Therefore, it is judged that no fuel gas leakage has occurred because it matches the state where the fuel gas is not consumed and remains in the pipe.
【0058】一方、ステップS55で、出力値ΔP1,
ΔP2,ΔP3,ΔP4の中で閾値Aを超えるものがあ
ると判断されると、ステップS58へ進む。ステップS
58では、差圧計16〜19の出力値のうちでその絶対
値が閾値A以下であるものについては0と見なし、閾値
Aを超えるものについては差圧の方向のみをプラス,マ
イナスで保存する。On the other hand, in step S55, the output value ΔP1,
If it is determined that the threshold value A is exceeded among ΔP2, ΔP3, and ΔP4, the process proceeds to step S58. Step S
At 58, if the absolute value of the output values of the differential pressure gauges 16 to 19 is less than or equal to the threshold value A, it is regarded as 0, and if the absolute value exceeds the threshold value A, only the differential pressure direction is stored as plus or minus.
【0059】そして、ステップS59では、図9に示す
ような判定マップと、実際の差圧検出パターンとの比較
に基づいて、燃料ガス漏れの発生箇所の特定を行う。例
えば、第1差圧計16の検出結果がプラスであるのに対
し、第2差圧計17の検出結果が0又はマイナスである
ときには、燃料ガス供給ライン4(Q0配管)において
燃料ガスが漏れているものと判定する。Then, in step S59, the location of the fuel gas leakage is identified based on the comparison between the determination map as shown in FIG. 9 and the actual differential pressure detection pattern. For example, when the detection result of the first differential pressure gauge 16 is positive, but the detection result of the second differential pressure gauge 17 is 0 or negative, the fuel gas is leaking in the fuel gas supply line 4 (Q0 pipe). Judge as something.
【0060】即ち、第1差圧計16の検出結果がプラス
であるということは、減圧調整弁3の上流側よりも下流
側の圧力が低く、減圧調整弁3において燃料電池10側
に向かう燃料ガスの流れが発生していることになる一
方、第2差圧計17の検出結果が0又はマイナスである
ときには、エジェクタ5では流れがないか、燃料ガス供
給ライン6側から燃料ガス供給ライン4側に向かう流れ
が生じていることになり、これは、燃料ガス供給ライン
4における燃料ガス漏れの発生を示すことになる。That is, the fact that the detection result of the first differential pressure gauge 16 is positive means that the pressure on the downstream side of the pressure reducing adjustment valve 3 is lower than that on the upstream side, and the fuel gas flowing toward the fuel cell 10 side in the pressure reducing adjustment valve 3 is low. However, when the detection result of the second differential pressure gauge 17 is 0 or negative, there is no flow in the ejector 5, or there is no flow from the fuel gas supply line 6 side to the fuel gas supply line 4 side. There will be an on-going flow, which will indicate the occurrence of a fuel gas leak in the fuel gas supply line 4.
【0061】また、第3差圧計18及び第4差圧計19
の検出差圧が共にマイナスであった場合には、燃料ガス
排出ライン11,燃料ガス循環ライン12よりも燃料ガ
ス供給ライン6の圧力が低いことになり、これは、燃料
ガス排出ライン11から燃料電池10を介して燃料ガス
供給ライン6側に流れ込む流れが発生し、同時に、燃料
ガス循環ライン12からエジェクタ5を介して燃料ガス
供給ライン6側に流れ込む流れが発生していることにな
り、これは、燃料ガス供給ライン6(Q1配管)におけ
る燃料ガス漏れの発生を示すことになる。In addition, the third differential pressure gauge 18 and the fourth differential pressure gauge 19
If both of the detected differential pressures are negative, the pressure of the fuel gas supply line 6 is lower than that of the fuel gas discharge line 11 and the fuel gas circulation line 12, which means that A flow flowing into the fuel gas supply line 6 side via the cell 10 is generated, and at the same time, a flow flowing into the fuel gas supply line 6 side from the fuel gas circulation line 12 via the ejector 5 is generated. Indicates the occurrence of fuel gas leakage in the fuel gas supply line 6 (Q1 pipe).
【0062】逆に、第3差圧計18及び第4差圧計19
の検出差圧が共にプラスであった場合には、燃料ガス供
給ライン6よりも燃料ガス排出ライン11,燃料ガス循
環ライン12の圧力が低いことになり、これは、燃料ガ
ス供給ライン6から燃料電池10を介して燃料ガス排出
ライン11側に流れ込む流れが発生し、同時に、燃料ガ
ス供給ライン6からエジェクタ5を介して燃料ガス循環
ライン12側に流れ込む流れが発生していることにな
り、これは、燃料ガス排出ライン11,燃料ガス循環ラ
イン12(Q2配管)における燃料ガス漏れの発生を示
すことになる。On the contrary, the third differential pressure gauge 18 and the fourth differential pressure gauge 19
If both of the detected differential pressures are positive, the pressures of the fuel gas discharge line 11 and the fuel gas circulation line 12 are lower than those of the fuel gas supply line 6, which means that A flow flowing into the fuel gas discharge line 11 side via the cell 10 is generated, and at the same time, a flow flowing into the fuel gas circulation line 12 side from the fuel gas supply line 6 via the ejector 5 is generated. Indicates the occurrence of fuel gas leakage in the fuel gas discharge line 11 and the fuel gas circulation line 12 (Q2 pipe).
【0063】尚、図9中の網掛け表示は、漏れ箇所判定
に必要な最小の組み合わせを示し、網掛け部分の組み合
わせのみで漏れ箇所を特定することができる。但し、全
ての差圧出力から判定することも可能であり、その際に
は、図9に記載されない条件が検出された場合、燃料電
池システム全体が何らかの不具合を起こしていると判断
し、緊急停止など重要な警報を出力するようにしても良
い。The shaded display in FIG. 9 shows the minimum combination required for the determination of the leaked portion, and the leaked portion can be specified only by the combination of the shaded portions. However, it is also possible to make a determination from all the differential pressure outputs. At that time, if a condition not shown in FIG. 9 is detected, it is determined that the entire fuel cell system has some trouble, and an emergency stop is performed. An important alarm may be output.
【0064】ステップS59で漏れ発生箇所の特定を行
うと、ステップS60では、判定結果をその後の修理作
業等に備えて履歴情報として記憶し、次のステップS6
1では、運転者に対しては、漏れ発生を警報または表示
にて知らせ、安全確保のための操作を促す。上記のよう
に差圧に基づいて、燃料漏れに伴う燃料ガスの流れの発
生を検出する構成であれば、配管内の絶対圧に左右され
ずに高い検出感度を得ることができ、これによって微少
な燃料ガス漏れの検知を行え、またコストも安くでき
る。When the location where the leak has occurred is identified in step S59, the determination result is stored as history information in preparation for the subsequent repair work in step S60, and the next step S6.
In No. 1, the driver is informed of the occurrence of leakage by an alarm or display, and the driver is prompted to perform an operation for ensuring safety. As described above, if the configuration is such that the generation of the flow of the fuel gas due to the fuel leakage is detected based on the differential pressure, it is possible to obtain a high detection sensitivity without being influenced by the absolute pressure in the pipe. It is possible to detect various fuel gas leaks and reduce the cost.
【図1】第1の実施形態における燃料電池システムのブ
ロック図。FIG. 1 is a block diagram of a fuel cell system according to a first embodiment.
【図2】第1の実施形態における漏れ検知の手順を示す
フローチャート。FIG. 2 is a flowchart showing a procedure of leak detection according to the first embodiment.
【図3】第2の実施形態における燃料電池システムのブ
ロック図。FIG. 3 is a block diagram of a fuel cell system according to a second embodiment.
【図4】第2の実施形態における漏れ検知の手順を示す
フローチャート。FIG. 4 is a flowchart showing a leak detection procedure in the second embodiment.
【図5】第3の実施形態における燃料電池システムのブ
ロック図。FIG. 5 is a block diagram of a fuel cell system according to a third embodiment.
【図6】第3の実施形態における漏れ検知の手順を示す
フローチャート。FIG. 6 is a flowchart showing a procedure of leak detection according to the third embodiment.
【図7】第4の実施形態における燃料電池システムのブ
ロック図。FIG. 7 is a block diagram of a fuel cell system according to a fourth embodiment.
【図8】第4の実施形態における漏れ検知の手順を示す
フローチャート。FIG. 8 is a flowchart showing a procedure of leak detection in the fourth embodiment.
【図9】第4の実施形態で漏れ箇所判定に用いる判定マ
ップを示す図。FIG. 9 is a diagram showing a determination map used for determining a leaked portion in the fourth embodiment.
