[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009014345A - Non-destructive diagnosing method of structure - Google Patents

Non-destructive diagnosing method of structure Download PDF

Info

Publication number
JP2009014345A
JP2009014345A JP2007172924A JP2007172924A JP2009014345A JP 2009014345 A JP2009014345 A JP 2009014345A JP 2007172924 A JP2007172924 A JP 2007172924A JP 2007172924 A JP2007172924 A JP 2007172924A JP 2009014345 A JP2009014345 A JP 2009014345A
Authority
JP
Japan
Prior art keywords
wave
excitation
waveform
spatial
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007172924A
Other languages
Japanese (ja)
Other versions
JP4997636B2 (en
Inventor
Kiyokazu Toiyama
清和 問山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Prefecture
Original Assignee
Hiroshima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Prefecture filed Critical Hiroshima Prefecture
Priority to JP2007172924A priority Critical patent/JP4997636B2/en
Priority to PCT/JP2008/052736 priority patent/WO2009004829A1/en
Publication of JP2009014345A publication Critical patent/JP2009014345A/en
Application granted granted Critical
Publication of JP4997636B2 publication Critical patent/JP4997636B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2462Probes with waveguides, e.g. SAW devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To devise a new processing algorism adapted to a speed dispersible guide wave/ultrasonic wave by corresponding to a method required for simultaneously solving the problem that a flaw detection waveform is collapsed and space resolving power is markedly lowered by the effect of the speed dispersibility of a guide wave during the diagnosis using the speed dispersible guide wave/ultrasonic wave changed in propagation speed especially by frequency in a non-destructive flaw inspection technique for detecting the flaw of a structure using the guide wave/ultrasonic wave, and the problem that more enhances the SN ratio of a flaw inspection signal. <P>SOLUTION: A wide-band chirp signal or the like is used as an exciting time wave and a space wave pulse compressed waveform by corresponding to the folding waveform of the space distribution of the flaw in the structure with the self-correlation of an exciting space wave being the space distribution of the exciting space wave is calculated on the basis of receiving time wave data received later, exciting time wave data and the speed dispersion data of the guide wave/ultrasonic wave. By this constitution, a flaw inspection waveform having high space resolving power and a high SN ratio is obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、速度分散性を有するガイド波超音波を用い、構造物の欠陥を非破壊で診断する構造物の非破壊診断方法、いわゆるガイド波探傷方法に関する。   The present invention relates to a non-destructive diagnosis method for a structure, in which a defect of the structure is diagnosed nondestructively using a guide wave ultrasonic wave having velocity dispersibility, a so-called guide wave flaw detection method.

ガイド波探傷方法は、探傷を行おうとする構造体にガイド波超音波を伝搬させ、伝搬経路中に存在する欠陥により反射されるエコー信号を基にその欠陥の検出を行う方法である。   The guide wave flaw detection method is a method in which a guide wave ultrasonic wave is propagated to a structure to be flaw detected, and the defect is detected based on an echo signal reflected by a defect present in the propagation path.

ガイド波超音波は、周波数によって伝搬速度が異なる速度分散性と呼ばれる性質を本質的に有している。この速度分散性は、水中や大きな金属ブロック中を伝搬する一般のバルク超音波では見られないガイド波超音波特有の性質である。対象とする構造体にガイド波超音波を励起すると、ガイド波超音波は周波数によって伝搬速度の異なる速度分散性を示し、励起信号に含まれる周波数の低い成分と、周波数の高い成分とが、それらの伝搬速度の違いから、伝搬に伴って次第に分離する現象が起こる。例えば、周波数が高くなるほど伝搬速度が速くなるような速度分散性を示すガイド波超音波について、インパルス状の広帯域信号を励起した場合、励起信号のうち高周波成分ほど速く伝搬し、低周波成分ほど遅く伝搬する現象が起こる。その結果、伝搬距離が長くなるに従って、ガイド波超音波の波形は、パルス形状から徐々に形状が崩れ、長く伸びた状態になる。   The guide wave ultrasonic wave essentially has a property called velocity dispersibility in which the propagation velocity differs depending on the frequency. This velocity dispersibility is a property peculiar to a guide wave ultrasonic wave that is not found in a general bulk ultrasonic wave propagating in water or in a large metal block. When guided wave ultrasonic waves are excited in the target structure, the guided wave ultrasonic waves exhibit velocity dispersion with different propagation speeds depending on the frequency, and the low frequency component and high frequency component included in the excitation signal Due to the difference in propagation speed, a phenomenon that gradually separates with propagation occurs. For example, for a guided wave ultrasonic wave that exhibits velocity dispersion such that the propagation speed increases as the frequency increases, when an impulse-like broadband signal is excited, the high-frequency component of the excitation signal propagates faster and the lower frequency component slower Propagation phenomenon occurs. As a result, as the propagation distance becomes longer, the waveform of the guide wave ultrasonic wave gradually collapses from the pulse shape and becomes longer.

図12〜14には、比較的インパルス形状に近い2波のハミングバースト信号を励起時間波として用い、L(0,1)モードのガイド波超音波を直径32mmの鉄棒中に励起させた場合の受信時間波を示している。図12〜14より、伝搬距離が長く、その結果遅い時刻に観測されるガイド波超音波ほど、波形は大きく崩れている様子がわかる。   FIGS. 12 to 14 show a case where a hamming burst signal of two waves that is relatively close to an impulse shape is used as an excitation time wave, and an L (0, 1) mode guide wave ultrasonic wave is excited in a steel bar having a diameter of 32 mm. The reception time wave is shown. 12-14, it can be seen that the longer the propagation distance, the more the guided wave ultrasonic wave observed at a later time, the more the waveform is collapsed.

前述のようなガイド波超音波の速度分散性による波形崩れは、非破壊診断においては、欠陥検出における空間分解能の著しい低下に繋がるため、大きな問題となっている。例えば、従来のガイド波超音波を使った薄鋼板の欠陥診断においては、励起時に十波から数十波のトーンバースト信号を用いて周波数帯域を狭く限定することにより、伝搬に伴う著しい波形崩れの影響を避けてきた。ところが、周波数帯域を狭く限定したトーンバースト信号は元々時間的に長い信号であるので、それにより空間分解能を犠牲にしていた面があり、この場合には板材の端部に数十mm程度の診断不能領域が発生する等の問題が生じていた。   Waveform collapse due to the velocity dispersion of the guide wave ultrasonic wave as described above is a serious problem in nondestructive diagnosis because it leads to a significant decrease in spatial resolution in defect detection. For example, in the conventional fault diagnosis of thin steel plates using guided wave ultrasonic waves, by restricting the frequency band narrowly using a tone burst signal of 10 to several tens of waves at the time of excitation, significant waveform collapse due to propagation is prevented. I have avoided the influence. However, since the tone burst signal with a narrow frequency band is originally a signal that is long in time, there is a face that sacrifices the spatial resolution. In this case, a diagnosis of about several tens of millimeters is made at the end of the plate. Problems such as the generation of impossible areas have occurred.

一方、ガイド波超音波に限らない超音波技術全般において、診断精度を良くするよう、受信信号のSN比を改善する種々の努力が払われている。とりわけ、ガイド波超音波による診断では、工場内の様々な強電機器近傍での診断や、稼働中のポンプやコンベア等のノイズ源の近傍で診断を行う場合がしばしばあり、SN比の改善が求められている。また、診断の自動化のためには、電磁超音波、空気伝搬超音波、レーザ超音波等の非接触式の超音波技術を用いると、その診断が容易となるが、非接触の診断方法は一様に感度が低く、SN比不足のため、なかなか実用には至ってないのが現実である。   On the other hand, in all ultrasonic techniques not limited to guide wave ultrasonic waves, various efforts have been made to improve the SN ratio of received signals so as to improve diagnostic accuracy. In particular, in diagnosis using guided wave ultrasound, diagnosis is often performed in the vicinity of various high-power devices in the factory and in the vicinity of noise sources such as pumps and conveyors in operation, and improvement of the S / N ratio is required. It has been. For automating diagnosis, the use of non-contact ultrasonic techniques such as electromagnetic ultrasonic waves, air-propagating ultrasonic waves, and laser ultrasonic waves facilitates the diagnosis. The reality is that the sensitivity is low and the S / N ratio is insufficient, so that it has not been put into practical use.

これに対し、SN比改善の信号処理技術の1つであるパルス圧縮技術がある(例えば、非特許文献1参照)。この技術は、以前からレーダや超音波探傷法等への適用が図られており(例えば、特許文献1、2参照)、また非速度分散性のガイド波超音波に対しても、パルス圧縮の適用例がある(特許文献3参照)。パルス圧縮技術とは、送信時にバースト波やパルス波の代わりに時間的に長い広帯域信号を励起し、その受信波形に対して適切な参照信号により相互相関演算を施すことで、パルス状の時間分解能の良いパルス圧縮信号を得るものである。その際、参照信号と相関性を持たないノイズ成分とは相互相関演算によって打ち消されるため、パルス圧縮技術は優れたノイズ除去効果を有する。また、ガイド波超音波の分散曲線の導出も、半解析的有限要素法として公知である(非特許文献2)。   On the other hand, there is a pulse compression technique which is one of signal processing techniques for improving the SN ratio (for example, see Non-Patent Document 1). This technology has been applied to radar and ultrasonic flaw detection methods for a long time (see, for example, Patent Documents 1 and 2), and pulse compression is also applied to non-velocity dispersive guide wave ultrasonic waves. There is an application example (see Patent Document 3). Pulse compression technology is a pulse-like time resolution that excites a long-time broadband signal instead of a burst wave or pulse wave during transmission, and performs cross-correlation operations on the received waveform using an appropriate reference signal. A good pulse compression signal is obtained. At this time, since the noise component having no correlation with the reference signal is canceled by the cross-correlation calculation, the pulse compression technique has an excellent noise removal effect. The derivation of the dispersion curve of the guide wave ultrasonic wave is also known as a semi-analytic finite element method (Non-Patent Document 2).

レーダーハンドブック,スコルニケット,マクグロウヒル社,1970(Radar handbook, Skolniket., McGraw-Hill Inc., 1970)Radar handbook, Skornnik, McGraw-Hill, 1970 (Radar handbook, Skolniket., McGraw-Hill Inc., 1970) Takahiro Hayashi and Joseph L. Rose, Guided wave simulation and visualization by a Semi-Analytical Finite Element Method, Materials Evaluation Vol.61, No.1 (2003) pp.75-79Takahiro Hayashi and Joseph L. Rose, Guided wave simulation and visualization by a Semi-Analytical Finite Element Method, Materials Evaluation Vol.61, No.1 (2003) pp.75-79 特許第3022108号公報Japanese Patent No. 3022108 特許第3036387号公報Japanese Patent No. 3036387 特開2007−121092号公報JP 2007-121092 A

ところが、従来のパルス圧縮技術は、周波数に依らずに音速が一定であることが前提となっており、一般のガイド波超音波のような速度分散性を有する場合には、そのままでは適用不可能である。   However, the conventional pulse compression technology is based on the premise that the sound speed is constant regardless of the frequency, and cannot be applied as it is when it has velocity dispersion like a general guided wave ultrasonic wave. It is.

すなわち、速度分散性を有するガイド波超音波を用いて、SN比の良い構造物の探傷を行うためには、パルス圧縮技術の適用を考えると、ガイド波超音波の励起に広帯域の励起時間波を用いることが前提となる。   That is, in order to detect a structure having a good S / N ratio using a guide wave ultrasonic wave having velocity dispersion, considering the application of a pulse compression technique, a broadband excitation time wave is used for excitation of the guide wave ultrasonic wave. It is a premise to use.

しかし、背景技術で述べたように、速度分散性を有するガイド波超音波では、伝搬に伴う著しい波形崩れが生じる。従来のパルス圧縮処理を施すと、確かにノイズ除去効果はあるが、速度分散性による著しい波形崩れの影響を除去することができない。   However, as described in the background art, in a guided wave ultrasonic wave having velocity dispersion, significant waveform collapse occurs due to propagation. When the conventional pulse compression processing is performed, there is certainly a noise removal effect, but it is not possible to remove the influence of significant waveform collapse due to velocity dispersion.

図3は、速度分散性を有するガイド波超音波の例として、直径32mmの鉄棒中を伝搬するL(0,1)モードの群速度分散曲線の例を示す。また、図12〜14は、前述のモードについて、励起時間波として、比較的広帯域な2サイクルのハミングバースト信号を用いた場合の受信時間波を示す。図15〜17は、同じガイド波超音波モードについて、励起時間波として、広帯域なチャープ信号を用い、従来のパルス圧縮技術にて処理された時間波パルス圧縮波形の例を示す。   FIG. 3 shows an example of a group velocity dispersion curve of L (0, 1) mode propagating in a steel bar having a diameter of 32 mm as an example of guide wave ultrasonic waves having velocity dispersion. FIGS. 12 to 14 show reception time waves when a relatively wide-band 2-cycle Hamming burst signal is used as the excitation time wave for the above-described modes. 15 to 17 show examples of time wave pulse compression waveforms processed by a conventional pulse compression technique using a wide band chirp signal as an excitation time wave for the same guided wave ultrasonic mode.

図12〜14の波形を見ると、ハミングバースト信号励起時の受信時間波には速度分散性による著しい波形崩れが起こり、分解能の低下が起こっている状況が見られる。一方、図15〜17を見ると、従来のパルス圧縮技術の適用により、ノイズレベルは低減し、SN比の改善は見られるが、速度分散性による著しい波形崩れが依然残っている。このことから、速度分散性を有するガイド波超音波には、従来のパルス圧縮技術をそのまま適用するには不適当であることがわかる。   12 to 14 shows that the reception time wave at the time of humming burst signal excitation has a remarkable waveform collapse due to velocity dispersion, and the resolution is lowered. On the other hand, in FIGS. 15 to 17, the noise level is reduced and the S / N ratio is improved by the application of the conventional pulse compression technique, but the significant waveform collapse due to the speed dispersion still remains. From this, it can be seen that it is inappropriate to apply the conventional pulse compression technique as it is to the guided wave ultrasonic wave having velocity dispersion.

本発明は、上記の問題を解決するためになされたもので、SN比が高く、かつ空間分解能の優れた構造物の非破壊診断方法を提供するものである。   The present invention has been made to solve the above problems, and provides a non-destructive diagnosis method for a structure having a high S / N ratio and excellent spatial resolution.

本発明の構造物の非破壊診断方法は、速度分散性を有するガイド波超音波を用い、構造物の欠陥を非破壊で診断する構造物の非破壊診断方法であって、
広帯域波形を有する励起時間波によって、前記構造物に前記ガイド波超音波を励起させる励起工程と、
該構造物を伝搬する該ガイド波超音波を受信する受信工程と、
該受信工程によって得られた受信時間波と、該励起工程で用いられた該励起時間波と、該ガイド波超音波についての速度分散情報とにより、該構造物中の前記欠陥の空間分布と、該励起時間波の空間分布である励起空間波の自己相関関数との畳み込み波形に相当する空間波パルス圧縮波形を算出する空間波パルス圧縮算出工程と、
該空間波パルス圧縮波形を画面表示する表示工程とを備えることを特徴とする。
A non-destructive diagnostic method for a structure according to the present invention is a non-destructive diagnostic method for a structure that uses a guided wave ultrasonic wave having velocity dispersibility to diagnose a defect of a structure non-destructively.
An excitation step of exciting the guided wave ultrasonic wave in the structure by an excitation time wave having a broadband waveform;
A receiving step of receiving the guided wave ultrasonic wave propagating through the structure;
Based on the reception time wave obtained by the reception step, the excitation time wave used in the excitation step, and the velocity dispersion information on the guide wave ultrasonic wave, the spatial distribution of the defects in the structure, A spatial wave pulse compression calculation step for calculating a spatial wave pulse compression waveform corresponding to a convolution waveform with an autocorrelation function of the excitation spatial wave, which is a spatial distribution of the excitation time wave;
A display step of displaying the spatial wave pulse compression waveform on the screen.

本発明の非破壊診断方法では、周波数により伝搬速度が変化する速度分散性を有するガイド波超音波を用いて広帯域な信号を励起し、後に励起時間波と、速度分散情報とに基づいた信号処理を高速に行う。このため、この非破壊診断方法又は非破壊診断装置によれば、SN比が高く、かつ空間分解能の優れたパルス圧縮波形を得ることができる。つまり、この非破壊診断方法は速度分散性のガイド波に適合したパルス圧縮探傷法であり、この非破壊診断装置はこのパルス圧縮探傷法を採用した装置である。   In the non-destructive diagnosis method of the present invention, a broadband signal is excited using a guide wave ultrasonic wave having velocity dispersion whose propagation velocity changes depending on the frequency, and signal processing based on the excitation time wave and velocity dispersion information is performed later. To do at high speed. For this reason, according to this nondestructive diagnostic method or nondestructive diagnostic apparatus, it is possible to obtain a pulse compression waveform having a high SN ratio and excellent spatial resolution. That is, this nondestructive diagnostic method is a pulse compression test method adapted to a velocity-dispersive guide wave, and this nondestructive diagnostic device is a device that employs this pulse compression test method.

空間波パルス圧縮算出工程は、以下のような考え方に基づいて構成される。   The spatial wave pulse compression calculation step is configured based on the following concept.

図1は、時刻t=0、位置x=0にて励起されたガイド波超音波の伝搬の様子を模擬的に示した時間空間ダイアグラムである。t=0、x=0を発したガイド波超音波は、速度分散性による伝搬速度の違いから空間的に拡がりながら伝搬する。その後、反射源分布z(x)によって反射され、再び位置x=0に到達したガイド波超音波は、時刻t=0に仮想発信源分布y(x)より励起されたガイド波超音波と等しくなる。ここで、実反射源分布z(x)と仮想発信源分布y(x)とは次の式1の関係を満たす。   FIG. 1 is a time-space diagram simulating the state of propagation of guided wave ultrasonic waves excited at time t = 0 and position x = 0. Guide wave ultrasonic waves that emit t = 0 and x = 0 propagate while spatially spreading due to the difference in propagation speed due to velocity dispersion. After that, the guide wave ultrasound reflected by the reflection source distribution z (x) and reaching the position x = 0 again is equal to the guide wave ultrasound excited from the virtual source distribution y (x) at time t = 0. Become. Here, the real reflection source distribution z (x) and the virtual transmission source distribution y (x) satisfy the relationship of the following Expression 1.

Figure 2009014345
Figure 2009014345

ところで、ガイド波超音波の速度分散情報が分かっていれば、ある1カ所で観測されたガイド波超音波の時間波又はある時刻におけるガイド波超音波の空間波をもとに、任意の時刻・位置におけるガイド波超音波の空間波形・時間波形が計算によって求められる。   By the way, if the velocity dispersion information of the guide wave ultrasonic wave is known, based on the time wave of the guide wave ultrasonic wave observed at a certain place or the spatial wave of the guide wave ultrasonic wave at a certain time, A spatial waveform and a temporal waveform of the guide wave ultrasonic wave at the position are obtained by calculation.

仮想発信源分布y(x)より、時刻t=0に対し、広帯域な励起時間波s(t)を一斉に励起する場合を考える。位置x=0における受信時間波r(t)は次の式2ように表される。   Consider a case where a broadband excitation time wave s (t) is excited all at once from time t = 0 from the virtual source distribution y (x). The reception time wave r (t) at the position x = 0 is expressed as the following Expression 2.

Figure 2009014345
Figure 2009014345

ここで、s(t)のフーリエ変換をS(ω)とする。また、k(ω)は、励起されたガイド波超音波の速度分散情報から得られる波数kの分散情報である。ここで、r(t)のフーリエ変換R(ω)と式2とを比較することにより、次の式3の関係が得られる。   Here, S (ω) is the Fourier transform of s (t). K (ω) is dispersion information of wave number k obtained from velocity dispersion information of the excited guide wave ultrasonic wave. Here, by comparing the Fourier transform R (ω) of r (t) with Equation 2, the relationship of Equation 3 below is obtained.

Figure 2009014345
Figure 2009014345

一方、波数kの分散情報k(ω)がわかると、ωの関数としていたS(ω)、R(ω)を波数kの関数として置き換えることができる。実際の信号処理で取り扱うのは、S(ω)、R(ω)とも等間隔のωに対する離散データであり、これを等間隔のkに対する離散データS(k)、R(k)に置き換えることになる。   On the other hand, if the dispersion information k (ω) of the wave number k is known, S (ω) and R (ω) that have been functions of ω can be replaced with functions of the wave number k. In actual signal processing, both S (ω) and R (ω) are discrete data for equidistant ω, and this is replaced with discrete data S (k) and R (k) for equidistant k. become.

それぞれの置き換えは補間法により行う。この置き換えができるのは、kとωとが単調増加の関係にある領域に限られる。この範囲から外れるのは、dω/dk≦0、つまり0以下の群速度を持つ特殊な領域ということになるが、実用的な非破壊診断の範囲ではほとんどの場合、正の群速度であるので、あまり気にする必要はない。よって式3より、等間隔のkに対し次の式4が成り立つ。   Each replacement is performed by interpolation. This replacement can be performed only in a region where k and ω are monotonously increasing. Deviating from this range is dω / dk ≦ 0, that is, a special region having a group velocity of 0 or less, but in the practical nondestructive diagnosis range, in most cases, it is a positive group velocity. , Don't worry too much. Therefore, from Equation 3, the following Equation 4 holds for equally spaced k.

Figure 2009014345
Figure 2009014345

ここで、空間波パルス圧縮波形c(x)として、次の式5のようなものを定義する。ここで、corr.は相関演算を示し、conv.は畳み込み演算を示している。   Here, the following equation 5 is defined as the spatial wave pulse compression waveform c (x). Here, corr. Indicates a correlation operation, and conv. Indicates a convolution operation.

Figure 2009014345
Figure 2009014345

式5中の、s(x)corr.s(x)の部分は、励起空間波に対する自己相関関数であり、パルス圧縮の信号処理部分に相当する。また、式5全体では、前述の自己相関関数と仮想発信源分布との畳み込みとなっており、励起空間波が波数kについて、十分広帯域で、その自己相関関数がよりパルス状になるほど、空間波パルス圧縮波形c(x)は仮想発信源分布により近いものとなる。さらに、式5を展開して、式4を代入すると、以下の式6のようになる。ここで、記号*は複素共役を示している。   In Equation 5, s (x) corr. The part of s (x) is an autocorrelation function for the excitation spatial wave, and corresponds to the signal processing part of pulse compression. In addition, the entire equation 5 is a convolution of the above-described autocorrelation function and the virtual source distribution, and the spatial wave is increased as the excitation spatial wave is sufficiently wide with respect to the wave number k and the autocorrelation function becomes more pulsed. The pulse compression waveform c (x) is closer to the virtual source distribution. Further, when Formula 5 is expanded and Formula 4 is substituted, Formula 6 below is obtained. Here, the symbol * indicates a complex conjugate.

Figure 2009014345
Figure 2009014345

最後に、仮想発信源分布に相当する空間波パルス圧縮波形c(x)から実際の欠陥分布に相当するz(x)を求めるため、式1を参考に次の式7の計算をする。   Finally, in order to obtain z (x) corresponding to the actual defect distribution from the spatial wave pulse compression waveform c (x) corresponding to the virtual source distribution, the following Expression 7 is calculated with reference to Expression 1.

Figure 2009014345
Figure 2009014345

受信時間波r(t)及び励起時間波s(t)とから最終的にz(x)を得るには、2回のFFT演算と1回の補間演算とさえ行えばよいので、計算に掛かる時間は短くて済む。   In order to finally obtain z (x) from the reception time wave r (t) and the excitation time wave s (t), it is only necessary to perform two FFT operations and one interpolation operation. The time is short.

このため、本発明に係る速度分散性による波形崩れの影響除去により、欠陥検出における空間分解能が向上する。これにより、欠陥信号の認識が明瞭となり、診断精度が向上する。また、構造体端面からの反射や溶接部からの反射等、構造体の形状が要因となる大きな反射信号と欠陥信号との分離が容易となるので、例えば、薄鋼板のインライン欠陥診断等で問題となっている端面近傍の不感帯が縮減し、診断有効領域が拡大する。   For this reason, the spatial resolution in the defect detection is improved by removing the influence of the waveform collapse due to the velocity dispersion according to the present invention. Thereby, the recognition of the defect signal becomes clear and the diagnostic accuracy is improved. In addition, it is easy to separate large reflection signals and defect signals that are caused by the shape of the structure, such as reflection from the end face of the structure and reflection from the weld. The dead zone near the end face is reduced, and the effective diagnosis area is expanded.

また、本発明に係るSN比向上効果により、これまでノイズに埋もれて検出できなかった微小な欠陥エコー信号を明確に捕らえることができるようになり、探傷精度を向上させることができる。   Further, the effect of improving the SN ratio according to the present invention makes it possible to clearly capture a minute defect echo signal that has been buried in noise and could not be detected, thereby improving the flaw detection accuracy.

また、製品診断の自動化や、高温構造体の診断のためには、超音波の送受信として、電磁超音波(EMAT)、空気伝搬超音波(ACT)等の非接触の診断方法を用いることが実用上必要となっているが、これら非接触の診断方法は一様に感度が低いので、容易には自動診断若しくは高温体の診断が実現されないケースが多かった。本発明により、信号処理によりSN比が向上することから、前記の非接触の診断方法を採用できるようになるため、これまで実現困難であった診断の自動化や高温体の診断も可能となる。   For automating product diagnosis and diagnosis of high-temperature structures, it is practical to use non-contact diagnostic methods such as electromagnetic ultrasonic waves (EMAT) and air-propagating ultrasonic waves (ACT) for transmitting and receiving ultrasonic waves. Although it is necessary, these non-contact diagnostic methods are uniformly low in sensitivity, and automatic diagnosis or diagnosis of a high-temperature body is not easily realized in many cases. According to the present invention, since the signal-to-noise ratio is improved by signal processing, the above-described non-contact diagnosis method can be adopted, and thus it is possible to automate diagnosis and diagnosis of a high-temperature body that have been difficult to realize so far.

ここで、励起工程で用いられる超音波入射手段としては、信号発生器及び超音波を発生することのできる公知の超音波センサを用いることができる。通常は、超音波センサに必要な電圧レベルまで増幅するため、信号増幅装置を用いる。また、任意の励起時間波を発生できるよう、信号発生器は任意波形を発生する機能を持つものであることが望ましい。具体的な超音波センサとしては、汎用の圧電セラミック探触子の他、電磁超音波探触子(EMAT)、圧電樹脂フィルム(PVDF)等が採用され得る。   Here, as the ultrasonic wave incident means used in the excitation process, a signal generator and a known ultrasonic sensor capable of generating ultrasonic waves can be used. Usually, a signal amplifying device is used to amplify the voltage level required for the ultrasonic sensor. Further, it is desirable that the signal generator has a function of generating an arbitrary waveform so that an arbitrary excitation time wave can be generated. As a specific ultrasonic sensor, a general-purpose piezoelectric ceramic probe, an electromagnetic ultrasonic probe (EMAT), a piezoelectric resin film (PVDF), or the like may be employed.

また、受信工程で用いられる超音波受信手段としては、超音波を受信することのできる公知の超音波センサを用いることができる。通常は、観測可能な電圧レベルまで増幅するために信号増幅器を用いたり、励起時間波の周波数帯域外のノイズを除去するための周波数フィルタ装置を用いたりする。具体的な超音波センサとしては、汎用の圧電セラミック探触子の他、電磁超音波探触子(EMAT)、圧電樹脂フィルム(PVDF)、レーザ振動計等が採用され得る。   Moreover, as an ultrasonic wave reception means used at a receiving process, the well-known ultrasonic sensor which can receive an ultrasonic wave can be used. Usually, a signal amplifier is used to amplify to an observable voltage level, or a frequency filter device is used to remove noise outside the frequency band of the excitation time wave. As a specific ultrasonic sensor, a general-purpose piezoelectric ceramic probe, an electromagnetic ultrasonic probe (EMAT), a piezoelectric resin film (PVDF), a laser vibrometer, or the like can be employed.

励起工程では、励起時間波として、チャープ時間波を用いることが好ましい。なぜなら、最終的に得られる空間波パルス圧縮波形の空間分解能は、励起時間波の周波数帯域幅とガイド波超音波の伝搬速度とによって決まるが、チャープ時間波は簡単なパラメータの変更により周波数帯域幅を自由に制御することができ、これにより空間波パルス圧縮波形の空間分解能を制御することができるからである。   In the excitation process, it is preferable to use a chirp time wave as the excitation time wave. Because the spatial resolution of the finally obtained spatial wave pulse compression waveform is determined by the frequency bandwidth of the excitation time wave and the propagation speed of the guide wave ultrasonic wave, the chirp time wave can be obtained by simply changing the frequency bandwidth. This is because the spatial resolution of the spatial wave pulse compression waveform can be controlled.

また、励起工程では、励起時間波として、波数について広帯域性を有する予め定義された定義済み励起空間波を前記ガイド波超音波についての速度分散情報により変換したものを用いることが好ましい。この定義済み励起空間波から励起時間波への変換は以下のように行うことができる。   In the excitation process, it is preferable to use a pre-defined excitation spatial wave having a broadband property with respect to the wave number converted by velocity dispersion information about the guide wave ultrasonic wave as the excitation time wave. The conversion from the predefined excitation space wave to the excitation time wave can be performed as follows.

すなわち、励起時間波s(x)及びそのフーリエ変換S(ω)並びに
励起空間波s(x)及びそのフーリエ変換S(k)には、以下の関係がある。
That is, the excitation time wave s (x) and its Fourier transform S (ω) and the excitation space wave s (x) and its Fourier transform S (k) have the following relationship.

定義済み励起空間波s(x)より、式8を用いてS(k)を得る。その後、波数kの分散情報k(ω)を用いて、波数kの関数としていたS(k)について、角周波数ωの関数S(ω)への置き換えを補間法により行う。その後、式9により励起時間波s(t)が得られる。   From the predefined excitation space wave s (x), S (k) is obtained using Equation 8. Thereafter, using the dispersion information k (ω) of the wave number k, replacement of the angular frequency ω with the function S (ω) of the angular frequency ω with respect to S (k) as a function of the wave number k is performed by an interpolation method. Thereafter, an excitation time wave s (t) is obtained by Equation 9.

Figure 2009014345
Figure 2009014345

Figure 2009014345
Figure 2009014345

最終的に得られる空間波パルス圧縮波形の空間分解能は、励起空間波の波数帯域幅によって決まる。該励起空間波の波数帯域幅は、励起時間波の周波数帯域幅とガイド波超音波の伝搬速度との両方に依存するため、特にガイド波超音波の速度分散性(周波数に対する伝搬速度の変動)が大きい領域では、励起時間波の周波数帯域幅から、空間波パルス圧縮波形の空間分解能をおおよそ制御することが困難となる。予め定義された定義済み励起空間波をガイド波超音波についての速度分散情報により変換したものを励起時間波とすれば、ガイド波超音波の速度分散性の大小に関係なく、空間波パルス圧縮波形の空間分解能を制御することが可能となる。   The spatial resolution of the finally obtained spatial wave pulse compression waveform is determined by the wave number bandwidth of the excitation spatial wave. Since the wave number bandwidth of the excitation spatial wave depends on both the frequency bandwidth of the excitation time wave and the propagation speed of the guide wave ultrasonic wave, the velocity dispersion of the guide wave ultrasonic wave (variation of the propagation speed with respect to the frequency) is particularly important. In a large region, it becomes difficult to roughly control the spatial resolution of the spatial wave pulse compression waveform from the frequency bandwidth of the excitation time wave. If the pre-defined excitation spatial wave converted from the velocity dispersion information about the guide wave ultrasonic wave is used as the excitation time wave, the spatial wave pulse compression waveform regardless of the velocity dispersion of the guide wave ultrasonic wave It becomes possible to control the spatial resolution.

励起工程では、励起時間波として予め定義された定義済み励起空間波をガイド波超音波についての速度分散情報により変換したものを用いる際に、定義済み励起空間波として、チャープ空間波を用いることが好ましい。定義済み励起空間波としてチャープ空間波とすれば、簡単なパラメータ変更により、チャープ空間波の波数帯域幅を容易に制御でき、それにより空間波パルス圧縮波形の空間分解能を制御することが可能となる。   In the excitation process, a chirped spatial wave is used as the defined excitation spatial wave when a predefined excitation spatial wave that has been defined in advance as the excitation time wave is converted using velocity dispersion information about the guide wave ultrasound. preferable. If a chirped spatial wave is used as a predefined excitation spatial wave, the wavenumber bandwidth of the chirped spatial wave can be easily controlled by simple parameter changes, thereby enabling the spatial resolution of the spatial wave pulse compression waveform to be controlled. .

以下、本発明を具体化した実施例を説明する。   Embodiments embodying the present invention will be described below.

実施例1では、鉄棒の中を長手方向に伝搬するガイド波超音波を例にとって実験を行い、速度分散性を有するガイド波超音波のパルス圧縮技術、従来のパルス圧縮技術及び従来のバースト励起法について、比較を行った。   In the first embodiment, an experiment is performed by using a guide wave ultrasonic wave propagating in the longitudinal direction in a steel bar as an example, and a pulse wave compression technique of a guide wave ultrasonic wave having a velocity dispersion, a conventional pulse compression technique, and a conventional burst excitation method. A comparison was made.

実験装置の概要を図2に示す。対象とする構造物1としては、直径32mm、長さ2mの丸鉄棒を用いた。この構造物1の一方の端E1から500mmの位置には、磁歪タイプのLモードガイド波超音波用の送信センサT及び受信センサRを配置させた。また、この構造物1の他方の端E2から500mmの位置にはスリット状の欠陥1aが設けられている。送信センサT及び受信センサRは、鉄の磁歪効果によって構造物1に軸対称な長手方向の垂直歪みを支配的に与え又は捕らえるタイプのセンサであり、軸対称のLモードガイド波超音波をほぼ単一的に励起又は受信できることが特徴である。   An outline of the experimental apparatus is shown in FIG. As the target structure 1, a round bar having a diameter of 32 mm and a length of 2 m was used. A magnetostrictive L-mode guided wave ultrasonic transmission sensor T and reception sensor R are arranged at a position 500 mm from one end E1 of the structure 1. Further, a slit-like defect 1a is provided at a position 500 mm from the other end E2 of the structure 1. The transmission sensor T and the reception sensor R are sensors of a type that preferentially imparts or captures an axially symmetric longitudinal strain to the structure 1 by the magnetostrictive effect of iron, and substantially receives axially symmetric L-mode guided wave ultrasonic waves. It is characterized by being able to excite or receive in a single way.

図3は、構造物1中を伝搬する軸対称モードガイド波超音波の群速度分散曲線である。100kHz以下の領域には、非速度分散性のT(0,1)モードと、分散性のL(0,1)モードとが存在するが、ここでは分散性のあるL(0,1)モードを用いる。このうち、分散性の強さ(分散曲線の傾き)の異なるA:36kHz、B:50kHz、C:64kHzの3つの中心周波数を選び、それぞれの結果を比較した。   FIG. 3 is a group velocity dispersion curve of an axially symmetric mode guided wave ultrasonic wave propagating through the structure 1. In the region below 100 kHz, there are a non-velocity dispersive T (0,1) mode and a dispersive L (0,1) mode. Here, the dispersive L (0,1) mode Is used. Among these, three center frequencies of A: 36 kHz, B: 50 kHz, and C: 64 kHz having different dispersive strengths (dispersion curve slopes) were selected, and the respective results were compared.

分散性ガイド波超音波パルス圧縮技術及び従来パルス圧縮技術において用いられる励起時間波s(t)としては、式10で表されるチャープ信号を用いた。なお、チャープ信号を表す式は多様に存在し、式10の定義に限られるものではない。   As the excitation time wave s (t) used in the dispersive guide wave ultrasonic pulse compression technique and the conventional pulse compression technique, a chirp signal represented by Expression 10 was used. Note that there are various expressions representing the chirp signal, and the present invention is not limited to the definition of Expression 10.

Figure 2009014345
Figure 2009014345

中心周波数fcは、分散性の強さの異なるA:36kHz、B:50kHz、C:64kHzの3種類とした。チャープ信号の掃引周波数帯域Bw及び時間長さTwは、それぞれ2fc、10/fcとした。窓関数W(t)はハミング窓を用いた。また、比較用のバースト信号としては、A〜C各中心周波数におけるサイクル数2のハミングバーストを用いた。なお、ここでは、ガイド波超音波の分散曲線k(ω)の導出には、上記非特許文献2による公知の技術である半解析的有限要素法を用いている。   The center frequency fc was set to three types of A: 36 kHz, B: 50 kHz, and C: 64 kHz having different dispersibility strengths. The sweep frequency band Bw and time length Tw of the chirp signal were 2fc and 10 / fc, respectively. A Hamming window was used as the window function W (t). Further, as a comparative burst signal, a hamming burst having 2 cycles at each center frequency A to C was used. Here, the semi-analytical finite element method which is a well-known technique according to Non-Patent Document 2 is used to derive the dispersion curve k (ω) of the guide wave ultrasonic wave.

図4〜6に実施例1による最終出力結果を示す。一方、図12〜14に従来のバースト励起法による最終出力結果を示す。また、図15〜17に従来のパルス圧縮技術による最終出力結果を示す。各波形に付記された記号はガイド波超音波の伝搬経路を示している(例えば、記号“E1E2”は、T/R→E1→E2→T/Rの経路を示す。)。   4 to 6 show the final output results according to the first embodiment. On the other hand, FIGS. 12 to 14 show the final output results by the conventional burst excitation method. 15 to 17 show the final output results by the conventional pulse compression technique. The symbol attached to each waveform indicates the propagation path of the guide wave ultrasonic wave (for example, the symbol “E1E2” indicates the path of T / R → E1 → E2 → T / R).

従来のバースト励起法及び従来のパルス圧縮技術では、速度分散性による波形歪みが目立つ結果となっているが、実施例1の速度分散性を有するガイド波超音波のパルス圧縮技術では、分散性が強いC:64kHzの場合でも、分散性の影響が除去され、きれいなパルス状信号となって空間分解能が向上されたことが示されている。   In the conventional burst excitation method and the conventional pulse compression technique, the waveform distortion due to the speed dispersion is a conspicuous result. However, in the pulse compression technique of the guide wave ultrasonic wave having the speed dispersion of the first embodiment, the dispersibility is low. Even in the case of strong C: 64 kHz, it is shown that the influence of dispersibility is eliminated, and the spatial resolution is improved as a clean pulse signal.

また、実施例1の速度分散性を有するガイド波超音波のパルス圧縮技術では、従来のバースト励起法に比べ、ノイズが除去され、SN比が向上していることも合わせて示されている。   Further, it is also shown that noise is removed and the SN ratio is improved in the pulse compression technique of the guide wave ultrasonic wave having the velocity dispersion of the first embodiment as compared with the conventional burst excitation method.

次に、予め定義された定義済み励起空間波から、ガイド波超音波の分散情報を用いて変換した励起時間波を用いる場合について実施例を以下に示す。なお、実験装置や検査対象等の環境は、実施例1と同じものを用いている。   Next, an embodiment will be described below in the case of using an excitation time wave converted from a predefined excitation spatial wave defined in advance using dispersion information of guide wave ultrasonic waves. Note that the same environment as that of the first embodiment is used for the experimental apparatus and the inspection object.

定義済み励起空間波s(x)としては、式11で表されるチャープ空間波を用いた。なお、中心波数をkc、波数帯域幅をKw、空間幅をLwとし、窓関数をW(x)とする。なお、チャープ信号を表す式は多様に存在し、式11の定義に限られるものではない。   As the defined excitation spatial wave s (x), a chirped spatial wave represented by Expression 11 was used. The center wave number is kc, the wave number bandwidth is Kw, the space width is Lw, and the window function is W (x). Note that there are various expressions representing the chirp signal, and the definition of Expression 11 is not limited.

Figure 2009014345
Figure 2009014345

ここでは中心波長λc(=2π/kc)は70mm、チャープ空間波の波数帯域幅Kwは2kc、空間幅Lwは29λc(約2m)とした。また、窓関数W(t)はハニング窓を用いた。   Here, the center wavelength λc (= 2π / kc) is 70 mm, the wave number bandwidth Kw of the chirped spatial wave is 2 kc, and the spatial width Lw is 29 λc (about 2 m). A Hanning window was used as the window function W (t).

次に、ガイド波超音波の分散情報を用いて、チャープ空間波を励振時間波に変換する。このときの定義済みチャープ空間波を図7に示し、変換された励振時間波を図8に示す。さらに、チャープ空間波の振幅の波数スペクトルを図9に示し、変換された励振時間波の振幅の周波数スペクトルを図10に示す。もしガイド波超音波に速度分散がなければ、チャープ空間波、変換された励振時間波及びそれぞれの振幅スペクトルは相似形状となるのであるが、実際には速度分散性の存在により、波形や振幅スペクトルはそれぞれ大きく異なっている。図8に示す励起時間波を励起すると、検査対象を伝搬するガイド波超音波の空間波に対する振幅の波数スペクトルは図9のように対称な形となる。この変換された励振時間波を用いてガイド波超音波を励起した場合の最終出力結果(空間波パルス圧縮波形)は図11のようになる。   Next, the chirp space wave is converted into an excitation time wave using the dispersion information of the guide wave ultrasonic wave. The predefined chirp space wave at this time is shown in FIG. 7, and the converted excitation time wave is shown in FIG. Further, FIG. 9 shows the wave number spectrum of the amplitude of the chirped spatial wave, and FIG. 10 shows the frequency spectrum of the amplitude of the converted excitation time wave. If there is no velocity dispersion in the guide wave ultrasonic wave, the chirp space wave, the converted excitation time wave, and the amplitude spectrum of each will be similar, but in reality, due to the existence of velocity dispersion, the waveform and amplitude spectrum Are very different. When the excitation time wave shown in FIG. 8 is excited, the wave number spectrum of the amplitude with respect to the spatial wave of the guide wave ultrasonic wave propagating through the inspection object becomes a symmetric shape as shown in FIG. FIG. 11 shows the final output result (spatial wave pulse compression waveform) when the guide wave ultrasonic wave is excited using the converted excitation time wave.

本発明の構造物の非破壊診断方法は、配管、板、棒等の構造物の定期検査等に利用可能である。   The structure non-destructive diagnosis method of the present invention can be used for periodic inspection of structures such as pipes, plates, and bars.

ガイド波超音波の伝搬の様子を模擬的に示した時間空間ダイアグラムである。It is the time-space diagram which showed the mode of propagation of a guide wave ultrasonic wave. 実施例1、2の実験装置の概要を示す模式側面図である。It is a model side view which shows the outline | summary of the experimental apparatus of Example 1,2. 実施例1、2において、鉄棒中を伝搬するガイド波超音波の群速度分散曲線である。In Example 1, 2, it is a group velocity dispersion curve of the guide wave ultrasonic wave which propagates in the iron bar. 実施例1に係り、中心周波数が36kHzの場合の最終出力結果である。It is a final output result in the case where the center frequency is 36 kHz according to the first embodiment. 実施例1に係り、中心周波数が50kHzの場合の最終出力結果である。It is a final output result in the case where the center frequency is 50 kHz according to the first embodiment. 実施例1に係り、中心周波数が64kHzの場合の最終出力結果である。It is a final output result in the case where the center frequency is 64 kHz according to the first embodiment. 実施例2に係り、定義済みチャープ空間波の波形である。It is a waveform of a defined chirp space wave according to the second embodiment. 実施例2に係り、変換された励起時間波の波形である。6 is a waveform of a converted excitation time wave according to the second embodiment. 実施例2に係り、定義済みチャープ空間波の振幅の波数スペクトルである。It is a wave number spectrum of the amplitude of a defined chirp space wave according to the second embodiment. 実施例2に係り、変換された励起時間波の振幅の周波数スペクトルである。It is a frequency spectrum of the amplitude of the converted excitation time wave according to the second embodiment. 実施例2に係り、変換された励起時間波を励起した場合の最終出力結果である。It is a last output result at the time of exciting the converted excitation time wave concerning Example 2. FIG. 従来のバースト励起法に係り、中心周波数が36kHzの場合の最終出力結果である。This is a final output result when the center frequency is 36 kHz according to the conventional burst excitation method. 従来のバースト励起法に係り、中心周波数が50kHzの場合の最終出力結果である。This is the final output result when the center frequency is 50 kHz according to the conventional burst excitation method. 従来のバースト励起法に係り、中心周波数が64kHzの場合の最終出力結果である。This is the final output result when the center frequency is 64 kHz according to the conventional burst excitation method. 従来のパルス圧縮技術に係り、中心周波数が36kHzの場合の最終出力結果である。This is the final output result when the center frequency is 36 kHz according to the conventional pulse compression technique. 従来のパルス圧縮技術に係り、中心周波数が50kHzの場合の最終出力結果である。This is a final output result when the center frequency is 50 kHz according to the conventional pulse compression technique. 従来のパルス圧縮技術に係り、中心周波数が64kHzの場合の最終出力結果である。This is a final output result when the center frequency is 64 kHz according to the conventional pulse compression technique.

符号の説明Explanation of symbols

1…構造物
1a…欠陥
T…送信センサ
R…受信センサ
DESCRIPTION OF SYMBOLS 1 ... Structure 1a ... Defect T ... Transmission sensor R ... Reception sensor

Claims (4)

速度分散性を有するガイド波超音波を用い、構造物の欠陥を非破壊で診断する構造物の非破壊診断方法であって、
広帯域波形を有する励起時間波によって、前記構造物に前記ガイド波超音波を励起させる励起工程と、
該構造物を伝搬する該ガイド波超音波を受信する受信工程と、
該受信工程によって得られた受信時間波と、該励起工程で用いられた該励起時間波と、該ガイド波超音波についての速度分散情報とにより、該構造物中の前記欠陥の空間分布と、該励起時間波の空間分布である励起空間波の自己相関関数との畳み込み波形に相当する空間波パルス圧縮波形を算出する空間波パルス圧縮算出工程と、
該空間波パルス圧縮波形を画面表示する表示工程とを備えることを特徴とする構造物の非破壊診断方法。
A non-destructive diagnostic method for a structure that diagnoses a defect of a structure non-destructively using guided wave ultrasonic waves having velocity dispersion,
An excitation step of exciting the guided wave ultrasonic wave in the structure by an excitation time wave having a broadband waveform;
A receiving step of receiving the guided wave ultrasonic wave propagating through the structure;
Based on the reception time wave obtained by the reception step, the excitation time wave used in the excitation step, and the velocity dispersion information on the guide wave ultrasonic wave, the spatial distribution of the defects in the structure, A spatial wave pulse compression calculation step for calculating a spatial wave pulse compression waveform corresponding to a convolution waveform with an autocorrelation function of the excitation spatial wave, which is a spatial distribution of the excitation time wave;
A non-destructive diagnosis method for a structure, comprising: a display step of displaying the space wave pulse compression waveform on a screen.
前記励起工程では、前記励起時間波として、チャープ時間波を用いることを特徴とする請求項1記載の構造物の非破壊診断方法。   The non-destructive diagnosis method for a structure according to claim 1, wherein a chirp time wave is used as the excitation time wave in the excitation step. 前記励起工程では、前記励起時間波として、波数について広帯域性を有する予め定義された定義済み励起空間波を前記ガイド波超音波についての前記速度分散情報により変換したものを用いることを特徴とする請求項1記載の構造物の非破壊診断方法。   In the excitation step, the excitation time wave is obtained by converting a predefined excitation spatial wave having a broadband property with respect to the wave number according to the velocity dispersion information on the guide wave ultrasonic wave. A nondestructive diagnosis method for a structure according to Item 1. 前記励起工程では、前記定義済み励起空間波として、チャープ時間波を用いることを特徴とする請求項3記載の構造物の非破壊診断方法。   The non-destructive diagnosis method for a structure according to claim 3, wherein a chirp time wave is used as the predefined excitation space wave in the excitation step.
JP2007172924A 2007-06-29 2007-06-29 Non-destructive diagnostic method for structures Expired - Fee Related JP4997636B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007172924A JP4997636B2 (en) 2007-06-29 2007-06-29 Non-destructive diagnostic method for structures
PCT/JP2008/052736 WO2009004829A1 (en) 2007-06-29 2008-02-19 Structure non-destructive diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007172924A JP4997636B2 (en) 2007-06-29 2007-06-29 Non-destructive diagnostic method for structures

Publications (2)

Publication Number Publication Date
JP2009014345A true JP2009014345A (en) 2009-01-22
JP4997636B2 JP4997636B2 (en) 2012-08-08

Family

ID=40225893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007172924A Expired - Fee Related JP4997636B2 (en) 2007-06-29 2007-06-29 Non-destructive diagnostic method for structures

Country Status (2)

Country Link
JP (1) JP4997636B2 (en)
WO (1) WO2009004829A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004795A (en) * 2015-08-03 2015-10-28 中国人民解放军海军工程大学 Pseudo-flaw signal recognition method and method for improving pipeline nondestructive testing precision through same
US20220170888A1 (en) * 2019-02-28 2022-06-02 Nippon Telegraph And Telephone Corporation Evaluation Method for Reflected Wave

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569152A (en) * 2014-12-25 2015-04-29 奥瑞视(北京)科技有限公司 Ultrasonic detection method and system used for wheels of railway vehicle and based on interface wave correlation detection
CN107976484A (en) * 2017-11-22 2018-05-01 武汉市工程科学技术研究院 Linear frequency modulation anchor pole detects transceiver sensor and anchor pole detection method
US11333633B2 (en) 2019-09-09 2022-05-17 Raytheon Technologies Corporation Microtexture region characterization systems and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233369A (en) * 1986-10-16 1988-09-29 Olympus Optical Co Ltd Pulse compressor for ultrasonic diagnosis
JP3704070B2 (en) * 2001-08-17 2005-10-05 三菱電機株式会社 Ultrasonic flaw detector
JP3747921B2 (en) * 2003-06-20 2006-02-22 株式会社日立製作所 Nondestructive inspection apparatus and nondestructive inspection method using guide wave
JP2006053134A (en) * 2004-07-12 2006-02-23 Nagoya Institute Of Technology Nondestructive evaluation device for pipe body, and nondestructive evaluation method therefor
JP3913144B2 (en) * 2002-08-27 2007-05-09 株式会社日立製作所 Piping inspection method and apparatus
JP2007121092A (en) * 2005-10-27 2007-05-17 Hiroshima Pref Gov Method and device for detecting flaw with guide wave pulse compression accompanied by direction controllability

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3022108B2 (en) * 1993-12-14 2000-03-15 日本鋼管株式会社 Ultrasound transceiver
US5629485A (en) * 1994-12-13 1997-05-13 The B.F. Goodrich Company Contaminant detection sytem
JP3036387B2 (en) * 1995-02-23 2000-04-24 日本鋼管株式会社 Ultrasonic flaw detection method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233369A (en) * 1986-10-16 1988-09-29 Olympus Optical Co Ltd Pulse compressor for ultrasonic diagnosis
JP3704070B2 (en) * 2001-08-17 2005-10-05 三菱電機株式会社 Ultrasonic flaw detector
JP3913144B2 (en) * 2002-08-27 2007-05-09 株式会社日立製作所 Piping inspection method and apparatus
JP3747921B2 (en) * 2003-06-20 2006-02-22 株式会社日立製作所 Nondestructive inspection apparatus and nondestructive inspection method using guide wave
JP2006053134A (en) * 2004-07-12 2006-02-23 Nagoya Institute Of Technology Nondestructive evaluation device for pipe body, and nondestructive evaluation method therefor
JP2007121092A (en) * 2005-10-27 2007-05-17 Hiroshima Pref Gov Method and device for detecting flaw with guide wave pulse compression accompanied by direction controllability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004795A (en) * 2015-08-03 2015-10-28 中国人民解放军海军工程大学 Pseudo-flaw signal recognition method and method for improving pipeline nondestructive testing precision through same
CN105004795B (en) * 2015-08-03 2016-05-11 中国人民解放军海军工程大学 False defect signal is identified and is utilized it to improve the method for pipeline Non-Destructive Testing precision
US20220170888A1 (en) * 2019-02-28 2022-06-02 Nippon Telegraph And Telephone Corporation Evaluation Method for Reflected Wave
US12038411B2 (en) * 2019-02-28 2024-07-16 Nippon Telegraph And Telephone Corporation Evaluation method for reflected wave

Also Published As

Publication number Publication date
WO2009004829A1 (en) 2009-01-08
JP4997636B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP6317708B2 (en) Ultrasonic flaw detection system, ultrasonic flaw detection method, and aircraft structure
US9400264B2 (en) Ultrasonic test equipment and evaluation method thereof
CN104407054A (en) Ultrasonic micro-damage location detection method and device based on collinear aliasing of Lamb waves
JP4997636B2 (en) Non-destructive diagnostic method for structures
CA3110818A1 (en) Continuous wave ultrasound or acoustic non-destructive testing
JPWO2011013802A1 (en) Nondestructive inspection method and apparatus
CN108802203B (en) rod-shaped member internal defect positioning method based on multi-mode technology
JP6144038B2 (en) Non-contact acoustic inspection apparatus and non-contact acoustic inspection method
KR101251204B1 (en) Ultrasonic nondestructive inspection device and ultrasonic nondestructive inspection method
JP4795925B2 (en) Ultrasonic thickness measurement method and apparatus
JP2008014868A (en) Method for measuring attached material, and apparatus for measuring the attached material
GB2596966A (en) Sizing of remnant thickness in pipes and plates using cut-off properties by widening excitation bands of frequency and wavelength
JP5456569B2 (en) Multi-channel flaw detector
JP2011047763A (en) Ultrasonic diagnostic device
JP2010071920A (en) Ultrasonic flaw detection method, program used for same, and recording medium in which program is recorded
JP4405821B2 (en) Ultrasonic signal detection method and apparatus
JP3036387B2 (en) Ultrasonic flaw detection method and device
US10620162B2 (en) Ultrasonic inspection methods and systems
KR101826917B1 (en) Multi-channel ultrasonic diagnostic method for long distance piping
RU2246724C1 (en) Method of ultrasonic testing of material quality
JP2007064904A (en) Thickness measuring method by ultrasonic wave, and instrument therefor
Battaglini et al. The use of pulse compression and frequency modulated continuous wave to improve ultrasonic non destructive evaluation of highly-scattering materials
KR101961267B1 (en) Device and method for estimating ultrasonic absolute nonlinear parameter by using ultrasonic relative nonlinear parameter and calculation of proportional correction factor
JPH07248317A (en) Ultrasonic flaw detecting method
JP3707473B2 (en) Method and apparatus for ultrasonic inspection of steel pipes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees