JP2003254332A - Method and device for manufacturing dynamic pressure bearing - Google Patents
Method and device for manufacturing dynamic pressure bearingInfo
- Publication number
- JP2003254332A JP2003254332A JP2002055011A JP2002055011A JP2003254332A JP 2003254332 A JP2003254332 A JP 2003254332A JP 2002055011 A JP2002055011 A JP 2002055011A JP 2002055011 A JP2002055011 A JP 2002055011A JP 2003254332 A JP2003254332 A JP 2003254332A
- Authority
- JP
- Japan
- Prior art keywords
- dynamic pressure
- rod
- shaped electrode
- insertion hole
- bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/14—Special methods of manufacture; Running-in
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/026—Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/106—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
- F16C33/107—Grooves for generating pressure
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、金属製軸受、例
えば多孔質材料に潤滑油を含油させた含油軸受からなる
動圧軸受に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal bearing, for example, a dynamic pressure bearing which is an oil-impregnated bearing in which lubricating oil is impregnated in a porous material.
【0002】[0002]
【従来の技術】含油軸受は、多孔質材に潤滑油を含油さ
せたものであり、シャフトの回転時に含油軸受の気孔内
に含まれている潤滑油がシャフトと含油軸受との摺動部
に滲み出して潤滑作用を行うものである。2. Description of the Related Art An oil-impregnated bearing is a porous material impregnated with lubricating oil, and the lubricating oil contained in the pores of the oil-impregnated bearing when the shaft rotates is used in the sliding portion between the shaft and the oil-impregnated bearing. It exudes and performs a lubricating action.
【0003】この含油軸受において、潤滑油にシャフト
を支える動圧を発生させるために、シャフトを回転自在
に支持する軸受内周面にシャフトの回転に伴って潤滑油
を案内する動圧発生溝を設けた動圧軸受も種々提案さ
れ、例えば特開平10−141358号公報などには、
第1の傾斜溝部と第2の傾斜溝部とを対称に対向させ、
これら第1の傾斜溝部と第2の傾斜溝部を円周方向に並
設させてヘリングボーン状の動圧発生溝を形成すると共
に、第1の傾斜溝部と第2の傾斜溝部との合流部に円周
方向に周回する環状溝を形成した動圧軸受が提案されて
いる。In this oil-impregnated bearing, in order to generate a dynamic pressure for supporting the shaft on the lubricating oil, a dynamic pressure generating groove for guiding the lubricating oil as the shaft rotates is formed on the inner peripheral surface of the bearing that rotatably supports the shaft. Various types of dynamic pressure bearings have been proposed. For example, Japanese Patent Laid-Open No. 10-141358 discloses that
The first inclined groove portion and the second inclined groove portion are symmetrically opposed to each other,
The first inclined groove portion and the second inclined groove portion are arranged in parallel in the circumferential direction to form a herringbone dynamic pressure generating groove, and at the confluence of the first inclined groove portion and the second inclined groove portion. There has been proposed a dynamic pressure bearing having an annular groove that circulates in the circumferential direction.
【0004】[0004]
【発明が解決しようとする課題】ところで、上記した動
圧軸受において、動圧軸受の内周面に設けられる動圧発
生溝をNC旋盤を用いて切削加工して形成するようにし
ているが、このようなヘリングボーン型の動圧発生溝
は、第1及び第2の傾斜溝部が相互に隣接して円周方向
に多数並設されて形成するようにしているため、一回の
切削工程で動圧発生溝を連続的に成形することかでき
ず、第1及び第2の傾斜溝部を一本ずつ切削することか
ら、溝加工が面倒で手間がかかる。即ち、前記特開平1
0−141358号公報で提案される動圧軸受は、第1
の傾斜溝部を終端まで形成した後、NC旋盤の回転駆動
機構を強制停止させ、第1の傾斜溝部の終端に環状溝部
を形成し、この後、第1の傾斜溝部の終端に第2の傾斜
溝部の基端を合わせるようにして環状溝部から第2の傾
斜溝部を第1の傾斜溝部と逆方向に向かって形成(明細
書中、段落番号0018〜0020参照)している。こ
のため、正確なヘリングボーン型の動圧発生溝を形成す
るためには、一本の第1の傾斜溝部を切削した後、その
終端に第2の傾斜溝部の基端を位置合わせして第2の傾
斜溝部を切削しなければならないことから、これら第1
及び第2の傾斜溝部を位置決めする煩雑な作業を両傾斜
溝部の本数に応じて繰り返して行う必要があり、面倒で
手間がかかる。By the way, in the above dynamic pressure bearing, the dynamic pressure generating groove provided on the inner peripheral surface of the dynamic pressure bearing is formed by cutting using an NC lathe. Since such a herringbone type dynamic pressure generating groove is formed by arranging a plurality of first and second inclined groove portions side by side in the circumferential direction in a row, a single cutting step is required. Since the dynamic pressure generating groove cannot be continuously formed and the first and second inclined groove portions are cut one by one, the groove processing is troublesome and time-consuming. That is, the above-mentioned JP-A-1
The dynamic pressure bearing proposed in 0-141358 is the first
After forming the inclined groove portion of No. 1 to the end, the rotary drive mechanism of the NC lathe is forcibly stopped to form an annular groove portion at the end of the first inclined groove portion, and thereafter, the second inclined portion is formed at the end of the first inclined groove portion. A second inclined groove portion is formed from the annular groove portion in the direction opposite to the first inclined groove portion so that the base ends of the groove portions are aligned (see paragraph numbers 0018 to 0020 in the specification). Therefore, in order to form an accurate herringbone type dynamic pressure generating groove, after cutting one first inclined groove portion, the base end of the second inclined groove portion is aligned with the end of the first inclined groove portion. Since it is necessary to cut the inclined groove portion of 2,
Also, it is necessary to repeat the complicated work of positioning the second inclined groove portion depending on the number of both inclined groove portions, which is troublesome and troublesome.
【0005】この発明は、このような事情を考慮してな
されたもので、その目的は、動圧発生溝を簡単かつ容易
に形成することができる動圧軸受の製造方法を提供する
ことにあり、他の目的は、上記方法を的確に実施するこ
とができる動圧軸受の製造装置を提供することにある。The present invention has been made in view of such circumstances, and an object thereof is to provide a method of manufacturing a dynamic pressure bearing in which a dynamic pressure generation groove can be formed easily and easily. Another object of the present invention is to provide a dynamic pressure bearing manufacturing apparatus capable of accurately carrying out the above method.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、この発明は以下の手段を提案している。請求項1に
係る発明は、金属製軸受のシャフト挿入孔の内周面に動
圧発生溝を有する動圧軸受の製造方法であって、予め、
外周部に動圧発生溝作成のための突部が形成されている
棒状電極の、前記突部を除く外表面を絶縁状態としてお
き、金属製軸受のシャフト挿入孔にその内周面と隙間を
隔てて前記棒状電極が挿入され、かつ該棒状電極と前記
シャフト挿入孔の内周面間が電解液に浸漬された状態の
とき、棒状電極を陰極、金属製軸受を陽極としての電源
投入時、電気化学反応により前記シャフト挿入孔の内周
面に前記動圧発生溝を形成することを特徴とする。In order to achieve the above object, the present invention proposes the following means. The invention according to claim 1 is a method of manufacturing a dynamic pressure bearing having a dynamic pressure generation groove on an inner peripheral surface of a shaft insertion hole of a metal bearing, which comprises:
The outer surface of the rod-shaped electrode, which is formed with a projection for creating a dynamic pressure generating groove on the outer peripheral portion, is kept in an insulating state, and a gap is formed between the inner peripheral surface and the shaft insertion hole of the metal bearing. When the rod-shaped electrode is inserted at a distance, and when the rod-shaped electrode and the inner peripheral surface of the shaft insertion hole are immersed in an electrolytic solution, when the power is turned on with the rod-shaped electrode as the cathode and the metal bearing as the anode, The dynamic pressure generating groove is formed on the inner peripheral surface of the shaft insertion hole by an electrochemical reaction.
【0007】この発明に係る製造方法によれば、電源を
投入すると、棒状電極の突部と動圧軸受のシャフト挿入
孔の内周面との間で電気化学反応が発生して、シャフト
挿入孔の内周面が、突部の形状と対応する形状で電解除
去されることにより、シャフト挿入孔の内周面に動圧発
生溝が形成され、これによって、動圧軸受の内周面に所
望の動圧発生溝が得られる。According to the manufacturing method of the present invention, when the power is turned on, an electrochemical reaction occurs between the projection of the rod-shaped electrode and the inner peripheral surface of the shaft insertion hole of the dynamic pressure bearing, and the shaft insertion hole The inner peripheral surface of the shaft is electrolytically removed in a shape corresponding to the shape of the protrusion, so that a dynamic pressure generating groove is formed in the inner peripheral surface of the shaft insertion hole. The dynamic pressure generating groove of is obtained.
【0008】請求項2に係る発明は、請求項1記載の動
圧軸受の製造方法において、前記電解液は、硝酸ナトリ
ウム水溶液であることを特徴とする。According to a second aspect of the present invention, in the method of manufacturing a dynamic pressure bearing according to the first aspect, the electrolytic solution is a sodium nitrate aqueous solution.
【0009】この発明に係る製造方法によれば、電解液
が硝酸ナトリウムの水溶液からなっているので、動圧軸
受が鉄で、かつ棒状電極が銅,或いはステンレス等で構
成された場合には、電気化学反応が良好に行われ、シャ
フト挿入孔に動圧発生溝を確実に形成することができ
る。According to the manufacturing method of the present invention, since the electrolytic solution is an aqueous solution of sodium nitrate, when the dynamic pressure bearing is made of iron and the rod-shaped electrode is made of copper, stainless steel or the like, The electrochemical reaction is well performed, and the dynamic pressure generating groove can be surely formed in the shaft insertion hole.
【0010】請求項3に係る発明は、請求項1又は2記
載の動圧軸受の製造方法において、前記電解液が、棒状
電極と金属製軸受の内周面との隙間を経由して流通させ
られることを特徴とする。According to a third aspect of the invention, in the method of manufacturing a dynamic pressure bearing according to the first or second aspect, the electrolytic solution is caused to flow through a gap between the rod electrode and the inner peripheral surface of the metal bearing. It is characterized by being.
【0011】この発明に係る製造方法によれば、電解液
を流通させつつ電気化学反応を行わせるので、電気化学
反応を常に良好な状態に保つことができる。According to the manufacturing method of the present invention, since the electrochemical reaction is carried out while the electrolytic solution is flowing, the electrochemical reaction can always be kept in a good state.
【0012】請求項4に係る発明は、金属製軸受のシャ
フト挿入孔の内周面に動圧発生溝を有する動圧軸受の製
造装置であって、金属製軸受を支持する支持体と、外周
部に動圧発生溝を形成するための突部が形成されると共
に、突部を除く外表面が絶縁皮膜された棒状電極と、前
記棒状電極が金属製軸受のシャフト挿入孔にその内周面
と隙間を隔てて挿入されたとき、棒状電極とシャフト挿
入孔の内周面間を電解液で浸漬する電解液供給機構とを
備え、棒状電極を陰極、金属製軸受を陽極としての電源
投入時、電気化学反応により前記シャフト挿入孔の内周
面に前記動圧発生溝を形成することを特徴とする。According to a fourth aspect of the present invention, there is provided a manufacturing apparatus of a dynamic pressure bearing having a dynamic pressure generating groove on the inner peripheral surface of the shaft insertion hole of the metal bearing, the support body supporting the metal bearing and the outer circumference. A rod-shaped electrode having a protrusion for forming a dynamic pressure generating groove formed on its outer surface, and the outer surface excluding the protrusion is coated with an insulating film, and the rod-shaped electrode has a shaft insertion hole of a metal bearing with an inner peripheral surface thereof. When the power is turned on with the rod-shaped electrode as the cathode and the metal bearing as the anode, it is equipped with an electrolyte solution supply mechanism that immerses the rod-shaped electrode and the inner peripheral surface of the shaft insertion hole with the electrolyte solution when inserted with a gap The dynamic pressure generating groove is formed on the inner peripheral surface of the shaft insertion hole by an electrochemical reaction.
【0013】この発明に係る製造装置によれば、電源投
入によって電気化学反応を発生させ、シャフト挿入孔の
内周面が電解除去されることにより、シャフト挿入孔に
突部と対応する形状の動圧発生溝を形成するので、動圧
発生溝を簡単かつ容易に形成することができる。これに
より、上記方法を的確に行うことができる。According to the manufacturing apparatus of the present invention, when the power is turned on, an electrochemical reaction is generated, and the inner peripheral surface of the shaft insertion hole is electrolytically removed, so that the shaft insertion hole has a shape corresponding to the protrusion. Since the pressure generating groove is formed, the dynamic pressure generating groove can be formed easily and easily. Thereby, the above method can be performed accurately.
【0014】請求項5に係る発明は、請求項4記載の動
圧軸受の製造装置において、前記電解液供給機構は、棒
状電極と金属製軸受のシャフト挿入孔の内周面間に電解
液を循環させる循環系を備えることを特徴とする。According to a fifth aspect of the invention, in the dynamic pressure bearing manufacturing apparatus according to the fourth aspect, the electrolytic solution supply mechanism applies an electrolytic solution between the rod-shaped electrode and the inner peripheral surface of the shaft insertion hole of the metal bearing. It is characterized by having a circulation system for circulation.
【0015】この発明に係る製造装置によれば、電解液
供給機構が電解液を循環させる循環系を有し、棒状電極
の突部及び動圧軸受のシャフト挿入孔の内周面間で電解
液を流通させることができるので、電気化学反応を常に
良好な状態に保つことができる。According to the manufacturing apparatus of the present invention, the electrolytic solution supply mechanism has a circulation system for circulating the electrolytic solution, and the electrolytic solution is provided between the projection of the rod-shaped electrode and the inner peripheral surface of the shaft insertion hole of the dynamic pressure bearing. Since it can be circulated, the electrochemical reaction can always be kept in a good state.
【0016】請求項6に係る発明は、請求項4又は5記
載の動圧軸受の製造装置において、前記支持体は棒状電
極と協働して、金属製軸受及び棒状電極間を外気と遮断
された雰囲気内で支持することを特徴とする。According to a sixth aspect of the present invention, in the dynamic pressure bearing manufacturing apparatus according to the fourth or fifth aspect, the support body cooperates with the rod-shaped electrode to block the metal bearing and the rod-shaped electrode from the outside air. It is characterized by being supported in a vibrant atmosphere.
【0017】この発明に係る製造装置によれば、支持体
により動圧軸受が外気と遮断された雰囲気内に支持され
るので、これによっても電気化学反応を良好に行うこと
ができる。According to the manufacturing apparatus of the present invention, since the dynamic pressure bearing is supported by the support in the atmosphere which is shielded from the outside air, the electrochemical reaction can be satisfactorily performed also by this.
【0018】[0018]
【発明の実施の形態】以下、図面を参照し、この発明の
実施の形態について説明する。図1から図5はこの発明
の一実施の形態に係る動圧軸受の製造装置を示す図であ
って、図1は動圧軸受の製造装置を示す全体図、図2は
同じく製造装置の動圧軸受内に棒状電極が挿入された状
態を示す図1のA−A線に相当する断面図、図3は棒状
電極を示す説明図、図4は棒状電極の先端側を示す斜視
図、図5は動圧軸受に形成された動圧発生溝を示す断面
図である。この実施形態の製造装置1は、図1に示すよ
うに、動圧軸受20のシャフト挿入孔21の内周面に、
図示しないシャフトを支持するための動圧発生溝22を
電気化学反応によって形成するためのものである。動圧
軸受20は、多孔質材料である焼結体に潤滑油が含油さ
れることにより、円筒形状の金属製軸受をなしている。
動圧軸受20の詳細は、図5に示されている。そして、
製造装置1は、大別すると、動圧軸受20を支持する支
持体2と、動圧軸受20のシャフト挿入孔21内に挿入
される棒状電極3とを備えている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 are views showing a dynamic pressure bearing manufacturing apparatus according to an embodiment of the present invention, FIG. 1 is an overall view showing the dynamic pressure bearing manufacturing apparatus, and FIG. A sectional view corresponding to the line AA of FIG. 1 showing a state where the rod-shaped electrode is inserted into the pressure bearing, FIG. 3 is an explanatory diagram showing the rod-shaped electrode, and FIG. 4 is a perspective view showing the tip side of the rod-shaped electrode. 5 is a sectional view showing a dynamic pressure generating groove formed in the dynamic pressure bearing. As shown in FIG. 1, the manufacturing apparatus 1 according to this embodiment is provided with an inner peripheral surface of the shaft insertion hole 21 of the dynamic pressure bearing 20,
This is for forming a dynamic pressure generating groove 22 for supporting a shaft (not shown) by an electrochemical reaction. The dynamic pressure bearing 20 forms a cylindrical metal bearing by lubricating a sintered body, which is a porous material, with lubricating oil.
Details of the dynamic pressure bearing 20 are shown in FIG. And
The manufacturing apparatus 1 roughly includes a support 2 that supports the dynamic pressure bearing 20, and a rod-shaped electrode 3 that is inserted into the shaft insertion hole 21 of the dynamic pressure bearing 20.
【0019】支持体2は、底面の外周に周縁部4を下方
に突出させて形成し、周縁部4内に動圧軸受20を嵌合
したとき、棒状電極3と協働して動圧軸受20を支持す
るようになっている。棒状電極3は、支持体2の下部に
例えばエアシリンダ等の挿入機構(図示せず)に装着さ
れて昇降可能に設けられており、支持体2の周縁部4内
に動圧軸受20が嵌合されたとき、下方から上昇して電
極部31が動圧軸受20のシャフト挿入孔21に挿入さ
れることにより、基部33と支持体2とで動圧軸受20
を挟持する。その際、動圧軸受20のシャフト挿入孔2
1の内周面に対し、図2のように、電極部31に突設さ
れた突部32が所望の隙間を隔てるように挿入される。The support body 2 is formed by projecting a peripheral edge portion 4 downward on the outer periphery of the bottom surface. When the dynamic pressure bearing 20 is fitted in the peripheral edge portion 4, the support body 2 cooperates with the rod-shaped electrode 3 to support the dynamic pressure bearing. It is designed to support 20. The rod-shaped electrode 3 is attached to an insertion mechanism (not shown) such as an air cylinder in a lower portion of the support body 2 and is provided so as to be able to move up and down, and the dynamic pressure bearing 20 is fitted into the peripheral edge portion 4 of the support body 2. When combined, the electrode portion 31 rises from below and is inserted into the shaft insertion hole 21 of the dynamic pressure bearing 20, so that the base 33 and the support body 2 form the dynamic pressure bearing 20.
To pinch. At that time, the shaft insertion hole 2 of the dynamic pressure bearing 20
As shown in FIG. 2, a protrusion 32 protruding from the electrode portion 31 is inserted into the inner peripheral surface of the electrode 1 so as to separate a desired gap.
【0020】棒状電極3は、図3、図4に示すように、
基部33の先端に例えば細い長四角柱状に形成された電
極部31が延在しており、その外周部に突部32が突設
されている。この突部32は、動圧軸受20の動圧発生
溝22を形成するためのものであって、例えば電極部3
1の各面においてくの字状をなし、しかも図2に示すよ
うに、全体的に動圧軸受20の内周面に沿って円弧状に
膨らんで形成されている。このような棒状電極3は、電
気化学反応に際し、予め、図3(a)のように、電極部
31及び基部33の外表面が絶縁材5によって全体的に
被膜された後、電極部31の絶縁材5が表面から研削さ
れることにより、同図(b)のように突部32の先端の
みが露出され、この突部32の先端が露出した状態で使
用される。即ち、棒状電極3が動圧軸受20のシャフト
挿入孔21に挿入されたとき、電極部31の突部32と
シャフト挿入孔21の内周面との間で所定の隙間を隔て
るようになっている。絶縁材5としては、例えばエポキ
シ樹脂からなっているが、後述する電解液によって影響
されることのない材質であればよい。The rod-shaped electrode 3 is, as shown in FIGS. 3 and 4,
The electrode portion 31 formed in the shape of, for example, a thin rectangular column is extended at the tip of the base portion 33, and the protrusion 32 is provided on the outer peripheral portion thereof. The protrusion 32 is for forming the dynamic pressure generating groove 22 of the dynamic pressure bearing 20, and is, for example, the electrode unit 3.
Each of the surfaces 1 has a dogleg shape, and as shown in FIG. 2, it is formed so as to bulge in an arc shape along the inner peripheral surface of the dynamic pressure bearing 20 as a whole. When the rod-shaped electrode 3 as described above is subjected to an electrochemical reaction, the outer surfaces of the electrode portion 31 and the base portion 33 are entirely coated with the insulating material 5 in advance as shown in FIG. By grinding the insulating material 5 from the surface, only the tips of the protrusions 32 are exposed as shown in FIG. 3B, and the tips of the protrusions 32 are used in an exposed state. That is, when the rod-shaped electrode 3 is inserted into the shaft insertion hole 21 of the dynamic pressure bearing 20, a predetermined gap is formed between the projection 32 of the electrode portion 31 and the inner peripheral surface of the shaft insertion hole 21. There is. The insulating material 5 is made of, for example, an epoxy resin, but may be any material that is not affected by the electrolytic solution described later.
【0021】また、製造装置1は、棒状電極3がシャフ
ト挿入孔21に挿入されたとき、それら両者3,21間
を電解液に浸漬した状態にする電解液供給機構6を備え
ている。電解液供給機構6は、例えば図1のように電解
液源61と、その電解液源61内の電解液を供給するポ
ンプ62とを有し、ポンプ62からの電解液が、棒状電
極3の基部33に設けられている供給流路63を経てシ
ャフト挿入孔21内に供給されるようになっている。Further, the manufacturing apparatus 1 is provided with an electrolytic solution supply mechanism 6 which, when the rod-shaped electrode 3 is inserted into the shaft insertion hole 21, makes a space between the both electrodes 3 and 21 immersed in the electrolytic solution. The electrolytic solution supply mechanism 6 has, for example, an electrolytic solution source 61 and a pump 62 that supplies the electrolytic solution in the electrolytic solution source 61 as shown in FIG. 1. The electrolytic solution from the pump 62 corresponds to the rod-shaped electrode 3. It is adapted to be supplied into the shaft insertion hole 21 via a supply channel 63 provided in the base portion 33.
【0022】その場合、支持体2に動圧軸受20のシャ
フト挿入孔21と連絡する戻し流路64が設けられ、シ
ャフト挿入孔21内に供給された電解液が戻し流路64
及び配管65を経て供給流路63に接続されることによ
り、電解液が循環されるようになっている。そのため、
電解液供給機構6は、電解液を循環させるための戻し流
路64と配管65とからなる循環系を有している。配管
65の途中位置にはフィルタ66が設けられている。In this case, the support 2 is provided with a return flow path 64 which communicates with the shaft insertion hole 21 of the dynamic pressure bearing 20, and the electrolytic solution supplied into the shaft insertion hole 21 is returned to the return flow path 64.
The electrolytic solution is circulated by being connected to the supply flow path 63 via the pipe 65. for that reason,
The electrolytic solution supply mechanism 6 has a circulation system including a return channel 64 and a pipe 65 for circulating the electrolytic solution. A filter 66 is provided at an intermediate position of the pipe 65.
【0023】そして、電解液によってシャフト挿入孔2
1と突部32との間が浸漬状態にあるとき、棒状電極3
が陰極端子7に接続されると共に、動圧軸受20が陽極
端子8に接続されて電源投入されると、電気化学反応が
起こってシャフト挿入孔21の内周面に動圧発生溝22
が形成されるようになっている。Then, the shaft insertion hole 2 is formed by the electrolytic solution.
1 and the protrusion 32 are immersed, the rod-shaped electrode 3
Is connected to the cathode terminal 7 and the dynamic pressure bearing 20 is connected to the anode terminal 8 and the power is turned on, an electrochemical reaction occurs and a dynamic pressure generating groove 22 is formed on the inner peripheral surface of the shaft insertion hole 21.
Are formed.
【0024】ここで、電解液としては、例えば動圧軸受
20が鉄(Fe)、棒状電極3が銅(Cu)若しくはス
テンレスで構成されている場合、硝酸ナトリウムの水溶
液(NaNO3の約20%水溶液)からなっており、電
気化学反応は、以下の関係によって行われることとな
る。即ち、
通電前)
a)電 離 NaNO3→Na++NO3 -
H2O →H++OH-
通電中)
a)陽極反応 Fe→Fe2++2e-
Fe2++2NO3 -→Fe(NO3)2
Fe(NO3)2+2NaOH→2Na++2NO3 -+Fe(OH)2
全反応式 Fe+2H2O→Fe(OH)2+H2
さらに水及び酸素に反応して
4Fe(OH)2+2H2O+O2→4Fe(OH)3
一方では酸素発生 2OH-→H2O+1/2O2↑+2e-
b)陰極反応 2Na++2H2O+2e-→2NaOH+H2↑Here, as the electrolytic solution, for example, when the dynamic pressure bearing 20 is made of iron (Fe) and the rod-shaped electrode 3 is made of copper (Cu) or stainless, an aqueous solution of sodium nitrate (about 20% of NaNO 3 is used). Aqueous solution), and the electrochemical reaction is performed according to the following relationship. That is, pre-electrification) a) conductive away NaNO 3 → Na + + NO 3 - H 2 O → H + + OH - being energized) a) anodic reaction Fe → Fe 2+ + 2e - Fe 2+ + 2NO 3 - → Fe (NO 3 ) 2 Fe (NO 3 ) 2 + 2NaOH → 2Na + + 2NO 3 − + Fe (OH) 2 Total reaction formula Fe + 2H 2 O → Fe (OH) 2 + H 2 Further reacting with water and oxygen 4Fe (OH) 2 + 2H 2 O + O 2 → 4Fe (OH) 3 On the one hand, oxygen generation 2OH − → H 2 O + 1 / 2O 2 ↑ + 2e − b) Cathodic reaction 2Na + + 2H 2 O + 2e − → 2NaOH + H 2 ↑
【0025】つまり、動圧軸受20と棒状電極3の突部
32間の通電時、硝酸ナトリウムの水溶液によって電気
化学反応が起こることにより、動圧軸受20のシャフト
挿入孔21の内周面が突部32に対応した形状で水酸化
鉄(Fe(OH)2)となり、この水酸化鉄が電解除去
されることにより、図1,図5のような動圧発生溝22
が形成されるようになっている。That is, when electricity is applied between the dynamic pressure bearing 20 and the projection 32 of the rod-shaped electrode 3, an electrochemical reaction occurs due to an aqueous solution of sodium nitrate, so that the inner peripheral surface of the shaft insertion hole 21 of the dynamic pressure bearing 20 projects. Iron hydroxide (Fe (OH) 2 ) is formed in a shape corresponding to the portion 32, and the iron hydroxide is electrolytically removed, so that the dynamic pressure generating groove 22 as shown in FIGS.
Are formed.
【0026】なお、動圧軸受20及び棒状電極3に供給
される電源としては、パルス電源方式であり、パルスの
オン時間とオフ時間とが繰り返されることにより、動圧
発生溝22を形成するのに必要な加工時間が得られるよ
うになっている。因みに、この実施形態においては、ピ
ーク電流が20Aで、パルスオン時間が10msec、
パルスオフ時間が40msecとしたとき、3secの
加工時間で0.06〜0.10mm程度の深さの動圧発
生溝22が得られるパルス電源が採用されている。加工
時間は、形成すべき動圧発生溝22の深さ及び幅の大き
さに基づき、予め選定される。The power supply supplied to the dynamic pressure bearing 20 and the rod-shaped electrode 3 is a pulse power supply system, and the dynamic pressure generating groove 22 is formed by repeating the on time and the off time of the pulse. The processing time required for this can be obtained. Incidentally, in this embodiment, the peak current is 20 A, the pulse on time is 10 msec,
When the pulse-off time is set to 40 msec, a pulse power supply that can obtain the dynamic pressure generating groove 22 having a depth of about 0.06 to 0.10 mm in a processing time of 3 sec is adopted. The processing time is preselected based on the depth and width of the dynamic pressure generating groove 22 to be formed.
【0027】この実施形態の製造装置1は、上記のよう
に構成されているので、次に、その動作に関連して本発
明方法について述べる。まず、支持体2の周縁部4内に
動圧軸受20を嵌合すると共に、その動圧軸受20のシ
ャフト挿入孔21内に棒状電極3の電極部31を挿入す
ることにより、支持体2が棒状電極3と共に協働して動
圧軸受20を外気と遮断した雰囲気に支持する。このと
き、電極部31の突部32とシャフト挿入孔21の内周
面間とが、図1,図2のように電気化学反応させるのに
必要な隙間を隔てておく。この状態にあるとき、電解液
供給機構6によって電解液を供給し、電極部31の突部
32とシャフト挿入孔2の内周面間が電解液で浸漬され
た状態にしておく。Since the manufacturing apparatus 1 of this embodiment is configured as described above, the method of the present invention will be described next in relation to its operation. First, by fitting the dynamic pressure bearing 20 in the peripheral edge portion 4 of the support body 2 and inserting the electrode portion 31 of the rod-shaped electrode 3 into the shaft insertion hole 21 of the dynamic pressure bearing 20, Together with the rod-shaped electrode 3, the dynamic pressure bearing 20 is supported in an atmosphere isolated from the outside air. At this time, the projection 32 of the electrode portion 31 and the inner peripheral surface of the shaft insertion hole 21 are separated from each other by a gap necessary for the electrochemical reaction as shown in FIGS. In this state, the electrolytic solution supply mechanism 6 supplies the electrolytic solution so that the projection 32 of the electrode portion 31 and the inner peripheral surface of the shaft insertion hole 2 are immersed in the electrolytic solution.
【0028】そして、棒状電極3が陰極端子7に接続さ
れると共に、動圧軸受20が陽極端子8に接続され、か
つその接続状態で電源を投入すると、棒状電極3の突部
32と動圧軸受20のシャフト挿入孔21の内周面との
間で電気化学反応が発生して、シャフト挿入孔21の内
周面が、突部32の形状と対応する形状で電解除去され
ることにより、シャフト挿入孔21の内周面にくの字状
の動圧発生溝22が形成され、これによって、動圧軸受
20の内周面に所望の動圧発生溝22が得られる。When the rod-shaped electrode 3 is connected to the cathode terminal 7 and the dynamic pressure bearing 20 is connected to the anode terminal 8 and the power supply is turned on in that connection state, the protrusion 32 of the rod-shaped electrode 3 and the dynamic pressure are connected. An electrochemical reaction occurs between the inner peripheral surface of the shaft insertion hole 21 of the bearing 20 and the inner peripheral surface of the shaft insertion hole 21 is electrolytically removed in a shape corresponding to the shape of the protrusion 32. A dogleg-shaped dynamic pressure generating groove 22 is formed on the inner peripheral surface of the shaft insertion hole 21, whereby a desired dynamic pressure generating groove 22 is obtained on the inner peripheral surface of the dynamic pressure bearing 20.
【0029】即ち、本発明方法によれば、棒状電極3の
電極部31に形成しようとする形状に応じた突部32を
形成し、その突部32を、動圧軸受20のシャフト挿入
孔21内に挿入することによって電気化学的に動圧発生
溝22を形成できるので、NC旋盤のように面倒で手間
がかかることがなくなり、動圧発生溝22を簡単かつ容
易に形成することができる。That is, according to the method of the present invention, the protrusion 32 corresponding to the shape to be formed is formed on the electrode portion 31 of the rod-shaped electrode 3, and the protrusion 32 is inserted into the shaft insertion hole 21 of the dynamic pressure bearing 20. Since the dynamic pressure generating groove 22 can be electrochemically formed by inserting the inside, the dynamic pressure generating groove 22 can be formed easily and easily, without the trouble and labor required of an NC lathe.
【0030】また、棒状電極3が陰極端子7に、かつ動
圧軸受20が陽極端子8にそれぞれ接続されるので、放
電加工のように逆極性の形態で接続されるものと比較す
ると、電解除去されたスラグがワークである動圧軸受2
0の内周面に付着したりするおそれがない。しかも、電
解液が硝酸ナトリウムの水溶液からなっているので、動
圧軸受20が鉄で、かつ棒状電極3が銅(或いはステン
レス)で構成された場合には、電気化学反応が良好に行
われ、シャフト挿入孔21に動圧発生溝22を確実に形
成することができる。Further, since the rod-shaped electrode 3 is connected to the cathode terminal 7 and the dynamic pressure bearing 20 is connected to the anode terminal 8, respectively, as compared with the case where they are connected in a reverse polarity form such as electric discharge machining, electrolytic removal is performed. Bearing 2 whose slag is the work
There is no risk of sticking to the inner peripheral surface of 0. Moreover, since the electrolytic solution is an aqueous solution of sodium nitrate, when the dynamic pressure bearing 20 is made of iron and the rod-shaped electrode 3 is made of copper (or stainless steel), the electrochemical reaction is well performed, The dynamic pressure generating groove 22 can be reliably formed in the shaft insertion hole 21.
【0031】そして、この実施形態の製造装置1は、動
圧軸受20を支持する支持体2と、突部32のみを露出
させ、かつ動圧軸受20のシャフト挿入孔21内にその
内周面と隙間を隔てて挿入される棒状電極3と、その棒
状電極3及びシャフト挿入孔21間を電解液で浸漬する
電解液供給機構6とを備え、棒状電極3が陰極端子7に
接続されると共に、動圧軸受20が陽極端子8に接続さ
れた状態で電気化学反応を発生させ、シャフト挿入孔2
1の内周面が電解除去されることにより、シャフト挿入
孔21に突部32と対応する形状の動圧発生溝22を形
成するようにしたので、動圧発生溝22を簡単かつ容易
に形成することができ、上記方法を的確に行うことがで
きる。In the manufacturing apparatus 1 of this embodiment, only the support 2 for supporting the dynamic pressure bearing 20 and the protrusion 32 are exposed, and the inner peripheral surface of the shaft is inserted into the shaft insertion hole 21 of the dynamic pressure bearing 20. And a rod-shaped electrode 3 inserted with a gap therebetween, and an electrolytic solution supply mechanism 6 for immersing the rod-shaped electrode 3 and the shaft insertion hole 21 in an electrolytic solution. The rod-shaped electrode 3 is connected to the cathode terminal 7 and , The dynamic pressure bearing 20 is connected to the anode terminal 8 to cause an electrochemical reaction, and the shaft insertion hole 2
Since the inner peripheral surface of No. 1 is electrolytically removed, the dynamic pressure generation groove 22 having a shape corresponding to the protrusion 32 is formed in the shaft insertion hole 21, so that the dynamic pressure generation groove 22 is easily and easily formed. The above method can be performed accurately.
【0032】しかも、電解液供給機構4は、戻し流路6
4と配管65とにより、電解液を循環させる循環系を有
しているので、棒状電極3の突部32及び動圧軸受20
のシャフト挿入孔21の内周面間で電解液を流通させる
ことができ、電気化学反応を常に良好な状態に保つこと
ができる。Moreover, the electrolytic solution supply mechanism 4 includes the return passage 6
4 and the pipe 65 have a circulation system for circulating the electrolytic solution, so that the protrusion 32 of the rod-shaped electrode 3 and the dynamic pressure bearing 20 are provided.
The electrolytic solution can be circulated between the inner peripheral surfaces of the shaft insertion holes 21 and the electrochemical reaction can be always maintained in a good state.
【0033】更に、支持体2が棒状電極3と共に動圧軸
受20を支持すると、動圧軸受20の下部が棒状電極3
で覆われる一方、上部が支持体2で覆われ、動圧軸受2
0及び棒状電極3の突部32間が外気と遮断された気密
状態となるので、これによっても電気化学反応を良好に
行うことができる。Further, when the support body 2 supports the dynamic pressure bearing 20 together with the rod-shaped electrode 3, the lower part of the dynamic pressure bearing 20 is held by the rod-shaped electrode 3.
While the upper part is covered with the support 2, the dynamic pressure bearing 2
Since the space between 0 and the protrusion 32 of the rod-shaped electrode 3 is shielded from the outside air, an electrochemical reaction can be satisfactorily performed.
【0034】図6及び図7は、この製造装置の第2の実
施形態の要部を示している。この場合は、図6に示すよ
うに、棒状電極3の電極部31が円柱状に形成され、そ
の円柱状電極部31の周囲に右巻きとなるスパイラル状
の第1突部32aが設けられると共に、それと逆巻きと
なるスパイラル状の第2突部32bが設けられ、更に、
第1突部32aの末端と第2突部32bの先端とが連結
突部32cによって連結されと共に、第2突部32bの
末端と第1突部32aの先端も連結突部32dによって
連結されている。6 and 7 show the main parts of the second embodiment of this manufacturing apparatus. In this case, as shown in FIG. 6, the electrode portion 31 of the rod-shaped electrode 3 is formed in a columnar shape, and the spirally-shaped first protrusion 32 a that is wound in the right direction is provided around the columnar electrode portion 31. , A spiral second protrusion 32b which is reversely wound is provided, and further,
The end of the first protrusion 32a and the tip of the second protrusion 32b are connected by the connecting protrusion 32c, and the end of the second protrusion 32b and the tip of the first protrusion 32a are also connected by the connecting protrusion 32d. There is.
【0035】このような、第1突部32aと、第2突部
32bと、それらを互いに連結する連結突部32c及び
32dを有する棒状電極3が、動圧軸受20のシャフト
挿入孔21に挿入されて電源投入すると、シャフト挿入
孔21の内周面が、それら各突部32a〜32dに対応
する形状で電解除去される結果、シャフト挿入孔21の
後部側には図7(a)のように、互いに傾斜した状態で
交差する第1溝部22aと第2溝部22bが形成され、
またシャフト挿入孔21の前部側には同図(b)のよう
に、互いに傾斜した状態で交差する第1溝部22aと第
2溝部22bが形成されると共に、連結突部32c,3
2dに対応する第1,第2連結溝22c,22dが形成
されることとなる。The rod-shaped electrode 3 having the first protrusion 32a, the second protrusion 32b, and the connecting protrusions 32c and 32d for connecting them to each other is inserted into the shaft insertion hole 21 of the dynamic pressure bearing 20. Then, when the power is turned on, the inner peripheral surface of the shaft insertion hole 21 is electrolytically removed in a shape corresponding to each of the protrusions 32a to 32d. As a result, the rear side of the shaft insertion hole 21 is as shown in FIG. Is formed with a first groove portion 22a and a second groove portion 22b that intersect each other in an inclined state,
Further, as shown in FIG. 2B, a first groove portion 22a and a second groove portion 22b which intersect each other in a tilted state are formed on the front side of the shaft insertion hole 21, and the connecting protrusions 32c, 3 are formed.
The first and second connection grooves 22c and 22d corresponding to 2d are formed.
【0036】つまり、動圧軸受20のシャフト挿入孔2
1において、互いに逆方向に傾斜するスパイラル状の第
1の突部32aと第2の突部32bとを一括的に形成す
ることができるので、NC旋盤で形成する場合、第1溝
部22aを形成した後、その端部に第2溝部22bを揃
えて形成するといった煩わしい位置決め作業が不要にな
るばかりでなく、第2溝部22bを追加して形成するこ
とも不要になり、動圧発生溝22を極めて容易に形成す
ることができる。That is, the shaft insertion hole 2 of the dynamic pressure bearing 20.
In 1, the spiral first protrusion 32a and the second protrusion 32b that are inclined in opposite directions can be collectively formed. Therefore, when forming with the NC lathe, the first groove 22a is formed. After that, not only the troublesome positioning work of forming the second groove portions 22b in alignment with the end portions thereof becomes unnecessary, but also the additional formation of the second groove portions 22b becomes unnecessary, and the dynamic pressure generating groove 22 is formed. It can be formed very easily.
【0037】従って、本発明方法及び製造装置1によれ
ば、動圧軸受20に挿入される棒状電極3の形状を変え
ることにより、動圧軸受20に設けられる動圧発生溝2
2を任意の形状に形成することができ、動圧発生溝22
としての機能を最大限に発揮し得る形状にできることも
可能となる。Therefore, according to the method and manufacturing apparatus 1 of the present invention, the dynamic pressure generating groove 2 provided in the dynamic pressure bearing 20 is changed by changing the shape of the rod-shaped electrode 3 inserted in the dynamic pressure bearing 20.
2 can be formed in any shape, and the dynamic pressure generating groove 22
It is also possible to make it into a shape that can maximize its function.
【0038】ところで、動圧軸受20は、使用時、内周
面に支持するシャフト9の回転に伴い、含油されている
潤滑油が滲み出し、内周面とシャフト9の外周面との間
に油膜が形成される。滲み出した潤滑油は回転するシャ
フト9につられて動圧発生溝22を構成する第1溝部2
2aと第2溝部22bとに沿ってシャフト9の回転方向
へ流れる。このとき、第1溝部22aと第2溝部22b
が環状に連続するため、これら両溝部22a,22b間
で循環する。そして、第1,第2溝部22a,22bの
交差部において、図7(a)の矢印Bで示すように、潤
滑油が絞られ、第1,第2溝部22a,22bの双方か
ら交差部に向かう加圧力によってシャフト9を支える方
向に動圧、即ち油圧が生じることで、シャフト9が動圧
軸受20に対し非接触状態で支持される。この場合、第
1溝部22aと第2溝部22bとが共に同じ角度θで傾
斜しているため、その交差部において第1溝部22aと
第2溝部22bの双方から均等に加圧力が作用すること
から、シャフト9を安定的に支持することができる。By the way, when the dynamic pressure bearing 20 is used, the lubricating oil contained in the dynamic pressure bearing 20 oozes out as the shaft 9 supported on the inner peripheral surface thereof rotates, so that the dynamic oil bearing 20 is provided between the inner peripheral surface and the outer peripheral surface of the shaft 9. An oil film is formed. The lubricating oil that has exuded is attached to the rotating shaft 9 and forms the dynamic pressure generating groove 22.
It flows in the rotation direction of the shaft 9 along the 2a and the second groove portion 22b. At this time, the first groove portion 22a and the second groove portion 22b
Circulates in an annular shape, and therefore circulates between the groove portions 22a and 22b. Then, at the intersection of the first and second groove portions 22a and 22b, as shown by an arrow B in FIG. 7 (a), the lubricating oil is squeezed, and both the first and second groove portions 22a and 22b reach the intersection portion. Due to the applied pressing force, a dynamic pressure, that is, a hydraulic pressure is generated in a direction of supporting the shaft 9, so that the shaft 9 is supported in a non-contact state with the dynamic pressure bearing 20. In this case, since the first groove portion 22a and the second groove portion 22b are both inclined at the same angle θ, the pressing force is evenly applied from both the first groove portion 22a and the second groove portion 22b at the intersection. The shaft 9 can be stably supported.
【0039】なお、この実施形態では、棒状電極3が支
持体2に対し下方から上昇させることによって動圧軸受
20内に挿入された例を示したが、これに限らず、上方
から下降させることによって挿入してもよく、図示例に
限定されるものではない。In this embodiment, an example in which the rod-shaped electrode 3 is inserted into the dynamic pressure bearing 20 by raising it from below with respect to the support body 2 is shown, but the present invention is not limited to this, and it can be lowered from above. However, it is not limited to the illustrated example.
【0040】[0040]
【発明の効果】以上説明したように、請求項1に係る発
明によれば、棒状電極の突部と動圧軸受のシャフト挿入
孔の内周面との間で電気化学反応を発生させ、シャフト
挿入孔の内周面が電解除去されることで、動圧軸受のシ
ャフトの内周面に所望の動圧発生溝を形成できるように
構成したので、動圧発生溝を簡単かつ容易に形成するこ
とができる効果が得られる。As described above, according to the invention of claim 1, an electrochemical reaction is generated between the protrusion of the rod-shaped electrode and the inner peripheral surface of the shaft insertion hole of the dynamic pressure bearing, and the shaft is generated. Since the inner peripheral surface of the insertion hole is electrolytically removed to form the desired dynamic pressure generating groove on the inner peripheral surface of the shaft of the dynamic pressure bearing, the dynamic pressure generating groove can be formed easily and easily. The effect that can be obtained is obtained.
【0041】請求項2に係る発明によれば、電解液が硝
酸ナトリウム水溶液からなるので、シャフト挿入孔に動
圧発生溝を確実に形成することができる効果が得られ
る。請求項3に係る発明によれば、電解液を流通させつ
つ電気化学反応を行わせるので、電気化学反応を常に良
好な状態に保つことができる。According to the second aspect of the present invention, since the electrolytic solution is an aqueous solution of sodium nitrate, it is possible to reliably form the dynamic pressure generating groove in the shaft insertion hole. According to the invention of claim 3, since the electrochemical reaction is carried out while the electrolytic solution is flowing, the electrochemical reaction can always be kept in a good state.
【0042】請求項4に係る発明によれば、シャフト挿
入孔に突部と対応する形状の動圧発生溝を形成するよう
にしたので、動圧発生溝を簡単かつ容易に形成すること
ができ、上記方法を的確に行うことができる効果が得ら
れる。According to the invention of claim 4, since the dynamic pressure generating groove having a shape corresponding to the projection is formed in the shaft insertion hole, the dynamic pressure generating groove can be formed easily and easily. The effect that the above method can be performed accurately can be obtained.
【0043】請求項5に係る発明によれば、電解液供給
機構の循環系により、棒状電極の突部及び動圧軸受のシ
ャフト挿入孔の内周面間で電解液を流通させることがで
きるので、電気化学反応を常に良好な状態に保つことが
できる効果が得られる。According to the invention of claim 5, the electrolytic solution can be circulated between the projection of the rod-shaped electrode and the inner peripheral surface of the shaft insertion hole of the dynamic pressure bearing by the circulation system of the electrolytic solution supply mechanism. The effect that the electrochemical reaction can always be kept in a good state is obtained.
【0044】請求項6に係る発明によれば、支持体によ
り動圧軸受が外気と遮断された雰囲気内に支持されるの
で、これによっても電気化学反応を良好に行うことがで
きる効果が得られる。According to the invention of claim 6, since the dynamic pressure bearing is supported by the support in the atmosphere which is shielded from the outside air, the effect that the electrochemical reaction can be favorably carried out can also be obtained. .
【図1】 この発明の一実施の形態に係る動圧軸受の製
造装置を示す図であって、動圧軸受の製造装置を示す全
体図である。FIG. 1 is a diagram showing a dynamic pressure bearing manufacturing apparatus according to an embodiment of the present invention, which is an overall view showing the dynamic pressure bearing manufacturing apparatus.
【図2】 同じく製造装置の動圧軸受内に棒状電極が挿
入された状態を示す図1のA−A線に相当する断面図で
ある。FIG. 2 is a sectional view corresponding to line AA of FIG. 1, showing a state in which a rod-shaped electrode is inserted into the dynamic pressure bearing of the manufacturing apparatus.
【図3】 棒状電極を示す図であって、(a)は棒状電
極の突部が絶縁皮膜された状態を示す断面図、(b)は
棒状電極の突部が露出した状態を示す断面図である。3A and 3B are views showing a rod-shaped electrode, wherein FIG. 3A is a cross-sectional view showing a state where the projection of the rod-shaped electrode is coated with an insulating film, and FIG. 3B is a cross-sectional view showing a state where the projection of the rod-shaped electrode is exposed. Is.
【図4】 棒状電極の先端側を示す斜視図である。FIG. 4 is a perspective view showing a tip side of a rod-shaped electrode.
【図5】 動圧軸受に形成された動圧発生溝を示す断面
図である。FIG. 5 is a cross-sectional view showing a dynamic pressure generation groove formed in a dynamic pressure bearing.
【図6】 この発明の第2の実施の形態に係る動圧軸受
の製造装置の要部を示す棒状電極の背面図である。FIG. 6 is a rear view of a rod-shaped electrode showing a main part of a dynamic pressure bearing manufacturing apparatus according to a second embodiment of the present invention.
【図7】 動圧軸受に形成された動圧発生溝を示す図で
あって、(a)は動圧軸受のシャフト挿入孔を後部側か
ら見た断面図、(b)は動圧軸受のシャフト挿入孔を前
部側から見た断面図である。7A and 7B are views showing a dynamic pressure generating groove formed in the dynamic pressure bearing, wherein FIG. 7A is a sectional view of the shaft insertion hole of the dynamic pressure bearing as seen from the rear side, and FIG. It is sectional drawing which looked at the shaft insertion hole from the front part side.
1 製造装置 2 支持体 3 棒状電極 31 電極部 32 突部 32a 第1突部 32b 第2突部 32c,32d 連結突部 4 周縁部 5 絶縁材 6 電解液供給機構 61 電解液源 62 ポンプ 63 供給流路 64,65 循環系 66 フィルタ 7 陰極端子 8 陽極端子 9 シャフト 20 動圧軸受 21 シャフト挿入孔 22 動圧発生溝 22a 第1溝部 22b 第2溝部 22c,22d 連結溝部 32a 第1突部 32b 第2突部 32c,32d 第1,第2連結突部 1 Manufacturing equipment 2 support 3 Rod electrodes 31 Electrode part 32 Projection 32a first protrusion 32b Second protrusion 32c, 32d connection protrusion 4 peripheral part 5 insulation 6 Electrolyte supply mechanism 61 Electrolyte source 62 pumps 63 supply channel 64,65 Circulatory system 66 filters 7 Cathode terminal 8 Anode terminal 9 shaft 20 Dynamic bearing 21 Shaft insertion hole 22 Dynamic pressure generation groove 22a first groove 22b Second groove part 22c, 22d Connection groove part 32a first protrusion 32b Second protrusion 32c, 32d First and second connecting protrusions
───────────────────────────────────────────────────── フロントページの続き (72)発明者 上原 勝行 長野県岡谷市長池3158−1 株式会社カツ タカ内 (72)発明者 堀内 郁雄 長野県上田市大字上田原795−6 株式会 社グリーン精工内 Fターム(参考) 3C059 AA02 AB01 DA03 EA02 HA17 3J011 BA02 CA02 DA02 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Katsuyuki Uehara 3158-1 Nagaike, Okaya-shi, Nagano Katsu Co., Ltd. Within the hawk (72) Inventor Ikuo Horiuchi 795-6 Uedahara, Ueda City, Nagano Stock Association Company Green Seiko F term (reference) 3C059 AA02 AB01 DA03 EA02 HA17 3J011 BA02 CA02 DA02
Claims (6)
動圧発生溝を有する動圧軸受の製造方法であって、 予め、棒状電極の外周部に動圧発生溝作成のための突部
を形成するとともに該突部を除く外表面を絶縁状態とし
ておき、 金属製軸受のシャフト挿入孔にその内周面と隙間を隔て
て前記棒状電極を挿入し、かつ該棒状電極と前記シャフ
ト挿入孔の内周面間を電解液に浸漬状態とし、 棒状電極を陰極、金属製軸受を陽極として、前記電解液
を介する前記突部と金属製軸受との間の電気化学反応に
より前記シャフト挿入孔の内周面に前記動圧発生溝を形
成することを特徴とする動圧軸受の製造方法。1. A method of manufacturing a dynamic pressure bearing having a dynamic pressure generation groove on the inner peripheral surface of a shaft insertion hole of a metal bearing, wherein a protrusion for forming the dynamic pressure generation groove is formed on the outer peripheral portion of the rod electrode in advance. The outer surface excluding the protrusion is formed into an insulating state, and the rod-shaped electrode is inserted into the shaft insertion hole of the metal bearing with a gap from the inner peripheral surface thereof, and the rod-shaped electrode and the shaft are inserted. The shaft insertion hole is formed by an electrochemical reaction between the protrusion and the metal bearing with the rod-shaped electrode as the cathode and the metal bearing as the anode, with the inner surface of the hole immersed in the electrolyte. A method for manufacturing a dynamic pressure bearing, wherein the dynamic pressure generating groove is formed on the inner peripheral surface of the.
いて、前記電解液は、硝酸ナトリウム水溶液であること
を特徴とする動圧軸受の製造方法。2. The method of manufacturing a dynamic pressure bearing according to claim 1, wherein the electrolytic solution is an aqueous solution of sodium nitrate.
法において、前記電解液は、棒状電極と金属製軸受の内
周面との隙間を経由して流通させられることを特徴とす
る動圧軸受の製造方法。3. The method for manufacturing a dynamic pressure bearing according to claim 1, wherein the electrolytic solution is circulated through a gap between the rod-shaped electrode and the inner peripheral surface of the metal bearing. Method for manufacturing dynamic pressure bearing.
動圧発生溝を有する動圧軸受を製造する装置であって、 金属製軸受を支持する支持体と、外周部に動圧発生溝を
作成するための突部が形成されるとともに該突部を除く
外表面が絶縁状態とされた棒状電極と、前記棒状電極が
金属製軸受のシャフト挿入孔にその内周面と隙間を隔て
て挿入されたとき、棒状電極とシャフト挿入孔の内周面
間を電解液で浸漬状態とする電解液供給機構とを備え、 棒状電極を陰極、金属製軸受を陽極として電源が接続さ
れていることを特徴とする動圧軸受の製造装置。4. A device for manufacturing a dynamic pressure bearing having a dynamic pressure generation groove on an inner peripheral surface of a shaft insertion hole of a metal bearing, wherein the support body supports the metal bearing and a dynamic pressure generation is generated at an outer peripheral portion. A rod-shaped electrode in which a protrusion for forming a groove is formed and the outer surface excluding the protrusion is in an insulating state, and the rod-shaped electrode is provided in a shaft insertion hole of a metal bearing with a gap from the inner peripheral surface thereof. Equipped with an electrolyte solution supply mechanism that immerses the rod-shaped electrode and the inner peripheral surface of the shaft insertion hole in the electrolyte solution when inserted, and the power source is connected with the rod-shaped electrode as the cathode and the metal bearing as the anode. An apparatus for manufacturing a dynamic pressure bearing, which is characterized in that
いて、 前記電解液供給機構は、棒状電極と金属製軸受のシャフ
ト挿入孔の内周面との隙間を経由して電解液を循環させ
る循環系を備えることを特徴とする動圧軸受の製造装
置。5. The dynamic pressure bearing manufacturing apparatus according to claim 4, wherein the electrolytic solution supply mechanism circulates the electrolytic solution through a gap between the rod-shaped electrode and the inner peripheral surface of the shaft insertion hole of the metal bearing. An apparatus for manufacturing a dynamic pressure bearing, comprising:
置において、前記棒状電極には、金属製軸受のシャフト
挿入孔内に挿入されたときに金属製軸受の端面に当接す
る段部が形成されるとともに、前記支持体は棒状電極の
段部との間で金属製軸受を両端から挟持するものであ
り、これら支持体と棒状電極の段部との間で前記隙間の
両端が閉塞され、その閉塞状態の隙間を軽油して支持体
又は棒状電極の段部のいずれか一方から他方に向けて前
記電解液が供給されることを特徴とする動圧軸受の製造
装置。6. The dynamic pressure bearing manufacturing apparatus according to claim 4, wherein the rod-shaped electrode is in contact with the end surface of the metal bearing when inserted into the shaft insertion hole of the metal bearing. Is formed, the support body sandwiches a metal bearing from both ends with the step portion of the rod-shaped electrode, and both ends of the gap are closed between the support body and the step portion of the rod-shaped electrode. The manufacturing apparatus for a dynamic pressure bearing is characterized in that the gap in the closed state is lightly oiled and the electrolytic solution is supplied from one of the support and the step of the rod-shaped electrode toward the other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002055011A JP2003254332A (en) | 2002-02-28 | 2002-02-28 | Method and device for manufacturing dynamic pressure bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002055011A JP2003254332A (en) | 2002-02-28 | 2002-02-28 | Method and device for manufacturing dynamic pressure bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003254332A true JP2003254332A (en) | 2003-09-10 |
Family
ID=28665961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002055011A Pending JP2003254332A (en) | 2002-02-28 | 2002-02-28 | Method and device for manufacturing dynamic pressure bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003254332A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009222167A (en) * | 2008-03-18 | 2009-10-01 | Minebea Co Ltd | Hydrodynamic pressure bearing device, spindle motor and method of manufacturing fluid dynamic pressure bearing device |
KR101240833B1 (en) | 2009-02-06 | 2013-03-07 | 삼성전기주식회사 | Electrode for electrolytic machining, electrolytic machining device and method including the same |
CN103084677A (en) * | 2013-01-16 | 2013-05-08 | 河南理工大学 | Device used for electrolyzing and processing double-faced trumped-shaped hole array in a thin walled cylinder |
EP3098011A1 (en) * | 2015-05-28 | 2016-11-30 | General Electric Company | Electrode for electroerosion machining system |
US10682715B2 (en) | 2015-05-28 | 2020-06-16 | General Electric Company | Method for material recovery in electroerosion machining |
CN113251068A (en) * | 2020-02-12 | 2021-08-13 | 通用电气精准医疗有限责任公司 | Fluid dynamic bearing system and method for manufacturing fluid dynamic bearing system |
CN114101818A (en) * | 2021-12-06 | 2022-03-01 | 郑州大学 | Method for processing surface microtexture by maskless electrolysis |
-
2002
- 2002-02-28 JP JP2002055011A patent/JP2003254332A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009222167A (en) * | 2008-03-18 | 2009-10-01 | Minebea Co Ltd | Hydrodynamic pressure bearing device, spindle motor and method of manufacturing fluid dynamic pressure bearing device |
KR101240833B1 (en) | 2009-02-06 | 2013-03-07 | 삼성전기주식회사 | Electrode for electrolytic machining, electrolytic machining device and method including the same |
CN103084677A (en) * | 2013-01-16 | 2013-05-08 | 河南理工大学 | Device used for electrolyzing and processing double-faced trumped-shaped hole array in a thin walled cylinder |
EP3098011A1 (en) * | 2015-05-28 | 2016-11-30 | General Electric Company | Electrode for electroerosion machining system |
CN106180928A (en) * | 2015-05-28 | 2016-12-07 | 通用电气公司 | Electrode for galvano-cautery system of processing |
US10682715B2 (en) | 2015-05-28 | 2020-06-16 | General Electric Company | Method for material recovery in electroerosion machining |
US11161190B2 (en) | 2015-05-28 | 2021-11-02 | General Electric Company | Electrode for electroerosion machining system |
CN113251068A (en) * | 2020-02-12 | 2021-08-13 | 通用电气精准医疗有限责任公司 | Fluid dynamic bearing system and method for manufacturing fluid dynamic bearing system |
CN114101818A (en) * | 2021-12-06 | 2022-03-01 | 郑州大学 | Method for processing surface microtexture by maskless electrolysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140018244A1 (en) | Electrochemical system and method for electropolishing superconductive radio frequency cavities | |
JPH06226539A (en) | Method for electrolytic polishing of shaped pipe | |
US20030217931A1 (en) | Electrolytic machining method and electrolytic machining apparatus | |
Moon et al. | A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing | |
KR20190020737A (en) | Electrolytic polishing method and apparatus and cathode manufacturing method | |
JP2003254332A (en) | Method and device for manufacturing dynamic pressure bearing | |
EP3473366A1 (en) | Method for electrochemical machining of complex internal additively manufactured surfaces | |
US4486279A (en) | Apparatus and method for making a laminated core | |
US6896143B2 (en) | Electrolytic machining method, method for manufacturing dynamic pressure bearing devices, and dynamic pressure bearing devices manufactured according to the manufacturing method | |
KR100312831B1 (en) | Micro electrochemical micromachining device for structure micro groove | |
Park et al. | Development of electrochemical micro machining for air-lubricated hydrodynamic bearings | |
US20170368626A1 (en) | Electrochemical Removal Of Material From A Workpiece | |
KR890701804A (en) | Apparatus and method for electrochemical surface finishing of conductive metal parts | |
US3803018A (en) | Electrolytic hole forming cathode electrode | |
JP3238878B2 (en) | Electrolytic machining method and apparatus for dynamic pressure groove in dynamic pressure bearing | |
US20070023279A1 (en) | Method and device for forming a dynamic pressure-generating groove in a fluid dynamic pressure bearing | |
US6398942B1 (en) | Electrochemical machining process for fabrication of cylindrical microprobe | |
US7479214B2 (en) | ECM trepan of bars | |
JP2003311545A (en) | Electrochemical machining method and device used for the same | |
JP3238876B2 (en) | Electrolytic machining method and apparatus for dynamic pressure groove in dynamic pressure bearing | |
JP2005288659A (en) | Electrolytic processing method and device | |
JP2017222007A (en) | Electrochemical machining device and machining method | |
US6503387B2 (en) | Method and device for electro-chemical discharge processing with self-acting bubble layer | |
JP3700476B2 (en) | Electrolysis method | |
JP2008095143A (en) | Barrel for plating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061010 |