[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003207487A - Defect inspection method and apparatus - Google Patents

Defect inspection method and apparatus

Info

Publication number
JP2003207487A
JP2003207487A JP2002005473A JP2002005473A JP2003207487A JP 2003207487 A JP2003207487 A JP 2003207487A JP 2002005473 A JP2002005473 A JP 2002005473A JP 2002005473 A JP2002005473 A JP 2002005473A JP 2003207487 A JP2003207487 A JP 2003207487A
Authority
JP
Japan
Prior art keywords
inspected
cross
sectional area
elastic wave
area distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002005473A
Other languages
Japanese (ja)
Other versions
JP3986049B2 (en
Inventor
Ippei Torigoe
一平 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002005473A priority Critical patent/JP3986049B2/en
Publication of JP2003207487A publication Critical patent/JP2003207487A/en
Application granted granted Critical
Publication of JP3986049B2 publication Critical patent/JP3986049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect inspection method that can speedily and conveniently detect corrosion and a crack in an object to be inspected. <P>SOLUTION: The apparatus excites elastic wave motion in the object to be measured, and detects the elastic wave motion propagating in the object at least at one point. The device estimates cross-sectional distribution related to the prescribed direction of the object based on the obtained elastic wave motion, and detects the defect of the object based on cross-sectional distribution related to the prescribed direction to be possessed by the object and the estimated cross-sectional distribution. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、対象に生じた腐食
や亀裂などの欠陥を検出するための方法、特に、被検査
物中に弾性波動を励起し、被検査物中を伝播する弾性波
動を検出してその信号から欠陥を検出する方法に関わ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting defects such as corrosion and cracks generated in an object, and more particularly, an elastic wave that excites elastic waves in an object to be inspected and propagates in the object to be inspected. And a method for detecting a defect from the signal.

【0002】[0002]

【従来の技術】構造材や配管などに生じた亀裂や腐食な
どの欠陥は、構造物、施設、装置の破壊など重大な事故
につながる可能性を持つため、定期的な検査が必要であ
る。例えば、高圧送電鉄塔、道路標識、街灯などの構造
物においては、多数の中実または中空の棒が構造材とし
て用いられている。これらの構造物の多くは、風雨にさ
らされているため、年月とともに棒の一部が腐食し強度
が低下することを免れない。また、熱交換器や流体輸送
配管には多数の中空棒=管が用いられており、これらの
管の欠陥は、配管の破断など大きな事故につながる可能
性をもつ。このような対象の検査には、現在、視認検査
とともに、超音波を利用した検査、管の場合にはファイ
バースコープカメラを挿入した検査、電磁誘導を利用し
た検査等が実施されている。しかし、これらの検査法は
原理的に「点」の検査法であるので、対象に沿って多数
の検査を繰り返す必要がある。さらに、しばしば、高所
での作業といった悪条件のもとでの検査となり、長い検
査時間と莫大な費用を要するため、簡便で高速な欠陥検
査法が強く望まれている。
2. Description of the Related Art Defects such as cracks and corrosion in structural materials and pipes can lead to serious accidents such as destruction of structures, facilities and equipment, and therefore regular inspection is necessary. For example, in structures such as high-voltage power transmission towers, road signs, and streetlights, many solid or hollow rods are used as structural materials. Since many of these structures are exposed to wind and rain, it is unavoidable that some of the rods will corrode over time and their strength will decrease. Further, a large number of hollow rods or pipes are used for heat exchangers and fluid transportation pipes, and defects in these pipes can lead to major accidents such as pipe breakage. For inspection of such an object, at present, in addition to visual inspection, inspection using ultrasonic waves, inspection using a fiberscope camera in the case of a tube, inspection using electromagnetic induction, and the like are performed. However, since these inspection methods are “point” inspection methods in principle, it is necessary to repeat a large number of inspections along the object. Further, since the inspection is often performed under adverse conditions such as working at a high place, which requires a long inspection time and enormous cost, a simple and high-speed defect inspection method is strongly desired.

【0003】[0003]

【発明が解決しようとする課題】本発明は、被検査対象
全体の状態を高速に検査でき、高所などの悪条件下でも
実施容易な簡便な欠陥検査法を提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a simple defect inspection method capable of inspecting the entire state of an object to be inspected at high speed and easy to carry out even under adverse conditions such as high places.

【0004】[0004]

【課題を解決するための手段】本発明では、被検査物中
に弾性波動を励起し、被検査物中を伝播する弾性波動を
検出する。被検査物中の弾性波動は、伝播媒体の断面積
が変化する場所で反射を起こすため、弾性波動信号には
媒体の断面積変化の情報が含まれている。検出した弾性
波動信号から被検査物の所定方向に沿った断面積分布を
推定し、健全な断面積分布との相違から欠陥を検出す
る。検査点を対象の全長にわたって走査する必要が無
く、対象上のある場所で検出した弾性波動から所定方向
に沿った断面積分布全体を求めるため、検査は高速かつ
簡便で、悪条件下の検査にも適する。
According to the present invention, an elastic wave is excited in an object to be inspected, and the elastic wave propagating in the object to be inspected is detected. Since the elastic wave in the object to be inspected is reflected at the place where the cross-sectional area of the propagating medium changes, the elastic wave signal includes information on the change of the cross-sectional area of the medium. The cross-sectional area distribution along the predetermined direction of the object to be inspected is estimated from the detected elastic wave signal, and the defect is detected from the difference from the sound cross-sectional area distribution. The inspection point does not need to be scanned over the entire length of the object, and the entire cross-sectional area distribution along the predetermined direction is obtained from elastic waves detected at a certain location on the object, so the inspection is fast and simple, and can be used for inspection under adverse conditions. Is also suitable.

【0005】図2は、弾性波動が一方向に伝播する弾性
体を表した模式図である。弾性体を、長さlの短い区間
の連鎖として表現している。第m区間とその右隣の第m
−1区間との境界面に着目する。もし、第m区間と第m
−1区間の断面積が全く等しいなら、弾性体中を進む波
動は、何ら変化することなくこの境界面を通過する。し
かし、断面積に差がある場合には、この境界面に入射し
た波動は反射を起こす。すなわち、第m区間を左から右
に向かう波動の一部は、この境界面を越えて第m−1区
間へ透過し、残りは境界面で左方向に反射される。一
方、第m−1区間内を右から左へ進んできた波動も、一
部は境界面を透過して第m区間を右から左へ進み、残り
は反射されて第m−1区間を右方向へ戻っていく。これ
と同様の現象が、第m区間と左隣の第m+1区間の境界
面でも発生する。弾性体内で観測される波動は、これら
の透過波と反射波をすべて加え合わせたものである。
FIG. 2 is a schematic diagram showing an elastic body in which elastic waves propagate in one direction. The elastic body is expressed as a chain of short sections of length l. The mth section and the mth section to the right of it
Focus on the boundary surface with the -1 section. If the mth section and the mth
If the cross-sectional areas of the −1 section are exactly the same, the waves traveling in the elastic body pass through this boundary surface without any change. However, when there is a difference in the cross-sectional area, the wave incident on this boundary surface causes reflection. That is, a part of the wave moving from the left to the right in the m-th section is transmitted through the boundary surface to the m-th section, and the rest is reflected to the left by the boundary surface. On the other hand, the waves traveling from the right to the left in the m-1th section are partially transmitted through the boundary surface and proceed from the right to the left in the mth section, and the rest are reflected to the right in the m-1th section. Go back in the direction. The same phenomenon occurs at the boundary surface between the m-th section and the (m + 1) -th section on the left. The wave observed in the elastic body is the sum of all these transmitted and reflected waves.

【0006】弾性体中のある場所に断面積の変化がある
と、そこで反射が起こり、この反射波は弾性体の全体に
伝播していく。また、弾性体の端では、一般的に断面積
が変化しているから、やはり反射を生じる。弾性体の一
点で観測される波動は、全ての透過波と反射波の重ね合
わさったものである。従って、弾性体中の波動は、たと
え一カ所で検出されたものであっても、弾性体全長で生
じる全ての反射からの寄与を含んでいる。ところで、断
面積変化のある境界面でどの程度の反射が生じるかは、
境界面における粒子速度の連続条件および力の釣り合い
条件から求めることができ、図2の第m区間と第m−1
区間の境界面での反射率は、両区間の断面積の比Sm/
Sm−1で決定される。弾性体のある点で検出した振動
には、断面積変化が存在する全ての場所における断面積
比の情報が含まれており、この振動波形を解析すること
によって、弾性体全長にわたる波動伝播方向の断面積分
布を推定することができる。
When there is a change in the cross-sectional area at a certain place in the elastic body, reflection occurs there, and this reflected wave propagates to the entire elastic body. Further, at the end of the elastic body, since the cross-sectional area generally changes, reflection also occurs. The wave observed at one point of the elastic body is a superposition of all transmitted waves and reflected waves. Therefore, the wave motion in the elastic body contains contributions from all the reflections that occur in the entire length of the elastic body, even if they are detected at one place. By the way, how much reflection occurs at the boundary surface where the cross-sectional area changes is
It can be obtained from the particle velocity continuity condition and the force balance condition at the boundary surface.
The reflectance at the boundary surface between the sections is the ratio of the cross-sectional areas of both sections Sm /
It is determined by Sm-1. The vibration detected at a certain point in the elastic body contains information on the cross-sectional area ratio at all locations where cross-sectional area changes exist.By analyzing this vibration waveform, the wave propagation direction over the entire length of the elastic body is analyzed. The cross-sectional area distribution can be estimated.

【0007】弾性体に亀裂が入っている場合には、その
場所の断面積は減少する。弾性体が腐食している場合に
は、腐食部分は脆くなるため、弾性波動の媒体として見
たときの断面積はやはり減少する。このように、弾性体
に何らかの欠陥があると、その場所の断面積が変化す
る。振動波形から推定した断面積分布が、欠陥の無い健
全な弾性体の断面積分布と異なってくることから、欠陥
の存在とその位置を知ることができる。以上の事は、中
実の弾性体だけでなく、管などのように中空の弾性体に
ついても同様に当てはまり、管壁断面積すなわち管肉厚
の分布から、欠陥の有無と位置を知ることができる。
If the elastic body is cracked, the cross-sectional area at that location is reduced. When the elastic body is corroded, the corroded portion becomes brittle, so that the cross-sectional area when viewed as a medium of elastic wave also decreases. Thus, if the elastic body has some kind of defect, the cross-sectional area at that location changes. Since the cross-sectional area distribution estimated from the vibration waveform is different from the cross-sectional area distribution of a sound elastic body having no defect, the existence and position of the defect can be known. The above applies not only to solid elastic bodies, but also to hollow elastic bodies such as pipes, and it is possible to know the presence and position of defects from the distribution of the pipe wall cross-sectional area, that is, the pipe wall thickness. it can.

【0008】[0008]

【発明の実施の形態】本発明は、被検査物内に弾性波動
を励起し、被検査物中を伝播する弾性波動を被検査物の
少なくとも一点で検出し、得られた弾性波動に基づいて
被検査物の所定方向に関する断面積分布を推定し、所定
方向に関する被検査物が有すべき断面積分布と推定され
た断面積分布とに基づいて、被検査物の欠陥を検出す
る。被検査物である弾性体に弾性波動を励起するには、
圧電素子、磁歪素子、動電変換素子などを用いて被検査
物を振動させる。被検査物が強磁性体である場合には、
被検査物に磁場を印可して、磁気歪み(磁歪)効果によ
る伸縮を与え、弾性波動を直接励起することができる。
また、被検査物が導電性を持つ場合には、磁気音響変換
素子(EMAT)を用いることもできる。更に、ハンマ
ーなどによって機械的な打撃を与えて弾性波動を励起す
ることも可能である。弾性波動の検出には、圧電素子を
用いた加速度ピックアップ、動電型の速度ピックアッ
プ、磁歪効果を利用する方法、磁気音響変換素子(EM
AT)などの他、レーザードップラー振動計やレーザー
変位計、あるいは歪みゲージなどを用いることができ
る。検出された弾性波動から波動伝播方向の断面積分布
を推定する問題は、所謂逆問題の一つであり、種々のア
ルゴリズムが考案されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention excites elastic waves in an object to be inspected, detects elastic waves propagating in the object to be inspected at at least one point of the object to be inspected, and based on the obtained elastic waves. A cross-sectional area distribution in a predetermined direction of the inspected object is estimated, and a defect of the inspected object is detected based on the cross-sectional area distribution that the inspected object should have in the predetermined direction and the estimated cross-sectional area distribution. To excite elastic waves in the elastic body that is the object to be inspected,
The object to be inspected is vibrated by using a piezoelectric element, a magnetostrictive element, an electrokinetic conversion element, or the like. If the inspection object is a ferromagnetic material,
A magnetic field can be applied to the object to be inspected to expand and contract due to the magnetostriction effect, and the elastic wave can be directly excited.
Further, when the object to be inspected has conductivity, a magnetoacoustic transducer (EMAT) can be used. Furthermore, it is also possible to excite elastic waves by giving a mechanical impact with a hammer or the like. For the detection of elastic waves, an acceleration pickup using a piezoelectric element, an electrodynamic velocity pickup, a method utilizing the magnetostrictive effect, a magnetoacoustic transducer (EM)
Other than AT), a laser Doppler vibrometer, a laser displacement meter, or a strain gauge can be used. The problem of estimating the cross-sectional area distribution in the wave propagation direction from the detected elastic wave is one of so-called inverse problems, and various algorithms have been devised.

【0009】[0009]

【実施例】(第一実施例)以下、実施例に即して本発明
の詳細を説明をする。図1は、本発明の第一実施例であ
る。図1において、1は検査対象の鉄棒である。2は、
励振コイルであり、鉄棒の一端に巻き付けられている。
3は、ピックアップコイルであり、鉄棒の他の端に巻き
付けられている。4は雑音発生器であり、白色雑音を発
生している。5は増幅器で、雑音発生器からの雑音を増
幅して励振コイルに電流を供給する。6は、検出回路
で、ピックアップコイル3と組み合わされて、鉄棒の端
の振動を検出している。7は、信号処理装置であり、検
出回路で検出された振動波形を解析して、鉄棒の断面積
分布を計算する。8は、表示装置であり、信号処理装置
で計算した断面積分布をグラフィカルに表示している。
EXAMPLES (First Example) The details of the present invention will be described below with reference to Examples. FIG. 1 is a first embodiment of the present invention. In FIG. 1, 1 is an iron bar to be inspected. 2 is
It is an exciting coil and is wound around one end of a steel bar.
A pickup coil 3 is wound around the other end of the iron rod. A noise generator 4 generates white noise. An amplifier 5 amplifies noise from the noise generator and supplies a current to the exciting coil. A detection circuit 6 is combined with the pickup coil 3 to detect the vibration of the end of the iron rod. A signal processing device 7 analyzes the vibration waveform detected by the detection circuit to calculate the cross-sectional area distribution of the iron bar. A display device 8 graphically displays the cross-sectional area distribution calculated by the signal processing device.

【0010】本実施例では、検査対象が強磁性体である
鉄棒であるので、弾性波動の励振に磁歪現象を利用して
いる。雑音発生器で発生した白色雑音を増幅して励振コ
イルを駆動することで、鉄棒をランダムに磁化してお
り、これに伴って生じる磁気歪みが鉄棒中を伝播する。
他端に伝播してきた弾性波動は、やはり磁歪現象を利用
して検出している。
In this embodiment, since the object to be inspected is an iron rod, which is a ferromagnetic material, the magnetostriction phenomenon is used to excite elastic waves. By driving the excitation coil by amplifying the white noise generated by the noise generator, the iron rod is randomly magnetized, and the magnetostriction that accompanies this is propagated in the iron rod.
The elastic wave propagating to the other end is also detected by utilizing the magnetostriction phenomenon.

【0011】信号処理装置7の実体は、デジタルコンピ
ューターであり、内部で図3に示すような処理を実行し
ている。すなわち、検出された信号をA/D変換し、励振
源や振動検出回路の特性を補償する逆フィルターに通し
た後、PARCOR(偏自己相関)分析を行っている。図4に
示すのは、図3中のPARCOR分析部の処理の流れを表す格
子型フィルター(PARCOR分析フィルター)である。格子
の上下の信号の間の相互相関を計算して、それぞれの信
号から相互に相関のある成分を引き去って次の段の信号
とする処理を、棒の長さに応じて必要な段数まで行う。
第m段の相互相関係数kmをm次のPARCOR係数と呼ぶ。km
は、棒を図2のような短区間の連鎖で表現したときの、
第m区間と第m−1区間の境界における反射係数に対応
しており、断面積とはkm=(Sm−Sm−1)/(S
m+Sm−1)という関係にあることが知られている。
図3の断面積分布演算部は、受け取ったPARCOR係数ki
から、鉄棒の軸方向の断面積分布を計算して、表示装置
8に出力する。
The substance of the signal processing device 7 is a digital computer, and internally executes a process as shown in FIG. That is, the detected signal is A / D converted, passed through an inverse filter that compensates for the characteristics of the excitation source and the vibration detection circuit, and then PARCOR (partial autocorrelation) analysis is performed. FIG. 4 shows a lattice type filter (PARCOR analysis filter) showing the flow of processing of the PARCOR analysis unit in FIG. The process of calculating the cross-correlation between the signals above and below the grid and subtracting the mutually correlated components from each signal to obtain the signal of the next stage is performed up to the required number of stages according to the length of the rod. To do.
The m-th stage cross-correlation coefficient km is called the m-th order PARCOR coefficient. km
Is, when the bar is represented by a chain of short intervals as shown in Fig. 2,
It corresponds to the reflection coefficient at the boundary between the m-th section and the (m-1) th section, and the cross-sectional area is km = (Sm-Sm-1) / (S
It is known that there is a relationship of m + Sm-1).
The cross-sectional area distribution calculator of FIG. 3 receives the PARCOR coefficient ki
From this, the cross-sectional area distribution of the iron rod in the axial direction is calculated and output to the display device 8.

【0012】図4のPARCOR分析フィルターで、適当な段
数まで順次相関を除去された残差信号は、白色雑音とな
ることが知られている。励振コイルに白色雑音を入力し
たときの検出回路の出力信号を、PARCOR分析フィルター
に通した結果が白色雑音となることから、PARCOR分析フ
ィルターは、励振コイル、鉄棒、ピックアップコイル、
および検出回路を含むシステムの逆フィルターとなって
いることが分かる。従って、あらかじめ健全な棒につい
てPARCOR分析を行い、そのPARCOR係数を用いたPARCOR分
析フィルターを構成すれば、励振源や振動検出回路の特
性を補償する逆フィルターが自動的に出来上がる。図3
に示した逆フィルターは、このようにして構成したもの
である。
It is known that the residual signal whose correlation is sequentially removed up to an appropriate number of stages by the PARCOR analysis filter of FIG. 4 becomes white noise. The output signal of the detection circuit when white noise is input to the excitation coil is white noise as the result of passing it through the PARCOR analysis filter.Therefore, the PARCOR analysis filter uses an excitation coil, a bar, a pickup coil,
It can be seen that it is an inverse filter of the system including the detection circuit. Therefore, if a PARCOR analysis is performed on a healthy rod in advance and a PARCOR analysis filter that uses the PARCOR coefficient is configured, an inverse filter that compensates for the characteristics of the excitation source and vibration detection circuit is automatically created. Figure 3
The inverse filter shown in is constructed in this way.

【0013】(第二実施例)図5は、本発明の第二実施
例である。9は信号発生器、10は信号処理装置であ
る。本実施例でも、磁歪現象を利用して弾性波動を励起
するが、第一実施例と異なり、励振コイルとピックアッ
プコイルは、棒上の近接した位置に取り付けられてい
る。本実施例では、信号発生器で発生したパルスを増幅
して励振コイルを駆動し、棒中にパルス状の弾性波動を
励起する。この際、信号発生器から信号処理装置へは同
期信号が出力されている(図中の点線は同期信号の流れ
を示す)。棒を伝播して反射してきた振動をピックアッ
プコイルと検出回路で検出し、信号処理装置7において
棒のインパルス応答を求める。インパルス応答から棒の
断面積分布を推定する逆問題は、連立一次偏微分方程式
の初期値問題として定式化され、数値積分を用いて解け
ることが知られており、信号処理装置10では、この手
法を用いて断面積分布を数値的に求めている。なお、イ
ンパルス応答を求めるにあたり、S/N比が不十分な場
合などには、パルスで棒を励振するのではなく、時間引
き延ばしパルスあるいは疑似不規則信号で棒を励振し
て、信号処理装置7でインパルス応答を計算する場合も
ある。
(Second Embodiment) FIG. 5 shows a second embodiment of the present invention. Reference numeral 9 is a signal generator, and 10 is a signal processing device. In this embodiment as well, the elastic wave is excited by utilizing the magnetostriction phenomenon, but unlike the first embodiment, the exciting coil and the pickup coil are mounted at positions close to each other on the rod. In this embodiment, the pulse generated by the signal generator is amplified to drive the exciting coil to excite a pulse-like elastic wave in the rod. At this time, the synchronization signal is output from the signal generator to the signal processing device (the dotted line in the figure shows the flow of the synchronization signal). The vibration propagated through the rod and reflected is detected by the pickup coil and the detection circuit, and the signal processor 7 obtains the impulse response of the rod. It is known that the inverse problem of estimating the cross-sectional area distribution of a rod from an impulse response is formulated as an initial value problem of simultaneous linear partial differential equations and can be solved using numerical integration. In the signal processing device 10, this method is used. Is used to numerically calculate the cross-sectional area distribution. In obtaining the impulse response, when the S / N ratio is insufficient, the rod is not excited by the pulse, but the rod is excited by the time-delayed pulse or the pseudo-random signal, and the signal processing device 7 The impulse response may be calculated in.

【0014】(他の実施例)以上説明した二実施例で
は、被検査物は棒状であったが、被検査物の形状は棒あ
るいは管に限られている訳ではない。例えば、板状の対
象に対しては、弾性波動を励起する手段として線状に広
がりのある励起手段を用い、一方向に伝播する波動を励
起し、対象のある点で弾性波動を検出する。この場合に
は、検出した弾性波動から、単位幅当たりの断面積の、
波動の伝播方向に関する分布、すなわち波動伝播方向に
関する対象の板厚分布が推定できるので、これに基づい
て欠陥を検出することができる(図示せず)。
(Other Embodiments) In the two embodiments described above, the object to be inspected has a rod shape, but the shape of the object to be inspected is not limited to a rod or a tube. For example, for a plate-shaped object, a linearly spread excitation means is used as a means for exciting the elastic wave, the wave propagating in one direction is excited, and the elastic wave is detected at a certain point of the object. In this case, from the detected elastic wave, the cross-sectional area per unit width,
Since the distribution in the wave propagation direction, that is, the target plate thickness distribution in the wave propagation direction can be estimated, defects can be detected based on this (not shown).

【0015】[0015]

【発明の効果】本発明では、弾性体中を伝播反射してき
た波動を弾性体上のある点で検出して、この信号を解析
することによって弾性体の全長にわたる断面積分布を推
定し、健全な場合の断面積分布との差異に基づいて欠陥
を検出する。多数回の検査を被検査物に沿って繰り返す
必要が無く、被検査物全長にわたる情報が一度の検査で
得られるため、高速、簡便に欠陥検出を行えることが本
発明の効果である。
According to the present invention, the wave propagated and reflected in the elastic body is detected at a certain point on the elastic body, and by analyzing this signal, the cross-sectional area distribution over the entire length of the elastic body is estimated to ensure soundness. Defects are detected based on the difference from the cross-sectional area distribution in other cases. Since it is not necessary to repeat a large number of inspections along the object to be inspected and information over the entire length of the object to be inspected can be obtained by a single inspection, it is an advantage of the present invention that defect detection can be performed quickly and easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】弾性体中の弾性波動の伝播を説明する模式図で
ある。
FIG. 2 is a schematic diagram illustrating propagation of elastic waves in an elastic body.

【図3】第一実施例の信号処理装置の構成を示す図であ
る。
FIG. 3 is a diagram illustrating a configuration of a signal processing device according to a first embodiment.

【図4】図3中のPARCOR分析部の処理内容を示す図であ
る。
FIG. 4 is a diagram showing processing contents of a PARCOR analysis unit in FIG.

【図5】本発明の第二実施例を示す図である。FIG. 5 is a diagram showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 棒 2 励振コイル 3 ピックアップコイル 4 雑音発生器 5 増幅器 6 検出回路 7 信号処理装置 8 表示装置 9 信号発生器 10 信号処理装置 1 stick 2 excitation coil 3 pickup coils 4 noise generator 5 amplifier 6 Detection circuit 7 Signal processing device 8 display devices 9 Signal generator 10 Signal processing device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被検査物内に弾性波動を励起し、被検査物
中を伝播する弾性波動を被検査物の少なくとも一点で検
出し、得られた弾性波動に基づいて被検査物の所定方向
に関する断面積分布を推定し、所定方向に関する被検査
物が有すべき断面積分布と推定された断面積分布とに基
づいて、被検査物の欠陥を検出することを特徴とする欠
陥検査方法。
1. An elastic wave is excited in an object to be inspected, the elastic wave propagating in the object to be inspected is detected at at least one point of the object to be inspected, and a predetermined direction of the object to be inspected is based on the obtained elastic wave. A defect inspection method, comprising: estimating a cross-sectional area distribution regarding a predetermined direction; and detecting a defect of the inspected object based on the estimated cross-sectional area distribution that the inspected object should have in a predetermined direction.
【請求項2】被検査物内に弾性波動を励起する振動励起
手段と、被検査物中を伝播する弾性波動を検出する波動
検出手段と、検出された弾性波動に基づいて被検査物の
所定方向に関する断面積分布を推定する推定手段と、所
定方向に関する被検査物が有すべき断面積分布と推定さ
れた断面積分布とに基づいて被検査物の欠陥を検出する
検出手段とを含むことを特徴とする欠陥検査装置。
2. A vibration exciting means for exciting an elastic wave in the object to be inspected, a wave detecting means for detecting an elastic wave propagating in the object to be inspected, and a predetermined object to be inspected based on the detected elastic wave. An estimation means for estimating a cross-sectional area distribution in the direction; and a detection means for detecting a defect of the inspected object based on the estimated cross-sectional area distribution of the inspected object in the predetermined direction and the estimated cross-sectional area distribution. Defect inspection device characterized by.
JP2002005473A 2002-01-15 2002-01-15 Defect inspection method and defect inspection apparatus Expired - Fee Related JP3986049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005473A JP3986049B2 (en) 2002-01-15 2002-01-15 Defect inspection method and defect inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005473A JP3986049B2 (en) 2002-01-15 2002-01-15 Defect inspection method and defect inspection apparatus

Publications (2)

Publication Number Publication Date
JP2003207487A true JP2003207487A (en) 2003-07-25
JP3986049B2 JP3986049B2 (en) 2007-10-03

Family

ID=27644505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005473A Expired - Fee Related JP3986049B2 (en) 2002-01-15 2002-01-15 Defect inspection method and defect inspection apparatus

Country Status (1)

Country Link
JP (1) JP3986049B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071741A (en) * 2008-09-17 2010-04-02 Toshiba Corp Piping thickness measurement method and device
JP2015083979A (en) * 2005-06-21 2015-04-30 ミューラー インターナショナル エルエルシーMueller International,Llc Non-destructive testing of pipes
JP2015099060A (en) * 2013-11-18 2015-05-28 株式会社アミック Diagnostic method of concrete structure
CN106324105A (en) * 2016-10-21 2017-01-11 华中科技大学 Magnetostrictive guided wave testing device capable of self-sensing operating point
CN107462581A (en) * 2016-06-02 2017-12-12 株式会社岛津制作所 Defect inspection method and defect detecting device
JP6429215B1 (en) * 2017-12-12 2018-11-28 株式会社構研エンジニアリング Inspection method for structures
CN109030624A (en) * 2017-06-12 2018-12-18 株式会社岛津制作所 Defect inspection method and defect detecting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083979A (en) * 2005-06-21 2015-04-30 ミューラー インターナショナル エルエルシーMueller International,Llc Non-destructive testing of pipes
JP2010071741A (en) * 2008-09-17 2010-04-02 Toshiba Corp Piping thickness measurement method and device
JP2015099060A (en) * 2013-11-18 2015-05-28 株式会社アミック Diagnostic method of concrete structure
CN107462581A (en) * 2016-06-02 2017-12-12 株式会社岛津制作所 Defect inspection method and defect detecting device
CN107462581B (en) * 2016-06-02 2020-02-14 株式会社岛津制作所 Defect detection method and defect detection device
CN106324105A (en) * 2016-10-21 2017-01-11 华中科技大学 Magnetostrictive guided wave testing device capable of self-sensing operating point
CN109030624A (en) * 2017-06-12 2018-12-18 株式会社岛津制作所 Defect inspection method and defect detecting device
CN109030624B (en) * 2017-06-12 2021-02-26 株式会社岛津制作所 Defect detection method and defect detection device
JP6429215B1 (en) * 2017-12-12 2018-11-28 株式会社構研エンジニアリング Inspection method for structures

Also Published As

Publication number Publication date
JP3986049B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
Wilcox et al. The effect of dispersion on long-range inspection using ultrasonic guided waves
Laguerre et al. Magnetostrictive pulse-echo device for non-destructive evaluation of cylindrical steel materials using longitudinal guided waves
JP4589280B2 (en) Pipe inspection method using guide wave and pipe inspection apparatus
EP2629051B1 (en) Thickness measuring device and method
CN201322742Y (en) Ultrasonic guided wave compound nondestructive testing device
Belanger High order shear horizontal modes for minimum remnant thickness
US9672187B2 (en) System and method for directing guided waves through structures
WO2013183314A1 (en) Structure analysis device and structure analysis method
Kwun et al. Long-range guided wave inspection of structures using the magnetostrictive sensor
Xu et al. Detecting broken-wire flaws at multiple locations in the same wire of prestressing strands using guided waves
CN101666783A (en) Ultrasonic guided wave combined type nondestructive testing method and ultrasonic guided wave combined type nondestructive testing device
US20160299106A1 (en) Systems and methods for using flexural modes in non-destructive testing and inspection
JP4685129B2 (en) Nondestructive flaw detection method and apparatus
Ma et al. The reflection of guided waves from simple dents in pipes
JP6109431B1 (en) Ultrasonic measuring apparatus and ultrasonic measuring method
JP3986049B2 (en) Defect inspection method and defect inspection apparatus
Na et al. EMAT-based inspection of concrete-filled steel pipes for internal voids and inclusions
JP4144703B2 (en) Tube inspection method using SH waves
Ghadami et al. Damage identification in multi-step waveguides using Lamb waves and scattering coefficients
JP2009014345A (en) Non-destructive diagnosing method of structure
WO2015059956A1 (en) Structure diagnosis device, structure diagnosis method, and program
JP5143111B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guide wave
JP2006053134A (en) Nondestructive evaluation device for pipe body, and nondestructive evaluation method therefor
Alers A history of EMATs
JP2013088118A (en) Inspection method using guide wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041222

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20041222

Free format text: JAPANESE INTERMEDIATE CODE: A711

A977 Report on retrieval

Effective date: 20060421

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

A131 Notification of reasons for refusal

Effective date: 20060823

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060925

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061103

A521 Written amendment

Effective date: 20070220

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A521 Written amendment

Effective date: 20070529

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070614

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees