JP2003286477A - Polishing composition and polishing method - Google Patents
Polishing composition and polishing methodInfo
- Publication number
- JP2003286477A JP2003286477A JP2002091641A JP2002091641A JP2003286477A JP 2003286477 A JP2003286477 A JP 2003286477A JP 2002091641 A JP2002091641 A JP 2002091641A JP 2002091641 A JP2002091641 A JP 2002091641A JP 2003286477 A JP2003286477 A JP 2003286477A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- acid
- metal layer
- polishing composition
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体、各種メモ
リーハードディスク用基板等の研磨に使用される研磨用
組成物に関し、特に半導体のデバイスウエハーの表面平
坦化加工に好適に用いられる研磨用組成物に関するもの
である。TECHNICAL FIELD The present invention relates to a polishing composition used for polishing semiconductors, substrates for various memory hard disks, and the like, and more particularly to a polishing composition preferably used for surface flattening of semiconductor device wafers. It is about.
【0002】[0002]
【従来の技術】エレクトロニクス業界の最近の著しい発
展により、トランジスター、IC、LSI、超LSIと進化して
きており、これら半導体素子に於ける回路の集積度が急
激に増大するに伴って半導体デバイスのデザインルール
は年々微細化が進み、デバイス製造プロセスでの焦点深
度は浅くなり、パターン形成面の平坦性はますます厳し
くなってきている。2. Description of the Related Art With the recent remarkable development of the electronics industry, it has evolved into transistors, ICs, LSIs, and VLSIs, and the design of semiconductor devices has increased with the rapid increase in the degree of integration of circuits in these semiconductor elements. The rules are becoming finer year by year, the depth of focus in the device manufacturing process is becoming shallower, and the flatness of the pattern formation surface is becoming more and more severe.
【0003】一方で配線の微細化による配線抵抗の増大
をカバーするために、配線材料としてアルミニウムやタ
ングステンからより電気抵抗の小さな銅配線が検討され
てきている。しかしながら銅を配線層や配線間の相互接
続に用いる場合には、絶縁膜上に配線溝や孔を形成した
後、スパッタリングやメッキによって銅膜を形成し、化
学的機械的研磨法(CMP)によって絶縁膜上の不要な
銅が取り除かれる。On the other hand, in order to cover an increase in wiring resistance due to the miniaturization of wiring, copper wiring having a smaller electric resistance has been studied from aluminum or tungsten as a wiring material. However, when copper is used for wiring layers or interconnections between wirings, after forming wiring grooves or holes on the insulating film, a copper film is formed by sputtering or plating, and then chemical mechanical polishing (CMP) is used. The unnecessary copper on the insulating film is removed.
【0004】かかるプロセスでは銅が絶縁膜中に拡散し
てデバイス特性を低下させるので、通常は銅の拡散防止
のために絶縁膜上にバリア層としてタンタルやタンタル
ナイトライドの層を設けることが一般的になっている。In such a process, copper diffuses into the insulating film and deteriorates the device characteristics. Therefore, it is common to provide a tantalum or tantalum nitride layer as a barrier layer on the insulating film to prevent the diffusion of copper. It has become a target.
【0005】このようにして最上層に銅膜を形成させた
デバイスの平坦化CMPプロセスにおいては、初めに不
要な部分の銅膜を絶縁層上に形成されたタンタル化合物
の表面層まで研磨し、次のステップでは絶縁膜上のタン
タル化合物の層を研磨しSiO2面が出たところで研磨
が終了していなければならない。このようなプロセスを
図1に示したが、かかるプロセスにおけるCMP研磨で
は銅、タンタル化合物、SiO2などの異種材料に対し
て研磨レートに選択性があることが必要である。In the flattening CMP process of the device in which the copper film is formed on the uppermost layer in this manner, the unnecessary portion of the copper film is first polished to the surface layer of the tantalum compound formed on the insulating layer, In the next step, the tantalum compound layer on the insulating film should be polished and the polishing should be completed when the SiO2 surface is exposed. Such a process is shown in FIG. 1. In the CMP polishing in such a process, it is necessary that the polishing rate be selective with respect to different materials such as copper, tantalum compound and SiO 2 .
【0006】即ちステップ1では銅に対する研磨レート
が高く、タンタル化合物に対してはほとんど研磨能力が
ない程度の選択性が必要である。さらにステップ2では
タンタル化合物に対する研磨レートは大きいがSiO2
に対する研磨レートが小さいほどSiO2の削りすぎを
防止できるので好ましい。That is, in step 1, the polishing rate for copper is high and the selectivity for tantalum compounds is such that there is almost no polishing ability. Further, in step 2, although the polishing rate for the tantalum compound is large, SiO2
It is preferable that the polishing rate is smaller than that of SiO 2 because it can prevent excessive shaving of SiO 2 .
【0007】このプロセスを理想的には一つの研磨材で
研磨できることが望まれるが、異種材料に対する研磨レ
ートの選択比をプロセスの途中で変化させることはでき
ないので、プロセスを2ステップに分けて異なる選択性
を有する2つのスラリーでそれぞれのCMP工程を実施
する。通常溝や孔の銅膜の削りすぎ(ディッシング、リ
セス、エロージョン)を防ぐためにステップ1ではタン
タル化合物上の銅膜は少し残した状態で研磨を終了させ
る。ついでステップ2ではSiO2層をストッパーとし
て残ったわずかな銅とタンタル化合物を研磨除去する。
ステップ1に用いられる研磨用組成物に対しては、ステ
ップ2でリカバーできないような表面上の欠陥(スクラ
ッチ)を発生させることなく銅膜に対してのみ大きい研
磨レートを有することが必要である。Ideally, it is desired that this process can be polished with one abrasive, but since the selectivity of the polishing rate for different materials cannot be changed during the process, the process is divided into two steps and different. Each CMP step is performed with two slurries that have selectivity. Usually, in order to prevent excessive cutting (dishing, recess, erosion) of the copper film in the grooves and holes, polishing is finished in step 1 with the copper film on the tantalum compound slightly left. Then, in step 2, a slight amount of remaining copper and tantalum compound is polished and removed by using the SiO 2 layer as a stopper.
It is necessary for the polishing composition used in Step 1 to have a high polishing rate only for the copper film without causing surface defects (scratches) that cannot be recovered in Step 2.
【0008】このような銅膜用の研磨用組成物として
は、特開平7−233485号公報に示されているが、
アミノ酢酸およびアミド硫酸から選ばれる少なくとも1
種類の有機酸と酸化剤と水とを含有する研磨用組成物で
ある。銅に対して比較的大きな研磨レートが得られてい
るがこれは酸化剤によってイオン化された銅が上記の有
機酸とキレートを形成して機械的に研磨されやすくなっ
たためと推定できる。A polishing composition for such a copper film is disclosed in JP-A-7-233485.
At least one selected from aminoacetic acid and amidosulfate
A polishing composition containing various kinds of organic acids, an oxidizing agent, and water. A relatively large polishing rate was obtained for copper, which can be presumed to be because copper ionized by the oxidizing agent forms a chelate with the above-mentioned organic acid to facilitate mechanical polishing.
【0009】しかしながら前記研磨用組成物を用いて、
銅膜およびタンタル化合物を有する半導体デバイスを研
磨すると、銅とタンタル化合物の研磨選択比が充分でな
かったり、銅に対する選択比を高めると配線溝や孔の銅
膜が削られ過ぎたり、銅膜表面の平滑性が損なわれる等
の問題があった。However, using the above polishing composition,
When polishing a semiconductor device having a copper film and a tantalum compound, the polishing selectivity between copper and the tantalum compound is not sufficient, or if the selectivity to copper is increased, the copper film in the wiring groove or hole is excessively scraped, or the copper film surface However, there was a problem that the smoothness of the
【0010】[0010]
【発明が解決しようとする課題】本発明は、銅膜とタン
タル化合物を有する半導体デバイスのCMP加工プロセ
スにおいて、銅表面を研磨する際は銅の研磨レートが大
きいがタンタル化合物の研磨の際には銅の研磨レートが
減少し、タンタル化合物の研磨レートが向上する研磨用
組成物ならびに研磨方法を提供することにあり、更に銅
膜表面の平滑性にも優れたCMP加工用の研磨用組成物
である。SUMMARY OF THE INVENTION In the CMP process of a semiconductor device having a copper film and a tantalum compound, the present invention has a large copper polishing rate when polishing a copper surface, but does not provide a high polishing rate when polishing a tantalum compound. It is intended to provide a polishing composition and a polishing method in which the polishing rate of copper is reduced and the polishing rate of a tantalum compound is improved. Further, the polishing composition for CMP processing is excellent in the smoothness of the copper film surface. is there.
【0011】[0011]
【課題を解決するための手段】(A)研磨材、(B)有
機酸、(C)過酸化水素、(D)ベンゾトリアゾールま
たはその誘導体、(E)研磨速度調節剤および(F)水
を有する研磨用組成物であり、(A)研磨材が、フュー
ムドシリカ、コロイダルシリカ、フュームドアルミナお
よびコロイダルアルミナのうちから選ばれる少なくとも
1種類の無機粒子を有機樹脂で被覆した粒子であり、該
研磨材の一次粒子径が0.01〜1μmであり、研磨用
組成物中の濃度が3〜30重量%であり、(B)有機酸
の研磨用組成物中の濃度が0.01〜10重量%であ
り、(C)過酸化水素の研磨用組成物中の濃度が0.0
3〜10重量%であり、(D)ベンゾトリアゾールまた
はその誘導体の研磨用組成物中の濃度が0.01〜10
重量%であり、(E)研磨速度調節剤が無機酸または有
機酸と塩基性化合物との塩であり、研磨用組成物中の濃
度が0.001〜1重量%である研磨用組成物である。[Means for Solving the Problems] (A) Abrasive, (B) Organic acid, (C) Hydrogen peroxide, (D) Benzotriazole or its derivative, (E) Polishing rate regulator and (F) Water In the polishing composition having (A), the abrasive is a particle obtained by coating at least one kind of inorganic particles selected from fumed silica, colloidal silica, fumed alumina and colloidal alumina with an organic resin, The primary particle diameter of the abrasive is 0.01 to 1 μm, the concentration in the polishing composition is 3 to 30% by weight, and the concentration of the organic acid (B) in the polishing composition is 0.01 to 10%. % By weight, and the concentration of (C) hydrogen peroxide in the polishing composition is 0.0
3 to 10% by weight, and the concentration of (D) benzotriazole or its derivative in the polishing composition is 0.01 to 10%.
% By weight, (E) the polishing rate modifier is a salt of an inorganic acid or an organic acid and a basic compound, and the concentration in the polishing composition is 0.001 to 1% by weight. is there.
【0012】更に好ましい形態としては、有機酸が、シ
ュウ酸、コハク酸、クエン酸、酒石酸、リンゴ酸、乳
酸、アミノ酸の中から選ばれた少なくとも一つであり、
研磨速度調節剤が、炭酸ナトリウム、炭酸カリウム、硫
酸ナトリウム、硫酸カリウム、シュウ酸カリウム、シュ
ウ酸ナトリウム、シュウ酸アンモニウムの中から選ばれ
た少なくとも一つの塩である研磨用組成物である。In a further preferred form, the organic acid is at least one selected from oxalic acid, succinic acid, citric acid, tartaric acid, malic acid, lactic acid, and amino acids,
A polishing composition in which the polishing rate modifier is at least one salt selected from sodium carbonate, potassium carbonate, sodium sulfate, potassium sulfate, potassium oxalate, sodium oxalate, and ammonium oxalate.
【0013】また、絶縁層、バリア金属層、配線金属層
の3層からなる層を平坦に研磨する際に、上記に記載さ
れた研磨用組成物を用い、最上層の配線金属層を研磨す
る際には研磨の圧力が7〜35KPaであり、2番目の
バリア金属層に達した時点で研磨圧力を35〜70KP
aに上げ、バリア金属層の研磨が終了する前に再び研磨
圧力を7〜35KPaに下げて3層目の絶縁層までを研
磨する研磨方法である。更に好ましい形態として、絶縁
層がSiO2、バリア金属層がTa、TaN、配線金属
層がCu層である研磨方法である。Further, when the three layers of the insulating layer, the barrier metal layer and the wiring metal layer are flatly polished, the polishing composition described above is used to polish the uppermost wiring metal layer. In this case, the polishing pressure is 7 to 35 KPa, and when the second barrier metal layer is reached, the polishing pressure is 35 to 70 KP.
This is a polishing method in which the polishing pressure is raised to a and the polishing pressure is again reduced to 7 to 35 KPa before polishing of the barrier metal layer is completed and up to the third insulating layer is polished. A more preferable form is a polishing method in which the insulating layer is SiO 2 , the barrier metal layer is Ta or TaN, and the wiring metal layer is a Cu layer.
【0014】[0014]
【発明の詳細な説明】本発明はかかる上記
の問題点を解決するために種々検討した結果、特定の研
磨用組成物を用い、研磨圧力を配線金属層を研磨終了す
る際に上げ、バリア金属層の初期研磨圧力を高めにして
研磨した後、再び研磨圧力を下げることにより、配線金
属層を研磨する際には金属膜に対する研磨レートが大き
く、バリア金属層を研磨する際にはバリア金属に対する
研磨レートが大きく、配線金属層に対しては低い研磨レ
ートを持つ一種類の研磨用組成物スラリーで、研磨でき
ることを見いだし、発明を完成するに至ったものであ
る。DETAILED DESCRIPTION OF THE INVENTION As a result of various studies in order to solve the above problems, the present invention uses a specific polishing composition and raises the polishing pressure at the end of polishing of a wiring metal layer. After polishing by increasing the initial polishing pressure of the layer and then lowering the polishing pressure again, the polishing rate for the metal film is large when polishing the wiring metal layer, and the barrier metal layer is removed when polishing the barrier metal layer. The present inventors have completed the invention by discovering that one type of polishing composition slurry having a high polishing rate and a low polishing rate for a wiring metal layer can be used for polishing.
【0015】本発明に用いられる研磨材は、フュームド
シリカ、コロイダルシリカ、フュームドアルミナ、およ
びコロイダルアルミナのうちから選ばれた少なくとも1
種類の無機粒子であり、この無機粒子の表面が有機樹脂
で被覆された粒子からなるものである。The abrasive used in the present invention is at least one selected from fumed silica, colloidal silica, fumed alumina, and colloidal alumina.
It is a kind of inorganic particles, and the surface of the inorganic particles is composed of particles coated with an organic resin.
【0016】無機粒子を有機樹脂で被覆する方法は、例
えば無機粒子表面に固定した過酸化物等のラジカル開始
剤によって粒子表面で重合する方法、一定の分子量の側
鎖を有するシランカップリング剤などを無機粒子表面の
OH基と反応させる方法(吉永耕二:色材,72〔8〕,
501−509(1999))や無機粒子に対してより
径の小さな有機樹脂微粒子を高速気流中で衝突させて複
合粒子を作成する方法(小石真純編著:微粒子設計、工
業調査会、(1987))など公知の方法を用いること
ができる。ここで、有機樹脂として、例えば、ポリエチ
レン、ポリプロピレンなどのポリオレフィン、ポリメチ
ルメタクリレートなどのアクリル樹脂、ポリブタジエン
などのエラストマー、フェノール樹脂やメラミン樹脂等
をあげることができる。The method of coating the inorganic particles with the organic resin is, for example, a method of polymerizing on the surface of the particles with a radical initiator such as peroxide fixed on the surface of the inorganic particles, a silane coupling agent having a side chain of a certain molecular weight, etc. The surface of the inorganic particles
Method of reacting with OH group (Koji Yoshinaga: Coloring material, 72 [8],
501-509 (1999)) or a method of making composite particles by colliding organic resin fine particles having a smaller diameter with inorganic particles in a high-speed air flow (Masumi Koishi, Ed .: Fine Particle Design, Industrial Research Committee, (1987)) Known methods can be used. Here, examples of the organic resin include polyolefin such as polyethylene and polypropylene, acrylic resin such as polymethylmethacrylate, elastomer such as polybutadiene, phenol resin and melamine resin, and the like.
【0017】これらのものを単独或いは任意に組み合わ
せ用いることができる。組み合わせや比率などは特に限
定されるものではない。また、これらの研磨材は被研磨
物表面に研磨材起因のスクラッチの発生を防止したり、
保存中に沈殿して組成変化することがないよう粒子径が
比較的そろい径の小さなものが好ましい。These may be used alone or in any combination. The combination and ratio are not particularly limited. Further, these abrasives prevent the occurrence of scratches due to the abrasive on the surface of the object to be polished,
It is preferable that the particles have a relatively uniform particle diameter and a small diameter so that the composition does not change due to precipitation during storage.
【0018】研磨材の一次粒子径は走査型電子顕微鏡に
よって観察することができるが、0.01〜1μmの範
囲にあることが好ましい。下限値より小さいと研磨レー
トが大きくなりにくいので好ましくなく、上限値を越え
ると被研磨物表面にスクラッチを発生しやすくなるので
好ましくない。The primary particle size of the abrasive can be observed with a scanning electron microscope, but it is preferably in the range of 0.01 to 1 μm. If it is less than the lower limit, the polishing rate is hard to increase, which is not preferable, and if it exceeds the upper limit, scratches are likely to occur on the surface of the object to be polished, which is not preferable.
【0019】研磨材の研磨用組成物中の濃度は3〜30
重量%であることが望ましい。研磨材の濃度が小さくな
りすぎると機械的な研磨能力が減少し研磨レートが低下
するので好ましくなく、濃度が高すぎると機械的研磨能
力が増大してタンタル化合物の研磨レートをおさえるこ
とができなくなり、選択性が低下するので好ましくな
い。The concentration of the abrasive in the polishing composition is 3 to 30.
It is desirable that the content is wt%. If the concentration of the abrasive is too low, the mechanical polishing ability will decrease and the polishing rate will decrease, which is not preferable.If the concentration is too high, the mechanical polishing ability will increase and the polishing rate of the tantalum compound cannot be suppressed. However, the selectivity is lowered, which is not preferable.
【0020】本発明の研磨用組成物は有機酸を含有す
る。有機酸としては特に限定されないが、シュウ酸、コ
ハク酸、クエン酸、酒石酸、リンゴ酸、乳酸、アミノ酸
の中から選ばれた少なくとも一つであることが好まし
い。研磨用組成物中の濃度は0.01〜10重量%であ
ることが望ましい。0.01重量%未満であると銅膜の
研磨レートが小さくなるために好ましくなく10重量%
を超えると銅膜研磨レートが過度に大きくなり制御でき
なくなるので好ましくない。The polishing composition of the present invention contains an organic acid. The organic acid is not particularly limited, but is preferably at least one selected from oxalic acid, succinic acid, citric acid, tartaric acid, malic acid, lactic acid, and amino acid. The concentration in the polishing composition is preferably 0.01 to 10% by weight. If the amount is less than 0.01% by weight, the polishing rate of the copper film becomes small, which is not preferable and is 10% by weight.
If it exceeds, the polishing rate of the copper film becomes excessively large and cannot be controlled, which is not preferable.
【0021】本発明の研磨用組成物は過酸化水素を用い
る。過酸化水素は銅膜などの配線金属層の金属に対して
酸化作用を発揮し、イオン化を促進することによって金
属の研磨レートを高める働きがある。研磨用組成物中の
濃度は0.03〜10重量%であることが望ましい。こ
の範囲の濃度から高くなっても低くなり過ぎても配線金
属層の金属やバリア金属層の金属の研磨レートが低下す
るので好ましくない。Hydrogen peroxide is used in the polishing composition of the present invention. Hydrogen peroxide exerts an oxidizing action on a metal of a wiring metal layer such as a copper film and promotes ionization, thereby increasing the polishing rate of the metal. The concentration in the polishing composition is preferably 0.03 to 10% by weight. If the concentration in this range is increased or decreased too much, the polishing rate of the metal of the wiring metal layer and the metal of the barrier metal layer is lowered, which is not preferable.
【0022】本発明の研磨用組成物は酸化防止剤として
ベンゾトリアゾールまたはその誘導体を含有し、研磨用
組成物中の濃度は0.01〜10重量%である。0.0
1重量%未満であると酸化防止の効果に乏しく銅表面に
欠陥が発生しやすくなるので好ましくなく、10重量%
を超えると銅膜の研磨レートが極端に減少するので好ま
しくない。The polishing composition of the present invention contains benzotriazole or its derivative as an antioxidant, and the concentration in the polishing composition is 0.01 to 10% by weight. 0.0
If it is less than 1% by weight, the effect of antioxidation is poor and defects are likely to occur on the copper surface, which is not preferable.
If it exceeds, the polishing rate of the copper film is extremely reduced, which is not preferable.
【0023】本発明の研磨用組成物は研磨速度調節剤を
含有する。研磨速度調節剤は配線金属層の金属やバリア
金属層の金属の研磨レートを調整する。研磨速度調節剤
としては無機酸または有機酸と塩基性化合物が好まし
い。例を挙げると、例えば、炭酸ナトリウム、炭酸カリ
ウム、硫酸ナトリウム、硫酸カリウム、シュウ酸カリウ
ム、シュウ酸ナトリウム、シュウ酸アンモニウムなどで
ある。この中から選ばれた少なくとも一つであることが
好ましい。研磨組成物中の濃度は0.001〜1重量%
である。下限値未満であると配線金属層の金属の研磨レ
ートを下げる効果に乏しいので好ましくなく、上限値を
超えるとバリア金属層の金属の研磨レートも低下するの
で好ましくない。The polishing composition of the present invention contains a polishing rate modifier. The polishing rate modifier adjusts the polishing rate of the metal of the wiring metal layer and the metal of the barrier metal layer. The polishing rate modifier is preferably an inorganic acid or organic acid and a basic compound. Examples include sodium carbonate, potassium carbonate, sodium sulfate, potassium sulfate, potassium oxalate, sodium oxalate, ammonium oxalate, and the like. At least one selected from the above is preferable. The concentration in the polishing composition is 0.001 to 1% by weight
Is. If it is less than the lower limit, the effect of lowering the metal polishing rate of the wiring metal layer is poor, and therefore it is not preferable.
【0024】本発明の研磨用組成物の媒体は水であり、
イオン性不純物や金属イオンを極力減らしたものである
ことが望ましい。研磨用組成物中の水の量は、40〜9
5重量%である。下限値未満であるとスラリー粘度が高
くなり作業性が低下したり、研磨時に発熱したりするの
で好ましくなく、上限値を超えると研磨速度が低下した
り、研磨選択性が低下するので好ましくない。The medium of the polishing composition of the present invention is water,
It is desirable that ionic impurities and metal ions are reduced as much as possible. The amount of water in the polishing composition is 40-9.
It is 5% by weight. If it is less than the lower limit, the slurry viscosity becomes high and the workability is lowered, or heat is generated during polishing, which is not preferable, and if it exceeds the upper limit, the polishing rate is lowered and polishing selectivity is lowered, which is not preferable.
【0025】本発明の研磨用組成物は上記の各成分、研
磨材、有機酸、酸化剤、酸化防止剤、研磨速度調節剤を
水に混合、溶解、分散させて製造する。過酸化水素は、
研磨直前に前記の混合液に添加、混合するが予め混合し
ておくことも可能である。それらの混合方法は、任意の
装置で行うことができる。例えば、翼式回転攪拌機、超
音波分散機、ビーズミル分散機、ニーダー、ボールミル
などが適用可能である。The polishing composition of the present invention is produced by mixing, dissolving and dispersing in water each of the above components, the abrasive, the organic acid, the oxidizing agent, the antioxidant and the polishing rate modifier. Hydrogen peroxide
Immediately before polishing, the above-mentioned mixed solution is added and mixed, but it is also possible to mix it in advance. The mixing method can be performed by any device. For example, a blade type rotary stirrer, an ultrasonic disperser, a bead mill disperser, a kneader, a ball mill and the like are applicable.
【0026】また上記成分以外に種々の研磨助剤を配合
してもよい。このような研磨助剤の例としては、分散助
剤、防錆剤、消泡剤、pH調整剤、防かび剤等が挙げら
れるが、これらはスラリーの分散貯蔵安定性、研磨速度
の向上の目的で加えられる。分散助剤としてはヘキサメ
タリン酸ソーダ等が挙げられる。もちろん各種界面活性
剤などを添加して分散性を向上させることができること
は言うまでもない。防腐剤としてはベンゾトリアゾール
及びその誘導体が挙げられる。pH調整剤としてはアン
モニアなどの塩基性化合物や酢酸、塩酸、硝酸等の酸性
化合物が挙げられる。消泡剤としては流動パラフィン、
ジメチルシリコーンオイル、ステアリン酸モノ、ジグリ
セリド混合物、ソルビタンモノパルミチエート等が挙げ
られる。In addition to the above components, various polishing aids may be blended. Examples of such a polishing aid include a dispersion aid, a rust preventive, an antifoaming agent, a pH adjuster, an antifungal agent, and the like. These improve dispersion storage stability of the slurry and polishing rate. It is added for the purpose. Examples of the dispersion aid include sodium hexametaphosphate and the like. Of course, it is needless to say that various surfactants and the like can be added to improve the dispersibility. Preservatives include benzotriazole and its derivatives. Examples of the pH adjuster include basic compounds such as ammonia and acidic compounds such as acetic acid, hydrochloric acid and nitric acid. Liquid paraffin as an antifoaming agent,
Dimethyl silicone oil, stearic acid mono, diglyceride mixture, sorbitan monopalmitiate and the like can be mentioned.
【0027】本発明の研磨方法として最も重要であるの
は圧力である。SiO2などの絶縁層、Taなどのバリ
ア金属層、Cu層などの金属配線層の3層からなる層を
平坦に研磨する際に上記に示される研磨用組成物を用
い、最上層の配線金属層の金属を研磨する際には研磨の
圧力が7〜35KPaであり、Taなどの2番目のバリ
ア金属層に達した時点で研磨圧力を35〜70KPaに
上げ、バリア金属層の研磨が終了する前に再び研磨圧力
を7〜35KPaに下げて3層目のSiO2などの絶縁
層まで研磨することが好ましい。このように研磨対象毎
に研磨圧力を変更するのは金属配線層の金属を研磨する
際には35KPaを超えない圧力で研磨することが望ま
しい。これは35KPaを超えなければ表面の有機樹脂
成分で研磨することになり金属に対してダメージを与え
ることなく研磨できるので好ましい。7KPa未満であ
ると金属の研磨レートが減少するので好ましくない。金
属配線層の金属層の研磨終了後に35〜70KPaに研
磨圧力を上げバリア金属層の金属層を研磨することが好
ましい。この圧力の範囲では研磨粒子表面の有機樹脂微
粒子が容易に剥離し無機粒子で硬いバリア金属層を研磨
できるので好ましい。70KPaを超えると残っている
金属配線層の金属層に傷が入りやすくなるので好ましく
なく35KPa未満では無機粒子が研磨中露出しないの
で好ましくない。絶縁層が研磨される前に再び研磨圧力
を7〜35KPaに下げる。35KPaを超えると金属
配線層の金属表面や下のSiO2などの絶縁層に傷など
のダメージを与えるので好ましくなく、7KPa未満で
は実用上必要とされる研磨レートが得られないので好ま
しくない。絶縁層としてはSiO2、バリア金属層とし
てはTa、TaN、金属配線層としてはCu層が特性、
使いやすさなどの点より好ましい。The most important factor in the polishing method of the present invention is pressure. The uppermost wiring metal is formed by using the above-described polishing composition when flatly polishing a three-layer structure including an insulating layer such as SiO 2 , a barrier metal layer such as Ta, and a metal wiring layer such as a Cu layer. When polishing the metal of the layer, the polishing pressure is 7 to 35 KPa, and when the second barrier metal layer such as Ta is reached, the polishing pressure is increased to 35 to 70 KPa, and the polishing of the barrier metal layer is completed. It is preferable to lower the polishing pressure to 7 to 35 KPa again and polish the third insulating layer such as SiO 2 as well. In this way, it is desirable to change the polishing pressure for each polishing target when polishing the metal of the metal wiring layer at a pressure not exceeding 35 KPa. This is preferable because if it does not exceed 35 KPa, the surface will be polished with the organic resin component and the metal can be polished without damaging it. If it is less than 7 KPa, the polishing rate of the metal decreases, which is not preferable. After the polishing of the metal layer of the metal wiring layer is completed, the polishing pressure is preferably raised to 35 to 70 KPa to polish the metal layer of the barrier metal layer. Within this pressure range, the organic resin fine particles on the surface of the abrasive particles are easily peeled off and the hard barrier metal layer can be polished with the inorganic particles, which is preferable. If it exceeds 70 KPa, the remaining metal layer of the metal wiring layer is likely to be scratched. The polishing pressure is again reduced to 7 to 35 KPa before the insulating layer is polished. If it exceeds 35 KPa, the metal surface of the metal wiring layer and the insulating layer such as SiO 2 below may be damaged, such as scratches, and if it is less than 7 KPa, the polishing rate practically required cannot be obtained. SiO 2 is used as the insulating layer, Ta and TaN are used as the barrier metal layer, and a Cu layer is used as the metal wiring layer.
It is preferable in terms of ease of use.
【0028】[0028]
【実施例】本発明を実施例で具体的に説明する。
<実施例1>研磨材として一次粒子の平均粒径が30n
mであるコロイダルシリカのエタノール5wt%溶液へ
メタクリル酸メチルと開始剤として2,2’−アゾビス
(アミノプロパン)・二塩基塩を加えて85℃に窒素雰
囲気下で加熱して表面をポリメタクリル酸メチルで覆わ
れた粒子を得た。粒子径は平均100nmであった。こ
の粒子を用い、コハク酸、過酸化水素、ベンゾトリアゾ
ール、炭酸カリウムが表1に示された濃度になるように
0.5μmのカートリッジフィルターで濾過されたイオ
ン交換水に混合し、高速ホモジナイザーで攪拌して均一
に分散させて研磨用組成物を得た。EXAMPLES The present invention will be specifically described with reference to Examples. <Example 1> As an abrasive, the average particle size of primary particles is 30 n.
To a 5 wt% ethanol solution of colloidal silica, which is m, is added methyl methacrylate and 2,2′-azobis (aminopropane) dibasic salt as an initiator, and the mixture is heated to 85 ° C. under a nitrogen atmosphere to produce polymethacrylic acid on the surface. The particles covered with methyl were obtained. The average particle size was 100 nm. Using these particles, succinic acid, hydrogen peroxide, benzotriazole, and potassium carbonate were mixed with ion-exchanged water filtered with a cartridge filter of 0.5 μm so as to have the concentrations shown in Table 1, and stirred with a high-speed homogenizer. Then, it was uniformly dispersed to obtain a polishing composition.
【0029】<研磨性評価>被研磨物は8インチのシリ
コンウエハー上にSiO2膜を形成し幅10μm厚さ5
μmの溝をフォトレジストを用いて形成し、200Åの
厚みでタンタル膜をスパッタリングで形成した後、電解
メッキで15000Åの銅を製膜したものを準備し研磨
した。<Evaluation of Abrasiveness> An object to be abraded was formed by forming a SiO 2 film on an 8-inch silicon wafer and having a width of 10 μm and a thickness of 5.
A μm groove was formed using a photoresist, a tantalum film was formed by sputtering to a thickness of 200 Å, and a 15000 Å copper film was prepared by electrolytic plating and polished.
【0030】研磨は定盤径600mmの片面研磨機を用
いた。研磨機の定盤にはロデール社製(米国)のポリウ
レタン製研磨パッドIC−1000/Suba400を
専用の両面テープで張り付け、研磨液組成物(スラリ
ー)を流しながら研磨した。予めベタの電解メッキ銅の
研磨速度を各スラリーで測定しておき、約15000Å
の銅を研磨する時の荷重は20KPa、定盤の回転数を
40rpm、ウエハー回転数40rpm、研磨材組成物
の流量を200ml/minとした。For polishing, a single-side polishing machine having a platen diameter of 600 mm was used. A polyurethane polishing pad IC-1000 / Suba400 manufactured by Rodel Co. (USA) was attached to a surface plate of the polishing machine with a dedicated double-sided tape, and polishing was performed while a polishing liquid composition (slurry) was flowed. The polishing rate of solid electrolytically plated copper is measured in advance with each slurry, and approximately 15,000Å
When the copper was polished, the load was 20 KPa, the number of rotations of the surface plate was 40 rpm, the number of rotations of the wafer was 40 rpm, and the flow rate of the abrasive composition was 200 ml / min.
【0031】その後研磨圧力を50KPaに上げ、20
0Åのタンタル膜を研磨終わる前に圧力を20KPaに
下げて研磨を終了した。ウエハーを洗浄、乾燥後の10
μm幅の銅配線のディッシング量を原子間力顕微鏡を用
いて測定した。銅膜、タンタル膜の研磨時間は予めベタ
のそれぞれの膜を上記研磨条件で測定しておき、それぞ
れの時間はそれぞれの膜の厚さを研磨レートで除した時
間を目安とした。タンタルの研磨速度に対する銅の研磨
速度の比を選択比とした。また光学顕微鏡で研磨面を観
察して研磨状態を調べ以下のランク分けをした。
◎:良好、○:ごく一部にやや平滑不足があるも全般に
良好、×:平滑不足、××:著しく腐食され平滑性NGThereafter, the polishing pressure was increased to 50 KPa and the polishing pressure was increased to 20
Before the polishing of the 0Å tantalum film was completed, the pressure was lowered to 20 KPa to complete the polishing. 10 after cleaning and drying the wafer
The dishing amount of the copper wiring having a width of μm was measured by using an atomic force microscope. The polishing time for the copper film and the tantalum film was measured in advance for each solid film under the above-mentioned polishing conditions, and the respective time was based on the time obtained by dividing the thickness of each film by the polishing rate. The ratio of the polishing rate of copper to the polishing rate of tantalum was defined as the selection ratio. In addition, the polished surface was observed with an optical microscope to examine the polished state and classified into the following ranks. ⊚: Good, ○: Slightly lacking smoothness in part, but generally good, ×: Insufficient smoothness, XX: Remarkably corroded and not smooth
【0032】<実施例2〜7、比較例1〜5>表1に示
された配合によって実施例1と同様に研磨用組成物を調
整し、実施例1と同様に研磨性評価を行った。<Examples 2 to 7, Comparative Examples 1 to 5> A polishing composition was prepared in the same manner as in Example 1 with the formulations shown in Table 1, and the polishing property was evaluated in the same manner as in Example 1. .
【0033】<比較例6>表1に示された配合で得られ
た研磨組成物を用い、研磨したが圧力は最初から最後ま
で28KPaで研磨した以外は全て実施例1と同様に研
磨評価を実施した。<Comparative Example 6> The same polishing evaluation as in Example 1 was carried out except that the polishing composition obtained in the formulation shown in Table 1 was used, and polishing was performed at a pressure of 28 KPa from the beginning to the end. Carried out.
【0034】評価結果を表1に示した。The evaluation results are shown in Table 1.
【表1】 [Table 1]
【0035】[0035]
【発明の効果】本発明によれば、銅膜、タンタル膜を含
む半導体デバイスのCMP加工プロセスにおいて、銅膜
を優先的に研磨可能な研磨液組成物が得られ、半導体デ
バイスを効率的に製造することができる。According to the present invention, a polishing liquid composition capable of preferentially polishing a copper film is obtained in a CMP process of a semiconductor device containing a copper film and a tantalum film, and a semiconductor device is efficiently manufactured. can do.
【図1】銅膜を形成させたデバイスの研磨プロセスの模
式図FIG. 1 is a schematic diagram of a polishing process of a device having a copper film formed thereon.
1.Cu 2.Ta 3.SiO2 1. Cu 2. Ta 3. SiO 2
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/304 H01L 21/304 622R ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) H01L 21/304 H01L 21/304 622R
Claims (5)
酸化水素、(D)ベンゾトリアゾールまたはその誘導
体、(E)研磨速度調節剤および(F)水を有する研磨
用組成物であり、(A)研磨材が、フュームドシリカ、
コロイダルシリカ、フュームドアルミナおよびコロイダ
ルアルミナのうちから選ばれる少なくとも1種類の無機
粒子を有機樹脂で被覆した粒子であり、該研磨材の一次
粒子径が0.01〜1μmであり、研磨用組成物中の濃
度が3〜30重量%であり、(B)有機酸の研磨用組成
物中の濃度が0.01〜10重量%であり、(C)過酸
化水素の研磨用組成物中の濃度が0.03〜10重量%
であり、(D)ベンゾトリアゾールまたはその誘導体の
研磨用組成物中の濃度が0.01〜10重量%であり、
(E)研磨速度調節剤が無機酸または有機酸と塩基性化
合物との塩であり、研磨用組成物中の濃度が0.001
〜1重量%であることを特徴とする研磨用組成物。1. A polishing composition comprising (A) an abrasive, (B) an organic acid, (C) hydrogen peroxide, (D) benzotriazole or a derivative thereof, (E) a polishing rate modifier, and (F) water. (A) abrasive is fumed silica,
A composition comprising at least one kind of inorganic particles selected from colloidal silica, fumed alumina, and colloidal alumina coated with an organic resin, wherein the abrasive has a primary particle diameter of 0.01 to 1 μm. The concentration in the polishing composition is 3 to 30% by weight, the concentration of (B) the organic acid in the polishing composition is 0.01 to 10% by weight, and the concentration of (C) hydrogen peroxide in the polishing composition. Is 0.03 to 10% by weight
And (D) the concentration of benzotriazole or its derivative in the polishing composition is 0.01 to 10% by weight,
(E) The polishing rate modifier is a salt of an inorganic acid or an organic acid and a basic compound, and the concentration in the polishing composition is 0.001.
~ 1% by weight, a polishing composition.
酸、酒石酸、リンゴ酸、乳酸、アミノ酸の中から選ばれ
た少なくとも一つである請求項1記載の研磨用組成物。2. The polishing composition according to claim 1, wherein the organic acid is at least one selected from oxalic acid, succinic acid, citric acid, tartaric acid, malic acid, lactic acid, and amino acids.
酸カリウム、硫酸ナトリウム、硫酸カリウム、シュウ酸
カリウム、シュウ酸ナトリウム、シュウ酸アンモニウム
の中から選ばれた少なくとも一つの塩である請求項1記
載の研磨用組成物。3. The polishing rate modifier is at least one salt selected from sodium carbonate, potassium carbonate, sodium sulfate, potassium sulfate, potassium oxalate, sodium oxalate, and ammonium oxalate. Polishing composition.
層からなる層を平坦に研磨する際に、請求項1に記載さ
れた研磨用組成物を用い、最上層の配線金属層を研磨す
る際には研磨の圧力が7〜35KPaであり、2番目の
バリア金属層に達した時点で研磨圧力を35〜70KP
aに上げ、バリア金属層の研磨が終了する前に再び研磨
圧力を7〜35KPaに下げて3層目の絶縁層までを研
磨することを特徴とする研磨方法。4. An insulating layer, a barrier metal layer, and a wiring metal layer
The polishing composition according to claim 1 is used to flatly polish a layer consisting of layers, and the polishing pressure is 7 to 35 KPa when polishing the uppermost wiring metal layer. The polishing pressure is 35 to 70 KP when the barrier metal layer is reached.
The polishing method is characterized in that the polishing pressure is raised to a and the polishing pressure is again reduced to 7 to 35 KPa before polishing of the barrier metal layer is finished, and up to the third insulating layer is polished.
又はTaN、配線金属層がCu層である請求項4記載の
研磨方法。5. The insulating layer is SiO 2 , and the barrier metal layer is Ta.
Alternatively, the polishing method according to claim 4, wherein TaN and the wiring metal layer are Cu layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002091641A JP2003286477A (en) | 2002-03-28 | 2002-03-28 | Polishing composition and polishing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002091641A JP2003286477A (en) | 2002-03-28 | 2002-03-28 | Polishing composition and polishing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003286477A true JP2003286477A (en) | 2003-10-10 |
Family
ID=29236680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002091641A Withdrawn JP2003286477A (en) | 2002-03-28 | 2002-03-28 | Polishing composition and polishing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003286477A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005023228A (en) * | 2003-07-03 | 2005-01-27 | Fujimi Inc | Composition for polishing |
JP2005277399A (en) * | 2004-02-23 | 2005-10-06 | Rohm & Haas Electronic Materials Cmp Holdings Inc | Multiple process polishing solution for chemical mechanical planarization |
WO2007138975A1 (en) | 2006-05-31 | 2007-12-06 | Asahi Glass Company, Limited | Polishing composition and polishing method |
JP2007326916A (en) * | 2006-06-06 | 2007-12-20 | Nitta Haas Inc | Abrasive composition and method for producing abrasive composition |
JP2009118773A (en) * | 2007-11-14 | 2009-06-04 | Sumitomo Bakelite Co Ltd | Method for analyzing nucleic acid |
WO2010012159A1 (en) * | 2008-08-01 | 2010-02-04 | 安集微电子(上海)有限公司 | A chemical-mechanical polishing liquid |
CN102634284A (en) * | 2012-03-27 | 2012-08-15 | 蓝思旺科技(深圳)有限公司 | Polishing solution and preparation method thereof |
JP2016190983A (en) * | 2015-03-31 | 2016-11-10 | 三洋化成工業株式会社 | Abrasive material and method for producing the same |
-
2002
- 2002-03-28 JP JP2002091641A patent/JP2003286477A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005023228A (en) * | 2003-07-03 | 2005-01-27 | Fujimi Inc | Composition for polishing |
JP2005277399A (en) * | 2004-02-23 | 2005-10-06 | Rohm & Haas Electronic Materials Cmp Holdings Inc | Multiple process polishing solution for chemical mechanical planarization |
WO2007138975A1 (en) | 2006-05-31 | 2007-12-06 | Asahi Glass Company, Limited | Polishing composition and polishing method |
JP2007326916A (en) * | 2006-06-06 | 2007-12-20 | Nitta Haas Inc | Abrasive composition and method for producing abrasive composition |
JP2009118773A (en) * | 2007-11-14 | 2009-06-04 | Sumitomo Bakelite Co Ltd | Method for analyzing nucleic acid |
WO2010012159A1 (en) * | 2008-08-01 | 2010-02-04 | 安集微电子(上海)有限公司 | A chemical-mechanical polishing liquid |
CN102634284A (en) * | 2012-03-27 | 2012-08-15 | 蓝思旺科技(深圳)有限公司 | Polishing solution and preparation method thereof |
JP2016190983A (en) * | 2015-03-31 | 2016-11-10 | 三洋化成工業株式会社 | Abrasive material and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003286477A (en) | Polishing composition and polishing method | |
JP2003297779A (en) | Composition for polishing and polishing method | |
JP2005082791A (en) | Polishing composition | |
JP2003133266A (en) | Polishing composition | |
JP2003218071A (en) | Composition for polishing | |
JP2003238942A (en) | Polishing composition | |
JP2003336039A (en) | Abrasive composition | |
JP2005136134A (en) | Abrasive composition | |
JP2005136256A (en) | Abrasive composition | |
JP2003151928A (en) | Polishing composition | |
JP2003197572A (en) | Composition for polishing | |
JP2004281848A (en) | Abrasive composition | |
JP2003100676A (en) | Abrasive composition | |
JP2003321671A (en) | Composition for abrasive | |
JP3741435B2 (en) | Polishing composition | |
JP2004175904A (en) | Polishing composition | |
JP2005311011A (en) | Polishing composition | |
JP2003327954A (en) | Polishing composition | |
JP2005136255A (en) | Abrasive composition | |
JP2003124158A (en) | Polishing composition | |
JP2004059825A (en) | Abrasive composition | |
JP2005306977A (en) | Polishing composition | |
JP2004067869A (en) | Polishing composition | |
JP2003100678A (en) | Abrasive composition | |
JP2005136118A (en) | Polishing composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041207 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20061121 |