1…水素ガス供給源 2…燃料ガス供給ライン 3…減圧調整弁 4…燃料ガス供給ライン 5…エジェクタ 6…燃料ガス供給ライン 7,9…圧力計 8,15…遮断弁 10…燃料電池 11…燃料ガス排出ライン 12…燃料ガス循環ライン 13…パージ弁 14…パージライン 16〜19…差圧計 20…酸化剤ガス供給源 21…ガス供給ライン 22…排出ライン 30…出力電流遮断器 31…電流計 32…出力配線 40…信号処理装置 1 ... Hydrogen gas supply source 2 ... Fuel gas supply line 3 Decompression control valve 4 ... Fuel gas supply line 5 ... Ejector 6 ... Fuel gas supply line 7, 9 ... Pressure gauge 8, 15 ... Shut-off valve 10 ... Fuel cell 11 ... Fuel gas discharge line 12 ... Fuel gas circulation line 13 ... Purge valve 14 ... Purge line 16 to 19 ... Differential pressure gauge 20 ... Oxidant gas supply source 21 ... Gas supply line 22 ... Discharge line 30 ... Output current breaker 31 ... Ammeter 32 ... Output wiring 40 ... Signal processing device
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鳥居 修司 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 5H027 AA02 BA19 KK05 KK11 KK56 MM08 MM26 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Shuji Torii Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Inside the automobile corporation F term (reference) 5H027 AA02 BA19 KK05 KK11 KK56 MM08 MM26
Claims (11)
きに、前記燃料電池の出力電流を遮断し、このときの前
記燃料電池を含む燃料ガス循環供給系の閉空間における
圧力状態に基づいて、前記閉空間における燃料ガス漏れ
を検知することを特徴とする燃料電池システムのガス漏
れ検知方法。1. When the electric load of the fuel cell is smaller than a threshold value, the output current of the fuel cell is cut off, and based on the pressure state in the closed space of the fuel gas circulation supply system including the fuel cell at this time. A method for detecting gas leakage in a fuel cell system, comprising detecting fuel gas leakage in the closed space.
の供給を強制的に遮断し、該閉空間における圧力降下速
度に基づいて燃料ガス漏れを検知することを特徴とする
請求項1記載の燃料電池システムのガス漏れ検知方法。2. The fuel gas supply from a fuel supply source to the closed space is forcibly cut off, and the fuel gas leakage is detected based on the pressure drop rate in the closed space. A method for detecting gas leakage in a fuel cell system as described.
づいて燃料ガス漏れを検知することを特徴とする請求項
1記載の燃料電池システムのガス漏れ検知方法。3. The gas leak detection method for a fuel cell system according to claim 1, wherein the fuel gas leak is detected based on the differential pressure across the pressure loss portion in the closed space.
系を含んで構成される燃料電池システムにおいて、 前記燃料電池の出力電流を遮断する出力電流遮断手段
と、 前記燃料電池を含む燃料ガス循環供給系の閉空間内の圧
力状態を検出する圧力状態検出手段と、 前記燃料電池の電気負荷が閾値よりも小さい状態を判別
する電気負荷判別手段と、 該電気負荷判別手段で燃料電池の電気負荷が閾値よりも
小さいと判別されたときに、前記出力電流遮断手段によ
り燃料電池の出力電流を遮断する遮断制御手段と、 該遮断制御手段により出力電流の遮断が行われていると
きに、前記圧力状態検出手段で検出される圧力状態に基
づいて、前記閉空間からの燃料ガス漏れの有無を判断す
る燃料ガス漏れ判断手段と、 を含んで構成されたことを特徴とする燃料電池システム
のガス漏れ検知装置。4. A fuel cell system including a fuel cell, a fuel supply source, and a fuel gas circulation supply system, and an output current interruption means for interrupting an output current of the fuel cell, and a fuel gas including the fuel cell. Pressure state detection means for detecting a pressure state in the closed space of the circulation supply system, electric load determination means for determining a state where the electric load of the fuel cell is smaller than a threshold value, and electric power of the fuel cell by the electric load determination means When it is determined that the load is smaller than a threshold value, the cutoff control means that cuts off the output current of the fuel cell by the output current cutoff means, and the cutoff control means cuts off the output current, And a fuel gas leakage judging means for judging the presence or absence of fuel gas leakage from the closed space based on the pressure state detected by the pressure state detecting means. Gas leak detection apparatus for a fuel cell system.
系を含んで構成される燃料電池システムにおいて、 前記燃料電池の出力電流を遮断する出力電流遮断手段
と、 前記燃料ガス循環供給系への燃料供給源からの燃料ガス
の供給を強制的に遮断する供給源遮断手段と、 前記燃料電池を含む燃料ガス循環供給系の閉空間内にお
ける圧力を検出する圧力検出手段と、 前記燃料電池の電気負荷が閾値よりも小さい状態を判別
する電気負荷判別手段と、 該電気負荷判別手段で燃料電池の電気負荷が閾値よりも
小さいと判別されたときに、前記出力電流遮断手段によ
り燃料電池の出力電流を遮断すると共に、前記供給源遮
断手段により燃料供給源からの燃料ガスの供給を強制的
に遮断させる遮断制御手段と、 該遮断制御手段により出力電流の遮断及び前記燃料供給
源からの燃料ガスの供給が強制的に遮断されるときに、
前記圧力検出手段で検出される圧力の降下速度に基づい
て、前記閉空間からの燃料ガス漏れの有無を判断する燃
料ガス漏れ判断手段と、 を含んで構成されたことを特徴とする燃料電池システム
のガス漏れ検知装置。5. A fuel cell system comprising a fuel cell, a fuel supply source, and a fuel gas circulation supply system, wherein an output current interruption means for interrupting an output current of the fuel cell, and a fuel gas circulation supply system. A supply source cutoff means for forcibly shutting off the supply of fuel gas from the fuel supply source, a pressure detection means for detecting the pressure in the closed space of the fuel gas circulation supply system including the fuel cell, and the fuel cell An electric load discriminating means for discriminating a state in which the electric load is smaller than a threshold value; and when the electric load discriminating means discriminates that the electric load of the fuel cell is smaller than the threshold value, the output current interruption means outputs the fuel cell A cutoff control means for cutting off the current and forcibly cutting off the supply of the fuel gas from the fuel supply source by the supply source cutoff means, and a cutoff control of the output current by the cutoff control means. When the supply of fuel gas from the fuel supply source is forcibly cut off,
A fuel cell system comprising: a fuel gas leakage determining means for determining whether or not there is a fuel gas leakage from the closed space based on a pressure drop rate detected by the pressure detecting means. Gas leak detector.
閉空間を複数の閉空間に遮断する閉空間分割手段を備え
ると共に、前記圧力検出手段が前記複数の閉空間それぞ
れの圧力を検出するよう構成し、前記燃料ガス漏れ判断
手段が、前記複数の閉空間毎の圧力降下速度に基づい
て、燃料ガス漏れの有無及び燃料ガス漏れの発生箇所を
判断することを特徴とする請求項5記載の燃料電池シス
テムのガス漏れ検知装置。6. A closed space dividing means for shutting off a closed space of a fuel gas circulation supply system including the fuel cell into a plurality of closed spaces, and the pressure detecting means detects the pressure of each of the plurality of closed spaces. 6. The fuel gas leakage determination means is configured as described above, and determines the presence or absence of the fuel gas leakage and the location of the fuel gas leakage based on the pressure drop rates of the plurality of closed spaces. Gas leak detection device for fuel cell system in Japan.
損失部の間における圧力を複数箇所でそれぞれに検出
し、前記燃料ガス漏れ判断手段が、それぞれの検出部位
における圧力降下速度に基づいて、燃料ガス漏れの有無
及び燃料ガス漏れの発生箇所を判断することを特徴とす
る請求項5記載の燃料電池システムのガス漏れ検知装
置。7. The pressure detection means detects the pressure between the pressure loss portions in the closed space at a plurality of points, and the fuel gas leakage determination means determines the pressure drop rate at each detection portion. The gas leak detection device for a fuel cell system according to claim 5, wherein the presence or absence of the fuel gas leak and the location where the fuel gas leak has occurred are determined.
れの検出部位における圧力降下速度のうちの最も大きな
圧力降下速度が閾値よりも大きいときに、最も大きな降
下速度を示した検出部位での燃料ガス漏れの発生を判断
することを特徴とする請求項7記載の燃料電池システム
のガス漏れ検知装置。8. The fuel gas leakage determining means, when the largest pressure drop speed among the pressure drop speeds at the respective detection parts is larger than a threshold value, the fuel at the detection part showing the largest drop speed. The gas leakage detection device for a fuel cell system according to claim 7, wherein the occurrence of gas leakage is determined.
系を含んで構成される燃料電池システムにおいて、 前記燃料電池の出力電流を遮断する出力電流遮断手段
と、 前記燃料電池を含む燃料ガス循環供給系の閉空間におけ
る少なくとも1つの圧力損失部の前後差圧を検出する差
圧検出手段と、 前記燃料電池の電気負荷が閾値よりも小さい状態を判別
する電気負荷判別手段と、 該電気負荷判別手段で燃料電池の電気負荷が閾値よりも
小さいと判別されたときに、前記出力電流遮断手段によ
り燃料電池の出力電流を遮断する遮断制御手段と、 該遮断制御手段により出力電流の遮断が行われていると
きに、前記差圧検出手段で検出される差圧に基づいて、
前記閉空間からの燃料ガス漏れの有無を判断する燃料ガ
ス漏れ判断手段と、 を含んで構成されたことを特徴とする燃料電池システム
のガス漏れ検知装置。9. A fuel cell system including a fuel cell, a fuel supply source, and a fuel gas circulation supply system, and an output current interruption means for interrupting an output current of the fuel cell, and a fuel gas including the fuel cell. Differential pressure detection means for detecting a differential pressure across at least one pressure loss portion in a closed space of the circulation supply system, electrical load determination means for determining a state in which the electrical load of the fuel cell is smaller than a threshold value, and the electrical load When the determination means determines that the electric load of the fuel cell is smaller than the threshold value, the output current cutoff means cuts off the output current of the fuel cell, and the cutoff control means cuts off the output current. When the differential pressure is detected, based on the differential pressure detected by the differential pressure detecting means,
A fuel leak detecting device for a fuel cell system, comprising: a fuel gas leak judging means for judging whether or not a fuel gas leaks from the closed space.
ける複数の圧力損失部の前後差圧をそれぞれに検出し、
前記燃料ガス漏れ判断手段が、前記前後差圧が閾値より
も大きいときに、燃料ガス漏れの発生を判断すると共
に、隣接する検出部それぞれでの差圧の方向に基づいて
燃料ガス漏れの発生箇所を判断することを特徴とする請
求項9記載の燃料電池システムのガス漏れ検知装置。10. The differential pressure detecting means respectively detects differential pressures across a plurality of pressure loss portions in the closed space,
The fuel gas leakage determination means determines the occurrence of fuel gas leakage when the front-back differential pressure is greater than a threshold value, and determines the location of the fuel gas leakage based on the direction of the differential pressure at each of the adjacent detection units. 10. The gas leak detection device for a fuel cell system according to claim 9, wherein
供給系の循環系からのパージを制御するパージ手段を含
んで構成され、 前記燃料ガス漏れ判断手段による燃料ガス漏れの判断を
行わせるときに、前記パージ手段によるパージを強制的
に遮断して前記閉空間を形成させるパージ遮断手段を設
けたことを特徴とする請求項4〜10のいずれか1つに
記載の燃料電池システムのガス漏れ検知装置。11. The fuel cell system comprises a purge means for controlling purge from the circulation system of the fuel gas circulation supply system, and when the fuel gas leakage determination means determines the fuel gas leakage. The gas leak detection of the fuel cell system according to any one of claims 4 to 10, further comprising: a purge shutoff means for forcibly shutting off the purge by the purge means to form the closed space. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002113564A JP3846354B2 (en) | 2002-04-16 | 2002-04-16 | Gas leak detection method and apparatus for fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002113564A JP3846354B2 (en) | 2002-04-16 | 2002-04-16 | Gas leak detection method and apparatus for fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003308866A true JP2003308866A (en) | 2003-10-31 |
JP3846354B2 JP3846354B2 (en) | 2006-11-15 |
Family
ID=29395713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002113564A Expired - Fee Related JP3846354B2 (en) | 2002-04-16 | 2002-04-16 | Gas leak detection method and apparatus for fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3846354B2 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005011703A (en) * | 2003-06-19 | 2005-01-13 | Toyota Motor Corp | Fuel cell system and gas leakage detection method |
JP2005149799A (en) * | 2003-11-12 | 2005-06-09 | Honda Motor Co Ltd | Exhaust apparatus of fuel cell |
JP2005174694A (en) * | 2003-12-10 | 2005-06-30 | Toyota Motor Corp | Fuel cell degradation diagnostic apparatus |
WO2005067088A2 (en) * | 2003-12-25 | 2005-07-21 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and control method thereof |
WO2005088756A1 (en) * | 2004-03-17 | 2005-09-22 | Toyota Jidosha Kabushiki Kaisha | Device and method for detecting gas leakage |
WO2006033426A1 (en) * | 2004-09-21 | 2006-03-30 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system, abnormality detection method for the system, and movable body |
JP2006108024A (en) * | 2004-10-08 | 2006-04-20 | Toyota Motor Corp | High pressure gas feeder and fuel cell system using it |
JP2006134861A (en) * | 2004-10-08 | 2006-05-25 | Toyota Motor Corp | Fuel cell system and gas leakage detection method |
WO2006062237A1 (en) * | 2004-12-07 | 2006-06-15 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method for inspecting gas leakage of same |
JP2006164729A (en) * | 2004-12-07 | 2006-06-22 | Toyota Motor Corp | Fuel cell system and method of inspecting its gas leakage |
JP2006164730A (en) * | 2004-12-07 | 2006-06-22 | Toyota Motor Corp | Fuel cell system and method of detecting its gas leakage |
JP2006179469A (en) * | 2004-11-29 | 2006-07-06 | Toyota Motor Corp | Gas leak detection device and fuel cell system |
JP2006294255A (en) * | 2005-04-05 | 2006-10-26 | Toyota Motor Corp | Fuel cell system and gas leakage detection method of fuel cell system |
JP2007040193A (en) * | 2005-08-03 | 2007-02-15 | Toyota Motor Corp | Ejector and fuel cell system equipped with same |
WO2007018132A1 (en) * | 2005-08-09 | 2007-02-15 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method for judging fuel gas leakage in fuel cell system |
JP2007265669A (en) * | 2006-03-27 | 2007-10-11 | Osaka Gas Co Ltd | Leak detecting method in fuel cell power generation system |
WO2009060702A1 (en) * | 2007-11-08 | 2009-05-14 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and hydrogen leak judgment method in the system |
JP2010287578A (en) * | 2010-08-02 | 2010-12-24 | Toyota Motor Corp | Fuel cell degradation diagnostic apparatus |
US7882728B2 (en) | 2005-06-06 | 2011-02-08 | Toyota Jidosha Kabushiki Kaisha | Dual anomaly judgment device for a fuel cell |
JP2011211234A (en) * | 2011-06-24 | 2011-10-20 | Gigaphoton Inc | Ultraviolet ray gas laser apparatus |
US8173315B2 (en) | 2005-07-01 | 2012-05-08 | Toyota Jidosha Kabushiki Kaisha | Fuel battery system, method for detecting gas leakage in such system, and mobile object |
US8216729B2 (en) | 2004-09-16 | 2012-07-10 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and gas leak determination method for fuel cell system |
JP2012151125A (en) * | 2004-10-08 | 2012-08-09 | Toyota Motor Corp | Fuel cell system and gas leakage detection method |
US8349509B2 (en) | 2004-09-22 | 2013-01-08 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and fuel cell system failure judgment method |
US8486577B2 (en) | 2005-07-27 | 2013-07-16 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
DE102006025125B4 (en) * | 2005-06-01 | 2013-09-05 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Method for detecting leaks in gas supply systems with redundant valves, fuel cell system and its use |
JP2015122149A (en) * | 2013-12-20 | 2015-07-02 | 株式会社デンソー | Fuel gas leak detector and fuel battery vehicle |
US9147893B2 (en) | 2004-06-02 | 2015-09-29 | Toyota Jidosha Kabushiki Kaisha | Failure diagnostic device for discharge valve |
JP2022059302A (en) * | 2020-10-01 | 2022-04-13 | トヨタ自動車株式会社 | Fuel cell system and method for controlling fuel cell system |
CN114614055A (en) * | 2020-12-09 | 2022-06-10 | 北京亿华通科技股份有限公司 | Fuel cell system control method, fuel cell system and vehicle |
US11472296B2 (en) * | 2019-04-16 | 2022-10-18 | Toyota Jidosha Kabushiki Kaisha | Fuel cell vehicle and control method of fuel cell vehicle |
US11479125B2 (en) | 2019-04-03 | 2022-10-25 | Toyota Jidosha Kabushiki Kaisha | Fuel cell vehicle |
-
2002
- 2002-04-16 JP JP2002113564A patent/JP3846354B2/en not_active Expired - Fee Related
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005011703A (en) * | 2003-06-19 | 2005-01-13 | Toyota Motor Corp | Fuel cell system and gas leakage detection method |
JP2005149799A (en) * | 2003-11-12 | 2005-06-09 | Honda Motor Co Ltd | Exhaust apparatus of fuel cell |
US7531258B2 (en) * | 2003-11-12 | 2009-05-12 | Honda Motor Co., Ltd. | Fuel cell system and method for discharging reaction gas from fuel cell |
JP4526800B2 (en) * | 2003-11-12 | 2010-08-18 | 本田技研工業株式会社 | Fuel cell discharge device |
JP4582390B2 (en) * | 2003-12-10 | 2010-11-17 | トヨタ自動車株式会社 | Fuel cell deterioration diagnosis device |
JP2005174694A (en) * | 2003-12-10 | 2005-06-30 | Toyota Motor Corp | Fuel cell degradation diagnostic apparatus |
WO2005067088A2 (en) * | 2003-12-25 | 2005-07-21 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and control method thereof |
US8067127B2 (en) | 2003-12-25 | 2011-11-29 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and control method thereof for detecting a chemical short |
WO2005067088A3 (en) * | 2003-12-25 | 2006-07-13 | Toyota Motor Co Ltd | Fuel cell system and control method thereof |
JP4662313B2 (en) * | 2004-03-17 | 2011-03-30 | トヨタ自動車株式会社 | Gas leak detection apparatus and method |
WO2005088756A1 (en) * | 2004-03-17 | 2005-09-22 | Toyota Jidosha Kabushiki Kaisha | Device and method for detecting gas leakage |
US7581431B2 (en) | 2004-03-17 | 2009-09-01 | Toyota Jidosha Kabushiki Kaisha | Gas leak detection device and method for same |
JPWO2005088756A1 (en) * | 2004-03-17 | 2008-01-31 | トヨタ自動車株式会社 | Gas leak detection device and method thereof |
CN100449839C (en) * | 2004-03-17 | 2009-01-07 | 丰田自动车株式会社 | Device and method for detecting gas leakage |
US9147893B2 (en) | 2004-06-02 | 2015-09-29 | Toyota Jidosha Kabushiki Kaisha | Failure diagnostic device for discharge valve |
US8216729B2 (en) | 2004-09-16 | 2012-07-10 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and gas leak determination method for fuel cell system |
WO2006033426A1 (en) * | 2004-09-21 | 2006-03-30 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system, abnormality detection method for the system, and movable body |
US8349509B2 (en) | 2004-09-22 | 2013-01-08 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and fuel cell system failure judgment method |
JP2006134861A (en) * | 2004-10-08 | 2006-05-25 | Toyota Motor Corp | Fuel cell system and gas leakage detection method |
JP2012151125A (en) * | 2004-10-08 | 2012-08-09 | Toyota Motor Corp | Fuel cell system and gas leakage detection method |
JP2006108024A (en) * | 2004-10-08 | 2006-04-20 | Toyota Motor Corp | High pressure gas feeder and fuel cell system using it |
JP2006179469A (en) * | 2004-11-29 | 2006-07-06 | Toyota Motor Corp | Gas leak detection device and fuel cell system |
JP2006164729A (en) * | 2004-12-07 | 2006-06-22 | Toyota Motor Corp | Fuel cell system and method of inspecting its gas leakage |
WO2006062237A1 (en) * | 2004-12-07 | 2006-06-15 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method for inspecting gas leakage of same |
JP2006164730A (en) * | 2004-12-07 | 2006-06-22 | Toyota Motor Corp | Fuel cell system and method of detecting its gas leakage |
JP4623417B2 (en) * | 2004-12-07 | 2011-02-02 | トヨタ自動車株式会社 | Fuel cell system and gas leak inspection method thereof |
JP4623418B2 (en) * | 2004-12-07 | 2011-02-02 | トヨタ自動車株式会社 | Fuel cell system and gas leak inspection method thereof |
JP2006294255A (en) * | 2005-04-05 | 2006-10-26 | Toyota Motor Corp | Fuel cell system and gas leakage detection method of fuel cell system |
DE102006025125B4 (en) * | 2005-06-01 | 2013-09-05 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Method for detecting leaks in gas supply systems with redundant valves, fuel cell system and its use |
US7882728B2 (en) | 2005-06-06 | 2011-02-08 | Toyota Jidosha Kabushiki Kaisha | Dual anomaly judgment device for a fuel cell |
DE112006001772B4 (en) | 2005-07-01 | 2022-08-04 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method for detecting a gas leak in such a system |
US8173315B2 (en) | 2005-07-01 | 2012-05-08 | Toyota Jidosha Kabushiki Kaisha | Fuel battery system, method for detecting gas leakage in such system, and mobile object |
US8486577B2 (en) | 2005-07-27 | 2013-07-16 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
JP2007040193A (en) * | 2005-08-03 | 2007-02-15 | Toyota Motor Corp | Ejector and fuel cell system equipped with same |
US7829233B2 (en) | 2005-08-09 | 2010-11-09 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method for judging fuel gas leak in a fuel cell system |
WO2007018132A1 (en) * | 2005-08-09 | 2007-02-15 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method for judging fuel gas leakage in fuel cell system |
KR100974050B1 (en) | 2005-08-09 | 2010-08-04 | 도요타 지도샤(주) | Fuel cell system and method for judging fuel gas leakage in fuel cell system |
JP2007265669A (en) * | 2006-03-27 | 2007-10-11 | Osaka Gas Co Ltd | Leak detecting method in fuel cell power generation system |
US8343679B2 (en) | 2007-11-08 | 2013-01-01 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and hydrogen leak judgment method in the system |
WO2009060702A1 (en) * | 2007-11-08 | 2009-05-14 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and hydrogen leak judgment method in the system |
JP2010287578A (en) * | 2010-08-02 | 2010-12-24 | Toyota Motor Corp | Fuel cell degradation diagnostic apparatus |
JP2011211234A (en) * | 2011-06-24 | 2011-10-20 | Gigaphoton Inc | Ultraviolet ray gas laser apparatus |
JP2015122149A (en) * | 2013-12-20 | 2015-07-02 | 株式会社デンソー | Fuel gas leak detector and fuel battery vehicle |
US11479125B2 (en) | 2019-04-03 | 2022-10-25 | Toyota Jidosha Kabushiki Kaisha | Fuel cell vehicle |
US11472296B2 (en) * | 2019-04-16 | 2022-10-18 | Toyota Jidosha Kabushiki Kaisha | Fuel cell vehicle and control method of fuel cell vehicle |
JP2022059302A (en) * | 2020-10-01 | 2022-04-13 | トヨタ自動車株式会社 | Fuel cell system and method for controlling fuel cell system |
JP7302565B2 (en) | 2020-10-01 | 2023-07-04 | トヨタ自動車株式会社 | FUEL CELL SYSTEM AND METHOD OF CONTROLLING FUEL CELL SYSTEM |
CN114614055A (en) * | 2020-12-09 | 2022-06-10 | 北京亿华通科技股份有限公司 | Fuel cell system control method, fuel cell system and vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP3846354B2 (en) | 2006-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3846354B2 (en) | Gas leak detection method and apparatus for fuel cell system | |
US10209158B2 (en) | Apparatus and method for detecting leakage in hydrogen tank of hydrogen fuel cell vehicle | |
CA2683650C (en) | Mobile body having a fuel cell system | |
KR101884970B1 (en) | A fuel cell system and a method of detecting a hydrogen gas leak | |
JP6237584B2 (en) | Fuel cell system and air system abnormality determination method | |
CN112803044B (en) | Hydrogen control method and system for fuel cell | |
JP2002352839A (en) | Protective stop controlling device for fuel cell system | |
JP4033376B2 (en) | Fuel supply device | |
JP2010002264A (en) | Gas leakage diagnosis device and gas leakage diagnosis method | |
JP3783649B2 (en) | Vehicle fuel gas supply device | |
JP3216882B2 (en) | Failure diagnosis method of water supply device provided with failure diagnosis device | |
JP2014092213A (en) | Fuel gas supply device and vehicle | |
WO2008071402A1 (en) | Leakage test in a fuel cell system | |
JP2017145903A (en) | Method for operating gas supply system | |
JP4211001B2 (en) | Gas leak detector for high pressure tank system | |
US20050171677A1 (en) | Apparatus for converting energy that can be operated with fuel, in particular fuel cell assembly | |
JP2007051917A (en) | Device for determining abnormality in airtightness, and gas supply device | |
JP2005190764A (en) | Airtightness test method in fuel cell system | |
KR20060072707A (en) | Hydrogen leakage supervisory apparatus for fuel cell car | |
KR102704164B1 (en) | Pressure sensor detection method of fuel cell electric vehicle | |
JP2800376B2 (en) | Gas meter with safety function | |
JP3545273B2 (en) | Gas engine operation method | |
JP2010218904A (en) | Control method of fuel cell system | |
JP4550381B2 (en) | Gas meter | |
JP3622886B2 (en) | Gas shut-off device and gas shut-off method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050328 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060801 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060814 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3846354 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090901 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100901 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110901 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130901 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |