JP2003301434A - Thawing device utilizing terrestrial heat - Google Patents
Thawing device utilizing terrestrial heatInfo
- Publication number
- JP2003301434A JP2003301434A JP2002109878A JP2002109878A JP2003301434A JP 2003301434 A JP2003301434 A JP 2003301434A JP 2002109878 A JP2002109878 A JP 2002109878A JP 2002109878 A JP2002109878 A JP 2002109878A JP 2003301434 A JP2003301434 A JP 2003301434A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat exchanger
- antifreeze
- primary
- circulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cleaning Of Streets, Tracks, Or Beaches (AREA)
- Road Paving Structures (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】 本発明は、地中熱を利用して、
路面や屋根の雪を融かす融雪装置に関するものである。
【0002】
【従来の技術】 従来から、地下の熱水をポンプで汲み
上げ、それを散水して道路等に積もった雪を融かす装置
が考えられている。
【0003】この装置は、熱水をそのまま雪に散水する
ので融雪効果が高いといった利点を持つ。また、自然物
である熱水を利用するので大気汚染等の環境問題を起こ
さないといった利点も併せ持つ。
【0004】
【発明が解決しようとする課題】 しかし、この従来の
装置は、地下の熱水をポンプで汲み上げる必要があるの
で、その熱や熱水に含まれる成分によってポンプが傷み
やすく、装置の耐久性が劣るといった問題がある。耐熱
性等に優れるポンプを使用することができるが、そうし
たポンプは高価である。
【0005】また、この従来装置は、地下の熱水を大量
に汲み上げる必要があるので、地盤沈下を誘発するとい
った問題もある。
【0006】本発明はこうした問題に鑑み創案されたも
ので、耐久性に優れ、効果的に融雪することができ、か
つ、大気汚染や地盤沈下といった問題を誘発することの
ない融雪装置を提供することを課題とする。
【0007】
【課題を解決するための手段】 図1乃至図3を参照し
て説明する。本発明に係る地中熱利用融雪装置は、地中
に垂直に埋設した採熱器1に、熱交換器5との間を循環
する一次不凍液を供給して地中熱を採取し、採取した地
中熱を、熱交換器5において、当該熱交換器5と融雪場
所10に設けた放熱管6との間を循環する二次不凍液に
移し、その熱で融雪場所10の雪を融かす装置であっ
て、前記採熱器1と熱交換器5との間に、前記一次不凍
液を循環させるために設けた往路8と復路9のうち、復
路9に、前記一次不凍液を循環するための循環ポンプ7
を設けてなる。
【0008】
【発明の実施の形態】 本発明に係る地中熱利用融雪装
置の実施形態を、図1に示す。この装置は、採熱器1、
放熱管6および熱交換器5を備える。
【0009】採熱器1は、底部を塞いだ外筒2内に内筒
3を同心状に挿入組付けして、外筒2と内筒3との間に
間隙通路4を形成した同心二重管式のものであり、地中
に50m〜100mの深さにわたって垂直に埋設してい
る。
【0010】放熱管6は、路面や屋根等の融雪場所10
に、いわゆるヘアピンカーブ状に設けている。
【0011】そして、熱交換器5は、採熱器1と放熱管
6との間に設けており、採熱器1とは、当該採熱器1と
の間で一次不凍液を循環する往路8と復路9とによって
連通している。また、放熱管6とは、同じく当該放熱管
6との間で二次不凍液を循環する送路11と帰路12と
によって連通している。
【0012】そして、前記復路9に、一次不凍液を循環
するための循環ポンプ7を設けている。なお、本実施形
態においては、往路8を間隙通路4に連通し、復路9を
内筒3に連通している。
【0013】こうした構成において、循環ポンプ7を駆
動すると、一次不凍液が内筒3の上端部を通って下降
し、その下端部で間隙通路4に侵入して上昇する。この
上昇の際、地中熱を採取する。上昇した一次不凍液は、
往路8を通過して熱交換器5に至る。
【0014】熱交換器5では、一次不凍液の熱が、放熱
管6との間を循環する二次不凍液に、熱交換によって移
される。この熱交換によって加熱された二次不凍液は、
放熱管6でその熱を放出し、融雪場所10に積もった雪
を融雪し、あるいは雪が積もるのを阻止する。
【0015】熱交換器5で熱を奪われた一次不凍液は、
循環ポンプ7を経由して、再び採熱器1に供給され、地
中熱を採取する。こうした循環を繰り返して、融雪場所
10の雪を連続的に融かす。
【0016】この融雪装置においては、一次不凍液で地
中熱を採取し、その熱を利用して融雪を行うものであ
り、従って、循環ポンプ7を通過するのは従来技術にお
ける熱水ではなく一次不凍液である。この一次不凍液
は、従来技術における熱水と比較して、その温度が大幅
に低い。また、循環ポンプ7は熱交換を終えた一次不凍
液が通過する復路9に設けているので、当該一次不凍液
は往路8のそれより低温である。従って、循環ポンプ7
は、熱や熱水に含まれる成分の影響によって故障するこ
とがなく、その結果、当該装置の耐久性が大幅に向上す
る。それと同時に、通常のポンプを使用することができ
るので、装置を廉価なものとすることができる。
【0017】また、熱交換器5を設けて、一次不凍液の
熱を二次不凍液に移すので、一次不凍液をそのまま放熱
管6に供給するのと異なり、その温度を放熱管6で急激
に下げることなく、常に一定以上に保つことができる。
従って、その熱を吸収する二次不凍液の温度も、常に、
融雪に必要な一定温度以上に保つことができる。よっ
て、長時間にわたって効果的な融雪を連続的に行うこと
ができる。
【0018】融雪を行う場合、場所によって異なるもの
の、短時間に高温を加えるよりも、長時間にわたって連
続的に一定以上の低温を加える方が効果的な場合が多
い。本発明に係る装置は、そうした認識に基づき、採熱
器1と放熱管6との間に熱交換器5を設けて、高温では
ないが、融雪に必要な一定以上の温度を長時間連続的に
与えることができるようにした。
【0019】なお、長時間にわたって高温を得たい場合
には、熱交換器5に代えて、あるいはそれと共に、ヒー
トポンプを設けることもできる。
【0020】また、この地中熱利用装置は、地中熱を利
用するので、地盤沈下や大気汚染等の問題も発生しない
といった大きな利点を持つ。
【0021】なお、本発明に係る融雪装置は、路面や屋
根の融雪の他、床暖房等の暖房装置としても使用するこ
とができる。
【0022】本発明に係る地中熱利用融雪装置の他の実
施形態を、図2に示す。この装置の特徴は、図1に示す
実施形態とは逆に、一次不凍液を間隙通路4から内筒3
に通過させていることである。この装置も、前述の装置
と同様に、耐久性に優れ、大気汚染等の問題を誘発する
ことなく、効果的な融雪を行うことができる。なお、採
熱器1は、本実施形態で示した同心二重管式のものに限
定されるものではなく、図3に示すような、いわゆるU
字式のものでも良い。このU字式は、管本体13の中央
部に隔壁14を設け、二つの通路15を平行して形成し
たものである。
【0023】なお、熱交換器5と循環ポンプ7は、商用
電源の他に、太陽熱発電装置や内燃機関発電装置によっ
て稼動することができる。太陽光発電装置は、図4に示
すように、ソーラーパネル16で太陽光を吸収し、蓄電
池ボックス17内の蓄電池19に、充電必要時に作動す
る制御基板18を介して蓄電し、コントローラー20に
よって必要量の電力を熱交換器5と循環ポンプ7へ供給
する。
【0024】
【発明の効果】 本発明に係る地中熱利用融雪装置は、
循環ポンプ7には低温である一次不凍液を通過させ、ま
た、この循環ポンプ7は復路9に設けているので、当該
一次不凍液は熱交換後のさらに低温なものであり、よっ
て、循環ポンプ7が熱等によって故障することがない。
従って、当該装置の耐久性が大幅に向上する。
【0025】また、採熱器1と放熱管6との間に熱交換
器5を設けて、一次不凍液の熱を二次不凍液に移すの
で、二次不凍液の温度を常に融雪に必要な一定以上に保
つことができる。従って、長時間にわたって、効果的な
融雪を連続的に行うことができる。
【0026】さらに、この地中熱利用融雪装置は、地中
熱を利用するので、地盤沈下や大気汚染等の問題も誘発
しない。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention
The present invention relates to a snow melting device for melting snow on a road surface or a roof. 2. Description of the Related Art Conventionally, there has been proposed an apparatus that pumps underground hot water with a pump, sprays the hot water, and melts snow accumulated on a road or the like. [0003] This device has the advantage that the snow melting effect is high because hot water is sprayed on the snow as it is. In addition, since hot water, which is a natural product, is used, there is an advantage that environmental problems such as air pollution do not occur. [0004] However, in this conventional device, since it is necessary to pump underground hot water with a pump, the pump is easily damaged by the heat and components contained in the hot water, and the device is difficult to use. There is a problem that durability is poor. Although a pump having excellent heat resistance and the like can be used, such a pump is expensive. [0005] In addition, this conventional device has a problem that it induces land subsidence because it is necessary to pump a large amount of underground hot water. The present invention has been made in view of the above problems, and provides a snow melting apparatus which has excellent durability, can melt snow effectively, and does not cause problems such as air pollution and land subsidence. That is the task. A description will be given with reference to FIGS. 1 to 3. The underground heat utilizing snow melting apparatus according to the present invention supplies the primary antifreeze circulating between the heat exchanger 1 and the heat collecting apparatus 1 buried vertically in the ground to collect and collect the underground heat. A device for transferring underground heat to a secondary antifreeze circulating in the heat exchanger 5 between the heat exchanger 5 and the radiating pipe 6 provided in the snow melting place 10 and melting the snow in the snow melting place 10 with the heat. And a circulation for circulating the primary antifreeze in the return path 9 of the forward path 8 and the return path 9 provided between the heat collector 1 and the heat exchanger 5 for circulating the primary antifreeze. Pump 7
Is provided. FIG. 1 shows an embodiment of a snow melting apparatus utilizing geothermal heat according to the present invention. This device comprises a heat collector 1,
The heat radiating tube 6 and the heat exchanger 5 are provided. The heat collecting device 1 includes a concentric inner tube 3 having a gap passage 4 formed between the outer tube 2 and the inner tube 3 by concentrically inserting and assembling the inner tube 3 into an outer tube 2 whose bottom is closed. It is of a heavy pipe type and is vertically buried under the ground at a depth of 50 m to 100 m. The radiator tube 6 is provided at a snow melting place 10 such as a road surface or a roof.
In addition, it is provided in a so-called hairpin curve shape. The heat exchanger 5 is provided between the heat collector 1 and the radiator pipe 6, and the heat collector 1 is connected to the outward path 8 for circulating the primary antifreeze with the heat collector 1. And the return path 9. Further, the heat radiating pipe 6 is communicated with the heat radiating pipe 6 by a feed path 11 and a return path 12 for circulating the secondary antifreeze liquid. The return path 9 is provided with a circulation pump 7 for circulating the primary antifreeze. In the present embodiment, the outward path 8 communicates with the gap path 4, and the return path 9 communicates with the inner cylinder 3. In such a configuration, when the circulating pump 7 is driven, the primary antifreeze descends through the upper end of the inner cylinder 3 and enters the gap passage 4 at the lower end and rises. During this rise, geothermal heat is collected. The raised primary antifreeze
It passes through the outward route 8 and reaches the heat exchanger 5. In the heat exchanger 5, the heat of the primary antifreeze is transferred to the secondary antifreeze circulating between the primary antifreeze and the radiator pipe 6 by heat exchange. The secondary antifreeze heated by this heat exchange is
The heat is released by the radiator tube 6 to melt the snow accumulated in the snow melting place 10 or prevent the snow from accumulating. The primary antifreeze deprived of heat in the heat exchanger 5 is:
Via the circulation pump 7, it is supplied to the heat collector 1 again to collect the underground heat. By repeating such a circulation, the snow in the snow melting place 10 is continuously melted. In this snow melting apparatus, the underground heat is collected with a primary antifreeze, and the heat is used to melt the snow. Antifreeze. This primary antifreeze has a significantly lower temperature compared to hot water in the prior art. Further, since the circulation pump 7 is provided in the return path 9 through which the primary antifreeze liquid after the heat exchange passes, the primary antifreeze liquid has a lower temperature than that of the forward path 8. Therefore, the circulation pump 7
Does not break down due to the influence of heat or components contained in hot water, and as a result, the durability of the device is greatly improved. At the same time, a conventional pump can be used, so that the device can be inexpensive. Since the heat exchanger 5 is provided to transfer the heat of the primary antifreeze to the secondary antifreeze, the temperature of the primary antifreeze is rapidly reduced by the heat radiating pipe 6 unlike the case where the primary antifreeze is directly supplied to the heat radiating pipe 6. No, it can always be kept above a certain level.
Therefore, the temperature of the secondary antifreeze that absorbs the heat is always
It can be maintained at a certain temperature or higher required for snow melting. Therefore, effective snow melting can be continuously performed for a long time. When performing snow melting, although it depends on the location, it is often more effective to continuously apply a constant low temperature for a long time than to apply a high temperature in a short time. Based on such recognition, the apparatus according to the present invention provides the heat exchanger 5 between the heat collector 1 and the heat radiating pipe 6 to continuously maintain a temperature not lower than a certain temperature required for snow melting for a long time. To be able to give to. If it is desired to obtain a high temperature for a long time, a heat pump may be provided instead of or together with the heat exchanger 5. Further, since the underground heat utilization apparatus utilizes underground heat, there is a great advantage that problems such as land subsidence and air pollution do not occur. The snow melting device according to the present invention can be used as a heating device such as floor heating in addition to snow melting on a road surface or a roof. FIG. 2 shows another embodiment of the underground heat utilizing snow melting apparatus according to the present invention. The feature of this device is that, contrary to the embodiment shown in FIG.
Is to pass through. This device is also excellent in durability and can effectively melt snow without causing a problem such as air pollution, similarly to the above-described device. Note that the heat collector 1 is not limited to the concentric double tube type shown in the present embodiment, but is a so-called U-shaped as shown in FIG.
It may be a character type. In the U-shape, a partition wall 14 is provided at the center of a tube main body 13, and two passages 15 are formed in parallel. The heat exchanger 5 and the circulation pump 7 can be operated by a solar thermal power generator or an internal combustion engine power generator in addition to a commercial power supply. As shown in FIG. 4, the solar power generation device absorbs sunlight with a solar panel 16, stores electricity in a storage battery 19 in a storage battery box 17 via a control board 18 that operates when charging is necessary, and requires a controller 20. An amount of electric power is supplied to the heat exchanger 5 and the circulation pump 7. According to the present invention, a geothermal heat utilizing snow melting apparatus is provided.
The low-temperature primary antifreeze is passed through the circulation pump 7, and since the circulation pump 7 is provided in the return path 9, the primary antifreeze is still lower in temperature after heat exchange. Does not break down due to heat or the like.
Therefore, the durability of the device is greatly improved. Further, since the heat exchanger 5 is provided between the heat collector 1 and the heat radiating pipe 6 to transfer the heat of the primary antifreeze to the secondary antifreeze, the temperature of the secondary antifreeze is always kept above a certain level necessary for melting the snow. Can be kept. Therefore, effective snow melting can be continuously performed for a long time. Further, since the underground heat utilizing snow melting apparatus utilizes underground heat, it does not cause problems such as land subsidence or air pollution.
【図面の簡単な説明】
【図1】 本発明の実施形態を示す断面図である。
【図2】 本発明の他の実施形態を示す断面図である。
【図3】 本発明において、採熱管の他の実施形態を示
すもので(a)は正面断面図、(b)は平面断面図であ
る。
【図4】 本発明に係る融雪装置の循環ポンプ等を稼動
する太陽熱発電装置のフローチャートである。
【符号の説明】
1 採熱器
2 外筒
3 内筒
4 間隙通路
5 熱交換器
6 放熱管
7 循環ポンプ
8 往路
9 復路
10 融雪場所
11 送路
12 帰路
13 管本体
14 隔壁
15 通路
16 ソーラーパネル
17 蓄電池ボックス
18 制御基板
19 蓄電池
20 コントローラーBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing an embodiment of the present invention. FIG. 2 is a cross-sectional view showing another embodiment of the present invention. 3A and 3B show another embodiment of the heat collection tube in the present invention, wherein FIG. 3A is a front sectional view, and FIG. 3B is a plan sectional view. FIG. 4 is a flowchart of a solar thermal power generation device that operates a circulation pump and the like of the snow melting device according to the present invention. [Description of Signs] 1 Heat collector 2 Outer cylinder 3 Inner cylinder 4 Gap passage 5 Heat exchanger 6 Heat radiating pipe 7 Circulation pump 8 Outgoing path 9 Return path 10 Snow melting place 11 Transmission path 12 Return path 13 Pipe body 14 Partition wall 15 Passage 16 Solar panel 17 storage battery box 18 control board 19 storage battery 20 controller
Claims (1)
熱交換器(5)との間を循環する一次不凍液を供給して
地中熱を採取し、 前記採取した地中熱を、熱交換器(5)において、該熱
交換器(5)と融雪場所(10)に設けた放熱管(6)
との間を循環する二次不凍液に移し、その熱で融雪場所
(10)の雪を融かす装置であって、 前記採熱器(1)と熱交換器5との間に、前記一次不凍
液を循環させるために設けた往路(8)と復路(9)の
うち、該復路(9)に、前記一次不凍液を循環するため
の循環ポンプ(7)を設けてなる地中熱利用融雪装置。Claims 1. A heat collector (1) buried vertically in the ground,
The primary antifreeze circulating between the heat exchanger (5) is supplied to collect the underground heat, and the collected underground heat is transferred to the heat exchanger (5) and the snow melter in the heat exchanger (5). Radiator tube (6) provided at location (10)
A second antifreeze circulating between the first antifreeze and the heat collector (1) and a heat exchanger 5; A geothermal heat-using snow melting apparatus comprising a circulation pump (7) for circulating the primary antifreeze in the forward path (8) and the return path (9) provided for circulating the water.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002109878A JP2003301434A (en) | 2002-04-12 | 2002-04-12 | Thawing device utilizing terrestrial heat |
CNB031207324A CN1194145C (en) | 2002-04-12 | 2003-03-18 | Snow melting device using geothermal energy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002109878A JP2003301434A (en) | 2002-04-12 | 2002-04-12 | Thawing device utilizing terrestrial heat |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003301434A true JP2003301434A (en) | 2003-10-24 |
Family
ID=29243209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002109878A Pending JP2003301434A (en) | 2002-04-12 | 2002-04-12 | Thawing device utilizing terrestrial heat |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2003301434A (en) |
CN (1) | CN1194145C (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007327738A (en) * | 2006-05-26 | 2007-12-20 | Tai-Her Yang | System equalizing temperature by using natural temperature accumulation body for installation device |
WO2008122114A2 (en) * | 2007-04-04 | 2008-10-16 | Bardsley James E | Coaxial borehole energy exchange system for storing and extracting underground cold |
KR101091210B1 (en) | 2009-05-28 | 2011-12-07 | 코오롱건설주식회사 | A freezing removal system for road using geothermal cooling and heating unit |
GB2505505A (en) * | 2012-09-03 | 2014-03-05 | Loopmaster Europ Ltd | Ground source energy system for an outdoor traffic-bearing surface |
CN107144035A (en) * | 2017-05-16 | 2017-09-08 | 中国科学院广州能源研究所 | A kind of regulatable loop heat pipe formula underground heat mining system of working medium circulation flow |
WO2022022750A1 (en) * | 2020-09-15 | 2022-02-03 | 中国科学院广州能源研究所 | Heat pump system and method for achieving efficient evaporation using geothermal well |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101851988A (en) * | 2010-05-18 | 2010-10-06 | 刘树伟 | Gutter snow melting plate |
CN102535770A (en) * | 2012-03-27 | 2012-07-04 | 鲁东大学 | Ice and snow prevention stair step |
CN103088741A (en) * | 2013-01-17 | 2013-05-08 | 东南大学 | Highway bridge pavement deicing and snow melting system based on energy pile and running mode |
CN103147376A (en) * | 2013-02-28 | 2013-06-12 | 天津百思特环保能源开发有限公司 | Solar snow melting system |
CN103225281B (en) * | 2013-04-26 | 2015-09-16 | 同济大学 | Geothermal using is utilized immediately to melt the ground source heat pump heat accumulation heating system of airfield runway snowfall |
CN103196249A (en) * | 2013-04-26 | 2013-07-10 | 王春梅 | Medium/deep-stratum closed circulation heat exchange system |
CN103422424B (en) * | 2013-06-27 | 2016-02-24 | 长沙理工大学 | Bridge-wire fusing time section bridge anti-freezing system |
CN105352003A (en) * | 2015-12-01 | 2016-02-24 | 邢培奇 | Enhanced geothermal energy heat supply system |
CN105605645A (en) * | 2016-02-26 | 2016-05-25 | 邢培奇 | Heating system of deep geothermal rock |
CN106322830A (en) * | 2016-09-27 | 2017-01-11 | 天津大学 | Efficient downhole heat extraction system for middle-deep geothermal energy |
CN110924264A (en) * | 2019-11-25 | 2020-03-27 | 何文炳 | Self-lifting antiskid plate, road icing antiskid system and application |
-
2002
- 2002-04-12 JP JP2002109878A patent/JP2003301434A/en active Pending
-
2003
- 2003-03-18 CN CNB031207324A patent/CN1194145C/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007327738A (en) * | 2006-05-26 | 2007-12-20 | Tai-Her Yang | System equalizing temperature by using natural temperature accumulation body for installation device |
KR101366933B1 (en) * | 2006-05-26 | 2014-02-24 | 양태허 | Installation adapted with temperature equalization system |
WO2008122114A2 (en) * | 2007-04-04 | 2008-10-16 | Bardsley James E | Coaxial borehole energy exchange system for storing and extracting underground cold |
WO2008122114A3 (en) * | 2007-04-04 | 2008-12-18 | James E Bardsley | Coaxial borehole energy exchange system for storing and extracting underground cold |
KR101091210B1 (en) | 2009-05-28 | 2011-12-07 | 코오롱건설주식회사 | A freezing removal system for road using geothermal cooling and heating unit |
GB2505505A (en) * | 2012-09-03 | 2014-03-05 | Loopmaster Europ Ltd | Ground source energy system for an outdoor traffic-bearing surface |
CN107144035A (en) * | 2017-05-16 | 2017-09-08 | 中国科学院广州能源研究所 | A kind of regulatable loop heat pipe formula underground heat mining system of working medium circulation flow |
CN107144035B (en) * | 2017-05-16 | 2019-06-28 | 中国科学院广州能源研究所 | A kind of regulatable loop heat pipe formula underground heat mining system of working medium circulation flow |
WO2022022750A1 (en) * | 2020-09-15 | 2022-02-03 | 中国科学院广州能源研究所 | Heat pump system and method for achieving efficient evaporation using geothermal well |
Also Published As
Publication number | Publication date |
---|---|
CN1194145C (en) | 2005-03-23 |
CN1451818A (en) | 2003-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003301434A (en) | Thawing device utilizing terrestrial heat | |
US6372978B1 (en) | Wind/sun solar collection system (HS2) | |
CN102695924B (en) | Energy storage system | |
US8567482B2 (en) | Heat tube device utilizing cold energy and application thereof | |
RU2578385C1 (en) | Method for operation of heat energy accumulation system | |
US20120125019A1 (en) | Self sustaining energy system for a building | |
CN102550340B (en) | Solar regenerative heating device for greenhouse heating | |
JP2004069197A (en) | System using natural energy/underground heat together, and operating method thereof | |
JP2003301409A (en) | Terrestrial heat-utilizing snow-melting device | |
GB2452754A (en) | Method and apparatus for cooling a photovoltaic cell by means of a heat pump | |
CN208046487U (en) | Case type solar heat electrical chip electricity generation system | |
JP2003307353A (en) | Antifreeze circulation-type device for utilizing underground heat | |
JP2003302122A (en) | Geothermal unit | |
JP2003307368A (en) | Installation method for underwater heat using heat source equipment | |
JP2004039966A (en) | Thermoelectric element snow melting system and thermoelectric element power generation system | |
JP2003306918A (en) | Method for controlling underground-heat utilizing snow- melting device | |
JPH11274543A (en) | Method and apparatus for solar generation, heat collection and melting snow | |
JP2003301571A (en) | Snow-melting roof structure | |
CN109945372A (en) | A kind of high-efficiency solar isopentane air-conditioning system | |
CN1603695A (en) | Independent heating and heat supply device utilizing solar energy and wind energy | |
JP2003307046A (en) | Heat accumulation type snow melting equipment | |
CN213362712U (en) | Heating/cooling system | |
JP2004069281A (en) | Heat exchange pile | |
JP2000055480A (en) | Solar snow-melting apparatus and method for operating the apparatus at snowfall | |
JP2003302107A (en) | Geothermal heat exchange apparatus |